JP2002260706A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2002260706A
JP2002260706A JP2001052409A JP2001052409A JP2002260706A JP 2002260706 A JP2002260706 A JP 2002260706A JP 2001052409 A JP2001052409 A JP 2001052409A JP 2001052409 A JP2001052409 A JP 2001052409A JP 2002260706 A JP2002260706 A JP 2002260706A
Authority
JP
Japan
Prior art keywords
conductive member
fuel
cell
density
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001052409A
Other languages
Japanese (ja)
Other versions
JP4683742B2 (en
Inventor
Takashi Shigehisa
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001052409A priority Critical patent/JP4683742B2/en
Publication of JP2002260706A publication Critical patent/JP2002260706A/en
Application granted granted Critical
Publication of JP4683742B2 publication Critical patent/JP4683742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell of which a process of bundling cells can be simplified and electric short circuiting of an inter-connector and a fuel electrode or the like can be prevented. SOLUTION: An air electrode 2 is formed on one face of a cylindrical solid electrolyte 3 and a fuel electrode 4 is formed on the other. A plurality of cell rows A are provided consisting of a plurality of fuel cells 1 each having an inter-connector 5 electrically connected with the air electrode 2 or the fuel electrode 4, and a conductive member 20 is provided between one cell row A and another cell row A, where, the inter-connector 5 of the fuel battery cell 1 in one cell row A and the air electrode 3 or the fuel electrode 4 of the fuel battery cell 1 in another cell row A are electrically connected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に係わ
り、特に、複数の固体電解質型燃料電池セルを電気的に
接続する際の導電部材を改良した燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly, to a fuel cell having an improved conductive member for electrically connecting a plurality of solid oxide fuel cells.

【0002】[0002]

【従来技術】図4は、円筒型の固体電解質型燃料電池セ
ルを示すもので、円筒型燃料電池セル1は、例えば、L
aMnO3系空気極2の支持管に、Y23安定化ZrO2
からなる固体電解質3と、LaCrO3系よりなるイン
ターコネクタ5の緻密質な膜を形成し、固体電解質3の
上面にNi−ジルコニア系の燃料極4を設けて形成され
ている。
2. Description of the Related Art FIG. 4 shows a cylindrical solid oxide fuel cell unit.
a Supporting tube of the MnO 3 -based air electrode 2 is provided with Y 2 O 3 stabilized ZrO 2.
, And a dense film of an interconnector 5 made of LaCrO 3 is formed, and a Ni-zirconia fuel electrode 4 is provided on the upper surface of the solid electrolyte 3.

【0003】そして、燃料電池セル1は、図5に示すよ
うに、上下方向の燃料電池セル1同士が導電部材10を
介することにより接続され、図5における左右方向に隣
接する燃料電池セル1の燃料極4同士が導電部材13を
介することにより電気的に接続されている。
[0005] As shown in FIG. 5, the fuel cells 1 are connected to each other by connecting the fuel cells 1 in the vertical direction via a conductive member 10, and the fuel cells 1 adjacent to each other in the horizontal direction in FIG. The fuel electrodes 4 are electrically connected to each other via the conductive member 13.

【0004】即ち、図5における上下方向の燃料電池セ
ル1同士は、上に位置する燃料電池セル1の燃料極4
と、下に位置する燃料電池セル1のインターコネクタ5
との間に、Niを主成分とする金属繊維の集合体からな
る導電部材10が配置され、この導電部材10により、
上に位置する燃料電池セル1の燃料極4と、下に位置す
る燃料電池セル1のインターコネクタ5とが電気的に導
通している。
That is, the fuel cells 1 in the vertical direction in FIG. 5 are connected to the fuel electrode 4 of the fuel cell 1 positioned above.
And the interconnector 5 of the fuel cell 1 located below
And a conductive member 10 formed of an aggregate of metal fibers containing Ni as a main component, and the conductive member 10
The fuel electrode 4 of the upper fuel cell 1 and the interconnector 5 of the lower fuel cell 1 are electrically connected.

【0005】導電部材10、13は、燃料電池セル1相
互間の電気的な導通と、燃料電池セル1相互間の機械的
な応力緩和にある。このため、導電部材10、13は、
ガスの透過性があり、弾力性のある金属繊維の集合体が
用いられている。また導電部材10の金属繊維の材料と
しては、雰囲気が水素雰囲気から発電によって生じた水
蒸気を含む雰囲気まで安定であるという理由から、Ni
金属が利用されている。
[0005] The conductive members 10 and 13 are for electrical conduction between the fuel cells 1 and for relieving mechanical stress between the fuel cells 1. For this reason, the conductive members 10 and 13
An aggregate of metal fibers having gas permeability and elasticity is used. As a material of the metal fiber of the conductive member 10, Ni is used because the atmosphere is stable from a hydrogen atmosphere to an atmosphere containing water vapor generated by power generation.
Metal is used.

【0006】燃料電池は、図5に示すような燃料電池セ
ル1同士が電気的に接続されたスタックを作製し、これ
らを複数組み合わせるとともに、その集合体の両端(正
極側および負極側)に集電部材を配置して構成される。
燃料電池は、燃料電池セル1の空気極2側に酸素を含有
するガス、たとえば空気を流し、燃料極4側に燃料、例
えば水素を流しながら、1000℃近傍の温度で発電す
る。
[0006] As for the fuel cell, a stack in which the fuel cells 1 are electrically connected as shown in FIG. 5 is produced, a plurality of these are combined, and collected at both ends (the positive electrode side and the negative electrode side) of the assembly. It is configured by arranging electrical members.
The fuel cell generates power at a temperature of about 1000 ° C. while flowing a gas containing oxygen, for example, air, on the side of the air electrode 2 of the fuel cell 1 and flowing a fuel, for example, hydrogen on the side of the fuel electrode 4.

