JP2002260599A - Flat type nonaqueous electrolyte cell - Google Patents

Flat type nonaqueous electrolyte cell

Info

Publication number
JP2002260599A
JP2002260599A JP2001058342A JP2001058342A JP2002260599A JP 2002260599 A JP2002260599 A JP 2002260599A JP 2001058342 A JP2001058342 A JP 2001058342A JP 2001058342 A JP2001058342 A JP 2001058342A JP 2002260599 A JP2002260599 A JP 2002260599A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
sealing plate
flat
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001058342A
Other languages
Japanese (ja)
Inventor
Satoshi Hirahara
聡 平原
Naomi Ishihara
直美 石原
Munehito Hayami
宗人 早見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001058342A priority Critical patent/JP2002260599A/en
Publication of JP2002260599A publication Critical patent/JP2002260599A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To provide a flat type nonaqueous electrolyte cell wherein, even if a stainless steel material of 0.20 mm or less is used for an negative electrode sealing plate or a positive electrode vessel, the adhesion between a power-generating element, which is a content, and the negative electrode sealing plate or positive electrode vessel is sufficient, for excellent discharge performance. SOLUTION: The flat type nonaqueous electrolyte cell comprises a power-generating element provided with a negative electrode, a positive electrode, and a separator impregnated with a nonaqueous electrolyte which is sealed with a negative electrode sealing plate, a positive electrode vessel, and a sealing packing interposed between them. Since there are at least provided the negative electrode sealing plate where a flat part contacting the negative electrode is provided with a recessed part of polygonal pyramid which starts from an outer peripheral part toward the inside surface side of cell, with the center of flat part as a tip, or the positive electrode vessel where a flat part contacting the positive electrode comprises a recessed part of polygonal pyramid which starts from its outer peripheral part toward the inside surface side of cell with the center of the flat part as a tip, such flat type nonaqueous electrolyte cell is provided as stabilized in dimension of cell thickness and internal resistance, with excellent discharge performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、扁平形非水電解液
電池に係り、特に放電性能を向上させた扁平形非水電解
液電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat nonaqueous electrolyte battery, and more particularly to a flat nonaqueous electrolyte battery having improved discharge performance.

【0002】[0002]

【従来の技術】扁平形非水電解液電池は卓上電子計算
機、腕時計等の電子機器に用いられているが、近年、そ
の利用分野が広がり、電池の薄型化が進む一方、放電性
能に優れた電池が望まれている。
2. Description of the Related Art Flat non-aqueous electrolyte batteries are used for electronic devices such as desk-top computers and wristwatches. In recent years, the fields of use have been widened and the batteries have been made thinner, while having excellent discharge performance. Batteries are desired.

【0003】薄型電池の高性能化を図るには内容積の確
保が重要であり、これまでに電池構造に関してはさまざ
まな試みがなされてきた。その中で負極封口板及び正極
容器に用いられるステンレス鋼材も電池の薄型化に伴い
年々薄肉化され、板厚0.25mm以下の薄い鋼材が用
いられるようになった。
It is important to secure the internal volume in order to improve the performance of a thin battery, and various attempts have been made on the battery structure. Among them, the stainless steel materials used for the negative electrode sealing plate and the positive electrode container have been reduced in thickness year by year as the batteries have become thinner, and thin steel materials having a plate thickness of 0.25 mm or less have come to be used.

【0004】しかし、板厚0.25mm以下の鋼材の負
極封口板及び正極容器平坦部は、鋼材を薄肉化したため
強度が低下しており、かしめによる密封加工をした際、
負極封口板及び正極容器平坦部が外側に膨れ易く、電池
の厚さ寸法が規格値を超えてしまい、内容物である発電
要素と負極封口板あるいは正極容器との密着が不十分と
なり、放電性能が低下するという問題があった。
[0004] However, the strength of the negative electrode sealing plate and the flat portion of the positive electrode container having a plate thickness of 0.25 mm or less is reduced due to the thinning of the steel material.
The negative electrode sealing plate and the flat part of the positive electrode container are easily swelled outward, the thickness of the battery exceeds the specified value, and the adhesion between the power generation element as a content and the negative electrode sealing plate or the positive electrode container becomes insufficient, and the discharge performance becomes poor. However, there was a problem that was reduced.

