JP2002255865A - Storage and transportation of hydrocarbon gas - Google Patents

Storage and transportation of hydrocarbon gas

Info

Publication number
JP2002255865A
JP2002255865A JP2001060798A JP2001060798A JP2002255865A JP 2002255865 A JP2002255865 A JP 2002255865A JP 2001060798 A JP2001060798 A JP 2001060798A JP 2001060798 A JP2001060798 A JP 2001060798A JP 2002255865 A JP2002255865 A JP 2002255865A
Authority
JP
Japan
Prior art keywords
gas
hydrate
hydrocarbon
ice
hydrocarbon gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001060798A
Other languages
Japanese (ja)
Inventor
Takao Ebinuma
孝郎 海老沼
Tsutomu Uchida
努 内田
Satoshi Takeya
敏 竹谷
Hideo Narita
英夫 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001060798A priority Critical patent/JP2002255865A/en
Publication of JP2002255865A publication Critical patent/JP2002255865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for storing and transporting hydrocarbon gas in high density at a higher temperature than that in the conventional liquefaction process, under the pressure condition in the vicinity of the atmospheric one, by lowering the stable conditions for the gas hydrate as a storing and transporting medium for hydrocarbon and to provide a process for producing hydrocarbon hydrate that is suitable for storing and transporting hydrocarbon gas. SOLUTION: In the objective hydrocarbon-storing method, the hydrocarbon is characteristically placed in the ice in the form of gas hydrate and stored at a temperature below the freezing point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガス等の炭化
水素ガスを貯蔵及び輸送するための方法と、氷点以下の
温度での貯蔵及び輸送に適した炭化水素ガス水和物(ハ
イドレート)の製造方法及び炭化水素水和物の安定化方
法に関するものである。
The present invention relates to a method for storing and transporting a hydrocarbon gas such as natural gas, and a hydrocarbon gas hydrate (hydrate) suitable for storage and transportation at a temperature below freezing. And a method for stabilizing a hydrocarbon hydrate.

【0002】[0002]

【従来の技術】従来、炭化水素ガスの貯蔵方法として
は、炭化水素ガスを冷却して液化する方法、高圧容器を
用いる方法などが一般的である。また、炭化水素ガスの
輸送は、パイプラインの利用が困難な場合には、上記貯
蔵方法と同じ方法が用いられている。例えば、天然ガス
の貯蔵及び輸送に関しては、外国のガス井よりパイプラ
インで輸送することが困難な我国の場合には、液化天然
ガス(LNG、温度−160℃以下)として輸送及び貯
蔵されている。LNG方式は、液化に要するエネルギー
損失が大きいこと、貯槽への入熱による気化損失が避け
られず、長期の貯蔵が不可能なことなどが欠点である。
2. Description of the Related Art Conventionally, as a method of storing a hydrocarbon gas, a method of cooling and liquefying a hydrocarbon gas, a method of using a high-pressure vessel, and the like are generally used. When the pipeline is difficult to use for transporting hydrocarbon gas, the same method as the above-mentioned storage method is used. For example, regarding the storage and transportation of natural gas, in Japan, where it is difficult to transport by natural gas pipelines from gas wells, it is transported and stored as liquefied natural gas (LNG, temperature -160 ° C or lower). . The LNG method has drawbacks in that energy loss required for liquefaction is large, vaporization loss due to heat input to the storage tank is inevitable, and long-term storage is impossible.

【0003】気体水和物(ガスハイドレート)の結晶
は、水分子が形成する多面体の中に天然ガスの成分ガス
等の炭化水素ガスを包み込む構造を持つ。この結晶構造
により、気体水和物は、ガス含有量が大きく、ガス貯蔵
及び輸送媒体として利用することが検討されている。気
体水和物をガス貯蔵及び輸送媒体として利用する場合に
は、一般的に気体水和物の安定条件が高圧のために、高
圧を維持する必要がある。図1は、メタン、二酸化炭素
及びプロパンの気体水和物が安定に存在する温度と圧力
の関係(解離圧曲線)を示したものである(寒地技術論
文・報告集Vol.14、267−271、1998に
よる)。各気体水和物は、それぞれの解離圧曲線より低
温高圧の条件で安定に存在する。解離圧すなわち気体水
和物が安定に存在し得る最低の圧力は、温度の低下とと
もに減少するけれども、一般に高圧条件となる。例え
ば、メタンの気体水和物の解離圧は、温度0℃ならば約
2.6MPa、温度約−78℃にて0.1MPa(大気
圧相当)となる。
[0003] A gas hydrate (gas hydrate) crystal has a structure in which a hydrocarbon gas such as a natural gas component gas is wrapped in a polyhedron formed by water molecules. Due to this crystal structure, the gas hydrate has a high gas content, and its use as a gas storage and transport medium is being studied. When gas hydrate is used as a gas storage and transport medium, it is generally necessary to maintain a high pressure because the stability conditions of the gas hydrate are high. FIG. 1 shows the relationship between temperature and pressure (dissociation pressure curve) at which gaseous hydrates of methane, carbon dioxide and propane are stably present (Cold Region Technical Papers and Reports Vol. 14, 267-). 271, 1998). Each gas hydrate exists stably at a lower temperature and a higher pressure than the respective dissociation pressure curves. The dissociation pressure, the lowest pressure at which gas hydrate can be stably present, decreases with decreasing temperature, but generally results in high pressure conditions. For example, the dissociation pressure of a gaseous hydrate of methane is about 2.6 MPa at a temperature of 0 ° C. and 0.1 MPa (corresponding to atmospheric pressure) at a temperature of about −78 ° C.

【0004】ガスの貯蔵及び輸送媒体として気体水和物
を利用するために、気体水和物が安定に存在し得る圧力
条件を緩和する以下の方法が先行技術として開示されて
いる。特開昭48−92401号公報及び日本化学会誌
(1993(No.4)、387−394、1993)
には、メタン水和物を利用した天然ガス貯蔵運搬方法と
して、脂肪族アミン、テトラヒドロフラン、アセトンな
どにより水和物の生成圧力を低下させる方法が示されて
いる。これら添加剤を用いる方法は、ガスのみならず添
加剤も気体水和物の籠構造の中に包み込まれるために、
気体水和物に含まれるガスの密度を低下する欠点を有す
る。
[0004] In order to utilize gas hydrates as a gas storage and transport medium, the following methods have been disclosed in the prior art that alleviate the pressure conditions under which gas hydrates can be stably present. JP-A-48-92401 and the journal of the Chemical Society of Japan (1993 (No. 4), 387-394, 1993)
Discloses a method for storing and transporting natural gas using methane hydrate, in which the pressure at which the hydrate is formed is reduced with an aliphatic amine, tetrahydrofuran, acetone or the like. In the method using these additives, not only the gas but also the additives are wrapped in the cage structure of the gas hydrate.
It has the disadvantage of reducing the density of the gas contained in the gas hydrate.

【0005】特開平01−219460号公報には、氷
粒または水と、二酸化炭素とを静水圧加圧することによ
り、二酸化炭素を高濃度に安定して含有し、かつ気泡が
ない透明な氷を製造する方法が示されている。この方法
は、二酸化炭素により清涼感が得られる氷の製造方法に
関するものであり、天然ガスの貯蔵及び輸送等の産業分
野に用いるにはガスの含有密度が低い。
[0005] Japanese Patent Application Laid-Open No. 01-219460 discloses that transparent ice containing a high concentration of carbon dioxide and containing no air bubbles can be stably formed by isostatic pressing of ice particles or water and carbon dioxide. A manufacturing method is shown. This method relates to a method for producing ice that can provide a refreshing feeling with carbon dioxide, and has a low gas content density when used in industrial fields such as storage and transportation of natural gas.

【0006】[0006]

【発明が解決しようとする課題】本発明は、炭化水素ガ
スの貯蔵及び輸送媒体としての気体水和物の安定条件を
低圧化することにより、従来の液化方式より高い温度
で、かつ大気圧近傍において炭化水素ガスを高密度に貯
蔵及び輸送する方法と貯蔵及び輸送に適した炭化水素ガ
ス水和物の製造方法及び炭化水素水和物の安定化方法を
提供することをその課題とする。
SUMMARY OF THE INVENTION The present invention is to reduce the stability of gaseous hydrate as a storage and transport medium for hydrocarbon gas by lowering the pressure so that the temperature is higher than that of the conventional liquefaction method and the pressure is close to the atmospheric pressure. It is an object of the present invention to provide a method for storing and transporting a hydrocarbon gas at high density, a method for producing a hydrocarbon gas hydrate suitable for storage and transportation, and a method for stabilizing a hydrocarbon hydrate.

【0007】[0007]

【課題を解決するための手段】本発明によれば、以下の
方法が提供される。 (1)炭化水素ガスを貯蔵する方法において、該炭化水
素ガスを、気体水和物の形態でかつその表面の少なくと
も一部に氷を存在させて、氷点以下の温度で貯蔵するこ
とを特徴とする炭化水素ガスの貯蔵方法。 (2)該氷の割合が、該気体水和物1重量部当り、0.
5〜1.5重量部の割合である前記(1)の方法。 (3)炭化水素ガスを輸送する方法において、該炭化水
素ガスを、気体水和物の形態でかつその表面の少なくと
も一部に氷を存在させて、氷点以下の温度で輸送するこ
とを特徴とする炭化水素ガスの輸送方法。 (4)該氷の割合が、該気体水和物1重量部当り、0.
5〜1.5重量部の割合である前記(3)の方法。 (5)炭化水素ガスの気体水和物を、水又は水溶液とと
もに氷点以下の温度に冷却して、該気体水和物の表面の
少なくとも一部に氷を存在させることを特徴とする氷点
温度以下の温度での貯蔵及び輸送に適した炭化水素ガス
水和物の製造方法。 (6)炭化水素水和物から、該気体の一部を氷点以下の
温度で気化させて、その表層に氷を形成することを特徴
とする炭化水素水和物の安定化方法。
According to the present invention, the following method is provided. (1) A method for storing a hydrocarbon gas, wherein the hydrocarbon gas is stored at a temperature below the freezing point in the form of a gas hydrate with ice present on at least a part of its surface. Hydrocarbon gas storage method. (2) The ratio of the ice is 0.1 to 1 part by weight of the gaseous hydrate.
The method according to the above (1), wherein the proportion is 5 to 1.5 parts by weight. (3) A method for transporting a hydrocarbon gas, wherein the hydrocarbon gas is transported at a temperature below the freezing point in the form of a gaseous hydrate with ice present on at least a part of its surface. Method of transporting hydrocarbon gas. (4) The ratio of the ice is 0.1 to 1 part by weight of the gaseous hydrate.
The method according to the above (3), wherein the proportion is 5 to 1.5 parts by weight. (5) A gas hydrate of a hydrocarbon gas is cooled together with water or an aqueous solution to a temperature below the freezing point, and ice is present on at least a part of the surface of the gas hydrate. For producing hydrocarbon gas hydrate suitable for storage and transportation at different temperatures. (6) A method for stabilizing a hydrocarbon hydrate, which comprises evaporating a part of the gas from a hydrocarbon hydrate at a temperature below the freezing point to form ice on its surface.

【0008】[0008]

【発明の実施の形態】本発明の貯蔵および輸送対象とな
る炭化水素ガスには、その炭素数が1〜4の炭化水素ガ
スが包含される。このようなガスとしては、メタン、エ
タン、プロパン、ブタン、それらの混合物、天然ガス等
が包含される。また、炭化水素ガスには、他のガス、例
えば二酸化炭素が混入していてもかまわない。その混入
量は、通常、20重量%以下、好ましくは10重量%以
下、より好ましくは0.5重量%以下である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The hydrocarbon gas to be stored and transported according to the present invention includes a hydrocarbon gas having 1 to 4 carbon atoms. Such gases include methane, ethane, propane, butane, mixtures thereof, natural gas, and the like. Further, other gas, for example, carbon dioxide may be mixed in the hydrocarbon gas. The mixing amount is usually 20% by weight or less, preferably 10% by weight or less, more preferably 0.5% by weight or less.

【0009】次に、水とメタンガスを接触させる反応容
器、気体水和物(メタンハイドレート)と水の比率を調
整する装置及び冷却装置を用いて、氷点下温度において
気体水和物を安定化させ、メタンガスを貯蔵した実施例
を以下に示す。
Next, the gas hydrate is stabilized at a temperature below freezing point by using a reaction vessel for bringing water and methane gas into contact, a device for adjusting the ratio of gas hydrate (methane hydrate) to water, and a cooling device. An example in which methane gas is stored is shown below.

【0010】本実施例では、図2に示す装置を用いた。
この装置は、内容積150cm3のステンレス製圧力容
器1、に、攪拌器2、ガス供給用配管3、水量調整用排
水管4、間隙径約2μmの固液分離用フィルター5が装
着されている。この圧力容器は、不凍液が満たされた恒
温槽6の中に設置されることにより冷却可能である。
In this embodiment, the apparatus shown in FIG. 2 was used.
In this apparatus, a stirrer 2, a gas supply pipe 3, a water amount adjustment drain pipe 4, and a solid-liquid separation filter 5 having a gap diameter of about 2 μm are mounted on a stainless steel pressure vessel 1 having an inner volume of 150 cm 3 . . This pressure vessel can be cooled by being installed in a thermostat 6 filled with antifreeze.

【0011】以下の手順により、まずメタンの気体水和
物を生成させた。圧力容器1の中に、約100cm3
水を充填した後にメタンガスが導入されて、圧力約8M
Paに加圧された。恒温槽内の不凍液の温度は、+2℃
に調整された。攪拌器2により気液接触を促進すること
により、メタンの気体水和物9が生成して、水はスラリ
ー状態となった。次に、水量調整用排水管4のバルブを
操作することにより、圧力容器1から水を排水した。固
液分離用フィルター5が装着されているために、メタン
の気体水和物は圧力容器の中に残る。排水量を調整する
ことにより、圧力容器内に残る水量を様々に調整した。
次に、恒温槽内の不凍液の温度を−30℃に調整するこ
とにより、圧力容器2の中に残った水を凍結させた。最
後に、圧力容器からメタンガスを排気することにより、
圧力容器1の中の圧力は、大気圧となった。圧力容器か
ら取り出された試料は、メタンの気体水和物からなる
が、その表面の少なくとも一部には氷が存在する組成物
である。即ち、気体水和物の表面の少なくとも一部が氷
で被覆されたあるいは気体水和物が氷中に存在する組成
物である。
First, a gaseous hydrate of methane was produced by the following procedure. After filling about 100 cm 3 of water into the pressure vessel 1, methane gas is introduced, and a pressure of about 8 M
It was pressurized to Pa. The temperature of the antifreeze in the thermostat is + 2 ℃
Was adjusted to By promoting gas-liquid contact by the stirrer 2, gaseous hydrate 9 of methane was generated, and the water was in a slurry state. Next, water was drained from the pressure vessel 1 by operating the valve of the drainage pipe 4 for adjusting the amount of water. The gas hydrate of methane remains in the pressure vessel because the solid-liquid separation filter 5 is installed. The amount of water remaining in the pressure vessel was variously adjusted by adjusting the amount of drainage.
Next, the water remaining in the pressure vessel 2 was frozen by adjusting the temperature of the antifreeze in the thermostat to −30 ° C. Finally, by exhausting methane gas from the pressure vessel,
The pressure in the pressure vessel 1 became atmospheric pressure. The sample removed from the pressure vessel is a composition consisting of gaseous hydrate of methane, but having ice on at least a part of its surface. That is, it is a composition in which at least a part of the surface of the gas hydrate is covered with ice or the gas hydrate is present in ice.

【0012】試料の安定性は、気密容器内に充填された
試料から流出するガスの流量を測定することにより評価
された。圧力容器内の残水量を変化させた試料につい
て、温度−30℃における安定性を評価した結果を図3
に示す。縦軸の流量は、積算値であり、総ガス量で規格
化されている。また、各測定の最後には、温度を+5℃
に昇温することにより、全ガス量を求めた。図中のRu
n1は試料(氷と水和物との合計重量)1gに含まれる
メタンガス量が標準状態換算60mLの場合(氷/水和
物重量比=1.7)である。総ガス量の約20%が流出
した後、積算ガス量が一定となり、気体水和物が安定化
したことを示している。Run2は、試料1gに含まれ
るメタンガス量が標準状態換算110mLの場合(氷/
水和物重量比=0.5)であり、製造時の残水量がRu
n1より少ない。この場合には、総ガス量の約80%が
流出した後に安定化したことを示す。なお、試料1gあ
たり標準状態換算170mLのメタンを含む試料の場合
(氷/水和物重量比=1)には、気体水和物は安定化す
ることなく、ほぼ全量のガスが流出した。以上の結果か
ら、加圧下で水ととも気体水和物を凍結させることによ
り気体水和物が安定化すること、その安定化の程度は残
水量の増大とともに顕著になることが明らかである。
[0012] The stability of the sample was evaluated by measuring the flow rate of the gas flowing out of the sample filled in the airtight container. FIG. 3 shows the results of evaluating the stability of the sample in which the amount of residual water in the pressure vessel was changed at a temperature of −30 ° C.
Shown in The flow rate on the vertical axis is an integrated value and is standardized by the total gas amount. At the end of each measurement, the temperature is + 5 ° C.
, The total gas amount was determined. Ru in the figure
n1 is the case where the amount of methane gas contained in 1 g of the sample (total weight of ice and hydrate) is 60 mL in terms of standard condition (ice / hydrate weight ratio = 1.7). After about 20% of the total gas amount flowed out, the integrated gas amount became constant, indicating that the gas hydrate was stabilized. Run 2 was measured when the amount of methane gas contained in 1 g of the sample was 110 mL in standard condition conversion (ice /
Hydrate weight ratio = 0.5), and the residual water amount at the time of production is Ru.
less than n1. In this case, it indicates that the gas has stabilized after about 80% of the total gas amount has flowed out. In the case of a sample containing 170 mL of methane in terms of standard state per 1 g of the sample (weight ratio of ice / hydrate = 1), almost all of the gas flowed out without stabilization of the gas hydrate. From the above results, it is clear that the gas hydrate is stabilized by freezing the gas hydrate with water under pressure, and that the degree of the stabilization becomes remarkable as the residual water amount increases.

【0013】加圧下で水と気体水和物を凍結させること
により気体水和物が安定化する効果は、凍結した氷が気
体水和物の表面を被覆してその気体水和物の分解を抑制
する作用によるものである。従って、上記実施例のみな
らず、氷または水とガスを接触させて製造された炭化水
素水和物は、氷点以下の温度において、該水和物を加熱
または減圧するなどの手段により、表層部から炭化水素
の一部を分解気化させてその表層部に氷殻を形成させる
ことによっても、炭化水素水和物を安定化させることが
可能なことは当然である。
The effect of stabilizing the gas hydrate by freezing water and gas hydrate under pressure is that the frozen ice coats the surface of the gas hydrate and causes the decomposition of the gas hydrate. This is due to the suppressing action. Therefore, the hydrocarbon hydrate produced by contacting the gas with ice or water, as well as the above example, can be heated or depressurized at a temperature below the freezing point by heating or depressurizing the hydrate. Naturally, it is possible to stabilize the hydrocarbon hydrate also by decomposing and vaporizing a part of the hydrocarbon to form an ice shell on the surface layer.

【0014】本発明による表面に氷を有する気体水和物
が存在する組成物の形状は、塊状や、粉末状、ペレット
状等の任意の形状であることができる。この組成物にお
いて、その水(氷)の割合は、気体水和物1重量部当
り、0.1〜2重量部、好ましくは0.5〜1.5重量
部の割合である。氷の割合が前記範囲より少なくなる
と、気体水和物の貯蔵安定性が悪くなる。一方、前記範
囲より多くなると、経済性が悪化する。氷中に気体水和
物が存在する組成物の貯蔵又は輸送のための温度は、氷
点以下の温度であり、通常は−5〜−50℃、好ましく
は−15〜−30℃である。また、その貯蔵及び輸送の
圧力は、気体水和物の種類や貯蔵又は輸送温度等により
変化するが、通常、大気圧〜10気圧程度である。
The composition of the present invention in which the gas hydrate having ice on the surface is present can be in any form such as a lump, a powder, a pellet, and the like. In this composition, the proportion of water (ice) is 0.1 to 2 parts by weight, preferably 0.5 to 1.5 parts by weight, per 1 part by weight of the gas hydrate. If the ice content is less than the above range, the storage stability of the gaseous hydrate will deteriorate. On the other hand, if it is larger than the above range, the economic efficiency is deteriorated. The temperature for storage or transportation of the composition in which the gaseous hydrate is present in ice is a temperature below the freezing point, usually -5 to -50C, preferably -15 to -30C. The pressure for storage and transport varies depending on the type of gas hydrate, storage or transport temperature, and the like, but is usually about atmospheric pressure to about 10 atm.

【0015】本発明で炭化水素ガスの水和物を形成する
ための水は、純水や蒸留水である必要はなく、工業用水
等の少量の不純物を含む水であってもよい。さらに、添
加剤としては、脂肪族アミンや、テトラヒドロフラン、
アセトン等の水和物の生成圧力を低下させる化合物を含
有させた水溶液等であることができる。
The water for forming the hydrate of hydrocarbon gas in the present invention does not need to be pure water or distilled water, but may be water containing a small amount of impurities such as industrial water. Further, as additives, aliphatic amines, tetrahydrofuran,
It may be an aqueous solution or the like containing a compound that lowers the formation pressure of a hydrate such as acetone.

【0016】[0016]

【発明の効果】このように、本発明に係わる炭化水素ガ
スの貯蔵及び輸送方法を用いれば、気体水和物をガスの
貯蔵及び輸送の媒体とするにもかかわらず、気体水和物
が安定に存在し得る圧力より低い大気圧近傍において、
ガスを高密度に貯蔵及び輸送することが可能となる。添
加物を利用する公知のガス貯蔵及び輸送方法と比較する
と、添加物処理の工程が不要であり、添加物によるガス
含有密度の低下を低減できる効果がある。
As described above, according to the method for storing and transporting hydrocarbon gas according to the present invention, the gas hydrate is stable even though the gas hydrate is used as a medium for storing and transporting gas. Near atmospheric pressure lower than the pressure that can exist at
Gas can be stored and transported at high density. Compared with known gas storage and transport methods using additives, there is no need for an additive treatment step, and there is an effect of reducing a decrease in gas content density due to additives.

【図面の簡単な説明】[Brief description of the drawings]

【図1】気体水和物が安定に存在し得る温度と最低圧力
の関係を示す解離圧曲線を示す。
FIG. 1 shows a dissociation pressure curve showing a relationship between a temperature at which a gas hydrate can stably exist and a minimum pressure.

【図2】気体水和物を安定化させるために用いた装置の
説明図を示す。
FIG. 2 shows an explanatory view of an apparatus used for stabilizing a gas hydrate.

【図3】気体水和物の安定化を示すグラフを示す。FIG. 3 shows a graph showing stabilization of gas hydrate.

【符号の説明】[Explanation of symbols]

1 圧力容器 2 攪拌器 3 ガス供給用配管 4 水量調整用配水管、 5 フィルター 6 恒温槽(不凍液) 7 水 8 メタンガス、 9 メタン気体水和物 DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Stirrer 3 Gas supply pipe 4 Water distribution water pipe, 5 Filter 6 Constant temperature bath (antifreeze) 7 Water 8 Methane gas, 9 Methane gas hydrate

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10L 3/06 F17C 11/00 B // F17C 11/00 C10L 3/00 A (72)発明者 竹谷 敏 北海道札幌市豊平区月寒東2条17丁目2番 1号 経済産業省産業技術総合研究所北海 道工業技術研究所内 (72)発明者 成田 英夫 北海道札幌市豊平区月寒東2条17丁目2番 1号 経済産業省産業技術総合研究所北海 道工業技術研究所内 Fターム(参考) 3E072 EA07 EA10 4H006 AA02 AC90 AD33 AD40 BC10Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C10L 3/06 F17C 11/00 B // F17C 11/00 C10L 3/00 A (72) Inventor Satoshi Takeya Sapporo, Hokkaido Toyohira-ku Tsurugan-Higashi 2-17-17-2 1-1 Within the Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology (AIST) (72) Inventor Hideo Narita 2-17-1, Tsurugan-Higashi 2-17-2-1, Toyohira-ku, Sapporo, Hokkaido F-term (reference) in the National Institute of Advanced Industrial Science and Technology Hokkaido Industrial Technology Research Institute 3E072 EA07 EA10 4H006 AA02 AC90 AD33 AD40 BC10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素ガスを貯蔵する方法において、
該炭化水素ガスを、気体水和物の形態でかつその表面の
少なくとも一部に氷を存在させて、氷点以下の温度で貯
蔵することを特徴とする炭化水素ガスの貯蔵方法。
1. A method for storing a hydrocarbon gas, comprising:
A method for storing a hydrocarbon gas, comprising storing the hydrocarbon gas at a temperature below the freezing point in the form of a gaseous hydrate and having ice present on at least a part of its surface.
【請求項2】 該氷の割合が、該気体水和物1重量部当
り、0.5〜1.5重量部の割合である請求項1の方
法。
2. The method according to claim 1, wherein the proportion of the ice is 0.5 to 1.5 parts by weight per 1 part by weight of the gaseous hydrate.
【請求項3】 炭化水素ガスを輸送する方法において、
該炭化水素ガスを、気体水和物の形態でかつその表面の
少なくとも一部に氷を存在させて、氷点以下の温度で輸
送することを特徴とする炭化水素ガスの輸送方法。
3. A method for transporting hydrocarbon gas, comprising:
A method for transporting a hydrocarbon gas, comprising transporting the hydrocarbon gas at a temperature below the freezing point in the form of a gaseous hydrate with ice present on at least a part of its surface.
【請求項4】 該氷の割合が、該気体水和物1重量部当
り、0.5〜1.5重量部の割合である請求項3の方
法。
4. The method according to claim 3, wherein the proportion of the ice is 0.5 to 1.5 parts by weight per 1 part by weight of the gaseous hydrate.
【請求項5】 炭化水素ガスの気体水和物を、水又は水
溶液とともに氷点以下の温度に冷却して、該気体水和物
の表面の少なくとも一部に氷を存在させることを特徴と
する氷点温度以下の温度での貯蔵及び輸送に適した炭化
水素ガス水和物の製造方法。
5. A freezing point characterized in that a gaseous hydrate of a hydrocarbon gas is cooled together with water or an aqueous solution to a temperature below the freezing point, and ice is present on at least a part of the surface of the gaseous hydrate. A method for producing a hydrocarbon gas hydrate suitable for storage and transportation at a temperature below the temperature.
【請求項6】 炭化水素水和物から、該炭化水素の一部
を氷点以下の温度で気化させて、その表層に氷を形成す
ることを特徴とする炭化水素水和物の安定化方法。
6. A method for stabilizing a hydrocarbon hydrate, comprising: evaporating a part of the hydrocarbon from a hydrate at a temperature below the freezing point to form ice on a surface layer thereof.
JP2001060798A 2001-03-05 2001-03-05 Storage and transportation of hydrocarbon gas Pending JP2002255865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060798A JP2002255865A (en) 2001-03-05 2001-03-05 Storage and transportation of hydrocarbon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060798A JP2002255865A (en) 2001-03-05 2001-03-05 Storage and transportation of hydrocarbon gas

Publications (1)

Publication Number Publication Date
JP2002255865A true JP2002255865A (en) 2002-09-11

Family

ID=18920175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060798A Pending JP2002255865A (en) 2001-03-05 2001-03-05 Storage and transportation of hydrocarbon gas

Country Status (1)

Country Link
JP (1) JP2002255865A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160681A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Novel structure-h hydrate
JP2007270065A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate pellets
WO2009040875A1 (en) * 2007-09-28 2009-04-02 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing gas hydrate pellet and apparatus therefor
JP2011007291A (en) * 2009-06-26 2011-01-13 Mitsui Eng & Shipbuild Co Ltd Storage method for gas hydrate
JP2011144268A (en) * 2010-01-15 2011-07-28 National Institute Of Advanced Industrial Science & Technology Gas hydrate particle coated with semi-clathrate hydrate or clathrate hydrate
JP2011244728A (en) * 2010-05-26 2011-12-08 Ihi Corp Co2 hydrate and method of producing the same
JP2012111734A (en) * 2010-11-26 2012-06-14 Mitsui Eng & Shipbuild Co Ltd Method for storing ethane hydrate
CN105757450A (en) * 2016-05-10 2016-07-13 西南石油大学 Adsorption-hydration coupled new gas storage and transportation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160681A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Novel structure-h hydrate
JP2007270065A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate pellets
WO2009040875A1 (en) * 2007-09-28 2009-04-02 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing gas hydrate pellet and apparatus therefor
JP2011007291A (en) * 2009-06-26 2011-01-13 Mitsui Eng & Shipbuild Co Ltd Storage method for gas hydrate
JP2011144268A (en) * 2010-01-15 2011-07-28 National Institute Of Advanced Industrial Science & Technology Gas hydrate particle coated with semi-clathrate hydrate or clathrate hydrate
JP2011244728A (en) * 2010-05-26 2011-12-08 Ihi Corp Co2 hydrate and method of producing the same
JP2012111734A (en) * 2010-11-26 2012-06-14 Mitsui Eng & Shipbuild Co Ltd Method for storing ethane hydrate
CN105757450A (en) * 2016-05-10 2016-07-13 西南石油大学 Adsorption-hydration coupled new gas storage and transportation method

Similar Documents

Publication Publication Date Title
Park et al. Effect of multi-walled carbon nanotubes on methane hydrate formation
Park et al. Characteristics of methane hydrate formation in carbon nanofluids
Yu et al. Effect of graphite nanoparticles on CO2 hydrate phase equilibrium
Kim et al. A comparative study on the enhanced formation of methane hydrate using CM-95 and CM-100 MWCNTs
TWI406813B (en) Improved process to produce ammonia from urea
Prasad Methane hydrate formation and dissociation in the presence of hollow silica
CN109311667B (en) Hydrogen sulfide mixture, method for producing same, and filled container
JP2002255865A (en) Storage and transportation of hydrocarbon gas
Nashed et al. Investigating the effect of silver nanoparticles on carbon dioxide hydrates formation
CN109628183B (en) Method for storing natural gas hydrate
Komatsu et al. Measurement of pure hydrogen and pure carbon dioxide adsorption equilibria for THF clathrate hydrate and tetra-n-butyl ammonium bromide semi-clathrate hydrate
Burla et al. Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water–gas ratio
Pandey et al. Methane hydrate formation, storage and dissociation behavior in unconsolidated sediments in the presence of environment-friendly promoters
Chen et al. A covering liquid method to intensify self-preservation effect for safety of methane hydrate storage and transportation
JP2000303083A (en) Hydrate slurry fuel, its production, and apparatus for producing it, and method for storing it
Coupan et al. Hydroquinone clathrate based gas separation (HCBGS): Application to the CO2/CH4 gas mixture
TW202138290A (en) Sulfur dioxide mixture, method for producing same, and filling container
Schicks Gas hydrates: formation, structures, and properties
JP3173611B2 (en) Method for producing gas hydrate for transport and storage
Pavlenko et al. A new method for the rapid synthesis of gas hydrates for their storage and transportation
JP2006249197A (en) Method of storing and transporting hydrate
Kim et al. Study on gas hydrates for the solid transportation of natural gas
Spalaris The micropore structure of artificial graphite
Lv et al. Study on the growth kinetics of methane hydrate in pure water system containing ZIF-8
JP2000144159A (en) Production of hydrated gas material

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Effective date: 20050401

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Effective date: 20051031

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A02