【0007】[0007]

【発明が解決しようとする課題】導電部材10、13
は、セル1間の電気的な導通を行うことと、セル1間の
応力を緩和するために、円筒形固体電解質燃料電池にお
いてはセル1間に、即ちセル1の4側面に配置され、複
数のセル1からなるセル列を複数行設けて束ねられてい
る。このため、複数のセル1を束ねる行程は複雑で時間
がかかるものであった。また、このようにセル1間に配
置された導電部材はズレやすく、発電中のショートの原
因にもなっていた。
SUMMARY OF THE INVENTION Conductive members 10, 13
Are arranged between the cells 1 in the cylindrical solid electrolyte fuel cell, that is, on the four side surfaces of the cells 1, in order to perform electrical conduction between the cells 1 and to relieve stress between the cells 1, Are provided and arranged in a plurality of rows. For this reason, the process of bundling a plurality of cells 1 is complicated and time-consuming. In addition, the conductive members arranged between the cells 1 are easily displaced, causing short circuit during power generation.

【0008】本発明は、セルを束ねる行程を簡略化でき
るとともに、さらにはインターコネクタと燃料極等との
電気的なショートを防止できる燃料電池を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuel cell which can simplify the process of bundling cells and, furthermore, can prevent an electrical short between an interconnector and a fuel electrode.

【0009】[0009]

【課題を解決するための手段】本発明の燃料電池は、筒
状の固体電解質の片面に空気極を、他面に燃料極を形成
してなり、前記空気極または前記燃料極に電気的に接続
されるインターコネクタを有する複数の燃料電池セルか
らなるセル列を複数行設け、一方のセル列と他方のセル
列との間に導電部材を設け、前記一方のセル列における
燃料電池セルのインターコネクタと、前記他方のセル列
における燃料電池セルの空気極または燃料極とを電気的
に接続してなるものである。
A fuel cell according to the present invention comprises a cylindrical solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface, and electrically connected to the air electrode or the fuel electrode. A plurality of rows of fuel cells having interconnectors to be connected are provided in a plurality of rows, a conductive member is provided between one cell row and the other cell row, and an interface of the fuel cells in the one cell row is provided. The connector is electrically connected to an air electrode or a fuel electrode of a fuel cell in the other cell row.

【0010】燃料電池をスタック化する上で、導電部材
の役割は、セル間を電気的な損失が無く接続すること
と、セル間の応力を緩和する事である。そのため、ある
程度の導電性と弾力性を保つためにある程度の密度が必
要である。本来ならば、燃料極の部分は、発電反応を行
うため、ガスの透過が大きい方がよく、導電部材はない
方が望ましい。この相反する要求のため、導電部材は両
者を妥協した密度のものが使用されている。また、導電
部材は、その密度のため柔らかく強固でなく、変形また
はズレたりするため、同一のセルの燃料極の部分とイン
ターコネクタの部分を接触させ、電気的なショートを引
き起こす危険がある。
In stacking the fuel cells, the role of the conductive member is to connect the cells without electric loss and to alleviate the stress between the cells. Therefore, a certain density is required to maintain a certain degree of conductivity and elasticity. Originally, since the fuel electrode portion performs a power generation reaction, it is better that gas permeation is large, and it is desirable that there is no conductive member. Because of these conflicting demands, conductive members having a density that compromises both are used. In addition, the conductive member is not soft and strong due to its density, and is deformed or displaced. Therefore, there is a danger that the fuel electrode portion and the interconnector portion of the same cell come into contact with each other and cause an electric short circuit.

【0011】本発明の燃料電池では、一方のセル列と他
方のセル列との間に一体化した導電部材を設けたので、
即ち、導電部材が、複数の燃料電池セルを並列に接続す
るように一体化してあり、従来の性能を保ったまま、電
気的なショートの危険のない燃料電池を供給できる。ま
た、集電部材を一体化しているため、スタック化する際
の作業効率を飛躍的に上昇できる。
In the fuel cell of the present invention, the integrated conductive member is provided between one cell row and the other cell row.
That is, the conductive member is integrated so as to connect a plurality of fuel cells in parallel, and it is possible to supply a fuel cell without danger of electrical short while maintaining the conventional performance. In addition, since the current collecting member is integrated, the working efficiency in stacking can be dramatically increased.

【0012】また、本発明では、導電部材は、Niを主
成分とする金属繊維の集合体からなることが望ましい。
弾力性のある金属繊維の集合体を用いることにより、燃
料電池セル相互間の機械的な応力を緩和できるととも
に、ガスの透過性を向上でき、また、Niを用いること
により、雰囲気が水素雰囲気から発電によって生じた水
蒸気を含む雰囲気まで安定であるため、高温という環境
下でも耐久性に優れる。
In the present invention, the conductive member is preferably made of an aggregate of metal fibers containing Ni as a main component.
By using an aggregate of elastic metal fibers, the mechanical stress between the fuel cells can be reduced, the gas permeability can be improved, and by using Ni, the atmosphere can be changed from a hydrogen atmosphere. Since it is stable up to an atmosphere containing water vapor generated by power generation, it has excellent durability even in a high temperature environment.

【0013】さらに、本発明では、導電部材が密度の異
なる二層以上からなるとともに、インターコネクタに当
接する第1導電部材の密度が、空気極または燃料極に当
接する第2導電部材の密度よりも高いことが望ましい。
Further, according to the present invention, the conductive member is composed of two or more layers having different densities, and the density of the first conductive member in contact with the interconnector is higher than the density of the second conductive member in contact with the air electrode or the fuel electrode. Is also desirable.

【0014】このような構成によれば、導電部材の電気
抵抗による出力低下と燃料ガスの不透過による出力低下
を最小限に抑制できる。即ち、燃料ガス(空気または水
素ガス)が密度の低い第2導電部材を透過して空気極ま
たは燃料極内に十分に侵入することができ、これによ
り、第2導電部材に当接する空気極または燃料極を介し
て十分な燃料ガスを供給できる。また、第2導電部材は
密度が低いために変形しやすく、空気極または燃料極と
の接触面積が大きくなり電気抵抗による出力低下を抑え
ることができる。一方、密度が高い第1導電部材を、電
流が流れる箇所にもってきてあるので、電気抵抗による
損失を小さくできる。
According to such a configuration, a decrease in output due to the electric resistance of the conductive member and a decrease in output due to impermeability of the fuel gas can be minimized. That is, the fuel gas (air or hydrogen gas) can sufficiently penetrate through the second conductive member having a low density and penetrate into the air electrode or the fuel electrode. Sufficient fuel gas can be supplied through the fuel electrode. In addition, the second conductive member is easily deformed due to its low density, and the contact area with the air electrode or the fuel electrode is increased, so that a decrease in output due to electric resistance can be suppressed. On the other hand, since the first conductive member having a high density is provided at a location where the current flows, a loss due to electric resistance can be reduced.