【0005】このため、従来は図4に示す負極封口板の
負極と密接する平坦部(点線部分)と、図5に示す正極
容器の正極が密接する平坦部(点線部分)とが外周部よ
り電池の内側へ凹状となった負極封口板(実線部分)1
a及び正極容器(実線部分)6aを用いる非水電解液電
池が提案されている(特開平5−114391号公報参
照)。しかし、電池の薄型化あるいは高容量化が更に進
んだ近年では、負極封口板及び正極容器の原材料として
板厚0.20mm以下の鋼材を用いることが多くなって
いる。このような0.20mm以下の薄い鋼材からなる
負極封口板及び正極容器を用いた電池では、負極封口板
及び正極容器の平坦部の強度が更に弱まっているため、
それぞれの平坦部の形状を凹状とした場合でも負極封口
板あるいは正極容器と電極との接触圧が低下し、充分な
効果が得られていなかった。
Conventionally, a flat portion (dotted line portion) of the negative electrode sealing plate shown in FIG. 4 which is in close contact with the negative electrode and a flat portion (dotted line portion) of the positive electrode container shown in FIG. Negative electrode sealing plate (solid line) recessed inside the battery 1
and a nonaqueous electrolyte battery using a positive electrode container (solid line portion) 6a has been proposed (see Japanese Patent Application Laid-Open No. 5-114391). However, in recent years, as batteries have become thinner or have higher capacities, steel materials having a plate thickness of 0.20 mm or less have been increasingly used as raw materials for the negative electrode sealing plate and the positive electrode container. In the battery using the negative electrode sealing plate and the positive electrode container made of such a thin steel material of 0.20 mm or less, since the strength of the flat portion of the negative electrode sealing plate and the positive electrode container is further reduced,
Even when the shape of each flat portion was concave, the contact pressure between the negative electrode sealing plate or the positive electrode container and the electrode was reduced, and a sufficient effect was not obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記問題に対
処するためになされたものであって、0.20mm以下
のステンレス鋼材を負極封口板あるいは正極容器に用い
ても、内容物である発電要素と負極封口板あるいは正極
容器との密着が充分で放電性能の優れた扁平形非水電解
液電池を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in order to address the above-mentioned problems. Even if a stainless steel material having a thickness of 0.20 mm or less is used for a negative electrode sealing plate or a positive electrode container, the power generation as a content is not affected. It is an object of the present invention to provide a flat nonaqueous electrolyte battery in which the element and the negative electrode sealing plate or the positive electrode container have sufficient adhesion and excellent discharge performance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、負極と正極と非水電解液を含浸したセパレ
ータとからなる発電要素を、負極封口板と正極容器とこ
の間に介在する封口パッキングにより密封された構造を
有する扁平形非水電解液電池において、負極封口板の負
極と接する平坦部がその外周部より電池内面側へ平坦部
中央が頂点となる多角錐状の凹部を有する負極封口板、
及び正極容器の正極と接する平坦部がその外周部より電
池内面側へ平坦部中央が頂点となる多角錐状の凹部を有
する正極容器の少なくともいずれか一方の負極封口板ま
たは正極容器を用いることを特徴とする。
According to the present invention, there is provided a power generating element comprising a negative electrode, a positive electrode, and a separator impregnated with a non-aqueous electrolyte interposed between a negative electrode sealing plate, a positive electrode container, and the like. In a flat nonaqueous electrolyte battery having a structure sealed by a sealing packing, a flat portion in contact with a negative electrode of a negative electrode sealing plate has a polygonal pyramid-shaped concave portion whose center is a vertex from the outer peripheral portion to the battery inner surface side. Negative electrode sealing plate,
The flat portion in contact with the positive electrode of the positive electrode container has a polygonal pyramid-shaped concave portion with the center of the flat portion as the vertex from the outer peripheral portion to the inner surface of the battery, and at least one of the negative electrode sealing plate and the positive electrode container is used. Features.

【0008】本発明によれば、0.20mm以下の薄い
ステンレス鋼材を原材料とする負極封口板の負極と接す
る平坦部及び正極容器の正極と接する平坦部のいずれか
一方をその外周部より電池内面側へ平坦部中央が頂点と
なる多角錐状の凹部を有することで平坦部が電池内面側
に凹状となるだけではなく、平坦部に複数の平坦部中央
から外周部に放射状の「く」の字状に折り曲がった直線
が形成され、これら放射線上の直線部は「く」の字に折
り曲げられたことによる加工硬化により平坦部の強度が
補強されるだけでなく、かしめ加工時に発生する横方向
のひずみもこれら直線部分により分断される。従って、
0.20mm以下のステンレス鋼材からなる負極封口板
あるいは正極容器を使用した扁平形非水電解液電池にお
いて、このような形状の負極封口板と正極容器のいずれ
か一方を用いることで、電池を密閉した際の負極封口板
及び正極容器平坦部の膨れは抑制され、安定した電池の
厚さ寸法が得られると共に、内容物である発電要素と負
極封口板あるいは正極容器との接触圧を高めることがで
きる。これにより、負極封口板あるいは正極容器と発電
要素との接触抵抗が低減するため、電池の内部抵抗も低
減でき、放電性能の向上が可能となった。
According to the present invention, one of the flat portion of the negative electrode sealing plate made of a thin stainless steel material having a thickness of 0.20 mm or less as a raw material and the flat portion of the positive electrode container, which contacts the negative electrode, is placed on the inner surface of the battery from its outer peripheral portion. By having a polygonal pyramid-shaped recess with the center of the flat part as the vertex to the side, not only the flat part becomes concave on the battery inner surface side, but also a plurality of flat parts on the flat part radially from the center to the outer periphery. Straight lines bent in the shape of a letter are formed, and these straight lines on the radiation not only reinforce the strength of the flat part due to work hardening due to being bent in the shape of a letter, but also generate horizontal The directional strain is also divided by these straight portions. Therefore,
In a flat nonaqueous electrolyte battery using a negative electrode sealing plate or a positive electrode container made of a stainless steel material of 0.20 mm or less, the battery is hermetically sealed by using one of the negative electrode sealing plate and the positive electrode container having such a shape. Swelling of the negative electrode sealing plate and the flat portion of the positive electrode container at the time of being suppressed is suppressed, a stable battery thickness dimension is obtained, and the contact pressure between the power generation element as a content and the negative electrode sealing plate or the positive electrode container can be increased. it can. As a result, the contact resistance between the negative electrode sealing plate or the positive electrode container and the power generation element is reduced, so that the internal resistance of the battery can be reduced and the discharge performance can be improved.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を図を参照
して説明する。 (実施例1)図1は、本発明の実施例1の断面図であ
り、厚さ0.15mmのステンレス鋼板を図2に示すよ
うに電極に接する平坦部をその外周部より電池内面側へ
平坦部中央が頂点となる図6(b)に示すような四角錐
状の凹部を有し、図7に示すA寸法値が0.03から
0.05mmとなる形状にプレス加工した負極封口板1
bに、負極作用物質として厚さ0.18mmのリチウム
フォイルを外径φ13.1mmの形状に打ち抜き負極2
とし、負極封口板1bの内底面に圧着した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (Example 1) FIG. 1 is a cross-sectional view of Example 1 of the present invention. As shown in FIG. 2, a stainless steel plate having a thickness of 0.15 mm is formed by placing a flat portion in contact with an electrode from the outer peripheral portion to the inner side of the battery. A negative electrode sealing plate having a quadrangular pyramid-shaped concave portion as shown in FIG. 6B in which the center of the flat portion is an apex and pressed into a shape having an A dimension value of 0.03 to 0.05 mm shown in FIG. 1
b, a lithium foil having a thickness of 0.18 mm was punched out into a shape having an outer diameter of 13.1 mm as a negative electrode active material to form a negative electrode 2
And pressed against the inner bottom surface of the negative electrode sealing plate 1b.

【0010】正極作用物質には加熱処理された電解二酸
化マンガンを用い、この電解二酸化マンガン90質量部
と、導電材として黒鉛粉末を8質量部と、バインダーと
してポリテトラフルオロエチレンの水性ディスパージョ
ン2質量部(固形分として)とを混練して正極合剤を調
製し、この正極合剤を厚さ0.52mm外径φ12.9
mmのペレット状に成形した後加熱乾燥し正極4とし
た。この正極4とポリプロピレン樹脂からなる封口パッ
キング5にブローンアスファルトを有機溶剤にて溶解し
たシール剤を塗布したものとを、厚さ0.15mmのス
テンレス鋼板を図3のように電極に接する平坦部をその
外周部より電池内面側へ平坦部中央が頂点となる図6
(b)に示すような四角錐状の凹部を有し、図8に示す
B寸法値が0.03から0.05mmとなる形状にプレ
ス加工した正極容器6内へ収納し、電解液としてプロピ
レンカーボネイトと1,2−ジメトキシエタンの混合溶
媒に、過塩素酸リチウムを溶解させたものを用い、これ
を含浸させたポリプロピレン繊維からなる不織布を用い
たセパレータ3を、負極2と正極4の間に介在させ、正
極容器6の上部をかしめて封口固定し、扁平形二酸化マ
ンガンリチウム一次電池を作成し、実施例1とした。
Heat-treated electrolytic manganese dioxide is used as the positive electrode active material, 90 parts by mass of this electrolytic manganese dioxide, 8 parts by mass of graphite powder as a conductive material, and 2 parts by mass of an aqueous dispersion of polytetrafluoroethylene as a binder. Parts (as a solid content) and kneaded to prepare a positive electrode mixture, and this positive electrode mixture is 0.52 mm thick and has an outer diameter of φ12.9.
After forming into a pellet having a diameter of 2 mm, the resultant was dried by heating to obtain a positive electrode 4. A sealing material obtained by dissolving blown asphalt in an organic solvent was applied to the positive electrode 4 and a sealing packing 5 made of polypropylene resin, and a 0.15 mm-thick stainless steel plate was placed on a flat portion in contact with the electrode as shown in FIG. FIG. 6 in which the center of the flat portion is located at the top from the outer peripheral portion toward the inner surface of the battery.
It has a square pyramid-shaped recess as shown in (b), and is housed in a positive electrode container 6 which is pressed into a shape having a B dimension value of 0.03 to 0.05 mm as shown in FIG. A separator 3 using a non-woven fabric made of polypropylene fibers impregnated with lithium perchlorate dissolved in a mixed solvent of carbonate and 1,2-dimethoxyethane is placed between the negative electrode 2 and the positive electrode 4. The flattened manganese dioxide lithium primary battery was produced by interposing and caulking the upper portion of the positive electrode container 6 to fix the opening.