【0015】また、本発明では、第1導電部材と第2導
電部材の間には、該第1導電部材および第2導電部材よ
りも密度が高い高密度導電部材が設けられていることが
望ましい。このような構成によれば、第1導電部材と第
2導電部材の間に高密度導電部材を配置したので、導電
部材の電気抵抗による損失を小さくできる。
In the present invention, it is desirable that a high-density conductive member having a higher density than the first conductive member and the second conductive member is provided between the first conductive member and the second conductive member. . According to such a configuration, since the high-density conductive member is disposed between the first conductive member and the second conductive member, the loss due to the electric resistance of the conductive member can be reduced.

【0016】この高密度導電部材は、Niを主成分とす
る金属板であることが望ましい。これにより、燃料ガス
の不透過による出力低下を最小限に抑制できるととも
に、電気抵抗の小さい金属板が介装されているため導電
部材全体の電気抵抗を抑えて、導電部材の電気抵抗によ
る出力低下をさらに抑制できる。
The high-density conductive member is preferably a metal plate containing Ni as a main component. As a result, a decrease in output due to fuel gas impermeability can be suppressed to a minimum, and a metal plate having a small electric resistance is interposed, so that the electric resistance of the entire conductive member is suppressed, and the output decrease due to the electric resistance of the conductive member is suppressed. Can be further suppressed.

【0017】さらに、本発明では、燃料電池セルの外径
は10mm以下であることが望ましい。このような外径
が10mm以下の燃料電池セルでは、導電部材の凹凸が
大きくないためセル形状に対応しやすく変形しにくく、
バンドル化(導電部材の一体化)に適しているととも
に、インターコネクタと燃料極がショートしにくくな
る。
Further, in the present invention, the outer diameter of the fuel cell is desirably 10 mm or less. In such a fuel cell having an outer diameter of 10 mm or less, the conductive member is not easily deformed because the unevenness of the conductive member is not large.
It is suitable for bundling (integration of conductive members) and makes it difficult for the interconnector and the fuel electrode to be short-circuited.

【0018】また、本発明では、導電部材はNiを主成
分とする金属繊維を加圧し、先に高密度の部位を作製
し、後になるほど低密度の部位を加圧し、一体に成形す
ることが望ましい。金属繊維を密度の高い部位から加圧
成形し、低い部位へと次第に加圧成形していくため、一
体の導電部材を作製できるとともに、密度が高い部位を
先に加圧するので低い部位の加圧でも密度の影響を受け
ないので、導電部材の密度を制御でき、目的の密度にで
きる。
In the present invention, the conductive member may be formed by pressing a metal fiber containing Ni as a main component, first forming a high-density portion, and then pressing a low-density portion later. desirable. The metal fiber is pressed from a high-density part and gradually pressed to a low-density part, so that an integral conductive member can be manufactured. However, since it is not affected by the density, the density of the conductive member can be controlled and a desired density can be obtained.

【0019】さらに、本発明では、導電部材は、還元雰
囲気中、燃料電池の動作温度以上の温度で熱処理されて
いることが望ましい。これにより、動作温度で連続運転
しても導電部材が収縮することなく、安定した性能が望
める。
Further, in the present invention, it is desirable that the conductive member is heat-treated in a reducing atmosphere at a temperature equal to or higher than the operating temperature of the fuel cell. Thereby, even if the conductive member is continuously operated at the operating temperature, stable performance can be expected without the conductive member contracting.

【0020】[0020]

【発明の実施の形態】本発明の燃料電池は、図1に示す
ように、複数の燃料電池セル1から構成されており、こ
れらの燃料電池セル1は、固体電解質3の内面に円筒状
の空気極2が、外面に燃料極4が形成されており、空気
極2に電気的に接続されたインターコネクタ5が、燃料
極4と導通せずに、外部に露出して構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a fuel cell according to the present invention comprises a plurality of fuel cells 1, and these fuel cells 1 have a cylindrical shape on the inner surface of a solid electrolyte 3. The fuel electrode 4 is formed on the outer surface of the air electrode 2, and the interconnector 5 electrically connected to the air electrode 2 is configured to be exposed to the outside without conducting to the fuel electrode 4.

【0021】そして、本発明では、図1に示したよう
に、複数の燃料電池セル1からなるセル列Aが複数行設
けられ、一方のセル列Aと他方のセル列Aとの間に導電
部材20が設けられ、一方のセル列Aにおける燃料電池
セル1のインターコネクタ5と、他方のセル列Aにおけ
る燃料電池セル1の燃料極4とが電気的に接続されてい
る。燃料電池セル1は、図1では、インターコネクタ5
が上側を向くように配列されている。
In the present invention, as shown in FIG. 1, a plurality of cell columns A including a plurality of fuel cells 1 are provided in a plurality of rows, and a conductive cell is provided between one cell column A and the other cell column A. A member 20 is provided, and the interconnector 5 of the fuel cell 1 in one cell row A is electrically connected to the fuel electrode 4 of the fuel cell 1 in the other cell row A. In FIG. 1, the fuel cell 1 has an interconnector 5.
Are arranged so as to face upward.

【0022】即ち、導電部材20は波板状に形成されて
おり、上側の燃料電池セル1の燃料極4と下側の燃料電
池セル1のインターコネクタ5との間に、導電部材20
が位置するとともに、この導電部材20が、左右方向に
隣接する燃料電池セル1の燃料極4間にも位置してい
る。
That is, the conductive member 20 is formed in a corrugated plate shape, and is provided between the fuel electrode 4 of the upper fuel cell 1 and the interconnector 5 of the lower fuel cell 1.
And the conductive member 20 is also located between the fuel electrodes 4 of the fuel cells 1 adjacent in the left-right direction.