【0011】(実施例2)厚さ0.15mmのステンレ
ス鋼板を電極に接する平坦部をその外周部より電池内面
側へ平坦部中央が頂点となる図6(a)に示すような三
角錐状の凹部を有する形状にプレス加工した負極封口板
1a及び正極容器6を用いた以外は、実施例1と同様の
電池を作成し実施例2とした。
(Example 2) A flat portion in contact with a stainless steel plate having a thickness of 0.15 mm is formed in a triangular pyramid shape as shown in FIG. A battery was prepared in the same manner as in Example 1 except that the negative electrode sealing plate 1a and the positive electrode container 6 which were pressed into a shape having the concave portion were used, and Example 2 was obtained.

【0012】(実施例3)厚さ0.15mmのステンレ
ス鋼板を電極に接する平坦部をその外周部より電池内面
側へ平坦部中央が頂点となる図6(c)に示すような五
角錐状の凹部を有する形状にプレス加工した負極封口板
1c及び正極容器6を用いた以外は、実施例1と同様の
電池を作成し実施例3とした。
(Example 3) A stainless steel plate having a thickness of 0.15 mm is formed in a pentagonal pyramid shape as shown in FIG. A battery was prepared in the same manner as in Example 1 except that the negative electrode sealing plate 1c and the positive electrode container 6 pressed into a shape having the concave portion were used, and the battery was made Example 3.

【0013】(比較例1)厚さ0.15mmのステンレ
ス鋼板を電極に密接する平坦部が外周部より電池の内側
へ凹状となった図4に示す形状の負極封口板1dと厚さ
0.15mmのステンレス鋼板を電極に接する平坦部を
その外周部より電池内面側へ平坦部中央が頂点となる四
角錐状の凹部を有する形状にプレス加工した正極容器6
aとを用いた以外は、実施例1と同様の電池を作成し比
較例1とした。
(Comparative Example 1) A negative electrode sealing plate 1d having a thickness of 0.15 mm as shown in FIG. A positive electrode container 6 formed by pressing a flat portion in contact with an electrode from a 15 mm stainless steel plate into a shape having a quadrangular pyramid-shaped concave portion whose central portion is a vertex from the outer peripheral portion toward the inner surface of the battery.
A battery was prepared in the same manner as in Example 1 except that a was used.

【0014】(比較例2)厚さ0.15mmのステンレ
ス鋼板を電極に密接する平坦部をその外周部より電池内
面側へ平坦部中央が頂点となる四角錐状の凹部を有する
形状にプレス加工した負極封口板1dと、厚さ0.15
mmのステンレス鋼板を電極に密接する平坦部が外周部
より電池の内側へ凹状となった図5に示す形状の正極容
器6aとを用いた以外は、実施例1と同様の電池を作成
し比較例2とした。
(Comparative Example 2) A stainless steel plate having a thickness of 0.15 mm was pressed from the outer peripheral portion to the inner surface of the battery from the outer peripheral portion to a shape having a quadrangular pyramid-shaped concave portion having a flat portion at the top. Negative electrode sealing plate 1d and thickness 0.15
A battery similar to that of Example 1 was prepared except that a stainless steel plate having a thickness of 2 mm was used, and a flat portion closely contacting the electrode was used to form a positive electrode container 6a having the shape shown in FIG. Example 2 was used.

【0015】(比較例3)厚さ0.15mmのステンレ
ス鋼板を電極に密接する平坦部が外周部より電池の内側
へ凹状となった図4に示す形状の負極封口板1dと、厚
さ0.15mmのステンレス鋼板を電極に密接する平坦
部が外周部より電池の内側へ凹状となった図5に示す形
状の正極容器6aとを用いた以外は、実施例1と同様の
電池を作成し比較例3(従来例)とした。
(Comparative Example 3) A negative electrode sealing plate 1d of a shape shown in FIG. 4 in which a flat portion closely contacting an electrode was formed by recessing a 0.15 mm thick stainless steel plate from the outer peripheral portion to the inside of the battery, and a thickness of 0 A battery was prepared in the same manner as in Example 1 except that a positive electrode container 6a having a shape shown in FIG. Comparative Example 3 (conventional example) was used.

【0016】以上説明した実施例1〜実施例3及び比較
例1〜比較例3の各電池をそれぞれ100個作成し、電
池の厚さ寸法、内部抵抗を測定した。また、各10個の
電池を20℃の環境下で負荷抵抗30KΩの連続放電を
実施し、終止電圧2.0Vまでの放電電気容量を測定し
た。表1に電池の厚さ寸法、内部抵抗及び放電電気容量
の測定結果を示す。
One hundred batteries were prepared for each of Examples 1 to 3 and Comparative Examples 1 to 3 described above, and the thickness and internal resistance of the batteries were measured. Further, continuous discharge was performed on each of the ten batteries at a load resistance of 30 KΩ in an environment of 20 ° C., and the discharge electric capacity up to a final voltage of 2.0 V was measured. Table 1 shows the measurement results of the thickness, internal resistance, and discharge capacity of the battery.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から、実施例1〜実施例3は比較例1
〜比較例3に対し電池厚さ寸法、内部抵抗は低い値が得
られ、放電電気容量は高い値が得られており、これら測
定値の標準偏差からバラツキも少なくなっている。ま
た、実施例1、実施例2及び実施例3の測定値及び標準
偏差には差はなく、同等の結果が得られた。
From Table 1, Examples 1 to 3 are Comparative Examples 1
In comparison with Comparative Example 3, the battery thickness dimension and the internal resistance obtained lower values, the discharge electric capacity obtained higher values, and the dispersion from the standard deviation of these measured values was reduced. In addition, there was no difference between the measured values and the standard deviations of Example 1, Example 2, and Example 3, and equivalent results were obtained.

【0019】一方、比較例1及び比較例2は、実施例1
〜実施例3には及ばないものの比較例3(従来例)に対
し、電池厚さ寸法及び内部抵抗は低い値が得られ、放電
電気容量においても優れた値が得られた。
On the other hand, Comparative Example 1 and Comparative Example 2
Although not as good as Example 3, the thickness and internal resistance of the battery were lower than those of Comparative Example 3 (conventional example), and excellent values of the discharge electric capacity were also obtained.

【0020】次に、本発明における多角錐形状の図7及
び図8に示すA及びB寸法値について実験を行った。 (実施例12)厚さ0.15mmのステンレス鋼板を電
極に接する平坦部をその外周部より電池内面側へ平坦部
中央が頂点となる図6(b)に示すような四角錐状の凹
部を有し、図7及び図8に示すA及びB寸法値を0.0
6から0.08mmとした形状にプレス加工した負極封
口板1b及び正極容器6を用いた以外は、実施例1と同
様の電池を作成し実施例12とした。
Next, an experiment was conducted on the A and B dimension values shown in FIGS. 7 and 8 of the polygonal pyramid shape in the present invention. (Example 12) A stainless steel plate having a thickness of 0.15 mm and a flat portion in contact with the electrode were formed by forming a quadrangular pyramid-shaped concave portion as shown in FIG. A and B dimension values shown in FIG. 7 and FIG.
A battery was prepared in the same manner as in Example 1 except that the negative electrode sealing plate 1b and the positive electrode container 6 which were press-processed to have a shape of 6 to 0.08 mm were used.

【0021】(実施例13)厚さ0.15mmのステン
レス鋼板を電極に接する平坦部をその外周部より電池内
面側へ平坦部中央が頂点となる図6(b)に示すような
四角錐状の凹部を有し、図7及び図8に示すA及びB寸
法値を0.09から0.11mmとした形状にプレス加
工した負極封口板1b及び正極容器6を用いた以外は、
実施例1と同様の電池を作成し実施例13とした。
(Example 13) A stainless steel plate having a thickness of 0.15 mm is formed in a quadrangular pyramid shape as shown in FIG. 7 and FIG. 8 except that the negative electrode sealing plate 1 b and the positive electrode container 6 were pressed into a shape with the A and B dimensions shown in FIGS. 7 and 8 being 0.09 to 0.11 mm.
A battery similar to that of Example 1 was prepared, and the battery was referred to as Example 13.

【0022】(比較例12)厚さ0.15mmのステン
レス鋼板を電極に接する平坦部をその外周部より電池内
面側へ平坦部中央が頂点となる図6(b)に示すような
四角錐状の凹部を有し、図7及び図8に示すA及びB寸
法値を0.01から0.03mmとした形状にプレス加
工した負極封口板1d及び正極容器6aを用いた以外
は、実施例1と同様の電池を作成し比較例12とした。
(Comparative Example 12) A stainless steel plate having a thickness of 0.15 mm was formed in a quadrangular pyramid shape as shown in FIG. Example 1 except that the negative electrode sealing plate 1d and the positive electrode container 6a were press-formed into a shape having the concave portions A and B shown in FIGS. 7 and 8 with the A and B dimension values of 0.01 to 0.03 mm. A battery similar to that described above was prepared, and Comparative Example 12 was made.

【0023】(比較例13)厚さ0.15mmのステン
レス鋼板を電極に接する平坦部をその外周部より電池内
面側へ平坦部中央が頂点となる図6(b)に示すような
四角錐状の凹部を有し、図7及び図8に示すA及びB寸
法値を0.12から0.14mmとした形状にプレス加
工した負極封口板1d及び正極容器6aを用いた以外
は、実施例1と同様の電池を作成し比較例13とした。
(Comparative Example 13) A stainless steel plate having a thickness of 0.15 mm was formed in a quadrangular pyramid shape as shown in FIG. Example 1 except that the negative electrode sealing plate 1d and the positive electrode container 6a were pressed into a shape in which the A and B dimensions shown in FIGS. 7 and 8 were 0.12 to 0.14 mm. A battery similar to that of Example 1 was prepared to make Comparative Example 13.

【0024】以上説明した実施例1,12,13及び比
較例12,13の各電池をそれぞれ100個作成し、電
池の厚さ寸法、内部抵抗を測定した。また、各10個の
電池を20℃の環境下で負荷抵抗30KΩの連続放電を
実施し、終止電圧2.0Vまでの放電電気容量を測定し
た。表2に電池の厚さ寸法、内部抵抗及び放電電気容量
の測定結果を示す。
Each of the batteries of Examples 1, 12, and 13 and Comparative Examples 12 and 13 described above was prepared, and the thickness and internal resistance of the batteries were measured. Further, continuous discharge was performed on each of the ten batteries at a load resistance of 30 KΩ in an environment of 20 ° C., and the discharge electric capacity up to a final voltage of 2.0 V was measured. Table 2 shows the measurement results of the thickness, internal resistance, and discharge capacity of the battery.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から、実施例1と実施例12,13は
電池厚さ寸法、内部抵抗及び放電電気容量に大差は見ら
れず同様の結果が得られているが、比較例13は図7及
び図8に示すA及びB寸法値を0.12から0.14m
mと凹み量が多くなっているため電池を組み立てる際に
正極合剤あるいは正極容器の編めあわせが不安定とな
り、工程不良が2%発生した。
From Table 2, it can be seen that Example 1 and Examples 12 and 13 show similar results without significant differences in battery thickness, internal resistance and discharge electric capacity, while Comparative Example 13 shows FIG. And A and B dimension values shown in FIG. 8 from 0.12 to 0.14 m
When the battery was assembled, the knitting of the positive electrode mixture or the positive electrode container became unstable due to the large dent amount, and the process failure occurred 2%.

【0027】また、比較例12のように図7及び図8に
示すA及びB寸法値を0.01から0.02mmと少な
くすると、電池厚さ寸法は高くなり、内部抵抗が上昇
し、放電電気容量は低下する。これは、負極封口板或い
は正極容器と内容物である発電要素との接触圧を充分に
高めることができないためと考えられる。
When the dimension values A and B shown in FIGS. 7 and 8 are reduced from 0.01 to 0.02 mm as in Comparative Example 12, the battery thickness dimension increases, the internal resistance increases, and The electric capacity decreases. This is considered to be because the contact pressure between the negative electrode sealing plate or the positive electrode container and the power generation element as the content cannot be sufficiently increased.

【0028】以上の結果から、0.20mm以下の薄い
ステンレス鋼板からなる負極封口板及び正極容器を用い
た場合でも、負極封口板の負極と接する平坦部が、その
外周部より電池内面側へ平坦部中央が頂点となる多角錐
状の図7に示すA寸法値が0.03〜0.11mmの凹
部を有する負極封口板と、正極容器の正極と接する平坦
部がその外周部より電池内面側へ平坦部中央が頂点とな
る多角錐状の図8に示すB寸法値が0.03〜0.11
mmの凹部を有する正極容器とを用いることで、負極封
口板あるいは正極容器と内容物である発電要素との接触
圧を高めることが可能となった。その結果、電池厚さ寸
法が安定し、内部抵抗が低くなり、放電性能が向上し
た。
From the above results, even when the negative electrode sealing plate and the positive electrode container made of a thin stainless steel plate having a thickness of 0.20 mm or less are used, the flat portion of the negative electrode sealing plate contacting the negative electrode is flattened from the outer peripheral portion toward the inside of the battery. A negative electrode sealing plate having a polygonal pyramid-shaped concave portion having an A dimension value of 0.03 to 0.11 mm as shown in FIG. The B-dimension value shown in FIG.
By using a positive electrode container having a concave portion of mm, the contact pressure between the negative electrode sealing plate or the positive electrode container and the power generation element as the content can be increased. As a result, the thickness of the battery was stabilized, the internal resistance was reduced, and the discharge performance was improved.

【0029】また、本発明における形状を有する負極封
口板あるいは正極容器のいずれかを用いることで、電池
厚さ寸法、内部抵抗及び放電性能の改善は図れるもの
の、負極封口板と正極容器の両方に本発明における形状
を用いることがより好ましく負極封口板及び正極容器平
坦部の形状については図6に示す実施例以外にも多角錐
状の凹部を有する形状であれば同様の効果が得られる。
By using either the negative electrode sealing plate or the positive electrode container having the shape in the present invention, the battery thickness, internal resistance and discharge performance can be improved, but both the negative electrode sealing plate and the positive electrode container can be used. It is more preferable to use the shape in the present invention, and as for the shapes of the negative electrode sealing plate and the flat portion of the positive electrode container, similar effects can be obtained as long as the shape has a polygonal pyramid-shaped recess other than the embodiment shown in FIG.

【0030】尚、本発明の実施例では扁平形二酸化マン
ガンリチウム一次電池を例に説明をしているが、負極に
リチウム金属やリチウムの吸蔵、放出が可能なリチウム
合金、カーボン、金属酸化物及びポリアセン等を用い、
電解液に非水電解液、正極には五酸化バナジウム、五酸
化ニオブ、二酸化マンガン等リチウムイオンと層間化合
物を形成する金属酸化物リチウムと金属酸化物との複合
酸化物あるいは二硫化チタン、ポリアセンなどの導電性
高分子等を用いた充電可能な二次電池においても本発明
と同様の効果が得られる。
In the embodiments of the present invention, a flat lithium manganese dioxide primary battery is described as an example. However, lithium metal, lithium alloy, carbon, metal oxide and the like capable of occluding and releasing lithium metal are used for the negative electrode. Using polyacene, etc.
Non-aqueous electrolyte for electrolyte, vanadium pentoxide, niobium pentoxide, manganese dioxide, etc. Composite oxide of lithium metal oxide and metal oxide that forms an intercalation compound with lithium ions, titanium disulfide, polyacene The same effects as those of the present invention can be obtained in a rechargeable secondary battery using the conductive polymer or the like.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
負極と正極と非水電解液を含浸したセパレータからなる
発電要素を負極封口板と正極容器とこの間に介在する封
口パッキングにより密封された構造を有する扁平形非水
電解液電池であって、0.20mm以下の薄いステンレ
ス鋼板からなる負極封口板及び正極容器を用いた場合で
も、負極封口板の負極と接する平坦部がその外周部より
電池内面側へ平坦部中央が頂点となる多角錐状の凹部を
有した負極封口板と、正極容器の正極と接する平坦部が
その外周部より電池内面側へ平坦部中央が頂点となる多
角錐状の凹部を有した正極容器の少なくともいずれか一
方の負極封口板または正極容器を用いることで電池厚さ
寸法及び内部抵抗の安定した、放電性能の優れた扁平形
非水電解液電池を提供することが可能となった。
As described above, according to the present invention,
A flat nonaqueous electrolyte battery having a structure in which a power generation element including a negative electrode, a positive electrode, and a separator impregnated with a nonaqueous electrolyte is sealed by a negative electrode sealing plate, a positive electrode container, and a sealing packing interposed therebetween. Even when a negative electrode sealing plate and a positive electrode container made of a thin stainless steel sheet of 20 mm or less are used, a flat portion in contact with the negative electrode of the negative electrode sealing plate has a polygonal pyramid-shaped concave portion whose center is a vertex from the outer peripheral portion toward the inside of the battery. Negative electrode sealing plate having at least one of a negative electrode sealing plate and a positive electrode container having a polygonal pyramid-shaped concave portion whose flat portion in contact with the positive electrode of the positive electrode container has an apex at the center of the flat portion from the outer peripheral portion toward the inner surface of the battery. By using a plate or a positive electrode container, it has become possible to provide a flat nonaqueous electrolyte battery having a stable battery thickness and internal resistance and excellent discharge performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1である扁平形二酸化マンガン
リチウム一次電池の断面図。
FIG. 1 is a cross-sectional view of a flat lithium manganese dioxide primary battery that is Embodiment 1 of the present invention.

【図2】図1の負極封口板の断面図。FIG. 2 is a cross-sectional view of the negative electrode sealing plate of FIG.

【図3】図1の正極容器の断面図。FIG. 3 is a cross-sectional view of the positive electrode container of FIG.

【図4】従来の負極封口板の断面図。FIG. 4 is a cross-sectional view of a conventional negative electrode sealing plate.

【図5】従来の正極容器の断面図。FIG. 5 is a cross-sectional view of a conventional positive electrode container.

【図6】本実施例に係る各種負極封口板の平面図。FIG. 6 is a plan view of various negative electrode sealing plates according to the present embodiment.

【図7】本発明に係る負極封口板の断面図。FIG. 7 is a sectional view of a negative electrode sealing plate according to the present invention.

【図8】本発明に係る正極容器の断面図。FIG. 8 is a sectional view of a positive electrode container according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a,1b,1c,1d…負極封口板、2…負極、
3…セパレータ、4…正極、5…封口パッキング、6,
6a…正極容器。
1, 1a, 1b, 1c, 1d: negative electrode sealing plate, 2: negative electrode,
3: separator, 4: positive electrode, 5: sealing packing, 6,
6a: Positive electrode container.

フロントページの続き (72)発明者 早見 宗人 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H011 AA03 BB04 CC06 DD03 KK01 5H024 AA03 AA10 AA11 BB05 CC03 DD01 DD02 HH13 Continued on the front page (72) Inventor Muneto Hayami 3-10-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H011 AA03 BB04 CC06 DD03 KK01 5H024 AA03 AA10 AA11 BB05 CC03 DD01 DD02 HH13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極と正極と非水電解液を含浸したセパ
レータとからなる発電要素を、負極封口板と正極容器と
この間に介在する封口パッキングにより密閉された構造
を有する扁平形非水電解液電池において、負極封口板の
負極と接する平坦部がその外周部より電池内面側へ平坦
部中央が頂点となる多角錐状の凹部を有する負極封口
板、及び正極容器の正極と接する平坦部がその外周部よ
り電池内面側へ平坦部中央が頂点となる多角錐状の凹部
を有する正極容器の少なくともいずれか一方の負極封口
板または正極容器を用いることを特徴とした扁平形非水
電解液電池。
A flat non-aqueous electrolyte having a structure in which a power generation element comprising a negative electrode, a positive electrode, and a separator impregnated with a non-aqueous electrolyte is sealed by a negative electrode sealing plate, a positive electrode container, and a sealing packing interposed therebetween. In the battery, the flat portion in contact with the negative electrode of the negative electrode sealing plate has a polygonal pyramid-shaped concave portion in which the center of the flat portion is a vertex from the outer peripheral portion to the inner surface of the battery, and the flat portion in contact with the positive electrode of the positive electrode container is A flat nonaqueous electrolyte battery characterized by using at least one of a negative electrode sealing plate and a positive electrode container of a positive electrode container having a polygonal pyramid-shaped concave portion having a flat portion centered at the vertex from the outer peripheral portion to the battery inner surface side.
【請求項2】 前記負極封口板及び正極容器が、厚さ
0.20mm以下のステンレス鋼材よりなる請求項1記
載の扁平形非水電解液電池。
2. The flat nonaqueous electrolyte battery according to claim 1, wherein the negative electrode sealing plate and the positive electrode container are made of a stainless steel material having a thickness of 0.20 mm or less.
【請求項3】 前記負極封口板及び正極容器の外周部か
ら凹部頂点までの寸法値を0.03から0.11mmと
した請求項1記載の扁平形非水電解液電池。
3. The flat nonaqueous electrolyte battery according to claim 1, wherein a dimension value from the outer peripheral portion of the negative electrode sealing plate and the positive electrode container to the top of the concave portion is 0.03 to 0.11 mm.
JP2001058342A 2001-03-02 2001-03-02 Flat type nonaqueous electrolyte cell Withdrawn JP2002260599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058342A JP2002260599A (en) 2001-03-02 2001-03-02 Flat type nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058342A JP2002260599A (en) 2001-03-02 2001-03-02 Flat type nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JP2002260599A true JP2002260599A (en) 2002-09-13

Family

ID=18918078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058342A Withdrawn JP2002260599A (en) 2001-03-02 2001-03-02 Flat type nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JP2002260599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147343A (en) * 2004-11-19 2006-06-08 Matsushita Electric Ind Co Ltd Manufacturing method of flat organic electrolyte battery
US10490813B2 (en) 2010-10-29 2019-11-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147343A (en) * 2004-11-19 2006-06-08 Matsushita Electric Ind Co Ltd Manufacturing method of flat organic electrolyte battery
US10490813B2 (en) 2010-10-29 2019-11-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack

Similar Documents

Publication Publication Date Title
JP2002117841A (en) Nonaqueous electrolyte secondary battery
WO2012132373A1 (en) Coin-type cell
JP2002050322A (en) Sealed square flat cell
JP2011159450A (en) Method of manufacturing sealed battery
JPH11162519A (en) Lithium ion secondary battery
JP2002260599A (en) Flat type nonaqueous electrolyte cell
JP2011233462A (en) Battery and manufacturing method thereof and method for joining metal sheet
JPH10255733A (en) Small-sized battery
JP2001250554A (en) Non aqueous electrolyte secondary cell having heat resistance
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JP4563001B2 (en) Flat rectangular battery
WO2023286436A1 (en) Flat lithium primary battery
JP2001035458A (en) Flat battery with organic electrolytic solution
JP2014175243A (en) Sodium secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JP2000340189A (en) Flat battery
JP3163283B2 (en) Flat battery
JP2812943B2 (en) Organic electrolyte battery
JP2692932B2 (en) Non-aqueous secondary battery
JP3168991B2 (en) Flat battery
JP2023124499A (en) flat button battery
JP2000048780A (en) Coin type organic electrolyte cell, and its manufacture
JP4914561B2 (en) Positive electrode can and button-type or coin-type electrochemical cell
JP2001143669A (en) Flat non-aqueous electrolytic cell
JP2995431B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513