【0023】左右方向に隣接する燃料電池セル1の燃料
極4間の電気的な接続については、どの位置を接続して
も良いが、燃料電池セル1間の機械的な保持、位置固定
という点から、導電部材20は蛇行した形状とされ、隣
接する燃料極4間の間隔が最も近い位置において、導電
部材20が介装されている。導電部材20は、Niを主
成分とする金属繊維の集合体から構成されている。
Regarding the electrical connection between the fuel electrodes 4 of the fuel cells 1 adjacent to each other in the left-right direction, any position may be connected. Therefore, the conductive member 20 has a meandering shape, and the conductive member 20 is interposed at a position where the distance between the adjacent fuel electrodes 4 is closest. The conductive member 20 is composed of an aggregate of metal fibers containing Ni as a main component.

【0024】金属繊維の集合体からなる導電部材20
は、還元雰囲気中、燃料電池の動作温度以上の温度で熱
処理されていることが望ましい。これにより、動作温度
で連続運転しても導電部材が収縮することなく、安定し
た性能が望める。
Conductive member 20 made of an aggregate of metal fibers
Is preferably heat-treated in a reducing atmosphere at a temperature equal to or higher than the operating temperature of the fuel cell. Thereby, even if the conductive member is continuously operated at the operating temperature, stable performance can be expected without the conductive member contracting.

【0025】このような導電部材20がセル列A間に配
置されているので、導電部材20の変形や位置ズレが殆
どなく、同一のセルの燃料極の部分とインターコネクタ
の部分が接触することがなく、電気的なショートの発生
を防止できる。
Since the conductive member 20 is arranged between the cell rows A, the conductive member 20 is hardly deformed or displaced, and the fuel electrode portion and the interconnector portion of the same cell are in contact with each other. Therefore, the occurrence of an electrical short can be prevented.

【0026】また、一方のセル列Aと他方のセル列Aと
の間に一体化した導電部材20を複数の燃料電池セル1
を並列に接続するように設けたので、従来のように、燃
料電池セルの4側面に配置することがなく、スタック化
する際の作業効率を飛躍的に上昇できる。
The conductive member 20 integrated between one cell row A and the other cell row A is connected to a plurality of fuel cells 1.
Are provided so as to be connected in parallel, so that it is not necessary to dispose them on the four side surfaces of the fuel cells as in the conventional case, and the work efficiency in stacking can be dramatically increased.

【0027】また、本発明では、図2に示すように、平
板形状の導電部材20が密度の異なる二層以上からなる
とともに、同一セル列Aのインターコネクタ5に当接す
る第1導電部材20aの密度が、同一セル列Aの燃料極
4に当接する第2導電部材20bの密度よりも高いこと
が望ましい。
Further, according to the present invention, as shown in FIG. 2, the plate-shaped conductive member 20 is formed of two or more layers having different densities, and the first conductive member 20a contacting the interconnector 5 of the same cell row A. It is desirable that the density is higher than the density of the second conductive member 20b that contacts the fuel electrode 4 in the same cell row A.

【0028】このような構成によれば、燃料ガスが密度
の低い第2導電部材20bを透過して燃料極4内に十分
に侵入することができ、これにより、第2導電部材20
bに当接する燃料極4を介して十分な燃料ガスを供給で
きる。
According to such a configuration, the fuel gas can penetrate through the second conductive member 20b having a low density and sufficiently penetrate into the fuel electrode 4, whereby the second conductive member 20b
Sufficient fuel gas can be supplied through the fuel electrode 4 which is in contact with b.

【0029】また、第2導電部材20bは密度が低いた
めに変形しやすく、燃料極4の形状に沿って変形し易
く、燃料極4との接触面積が大きくなり電気抵抗による
出力低下を抑えることができる。一方、密度が高い第1
導電部材20aをインターコネクタ5に当接しているた
め、電気抵抗による損失を小さくできるとともに、第1
導電部材20aの変形が抑制されているため、同一燃料
電池セル1での燃料極4とインターコネクタ5とのショ
ートを防止できる。
Further, the second conductive member 20b is easily deformed due to its low density, easily deformed along the shape of the fuel electrode 4, and has a large contact area with the fuel electrode 4 to suppress a decrease in output due to electric resistance. Can be. On the other hand, the first
Since the conductive member 20a is in contact with the interconnector 5, the loss due to electric resistance can be reduced, and the first
Since the deformation of the conductive member 20a is suppressed, a short circuit between the fuel electrode 4 and the interconnector 5 in the same fuel cell 1 can be prevented.

【0030】導電部材20は、Niを主成分とする金属
繊維を加圧し、先に高密度の部位を作製し、後になるほ
ど低密度の部位を加圧し、一体に成形することが望まし
い。金属繊維を密度の高い部位から加圧成形し、低い部
位へと次第に加圧成形していくため、一体の導電部材2
0を作製できるとともに、密度が高い第1導電部材20
aを先に加圧するので低い第2導電部材20bの加圧で
も密度の影響を受けないので、導電部材20の密度を制
御でき、目的の密度にできる。
It is desirable that the conductive member 20 be formed integrally by pressing a metal fiber containing Ni as a main component, first forming a high-density portion, and then pressing a low-density portion later. In order to press-mold a metal fiber from a high-density portion and gradually press-mold a metal fiber to a low-density portion, an integral conductive member 2 is formed.
0 and the first conductive member 20 having a high density.
Since a is pressed first, the density of the second conductive member 20b is not affected even when the pressure is low, so that the density of the conductive member 20 can be controlled and the target density can be achieved.

【0031】また、図2(b)に示すように、第2導電
部材20bの厚みを厚くし、変形し易くすることにより
(密度を小さくしても良い)、燃料極4を半分程度埋設
することもできる。この場合には、隣接する燃料極4間
の間隔が最も近い位置まで埋設することにより、燃料電
池セル1間の機械的な保持、位置固定を行うことができ
る。
As shown in FIG. 2 (b), the thickness of the second conductive member 20b is increased and the second conductive member 20b is easily deformed (the density may be reduced), so that the fuel electrode 4 is embedded about half. You can also. In this case, the fuel cells 1 can be mechanically held and fixed in position by burying them up to the position where the interval between the adjacent fuel electrodes 4 is closest.

【0032】第1導電部材20a、第2導電部材20b
は、Niを主成分とする金属繊維の集合体から構成され
ている。Niを主成分とする金属繊維の集合体は嵩密度
0.44〜2.21g/cm3が望ましい。嵩密度が
0.44g/cm3よりも小さい場合には導電部材20
a、20bの電気抵抗が大きくなる傾向があり、燃料電
池セルをスタック化した場合に出力が低下する傾向があ
る。嵩密度が2.21g/cm3を越えると燃料ガスの
透過性が悪くなり、接触している燃料極に燃料ガスを供
給しにくく、発電性能が低下する傾向がある。また、弾
力性も低下し易く、セル間の応力を吸収できなくなる傾
向がある。
First conductive member 20a, second conductive member 20b
Is composed of an aggregate of metal fibers containing Ni as a main component. The aggregate of metal fibers containing Ni as a main component preferably has a bulk density of 0.44 to 2.21 g / cm 3 . If the bulk density is less than 0.44 g / cm 3 , the conductive member 20
The electric resistances of a and 20b tend to increase, and the output tends to decrease when the fuel cells are stacked. If the bulk density exceeds 2.21 g / cm 3 , the permeability of the fuel gas deteriorates, and it is difficult to supply the fuel gas to the contacting fuel electrode, and the power generation performance tends to decrease. Also, the elasticity tends to decrease, and the stress between cells tends to be unable to be absorbed.

【0033】導電部材20a、20bの嵩密度は、導電
部材20a、20bの電気抵抗を小さくし、燃料ガスの
透過性を向上するという観点から、導電部材20a、2
0bの嵩密度は0.44〜2.21g/cm3であるこ
とが望ましい。
The bulk density of the conductive members 20a and 20b is determined from the viewpoint of reducing the electric resistance of the conductive members 20a and 20b and improving the fuel gas permeability.
The bulk density of Ob is desirably 0.44 to 2.21 g / cm 3 .

【0034】導電部材20a、20bの嵩密度は0.4
4〜2.21g/cm3である場合には、導電部材20
a、20bがNi金属である場合の比重の5〜25%で
ある。つまり、導電部材20a、20bがNi金属の塊
からなる場合の比重をρ1、導電部材20a、20bが
金属繊維の集合体からなる場合の嵩密度をρ2とした
時、ρ2/ρ1が5〜25%であることを意味する。
The bulk density of the conductive members 20a and 20b is 0.4
When the weight is 4 to 2.21 g / cm 3 , the conductive member 20
The specific gravity is 5 to 25% when a and 20b are Ni metal. That is, assuming that the specific gravity when the conductive members 20a and 20b are made of a lump of Ni metal is ρ 1 and the bulk density when the conductive members 20a and 20b are made of an aggregate of metal fibers is ρ 2 , ρ 2 / ρ 1 Is 5 to 25%.

【0035】導電部材20a、20bの嵩密度を0.4
4〜2.21g/cm3と高くするためには、Ni金属
繊維の集合体(フェルト等)をプレス機により所定圧力
により押圧することにより達成できる。ちなみに、Ni
金属である場合の比重は8.845であり、通常のNi
フェルトの嵩密度は0.35g/cm3であり、導電部
材20a、20bの嵩密度は、導電部材20a、20b
がNi金属である場合の比重の4%程度である。金属繊
維は、Niを主成分とし、Fe、CoおよびCrのうち
少なくとも一種を含有しても良い。
The bulk density of the conductive members 20a and 20b is set to 0.4
The increase to 4 to 2.21 g / cm 3 can be achieved by pressing an aggregate (felt or the like) of Ni metal fibers at a predetermined pressure with a press. By the way, Ni
The specific gravity in the case of a metal is 8.845,
The bulk density of the felt is 0.35 g / cm 3 , and the bulk density of the conductive members 20a and 20b is
Is about 4% of the specific gravity when Ni is a Ni metal. The metal fiber contains Ni as a main component and may contain at least one of Fe, Co and Cr.

【0036】第1導電部材20aの嵩密度は1.5〜
2.0g/cm3、第2導電部材20bの嵩密度は0.
5〜1.5g/cm3であることが望ましい。
The bulk density of the first conductive member 20a is 1.5 to
2.0 g / cm 3 , and the bulk density of the second conductive member 20 b is 0.1 g / cm 3 .
It is desirably 5 to 1.5 g / cm 3 .

【0037】なお、本発明の導電部材20a、20b
は、上述した導電部材20a、20b自身の電気的な問
題以外に、インターコネクタ5や燃料極4、集電材との
接触界面の抵抗を減少させるため、Niからなる金属繊
維の線径が5〜80μmであることが望ましい。Niを
主成分とする金属繊維の線径が5μm小さいと導電部材
20a、20b自身が発電時に収縮し、接触界面から剥
離し易く、電気抵抗が増大する傾向にある。この値が8
0μmより大きいと界面での接触面積が小さいことや表
面エネルギーの減少によって界面での接触が悪くなる。
Niからなる金属繊維の線径は、接触抵抗の低下という
観点から20〜50μmの範囲が良い。
The conductive members 20a, 20b of the present invention
In addition to the above-described electrical problems of the conductive members 20a and 20b, the wire diameter of the metal fiber made of Ni is 5 to reduce the resistance of the contact interface with the interconnector 5, the fuel electrode 4, and the current collector. Preferably, it is 80 μm. If the wire diameter of the metal fiber containing Ni as the main component is smaller than 5 μm, the conductive members 20a and 20b themselves shrink during power generation, tend to peel off from the contact interface, and tend to increase electric resistance. This value is 8
If it is larger than 0 μm, contact at the interface becomes poor due to a small contact area at the interface and a decrease in surface energy.
The wire diameter of the metal fiber made of Ni is preferably in the range of 20 to 50 μm from the viewpoint of reducing the contact resistance.

【0038】また、上述した導電部材20a、20bと
他の部材との接触界面の電気抵抗を減少させる別の方法
として、Niを主成分とする金属繊維中に平均粒径10
μm以下のNi金属を主成分とする金属粒子を重量比4
0%以下含むこともできる。Ni金属粒子の平均粒径が
10μmより大きいと界面の接触抵抗を低減する効果が
なく、40%より多いと導電部材自身が収縮し、接触抵
抗が増大し、電気抵抗が増大する傾向がある。
As another method for reducing the electric resistance at the contact interface between the conductive members 20a and 20b and other members, a metal fiber containing Ni as a main component has an average particle diameter of 10%.
metal particles containing Ni metal of less than μm
0% or less can be contained. If the average particle size of the Ni metal particles is larger than 10 μm, there is no effect of reducing the contact resistance at the interface.

【0039】Niを主成分とする金属繊維の平均粒径、
重量比は、接触抵抗を低下し電気抵抗を低下するという
観点から、平均粒径が1〜3μmであり、重量比は5〜
30%であることが望ましい。ここで、重量比とは、導
電部材20a、20b全体の重量に対する金属粒子の重
量比である。金属粒子としては、Niあるいは、Niと
他のFe、Co、Crとの合金の粒子、あるいは金属粒
子のコンポジットがある。
The average particle size of the metal fiber containing Ni as a main component,
From the viewpoint of reducing the contact resistance and the electrical resistance, the weight ratio has an average particle size of 1 to 3 μm, and the weight ratio is 5 to 5.
Desirably, it is 30%. Here, the weight ratio is the weight ratio of the metal particles to the total weight of the conductive members 20a and 20b. Examples of the metal particles include particles of Ni, alloys of Ni and other Fe, Co, and Cr, or composites of metal particles.

【0040】また、本発明では、図3(a)、(b)に
示すように、図2(a)、(b)に示すような第1導電
部材20aと第2導電部材20bの間に、該第1導電部
材20aおよび第2導電部材20bよりも密度が高い高
密度導電部材20cが設けられていることが望ましい。
この高密度導電部材20cは、Niを主成分とする金属
板であることが望ましい。
Further, according to the present invention, as shown in FIGS. 3A and 3B, between the first conductive member 20a and the second conductive member 20b as shown in FIGS. 2A and 2B. Preferably, a high-density conductive member 20c having a higher density than the first conductive member 20a and the second conductive member 20b is provided.
This high-density conductive member 20c is desirably a metal plate containing Ni as a main component.

【0041】このような構成を採用することにより、図
2に示す燃料電池と同様の効果を得ることができるとと
もに、電気抵抗の小さい高密度導電部材20cが介装さ
れているため導電部材20全体の電気抵抗を抑えて、導
電部材20の電気抵抗による出力低下をさらに抑制でき
る。さらに、導電部材20a、20b、20cが一体と
なっているため、インターコネクタ側の第1導電部材2
0aの変形をさらに抑制でき、第1導電部材20aが同
一セルの燃料極4とショートすることもない。
By adopting such a configuration, the same effect as that of the fuel cell shown in FIG. 2 can be obtained, and at the same time, since the high-density conductive member 20c having a small electric resistance is interposed, the entire conductive member 20 is provided. Can be further suppressed, and a decrease in output due to the electric resistance of the conductive member 20 can be further suppressed. Further, since the conductive members 20a, 20b and 20c are integrated, the first conductive member 2 on the interconnector side is formed.
0a can be further suppressed, and the first conductive member 20a does not short-circuit with the fuel electrode 4 of the same cell.

【0042】以上のように構成された本発明の燃料電池
では、燃料電池セル1間を一体の導電部材20で接続し
ているので、スタック組み立て時、発電時のずれや変形
がなく、電気的なショートがない。また、部位によって
密度の差を付けているために、燃料極へのガスの透過も
十分確保でき、セル間の電気抵抗も小さくできる。
In the fuel cell of the present invention configured as described above, since the fuel cells 1 are connected by the integral conductive member 20, there is no displacement or deformation during power generation during stack assembly, and the electrical There is no short. In addition, since the density is different depending on the location, the permeation of gas to the fuel electrode can be sufficiently ensured, and the electric resistance between cells can be reduced.

【0043】本発明の燃料電池は、セルの外径が10m
m以下である場合に好適に用いることができる。即ち、
セルの外径が10mm以下である場合には、導電部材の
凹凸を10mm以下にできるため、導電部材(フェル
ト)の弾力性により導電部材が凹凸に変形し、セルに密
着よく接合できる。このため、スタック組み立ての作業
効率がいいことと、発電時のショートもない。また、変
形量の観点からセルの外径は8mm以下が望ましい。
The fuel cell of the present invention has a cell outer diameter of 10 m.
When it is less than m, it can be used suitably. That is,
When the outer diameter of the cell is 10 mm or less, the unevenness of the conductive member can be reduced to 10 mm or less. Therefore, the conductive member is deformed into unevenness due to the elasticity of the conductive member (felt), and can be closely adhered to the cell. Therefore, the work efficiency of stack assembly is good, and there is no short circuit during power generation. From the viewpoint of the amount of deformation, the outer diameter of the cell is preferably 8 mm or less.

【0044】尚、図1の導電部材20を、第1導電部材
と第2導電部材から、または第1導電部材と第2導電部
材の間に高密度導電部材を設けて構成しても良いことは
勿論である。また、本発明は、円筒状の燃料電池セル以
外の断面が四角筒状の燃料電池セルであっても良いこと
は勿論である。
The conductive member 20 shown in FIG. 1 may be constituted by providing a high-density conductive member from the first conductive member and the second conductive member or between the first conductive member and the second conductive member. Of course. Further, in the present invention, it is needless to say that the fuel cell may have a square tubular shape in cross section other than the cylindrical fuel cell.

【0045】[0045]

【発明の効果】本発明の燃料電池は、一方のセル列と他
方のセル列との間に一体化した導電部材を設けたので、
従来の性能を保ったまま、電気的なショートの危険のな
い燃料電池を供給できるとともに、導電部材を一体化し
ているため、スタック化する際の作業効率を飛躍的に上
昇できる。
According to the fuel cell of the present invention, an integrated conductive member is provided between one cell row and the other cell row.
A fuel cell free from the danger of electrical short-circuit can be supplied while maintaining the conventional performance, and since the conductive members are integrated, the work efficiency in stacking can be dramatically increased.

【0046】また、導電部材が密度の異なる二層以上か
らなるとともに、インターコネクタに当接する第1導電
部材の密度を、空気極または燃料極に当接する第2導電
部材の密度よりも高くすることにより、燃料ガスが密度
の低い第2導電部材を透過して空気極または燃料極内に
十分に侵入することができ、第2導電部材に当接する空
気極または燃料極を介して十分な燃料ガスを供給できる
とともに、第2導電部材は密度が低いために変形しやす
く、空気極または燃料極との接触面積が大きくなり電気
抵抗による出力低下を抑えることができ、さらに、密度
が高い第1導電部材を、インターコネクタ側に設けたの
で、電気抵抗による損失を小さくでき、同一燃料電池セ
ルにおける燃料極とインターコネクタのショートを防止
できる。
Further, the conductive member is composed of two or more layers having different densities, and the density of the first conductive member in contact with the interconnector is higher than the density of the second conductive member in contact with the air electrode or the fuel electrode. Thereby, the fuel gas can sufficiently penetrate through the second conductive member having a low density and penetrate into the air electrode or the fuel electrode, and a sufficient amount of the fuel gas can flow through the air electrode or the fuel electrode contacting the second conductive member. And the second conductive member is easily deformed due to its low density, the contact area with the air electrode or the fuel electrode is increased, the output reduction due to electric resistance can be suppressed, and the first conductive member having a high density can be supplied. Since the member is provided on the interconnector side, loss due to electrical resistance can be reduced, and a short circuit between the fuel electrode and the interconnector in the same fuel cell can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池を説明するための横断面図で
ある。
FIG. 1 is a cross-sectional view for explaining a fuel cell of the present invention.

【図2】セル列間に第1導電部材と第2導電部材を配置
した状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where a first conductive member and a second conductive member are arranged between cell rows.

【図3】図2の第1導電部材と第2導電部材の間に高密
度導電部材を配置した状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state where a high-density conductive member is arranged between a first conductive member and a second conductive member of FIG. 2;

【図4】円筒型燃料電池セルを説明するための横断面図
である。
FIG. 4 is a cross-sectional view illustrating a cylindrical fuel cell.

【図5】従来の燃料電池セルを9個接続したスタックを
示す説明図である。
FIG. 5 is an explanatory view showing a stack in which nine conventional fuel cells are connected.

【符号の説明】[Explanation of symbols]

1・・・燃料電池セル 2・・・空気極 3・・・固体電解質 4・・・燃料極 5・・・インイターコネクタ 20、・・・導電部材 20a・・・第1導電部材 20b・・・第2導電部材 20c・・・高密度導電部材 A・・・セル列 DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Air electrode 3 ... Solid electrolyte 4 ... Fuel electrode 5 ... In-connector 20 ... Conductive member 20a ... First conductive member 20b ...・ Second conductive member 20c ・ ・ ・ High density conductive member A ・ ・ ・ Cell row

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】筒状の固体電解質の片面に空気極を、他面
に燃料極を形成してなり、前記空気極または前記燃料極
に電気的に接続されるインターコネクタを有する複数の
燃料電池セルからなるセル列を複数行設け、一方のセル
列と他方のセル列との間に導電部材を設け、前記一方の
セル列における燃料電池セルのインターコネクタと、前
記他方のセル列における燃料電池セルの空気極または燃
料極とを電気的に接続してなることを特徴とする燃料電
池。
1. A plurality of fuel cells comprising a cylindrical solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface, and having an interconnector electrically connected to the air electrode or the fuel electrode. A plurality of rows of cell rows comprising cells, a conductive member provided between one cell row and the other cell row, an interconnector of a fuel cell in the one cell row, and a fuel cell in the other cell row; A fuel cell characterized by electrically connecting an air electrode or a fuel electrode of a cell.
【請求項2】導電部材は、Niを主成分とする金属繊維
の集合体からなることを特徴とする請求項1記載の燃料
電池。
2. The fuel cell according to claim 1, wherein the conductive member is made of an aggregate of metal fibers containing Ni as a main component.
【請求項3】導電部材が密度の異なる二層以上からなる
とともに、インターコネクタに当接する第1導電部材の
密度が、空気極または燃料極に当接する第2導電部材の
密度よりも高いことを特徴とする請求項1または2記載
の燃料電池。
3. The method according to claim 1, wherein the conductive member comprises two or more layers having different densities, and the density of the first conductive member in contact with the interconnector is higher than the density of the second conductive member in contact with the air electrode or the fuel electrode. The fuel cell according to claim 1 or 2, wherein
【請求項4】第1導電部材と第2導電部材の間には、該
第1導電部材および第2導電部材よりも密度が高い高密
度導電部材が設けられていることを特徴とする請求項3
記載の燃料電池。
4. A high-density conductive member having a higher density than the first conductive member and the second conductive member is provided between the first conductive member and the second conductive member. 3
The fuel cell as described.
【請求項5】高密度導電部材は、Niを主成分とする金
属板であることを特徴とする請求項4記載の燃料電池。
5. The fuel cell according to claim 4, wherein the high-density conductive member is a metal plate containing Ni as a main component.
【請求項6】燃料電池セルの外径は10mm以下である
ことを特徴とする請求項1乃至5のうちいずれかに記載
の燃料電池。
6. The fuel cell according to claim 1, wherein the outer diameter of the fuel cell is 10 mm or less.
JP2001052409A 2001-02-27 2001-02-27 Fuel cell Expired - Fee Related JP4683742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052409A JP4683742B2 (en) 2001-02-27 2001-02-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052409A JP4683742B2 (en) 2001-02-27 2001-02-27 Fuel cell

Publications (2)

Publication Number Publication Date
JP2002260706A true JP2002260706A (en) 2002-09-13
JP4683742B2 JP4683742B2 (en) 2011-05-18

Family

ID=18913045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052409A Expired - Fee Related JP4683742B2 (en) 2001-02-27 2001-02-27 Fuel cell

Country Status (1)

Country Link
JP (1) JP4683742B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303603A (en) * 2002-02-07 2003-10-24 Kyocera Corp Fuel cell cell and cell stack and fuel cell
JP2004349262A (en) * 2003-05-23 2004-12-09 Siemens Westinghouse Power Corp Electric connector and support for solid oxide electrolyte fuel cell combining foam nickel and expanded nickel screen
JP2006100091A (en) * 2004-09-29 2006-04-13 Kyocera Corp Fuel cell stack and fuel cell
JP2007134178A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Tube type fuel cell module
JP2011210632A (en) * 2010-03-30 2011-10-20 Toto Ltd Cell assembly of fuel cell
JP2012521618A (en) * 2009-03-26 2012-09-13 プランゼー エスエー Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell
EP2493000A3 (en) * 2011-02-24 2012-11-21 Samsung SDI Co., Ltd. Fuel cell stack
JP2013118167A (en) * 2011-12-01 2013-06-13 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell and method of manufacturing the same
JP2013134984A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell and current collection method thereof
KR101367073B1 (en) 2011-11-28 2014-02-25 삼성전기주식회사 Fuel cell module
KR20140036372A (en) * 2012-09-12 2014-03-26 주식회사 미코 Interconnector for tubular fuel cells and structure including the same
JP2021036504A (en) * 2019-08-30 2021-03-04 森村Sofcテクノロジー株式会社 Conductive member, manufacturing method of the same, and electrochemical cell stack including conductive member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038266A (en) * 1989-06-01 1991-01-16 Fujikura Ltd Solid electrolyte fuel cell module
JPH05266914A (en) * 1991-10-11 1993-10-15 Westinghouse Electric Corp <We> Solid oxide fuel cell power generating device
JPH10106611A (en) * 1996-09-27 1998-04-24 Toto Ltd Solid electrolytic fuel cell
JPH10247507A (en) * 1997-02-28 1998-09-14 Kyushu Electric Power Co Inc Cylindrical cell type solid electrolyte fuel cell
JP2000058089A (en) * 1998-08-07 2000-02-25 Kyushu Electric Power Co Inc Cylindrical cell type solid electrolyte fuel cell
JP2001143726A (en) * 1999-11-15 2001-05-25 Toto Ltd Solid electrolyte fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038266A (en) * 1989-06-01 1991-01-16 Fujikura Ltd Solid electrolyte fuel cell module
JPH05266914A (en) * 1991-10-11 1993-10-15 Westinghouse Electric Corp <We> Solid oxide fuel cell power generating device
JPH10106611A (en) * 1996-09-27 1998-04-24 Toto Ltd Solid electrolytic fuel cell
JPH10247507A (en) * 1997-02-28 1998-09-14 Kyushu Electric Power Co Inc Cylindrical cell type solid electrolyte fuel cell
JP2000058089A (en) * 1998-08-07 2000-02-25 Kyushu Electric Power Co Inc Cylindrical cell type solid electrolyte fuel cell
JP2001143726A (en) * 1999-11-15 2001-05-25 Toto Ltd Solid electrolyte fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303603A (en) * 2002-02-07 2003-10-24 Kyocera Corp Fuel cell cell and cell stack and fuel cell
JP2004349262A (en) * 2003-05-23 2004-12-09 Siemens Westinghouse Power Corp Electric connector and support for solid oxide electrolyte fuel cell combining foam nickel and expanded nickel screen
JP2006100091A (en) * 2004-09-29 2006-04-13 Kyocera Corp Fuel cell stack and fuel cell
JP4716700B2 (en) * 2004-09-29 2011-07-06 京セラ株式会社 Fuel cell stack and fuel cell
JP2007134178A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Tube type fuel cell module
JP2012521618A (en) * 2009-03-26 2012-09-13 プランゼー エスエー Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell
US8828623B2 (en) 2009-03-26 2014-09-09 Plansee Se Contact element for an electrically conductive connection between an anode and an interconnector of a high-temperature fuel cell
JP2011210632A (en) * 2010-03-30 2011-10-20 Toto Ltd Cell assembly of fuel cell
EP2493000A3 (en) * 2011-02-24 2012-11-21 Samsung SDI Co., Ltd. Fuel cell stack
US9065096B2 (en) 2011-02-24 2015-06-23 Samsung Sdi Co., Ltd. Fuel cell stack
KR101367073B1 (en) 2011-11-28 2014-02-25 삼성전기주식회사 Fuel cell module
JP2013118167A (en) * 2011-12-01 2013-06-13 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell and method of manufacturing the same
KR101301396B1 (en) * 2011-12-22 2013-08-28 삼성전기주식회사 Solid oxide fuel cell and current collecting method thereof
JP2013134984A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell and current collection method thereof
KR20140036372A (en) * 2012-09-12 2014-03-26 주식회사 미코 Interconnector for tubular fuel cells and structure including the same
KR102033904B1 (en) 2012-09-12 2019-10-21 주식회사 미코 Interconnector for tubular fuel cells and structure including the same
JP2021036504A (en) * 2019-08-30 2021-03-04 森村Sofcテクノロジー株式会社 Conductive member, manufacturing method of the same, and electrochemical cell stack including conductive member
JP7189851B2 (en) 2019-08-30 2022-12-14 森村Sofcテクノロジー株式会社 Conductive member, manufacturing method thereof, and electrochemical cell stack provided with conductive member

Also Published As

Publication number Publication date
JP4683742B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP2002260706A (en) Fuel cell
CN115152064A (en) Fuel cell system
JP2818944B2 (en) Solid oxide fuel cell module
JP5100036B2 (en) Fuel cell stack device, fuel cell stack coupling device and fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JP2933228B2 (en) Solid oxide fuel cell module
JP4192047B2 (en) Fuel cell
JP5711927B2 (en) Solid oxide fuel cell
KR20190111088A (en) Electrochemical Reaction Unit and Electrochemical Reaction Cell Stack
JP4663137B2 (en) Fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JP5769669B2 (en) Cell stack device, fuel cell module, and fuel cell device
US11056709B2 (en) Fuel cell stack structure
KR101353839B1 (en) Solid oxide fuel cell haivng excellent maintaining surface pressure uniformity and durability
KR20150075442A (en) Metallic current collector for solid oxide fuel cell and solid oxide fuel cell comprising the same
JP6117690B2 (en) Cell stack device, fuel cell module and fuel cell device
JPH0982346A (en) Plate-like solid electrolyte fuel cell
JP3297609B2 (en) Method for manufacturing fuel cell stack
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP6290676B2 (en) Fuel cell
JP5806104B2 (en) FUEL CELL STACK DEVICE, FUEL CELL STACK CONNECTION DEVICE, AND FUEL CELL DEVICE
US20220140380A1 (en) Cell stack device, module, and module housing device
JP6023275B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP2005190749A (en) Membrane electrode assembly for fuel cell, and solid polymer fuel cell using it
JPS5878371A (en) Fuel-cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees