JP2002242710A - Lean-burn engine for automobile - Google Patents

Lean-burn engine for automobile

Info

Publication number
JP2002242710A
JP2002242710A JP2001037528A JP2001037528A JP2002242710A JP 2002242710 A JP2002242710 A JP 2002242710A JP 2001037528 A JP2001037528 A JP 2001037528A JP 2001037528 A JP2001037528 A JP 2001037528A JP 2002242710 A JP2002242710 A JP 2002242710A
Authority
JP
Japan
Prior art keywords
valve
engine
intake
timing
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001037528A
Other languages
Japanese (ja)
Other versions
JP4517517B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Keiji Araki
啓二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2001037528A priority Critical patent/JP4517517B2/en
Publication of JP2002242710A publication Critical patent/JP2002242710A/en
Application granted granted Critical
Publication of JP4517517B2 publication Critical patent/JP4517517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent variation in torque due to variation in air/fuel ratio if the air/fuel ratio is varied depending on whether the engine is old or hot. SOLUTION: In this engine, the air/fuel ratio in a low-speed and low-load region of the engine is lean when the engine is hot; when the engine is cold, the air/fuel ratio is rich so that it is equal to or less than a stoichiometric air/fuel ratio. The engine is provided with valve timing changers 13 and 14 and a valve timing control means 44 for controlling the changers. Valve timing is controlled so that the closing timing of an intake valve in the low-speed and low-load region when the engine is cold is set at a delay side where the efficiency of charging intake decreases, in relation to the closing timing of the intake valve when the engine is hot.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの低速低
負荷域における設定空燃比を、エンジン温間時は理論空
燃比よりも大きくし、エンジン冷間時には理論空燃比以
下とした自動車用リーンバーンエンジンに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lean burn for an automobile in which a set air-fuel ratio in a low-speed low-load region of an engine is set to be larger than a stoichiometric air-fuel ratio when the engine is warm and is equal to or lower than the stoichiometric air-fuel ratio when the engine is cold. It is about the engine.

【0002】[0002]

【従来の技術】従来から、例えば特開平8−12834
6号公報に示されるように、燃費改善のため低速低負荷
域で空燃比を理論空燃比よりもリーンにするように制御
するとともに、排気通路中に、理論空燃比よりリーンな
空燃比でもNOx浄化性能を有するNOx触媒を設け、
NOx排出量を低減しつつリーンバーン運転を行ない得
るようにしたエンジンは知られている。
2. Description of the Related Art Conventionally, for example, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent Application Publication No. 6-64, the air-fuel ratio is controlled so as to be leaner than the stoichiometric air-fuel ratio in a low-speed low-load range in order to improve fuel efficiency, and NOx is generated in the exhaust passage even when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio. Providing a NOx catalyst having purification performance,
There is known an engine capable of performing lean burn operation while reducing NOx emission.

【0003】また、例えば特開平10−274085号
公報に示されるように、酸素過剰雰囲気でNOxを吸収
して酸素濃度が減少するに伴いNOxを放出するNOx
触媒を排気通路に具備するとともに、燃焼室内に直接燃
料を噴射するインジェクタを備えたリーンバーンエンジ
ンにおいて、NOx触媒のNOx吸蔵量が増大したと
き、排気ガス中の還元材としてのCOを増加させるよう
に燃料噴射を制御することにより、NOx触媒からNO
xを放出させてこれを還元するようにした排気浄化装置
が知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 10-274085, for example, NOx which absorbs NOx in an oxygen-excess atmosphere and releases NOx as the oxygen concentration decreases.
In a lean burn engine having a catalyst in an exhaust passage and an injector for directly injecting fuel into a combustion chamber, when a NOx storage amount of a NOx catalyst increases, CO as a reducing agent in exhaust gas is increased. By controlling the fuel injection to the NOx catalyst,
2. Description of the Related Art There is known an exhaust gas purifying apparatus that emits x and reduces x.

【0004】[0004]

【発明が解決しようとする課題】上記の特開平8−12
8346号公報等に示されるようなリーンバーンエンジ
ンでは、通常、エンジンの温間時に低速低負荷域で空燃
比がリーンとされるが、燃料の気化、霧化が悪いエンジ
ンの冷間時には燃焼安定性が損なわれることを避けるた
め低速低負荷域で空燃比が理論空燃比もしくはこれより
リッチとされる。従って、冷間時と温間時とでは、同一
アクセル開度において吸入空気量が同じであれば、空燃
比の相違に応じて燃料供給量が相違するためトルクに差
が生じ、このため、一定アクセル開度で運転していても
冷間から温間に移行したとき運転者にトルクの落ち込み
感を与えるという問題がある。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. Hei 8-12
In a lean-burn engine such as that disclosed in Japanese Patent No. 8346, the air-fuel ratio is usually lean in a low-speed low-load region when the engine is warm, but when the engine is poorly vaporized and atomized, the combustion is stable when the engine is cold. The air-fuel ratio is set to the stoichiometric air-fuel ratio or richer in the low-speed low-load region in order to avoid deterioration of the performance. Therefore, if the intake air amount is the same at the same accelerator opening at the same accelerator opening between the cold time and the warm time, a difference occurs in the torque due to the difference in the fuel supply amount according to the difference in the air-fuel ratio. Even when driving with the accelerator opening, there is a problem that the driver feels a drop in torque when the vehicle shifts from cold to warm.

【0005】このような問題に対し、吸気通路に設けら
れるスロットル弁が電気的に制御可能となっているもの
であれば、空燃比の相違に応じてスロットル開度を変え
るように制御することでトルクを調整することが考えら
れるが、スロットル弁がアクセルペダルに機械的に連結
されたものではこのような手法は採用できない。
To solve such a problem, if the throttle valve provided in the intake passage is electrically controllable, the throttle valve is controlled to change according to the difference in the air-fuel ratio. Although it is conceivable to adjust the torque, such a method cannot be adopted with a throttle valve mechanically connected to an accelerator pedal.

【0006】なお、NOx触媒のNOx吸蔵量が増大し
たとき、排気ガス中の還元材としてのCOを増加させて
NOx触媒からのNOx放出処理(NOxの放出、還
元)を行なわせるようなものにおいて、NOx放出処理
時に空燃比を変えるようにした場合にもトルク変動の問
題が生じ、これに対し、上記特開平10−274085
号公報に記載されているように膨張行程で燃料噴射を行
なうといった手法を採ると燃費の悪化を招き易い。
When the NOx storage amount of the NOx catalyst increases, CO as a reducing agent in the exhaust gas is increased to perform a process of releasing NOx from the NOx catalyst (release and reduction of NOx). In the case where the air-fuel ratio is changed during the NOx release processing, a problem of torque fluctuation also occurs.
As described in Japanese Patent Application Laid-Open Publication No. H10-209, if a method of performing fuel injection in the expansion stroke is adopted, fuel economy is likely to deteriorate.

【0007】本発明は上記の事情に鑑み、エンジンの冷
間時と温間時とで空燃比が変えられる場合等に、空燃比
の違いによってトルクに格差が生じることを効果的に防
止することができる自動車用リーンバーンエンジンを提
供するものである。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is to effectively prevent a torque difference due to a difference in air-fuel ratio when the air-fuel ratio is changed between when the engine is cold and when the engine is warm. It is intended to provide a lean burn engine for an automobile which can perform the following.

【0008】[0008]

【課題を解決するための手段】本発明は、エンジンの低
速低負荷域における設定空燃比を、エンジン温間時は理
論空燃比よりも大きくし、エンジン冷間時には理論空燃
比以下とした自動車用リーンバーンエンジンにおいて、
吸気弁の開閉タイミングを変更可能とするバルブタイミ
ング可変装置と、このバルブタイミング可変装置をエン
ジンの運転状態及び温度状態に応じて制御するバルブタ
イミング制御手段とを備え、このバルブタイミング制御
手段は、低速低負荷域におけるエンジン冷間時の吸気弁
閉時期を同一アクセル開度状態でのエンジン温間時の吸
気弁閉時期に対して吸気充填効率が低下する遅れ側に設
定するようになっているものである。
SUMMARY OF THE INVENTION The present invention is directed to an automotive vehicle in which a set air-fuel ratio in a low-speed low-load region of an engine is set to be larger than a stoichiometric air-fuel ratio when the engine is warm and lower than the stoichiometric air-fuel ratio when the engine is cold. In lean burn engines,
A variable valve timing device capable of changing the opening / closing timing of the intake valve; and a variable valve timing control means for controlling the variable valve timing device in accordance with an operating state and a temperature state of the engine. The intake valve closing timing when the engine is cold in the low load range is set to a delay side where the intake charging efficiency decreases with respect to the intake valve closing timing when the engine is warm with the same accelerator opening degree. It is.

【0009】この発明によると、エンジンの低速低負荷
域において、温間時は空燃比がリーンにされることで燃
費改善が図られ、一方、冷間時は理論空燃比以下とされ
ることで燃焼安定性が確保されつつ、吸気充填効率が低
下するように吸気弁閉時期が調整される。これにより、
冷間時と温間時とでの空燃比の違いに対し、トルク格差
を小さくするように吸入空気量が調整される。
According to the present invention, in the low-speed and low-load region of the engine, the fuel efficiency is improved by making the air-fuel ratio lean when the engine is warm, while the air-fuel ratio is made lower than the stoichiometric air-fuel ratio when the engine is cold. The intake valve closing timing is adjusted so that the intake charge efficiency is reduced while ensuring combustion stability. This allows
The intake air amount is adjusted so as to reduce the torque difference with respect to the difference in the air-fuel ratio between the cold state and the warm state.

【0010】この発明において、低速低負荷域における
エンジン冷間時の吸気弁開時期を同一アクセル開度状態
でのエンジン温間時の吸気弁開時期に対して遅くするこ
とが好ましい。このようにすると、エンジン冷間時に吸
・排気弁の開弁期間のオーバラップが増大することがな
く、冷間時の燃焼安定性が確保される。
[0010] In the present invention, it is preferable that the intake valve opening timing when the engine is cold in the low-speed low-load region is delayed with respect to the intake valve opening timing when the engine is warm with the same accelerator opening degree. In this way, the overlap of the valve opening periods of the intake and exhaust valves does not increase when the engine is cold, and the combustion stability during cold is ensured.

【0011】上記のような構成に加え、酸素過剰雰囲気
でNOxを吸収して酸素濃度が減少するに伴いNOxを
放出するNOx触媒を排気通路に具備するとともに、エ
ンジン温間時において空燃比が理論空燃比よりも大きい
値から理論空燃比以下に変更される移行時に、吸気弁閉
時期を吸気充填効率が低下する遅れ側に変更し、かつ、
少なくともこの移行時に、排気弁用カムリフト特性にお
ける加速度区間から定速度区間への移行時点をもって定
義した排気弁閉時期を吸気上死点より前に設定すること
が好ましい。
In addition to the above configuration, a NOx catalyst that absorbs NOx in an oxygen-excess atmosphere and releases NOx as the oxygen concentration decreases is provided in the exhaust passage. At the time of transition from a value larger than the air-fuel ratio to a value equal to or less than the stoichiometric air-fuel ratio, the intake valve closing timing is changed to a delay side where the intake charging efficiency is reduced, and
At least during this transition, it is preferable to set the exhaust valve closing timing defined at the transition point from the acceleration section to the constant velocity section in the exhaust valve cam lift characteristic before the intake top dead center.

【0012】このようにすると、リーン運転状態のとき
に上記NOx触媒によって排気ガス中のNOxが吸収さ
れ、また、空燃比が理論空燃比よりも大きい値から理論
空燃比以下に変更されたときにNOx触媒からのNOx
の放出、還元が行なわれてNOx触媒がリフレッシュさ
れる。そして、空燃比が理論空燃比よりも大きい値から
理論空燃比以下に変更される移行時に、吸気弁閉時期が
遅くされることでトルクを調整する作用が得られること
に加え、排気弁閉時期が吸気上死点より前に設定される
ことでいわゆる内部EGRによりNOxが低減され、N
Ox触媒からのNOxの放出、還元を促進する作用が得
られる。
In this manner, when the lean operation state is established, NOx in the exhaust gas is absorbed by the NOx catalyst, and when the air-fuel ratio is changed from a value larger than the stoichiometric air-fuel ratio to a value equal to or lower than the stoichiometric air-fuel ratio. NOx from NOx catalyst
Is released and reduced to refresh the NOx catalyst. When the air-fuel ratio is changed from a value greater than the stoichiometric air-fuel ratio to a value equal to or lower than the stoichiometric air-fuel ratio, the action of adjusting the torque by delaying the intake valve closing timing is obtained. Is set before the intake top dead center, NOx is reduced by so-called internal EGR, and N
The effect of promoting the release and reduction of NOx from the Ox catalyst is obtained.

【0013】さらに、吸気弁及び排気弁のそれぞれに対
してバルブタイミング可変装置を具備し、バルブタイミ
ング制御手段は、吸気弁に対するバルブタイミング可変
装置の制御に加えて、排気弁に対するバルブタイミング
可変装置の制御を行い、エンジンの冷間時における低速
低負荷域では上記排気弁閉時期を吸気上死点以後に設定
することが好ましい。
Further, a variable valve timing device is provided for each of the intake valve and the exhaust valve, and the valve timing control means controls the variable valve timing device for the exhaust valve in addition to controlling the variable valve timing device for the intake valve. It is preferable to perform control and set the exhaust valve closing timing after the intake top dead center in a low-speed low-load region when the engine is cold.

【0014】このようにすると、エンジンの冷間時には
内部EGRが少なくされ、燃焼安定性が高められる。
With this configuration, when the engine is cold, the internal EGR is reduced, and the combustion stability is improved.

【0015】また、本発明は、酸素過剰雰囲気でNOx
を吸収して酸素濃度が減少するに伴いNOxを放出する
NOx触媒を排気通路に具備するとともに、低速低負荷
域で空燃比を理論空燃比よりも大きくしてリーン運転を
行い、かつ、特定時にリーン運転状態から空燃比を理論
空燃比以下に変更することでNOx触媒からNOxを放
出させるNOx放出処理を行うようにした自動車用リー
ンバーンエンジンにおいて、吸気弁及び排気弁に対して
それぞれバルブ開閉タイミングを変更可能とするバルブ
タイミング可変装置を備えるとともに、これらのバルブ
タイミング可変装置を制御するバルブタイミング制御手
段を備え、このバルブタイミング制御手段は、リーン運
転からのNOx放出処理開始時に、排気弁用カムリフト
特性における加速度区間から定速度区間への移行時点を
もって定義した排気弁閉時期を吸気上死点より所定期間
前、吸気弁用カムリフト特性における定速度区間から加
速度区間への移行時点をもって定義した吸気弁開時期を
吸気上死点以後とするように上記バルブタイミング可変
装置を制御するようにしたものである。
Further, the present invention provides a method for producing NOx in an oxygen-excess atmosphere.
In the exhaust passage, a NOx catalyst that releases NOx as the oxygen concentration is reduced by absorbing oxygen is provided, and the air-fuel ratio is made larger than the stoichiometric air-fuel ratio in a low-speed low-load region to perform a lean operation, and at a specific time. Valve opening / closing timings for an intake valve and an exhaust valve in a vehicle lean burn engine that performs a NOx release process of releasing NOx from a NOx catalyst by changing an air-fuel ratio from a lean operation state to a stoichiometric air-fuel ratio or less. And a valve timing control means for controlling the variable valve timing apparatus. The valve timing control means is provided with a cam valve lift for the exhaust valve when starting the NOx release process from the lean operation. The emission defined at the point of transition from the acceleration section to the constant speed section in the characteristics The valve timing is variable so that the valve closing timing is a predetermined period before the intake top dead center, and the intake valve opening timing defined by the transition point from the constant speed section to the acceleration section in the intake valve cam lift characteristic is after the intake top dead center. The device is controlled.

【0016】この発明によると、NOx放出処理が行わ
れるとき、バルブタイミングの制御によりいわゆる内部
EGRが増加してNOxが低減され、NOx触媒からの
NOxの放出、還元を促進する作用が得られる。
According to the present invention, when the NOx releasing process is performed, the so-called internal EGR is increased by the control of the valve timing, so that the NOx is reduced, and the action of promoting the release and reduction of the NOx from the NOx catalyst is obtained.

【0017】この発明において、少なくとも吸気弁に対
するバルブタイミング可変装置は、開弁期間を一定とし
つつ開閉タイミングを変更可能とする位相式のバルブタ
イミング可変装置であり、上記吸気弁開時期が吸気上死
点後とされたときは吸気弁閉時期が吸気充填効率の低下
を招くような遅い時期となるようにすることが好まし
い。
In the present invention, at least the variable valve timing device for the intake valve is a phase type variable valve timing device capable of changing the opening / closing timing while keeping the valve opening period constant. When it is set to be after the point, it is preferable that the intake valve closing timing be a late timing that causes a decrease in the intake charging efficiency.

【0018】このようにすると、NOx放出処理開始時
に、空燃比のリーンから理論空燃比以下にリッチ化され
るのに対し、シルクの急変を招かないように吸入空気量
が調整される。
In this way, at the start of the NOx release process, the air-fuel ratio is enriched from lean to the stoichiometric air-fuel ratio, but the intake air amount is adjusted so as not to cause a sudden change in the silk.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明が適用される自動車用4サイ
クルエンジンの全体構造を概略的に示したものである。
この図において、1はエンジン本体であり、複数の気筒
を有し、その各気筒2には、シリンダボアに挿入された
ピストン4の上方に燃焼室5が形成されている。この燃
焼室5には吸気ポート7及び排気ポート8が開口し、こ
れらのポート7,8は吸気弁9及び排気弁10によって
開閉されるようになっている。
FIG. 1 schematically shows the overall structure of a four-stroke engine for an automobile to which the present invention is applied.
In this figure, reference numeral 1 denotes an engine body, which has a plurality of cylinders, each of which has a combustion chamber 5 formed above a piston 4 inserted into a cylinder bore. An intake port 7 and an exhaust port 8 are opened in the combustion chamber 5, and these ports 7, 8 are opened and closed by an intake valve 9 and an exhaust valve 10.

【0021】上記吸気弁9及び排気弁10はカムシャフ
ト11,12等からなる動弁機構により開閉作動される
ようになっている。また、吸気弁9に対する動弁機構及
び排気弁10に対する動弁機構には、それぞれ、バルブ
開閉タイミングを変更可能にするバルブタイミング可変
装置13,14が設けられている。このバルブタイミン
グ可変装置13,14は、クランクシャフトに連動する
カムプーリとカムシャフトとの間に設けられて、クラン
クシャフトに対するカムシャフトの位相を変更すること
により、開弁期間は一定としつつ開時期及び閉時期を変
更することができるようになっている。このようなバル
ブタイミング可変装置13,14は従来から種々知られ
ているため、具体的な構造の図示及び説明は省略する。
The intake valve 9 and the exhaust valve 10 are opened and closed by a valve operating mechanism including camshafts 11 and 12 and the like. The valve mechanism for the intake valve 9 and the valve mechanism for the exhaust valve 10 are respectively provided with variable valve timing devices 13 and 14 that can change the valve opening / closing timing. The variable valve timing devices 13 and 14 are provided between a cam pulley and a camshaft interlocking with the crankshaft, and change the phase of the camshaft with respect to the crankshaft, thereby keeping the valve opening period constant and the opening timing and time. The closing time can be changed. Since various types of such variable valve timing devices 13 and 14 have been conventionally known, illustration and description of a specific structure will be omitted.

【0022】上記燃焼室5の中央部には点火プラグ16
が配設され、そのプラグ先端が燃焼室に臨んでいる。さ
らに燃焼室5には、側方からインジェクタ18の先端部
が臨み、このインジェクタ18から燃料が燃焼室5内に
直接噴射されるようになっている。
At the center of the combustion chamber 5, a spark plug 16
And the plug tip faces the combustion chamber. Further, the tip of the injector 18 faces the combustion chamber 5 from the side, and fuel is directly injected from the injector 18 into the combustion chamber 5.

【0023】上記エンジン本体1には吸気通路20及び
排気通路30が接続されている。上記吸気通路20に
は、その上流側から順に、エアクリーナ21、エアフロ
ーセンサ22、スロットル弁23及びサージタンク24
が設けられている。上記スロットル弁23は、図外のア
クセルペダルに機械的に連結され、アクセルペダル踏込
み量に応じた開度に開かれるようになっている。このス
ロットル弁23に対し、その開度を検出するスロットル
開度センサ25が設けられている。
An intake passage 20 and an exhaust passage 30 are connected to the engine body 1. In the intake passage 20, an air cleaner 21, an air flow sensor 22, a throttle valve 23 and a surge tank 24 are arranged in this order from the upstream side.
Is provided. The throttle valve 23 is mechanically connected to an accelerator pedal (not shown), and is opened to an opening corresponding to the accelerator pedal depression amount. A throttle opening sensor 25 for detecting the opening of the throttle valve 23 is provided.

【0024】上記排気通路30には、排気ガス中の酸素
濃度を検出することによって空燃比を検出するO2セン
サ31が設けられるとともに、その下流にNOx触媒3
2が設けられている。このNOx触媒32は、空燃比が
理論空燃比よりも大きいリーン運転状態でもNOx浄化
性能を有するものであって、酸素過剰雰囲気で排気ガス
中のNOxを吸収し、空燃比がリーンからリッチ側に変
化して酸素濃度が減少したときに、吸収していたNOx
を放出するとともに、雰囲気中に存在するCO等の還元
材によりNOxを還元させるようになっている。
The exhaust passage 30 is provided with an O 2 sensor 31 for detecting the air-fuel ratio by detecting the concentration of oxygen in the exhaust gas.
2 are provided. The NOx catalyst 32 has NOx purification performance even in a lean operation state in which the air-fuel ratio is larger than the stoichiometric air-fuel ratio. The NOx catalyst 32 absorbs NOx in exhaust gas in an oxygen-excess atmosphere, and the air-fuel ratio shifts from lean to rich. NOx absorbed when oxygen concentration decreased due to change
And NOx is reduced by a reducing agent such as CO present in the atmosphere.

【0025】より詳しく説明すると、上記NOx触媒3
2は、例えばコージュライト製ハニカム構造体等からな
る担体の上にNOx吸収材層と触媒材層とを層状に形成
したものであり、NOx吸収材層は活性アルミナにPt
成分とNOx吸収材としてのBa成分とを担持させたも
のを主成分として構成され、触媒材層は、ゼオライトを
担持母材としてこれにPt成分及びRh成分を担持させ
てなる触媒材を主成分として構成されている。
More specifically, the NOx catalyst 3
Reference numeral 2 denotes a structure in which a NOx absorbent layer and a catalyst layer are formed in layers on a support made of, for example, a cordierite honeycomb structure.
Component and a Ba component as a NOx absorbent are composed as a main component, and the catalyst material layer is mainly composed of a catalyst material obtained by supporting a Pt component and a Rh component on a zeolite as a supporting base material. Is configured as

【0026】40はエンジン制御用のコントロールユニ
ット(ECU)である。このECU40には、上記エア
フローセンサ22、スロットル開度センサ25及びO2
センサ31からの信号が入力されるとともに、クランク
角センサ35からエンジン回転数検出等のためのクラン
ク角信号が入力され、さらにエンジン冷却水の温度を検
出する水温センサ36等からの信号も入力されている。
Reference numeral 40 denotes a control unit (ECU) for controlling the engine. The ECU 40 includes the air flow sensor 22, the throttle opening sensor 25, and O 2.
A signal from the sensor 31 is input, a crank angle signal for detecting an engine rotation speed and the like is input from a crank angle sensor 35, and a signal from a water temperature sensor 36 and the like for detecting the temperature of engine cooling water is also input. ing.

【0027】また、ECU40から、上記インジェクタ
18に対して燃料噴射を制御する信号が出力されるとと
もに、バルブタイミング可変装置13,14に対してこ
れを制御する信号が出力されている。
The ECU 40 outputs a signal for controlling the fuel injection to the injector 18 and outputs a signal for controlling the same to the variable valve timing devices 13 and 14.

【0028】上記ECU40は、運転状態判別手段4
1、温度状態判別手段42、燃料噴射制御手段43及び
バルブタイミング制御手段44を含んでいる。運転状態
判別手段41は、クランク角センサ35からのクランク
角信号の周期の計測等によって検出されるエンジン回転
数と、エアフローセンサ22、スロットル開度センサ2
5等からの信号によって調べられるエンジン負荷とに基
づき、エンジンの運転状態を判別するようになってい
る。
The above-mentioned ECU 40 is provided with an operating state determining means 4.
1. It includes a temperature state determination unit 42, a fuel injection control unit 43, and a valve timing control unit 44. The operating state determining means 41 includes an engine speed detected by measuring a cycle of a crank angle signal from the crank angle sensor 35, the air flow sensor 22, the throttle opening sensor 2 and the like.
The operating state of the engine is determined on the basis of the engine load checked by a signal from 5 or the like.

【0029】温度状態判別手段42は、水温センサ36
からの信号に基づき、エンジン冷却水温度が所定温度未
満のエンジン冷間状態か所定温度以上のエンジン温間状
態かを判別するようになっている。
The temperature state discriminating means 42 includes a water temperature sensor 36
, It is determined whether the engine cooling water temperature is lower than the predetermined temperature or not.

【0030】燃料噴射制御手段43は、運転状態判別手
段41により判別されるエンジンの運転状態及び温度状
態判別手段42により判別されるエンジンの温度状態に
応じ、燃料噴射量及び噴射タイミングを制御するもので
あり、エンジン冷間時には図2(a)に示す冷間時用マ
ップに基づいて、またエンジン温間時には図2(b)に
示す温間時用マップに基づいて制御を行なう。
The fuel injection control means 43 controls the fuel injection amount and the injection timing according to the engine operating state determined by the operating state determining means 41 and the engine temperature determined by the temperature state determining means 42. When the engine is cold, control is performed based on the cold map shown in FIG. 2A, and when the engine is warm, control is performed based on the warm map shown in FIG. 2B.

【0031】すなわち、エンジンの温間時には図2
(b)のように、所定負荷以下で、かつ所定エンジン回
転数以下の低速低負荷域をリーン運転領域Aとし、この
リーン運転領域Aでは、空燃比を理論空燃比よりもリー
ン(空気過剰率λがλ>1)とするとともに、圧縮行程
後半に燃料を噴射することにより点火プラグ16まわり
に混合気を偏在させて成層燃焼を行わせるように、燃料
噴射量及び噴射タイミングを制御する。一方、上記リー
ン運転領域以外の領域Bでは、空燃比を理論空燃比以下
(空気過剰率λがλ≦1)とし、例えば理論空燃比(λ
=1)とするとともに、吸気行程で燃料を噴射すること
により混合気を拡散させて均一燃焼を行わせるように、
燃料噴射量及び噴射タイミングを制御する。
That is, when the engine is warm, FIG.
As shown in (b), a low-speed and low-load region where the load is equal to or lower than a predetermined load and equal to or lower than a predetermined engine speed is defined as a lean operation region A. In this lean operation region A, the air-fuel ratio is set to be leaner than the stoichiometric air-fuel ratio (excess air ratio). While λ is set to λ> 1), the fuel injection amount and the injection timing are controlled such that the fuel is injected in the latter half of the compression stroke, so that the air-fuel mixture is unevenly distributed around the ignition plug 16 to perform stratified combustion. On the other hand, in the region B other than the lean operation region, the air-fuel ratio is set to be equal to or lower than the stoichiometric air-fuel ratio (the excess air ratio λ is λ ≦ 1).
= 1) and inject fuel in the intake stroke to diffuse the air-fuel mixture and perform uniform combustion.
The fuel injection amount and the injection timing are controlled.

【0032】また、エンジンの冷間時には図2(a)の
ように、低速低負荷域でも空燃比を理論空燃比以下(λ
≦1)とし、吸気行程で燃料を噴射することにより混合
気を拡散させて均一燃焼を行わせるように、燃料噴射量
及び噴射タイミングを制御する。
Also, when the engine is cold, as shown in FIG. 2 (a), the air-fuel ratio is kept below the stoichiometric air-fuel ratio (λ
.Ltoreq.1), the fuel injection amount and the injection timing are controlled such that the fuel mixture is diffused by injecting fuel in the intake stroke to perform uniform combustion.

【0033】バルブタイミング制御手段44は、運転状
態判別手段41により判別されるエンジンの運転状態及
び温度状態判別手段42により判別されるエンジンの温
度状態に応じて吸気弁及び排気弁の開閉タイミングを変
えるようにバルブタイミング可変装置13,14を制御
する。このバルブタイミングの制御の概略を、図3〜図
5によって説明する。
The valve timing control means 44 changes the opening / closing timing of the intake valve and the exhaust valve according to the engine operating state determined by the operating state determining means 41 and the engine temperature determined by the temperature state determining means 42. The variable valve timing devices 13 and 14 are controlled as described above. The outline of the control of the valve timing will be described with reference to FIGS.

【0034】図3は吸・排気弁の開閉タイミングを示す
ためのカムリフト曲線を表しており、InVは吸気弁、
ExVは排気弁を意味する。また、InO及びInCは
吸気弁の開時期及び閉時期、ExO及びExCは排気弁
の開時期及び閉時期である。ここで、吸気弁及び排気弁
の開時期InO,ExOは、カムリフト特性における定
速度区間から加速度区間への移行時点をもって定義し、
吸気弁及び排気弁の閉時期InC,ExCは、カムリフ
ト特性における加速度区間から定速度区間への移行時点
をもって定義することとする(図4参照)。
FIG. 3 shows a cam lift curve for indicating the opening / closing timing of the intake / exhaust valve.
ExV means an exhaust valve. InO and InC are the opening and closing times of the intake valve, and ExO and ExC are the opening and closing times of the exhaust valve. Here, the opening timings InO and ExO of the intake valve and the exhaust valve are defined by a transition point from a constant speed section to an acceleration section in the cam lift characteristic,
The closing timings InC and ExC of the intake valve and the exhaust valve are defined at the transition point from the acceleration section to the constant speed section in the cam lift characteristic (see FIG. 4).

【0035】図3において、吸気弁は、開閉タイミング
可変範囲内で最も進角したときには破線のように、開時
期InOが吸気上死点TDCより少し前、閉時期InC
が吸気下死点BDCより少し後となって、低速域で吸気
充填効率を高めるのに有利なタイミングとなる。一方、
吸気弁が開閉タイミング可変範囲内で最も遅角したとき
には実線のように、開時期InOが吸気上死点TDCよ
り後(好ましくは吸気上死点より30°以上後)となる
とともに、閉時期InCが吸気下死点BDCよりもかな
り後となって、吸気の吹き返しが生じることで充填効率
の低下を招くようなタイミングとなる。
In FIG. 3, when the intake valve is advanced most in the opening / closing timing variable range, the opening timing InO is slightly before the intake top dead center TDC and the closing timing InC is as shown by the broken line.
Is a little later than the intake bottom dead center BDC, and this is a timing advantageous for increasing the intake charging efficiency in the low speed range. on the other hand,
When the intake valve is most retarded within the opening / closing timing variable range, as shown by the solid line, the opening timing InO is after the intake top dead center TDC (preferably 30 ° or more after the intake top dead center), and the closing timing InC. Is much later than the intake bottom dead center BDC, and the timing at which the charging efficiency is reduced due to the occurrence of the blowback of the intake air.

【0036】また、排気弁は開閉タイミング可変範囲内
で最も進角したときに実線のように閉時期ExCが吸気
上死点TDCよりかなり前(好ましくは吸気上死点TD
Cより20°以上前)となり、最も遅角したときに破線
のように閉時期ExCが吸気上死点TDCより少し後と
なる。従って、破線で示すような排気弁が遅角、吸気弁
が進角の状態では排気弁閉時期ExCと吸気弁開時期I
nOとが吸気上死点TDCの近傍にあって、吸・排気弁
の開弁期間に少しだけオーバラップがあるが、実線で示
すような排気弁が進角、吸気弁が遅角の状態では両者の
開弁期間にオーバラップがなく、かつ、排気弁閉時期E
xCから吸気弁開時期InOまでにかなりの期間があ
る。このようなオーバラップがない状態での排気弁閉時
期ExCから吸気弁開時期InOまでの期間を、実施形
態の説明の中では便宜的にマイナスオーバラップ(マイ
ナスO/L)と呼ぶ。
When the exhaust valve is most advanced within the opening / closing timing variable range, the closing timing ExC is much earlier than the intake top dead center TDC as shown by the solid line (preferably, the intake top dead center TD).
C at least 20 ° before C), and when the valve is most retarded, the closing timing ExC is slightly after the intake top dead center TDC as shown by the broken line. Therefore, when the exhaust valve is retarded and the intake valve is advanced as indicated by the broken line, the exhaust valve closing timing ExC and the intake valve opening timing I
nO is near the intake top dead center TDC, and there is a slight overlap in the opening period of the intake and exhaust valves, but in the state where the exhaust valve is advanced and the intake valve is retarded as shown by the solid line. There is no overlap between both valve opening periods, and the exhaust valve closing timing E
There is a considerable period from xC to the intake valve opening timing InO. The period from the exhaust valve closing timing ExC to the intake valve opening timing InO without such overlap is referred to as minus overlap (minus O / L) for convenience in the description of the embodiment.

【0037】このようなバルブタイミングの可変範囲を
有するバルブタイミング可変装置13,14に対してバ
ルブタイミング制御手段44は、エンジンの温間時には
予め設定された温間時用のバルブタイミングのマップに
基づいて制御し、この場合、少なくとも上記リーン運転
領域A内の低速低負荷域では図5(b)に示すように、
吸気弁の開閉タイミングを可変範囲内の進角側にすると
ともに、排気弁の開閉タイミングを可変範囲内の遅角側
にする。
For the variable valve timing devices 13 and 14 having such a variable range of the valve timing, the valve timing control means 44 operates based on a preset valve timing map for the warm state when the engine is warm. In this case, at least in the low-speed and low-load region within the lean operation region A, as shown in FIG.
The opening and closing timing of the intake valve is set on the advance side within the variable range, and the opening and closing timing of the exhaust valve is set on the retard side within the variable range.

【0038】また、エンジンの冷間時には予め設定され
た冷間時用のバルブタイミングのマップに基づいて制御
し、この場合、少なくとも低速低負荷域では図5(a)
に示すように、同一アクセル開度状態でのエンジン温間
時と比べ、吸気弁開閉タイミングを遅角側に補正するこ
とにより、吸気の吹き返しによる吸気充填効率の低下を
招く程度にまで吸気弁閉時期InCを遅らせる。ただし
排気弁の開閉タイミングは温間時と略同様であって、排
気弁閉時期ExCが吸気上死点TDC後となるようにす
る。
Further, when the engine is cold, control is performed based on a preset map of valve timing for a cold time. In this case, at least in a low-speed and low-load region, FIG.
As shown in the figure, the intake valve opening / closing timing is corrected to the retard side compared to when the engine is warm with the same accelerator opening degree, and the intake valve is closed to the extent that the intake recharging efficiency is reduced due to the return of intake air. The period InC is delayed. However, the opening and closing timing of the exhaust valve is substantially the same as in the warm state, and the exhaust valve closing timing ExC is set to be after the intake top dead center TDC.

【0039】バルブタイミング制御装置はさらに、温間
時において後述のNOxパージ等のために空燃比がリー
ン(λ>1)からリッチ側(λ≦1)へ変更される移行
時には、図5(c)に示すように、排気弁の開閉タイミ
ングを進角側とすることにより排気弁閉時期ExCを吸
気上死点TDC前とするとともに、吸気弁の開閉タイミ
ングを遅角側とすることにより吸気弁開時期InOを吸
気上死点TDC後とする。
Further, the valve timing control apparatus further includes a control circuit for controlling the air-fuel ratio from lean (λ> 1) to rich side (λ ≦ 1) during a warm state due to NOx purging, which will be described later, as shown in FIG. ), The exhaust valve closing timing ExC is set before the intake top dead center TDC by setting the opening and closing timing of the exhaust valve to the advance side, and the intake valve opening and closing timing is set to the retard side by setting the opening and closing timing of the intake valve to the retard side. The opening timing InO is after the intake top dead center TDC.

【0040】このようなバルブタイミングの制御及び燃
料噴射の制御の具体例を、図6のフローチャートによっ
て説明する。
A specific example of such valve timing control and fuel injection control will be described with reference to the flowchart of FIG.

【0041】このフローチャートに示す処理がスタート
すると、先ず各センサからの信号が入力され(ステップ
S1)、次にエンジン回転数及びエンジン負荷に基づい
て運転状態が判別される(ステップS2)。さらに、水
温センサ36からの信号に基づいてエンジンの冷間時か
否かが判定される(ステップS3)。
When the processing shown in the flowchart starts, first, signals from the respective sensors are input (step S1), and then the operating state is determined based on the engine speed and the engine load (step S2). Further, it is determined whether or not the engine is cold based on a signal from the water temperature sensor 36 (step S3).

【0042】冷間時である場合は、冷間時用のバルブタ
イミングのマップに基づいて吸気弁及び排気弁の開閉タ
イミングが設定され(ステップS4)、この場合に少な
くとも低速低負荷域では前述の如く図5(a)のように
設定される。さらに、空燃比が理論空燃比以下(λ≦
1)に設定されて、この空燃比となるように燃料噴射量
が演算される(ステップS5)とともに、吸気行程噴射
により均一燃焼を行なわせるように噴射時期が演算され
る(ステップS6)。それからステップS7,S8に移
行し、ステップS4〜S6での設定、演算に基づき、バ
ルブタイミング可変装置の制御及び燃料噴射の制御が行
われる。
If it is a cold time, the opening and closing timings of the intake valve and the exhaust valve are set based on a map of the valve timing for the cold time (step S4). The setting is made as shown in FIG. Further, the air-fuel ratio is equal to or less than the stoichiometric air-fuel ratio (λ ≦
1), the fuel injection amount is calculated so as to achieve this air-fuel ratio (step S5), and the injection timing is calculated so as to perform uniform combustion by the intake stroke injection (step S6). Then, the process proceeds to steps S7 and S8, and the control of the variable valve timing device and the control of the fuel injection are performed based on the settings and calculations in steps S4 to S6.

【0043】エンジンの温間時(ステップS3の判定が
NO)である場合は、温間時用のバルブタイミングのマ
ップに基づいて吸気弁及び排気弁の開閉タイミングが設
定され(ステップS9)、この場合に少なくとも低速低
負荷域では前述の如く図5(b)のように設定される。
If the engine is warm (NO in step S3), the opening / closing timing of the intake valve and the exhaust valve is set based on a map of the valve timing for the warm time (step S9). In this case, at least in the low speed and low load range, the setting is made as shown in FIG.

【0044】次いでリーン運転領域か否かが判定され
(ステップS10)、リーン運転領域であれば、さらに
NOxパージ処理条件が成立したか否かが判定される
(ステップS11)。このステップS11の判定は、リ
ーン運転中にNOx触媒32のNOx吸蔵量が増加した
ときにNOxパージ(NOx放出処理)を行なわせるた
め、運転状態等から推定されるNOx吸収量を累計する
等により求められるNOx吸蔵量が所定値以上に増加し
たか否がを調べるものである。
Next, it is determined whether or not the engine is in the lean operation area (step S10). If it is in the lean operation area, it is further determined whether or not the NOx purge processing condition is satisfied (step S11). The determination in step S11 is performed by, for example, accumulating the NOx absorption amount estimated from the operation state or the like in order to perform the NOx purge (NOx release process) when the NOx storage amount of the NOx catalyst 32 increases during the lean operation. It is checked whether or not the obtained NOx storage amount has increased to a predetermined value or more.

【0045】リーン運転領域であってNOxパージ処理
条件が成立していないときには、空燃比が理論空燃比よ
りも大きいリーン空燃比(λ>1)に設定されて、この
空燃比となるように燃料噴射量が演算される(ステップ
S12)とともに、圧縮行程噴射により成層燃焼を行な
わせるように噴射時期が演算される(ステップS1
3)。それからステップS7,S8に移行する。
When the NOx purging condition is not satisfied in the lean operation region, the air-fuel ratio is set to a lean air-fuel ratio (λ> 1) larger than the stoichiometric air-fuel ratio, and the fuel is set to this air-fuel ratio. The injection amount is calculated (step S12), and the injection timing is calculated so that stratified combustion is performed by the compression stroke injection (step S1).
3). Then, the process proceeds to steps S7 and S8.

【0046】リーン運転領域においてNOxパージ処理
条件が成立したとき(ステップS11の判定がYESの
とき)は、空燃比が理論空燃比以下(λ≦1)に設定さ
れて、この空燃比となるように燃料噴射量が演算される
(ステップS14)とともに、吸気行程噴射により均一
燃焼を行なわせるように噴射時期が演算される(ステッ
プS15)。さらに、吸気弁開時期InOが上死点TD
C後となるように吸気弁開閉タイミングが遅角側に変更
されるとともに、排気弁閉時期ExCが上死点TDC前
となるように排気弁開閉タイミングが進角側に変更され
る(ステップS16)。それからステップS7,S8に
移行する。
When the NOx purge processing condition is satisfied in the lean operation region (when the determination in step S11 is YES), the air-fuel ratio is set to be equal to or lower than the stoichiometric air-fuel ratio (λ ≦ 1), and the air-fuel ratio is set to this value. The fuel injection amount is calculated (step S14), and the injection timing is calculated so as to perform uniform combustion by the intake stroke injection (step S15). Further, the intake valve opening timing InO is set at the top dead center TD.
C, the intake valve opening / closing timing is changed to the retard side, and the exhaust valve opening / closing timing is changed to the advance side so that the exhaust valve closing timing ExC is before the top dead center TDC (step S16). ). Then, the process proceeds to steps S7 and S8.

【0047】エンジン温間時においてリーン運転領域で
ないとき(ステップS10の判定がNOのとき)は、空
燃比が理論空燃比以下(λ≦1)に設定されて、この空
燃比となるように燃料噴射量が演算される(ステップS
17)とともに、吸気行程噴射により均一燃焼を行なわ
せるように噴射時期が演算される(ステップS18)。
さらに、リーン運転領域Aからλ≦1の領域Bへの移行
時には、吸気弁開時期InOが上死点TDC後となるよ
うに吸気弁開閉タイミングが遅角側に変更されるととも
に、排気弁閉時期ExCが上死点TDC前となるように
排気弁開閉タイミングが進角側に変更される(ステップ
S19,S20)。それからステップS7,S8に移行
する。
When the engine is not in the lean operation range when the engine is warm (when the determination in step S10 is NO), the air-fuel ratio is set to be equal to or lower than the stoichiometric air-fuel ratio (λ ≦ 1), and the fuel is set so as to become this air-fuel ratio. The injection amount is calculated (step S
At the same time, the injection timing is calculated so that uniform combustion is performed by the intake stroke injection (step S18).
Further, when shifting from the lean operation region A to the region B where λ ≦ 1, the intake valve opening / closing timing is changed to the retard side so that the intake valve opening timing InO is after the top dead center TDC, and the exhaust valve is closed. The exhaust valve opening / closing timing is changed to the advanced side so that the timing ExC is before the top dead center TDC (steps S19 and S20). Then, the process proceeds to steps S7 and S8.

【0048】以上のような当実施形態のエンジンによる
と、エンジンの温間状態では、低速低負荷側のリーン運
転領域Aにあるときに、空燃比がリーン(λ>1)とさ
れて、成層燃焼が行なわれ、また、エンジンの冷間状態
では、燃料の気化、霧化が悪くてリーン運転では燃焼安
定性が損なわれ易いので、低速低負荷域にあっても空燃
比が理論空燃比以下(λ≦1)とされて、均一燃焼が行
なわれる。このように冷間時と温間時とで空燃比が変え
られる一方で、バルブタイミングが冷間時と温間時とで
図5(a)(b)に示すように変えられることにより、
同一アクセル開度での冷間時と温間時とにおけるトルク
格差が是正される。
According to the engine of the present embodiment as described above, when the engine is in the warm state, the air-fuel ratio is lean (λ> 1) when the engine is in the lean operation region A on the low-speed, low-load side, and the engine is stratified. Combustion occurs, and when the engine is cold, fuel vaporization and atomization are poor and combustion stability is likely to be impaired in lean operation, so the air-fuel ratio is less than the stoichiometric air-fuel ratio even at low speed and low load. (Λ ≦ 1), and uniform combustion is performed. As described above, while the air-fuel ratio is changed between the cold state and the warm state, the valve timing is changed between the cold state and the warm state as shown in FIGS.
The torque difference between the cold state and the warm state at the same accelerator opening is corrected.

【0049】すなわち、当実施形態のようにスロットル
弁23がアクセルペダルに機械的に連結されている場
合、アクセル開度とスロットル開度との対応関係が常に
一定であるため、バルブタイミングを変えなければ、冷
間時と温間時とで、同じアクセル開度においては同じ吸
入空気量となるので、設定空燃比が変るとそれに応じて
燃料噴射量が変り、λ>1とされる温間時と比べてλ≦
1とされる冷間時の方が燃料噴射量が多くなる。
That is, when the throttle valve 23 is mechanically connected to the accelerator pedal as in the present embodiment, since the correspondence between the accelerator opening and the throttle opening is always constant, the valve timing must be changed. For example, since the same intake air amount is obtained at the same accelerator opening between the cold state and the warm state, when the set air-fuel ratio changes, the fuel injection amount changes accordingly, and during the warm state where λ> 1 Λ ≦
The fuel injection amount is larger in the cold state set to 1.

【0050】このような傾向に対し、バルブタイミング
制御手段44により、エンジンの冷間時には吸気弁の開
閉タイミングが同じアクセル開度での温間時の開閉タイ
ミングと比べて遅角され、吸気の吹き替えしにより吸気
充填効率が低下するように吸気弁閉時期InCが遅らさ
れる。従って、エンジンの冷間時には、温間時と比べて
空燃比がリッチになることに対し、吸気充填効率が低下
するようにバルブタイミングが調整されることにより、
燃料噴射量の格差とそれに基づくトルクの格差が小さく
される。このため、例えば一定のアクセル開度で運転し
ている状態で水温が上昇して冷間から温間に移行するこ
とにより空燃比がリーンに変えられた場合でも、トルク
の急激な低下がなく、走り感の低下が防止される。
In response to this tendency, the valve timing control means 44 delays the opening / closing timing of the intake valve when the engine is cold, compared to the opening / closing timing when the engine is warm at the same accelerator opening, so that the intake air is changed. Accordingly, the intake valve closing timing InC is delayed so that the intake charging efficiency is reduced. Accordingly, when the engine is cold, the valve timing is adjusted such that the air-fuel ratio becomes richer than when the engine is hot, while the intake charge efficiency is reduced.
The difference in fuel injection amount and the difference in torque based on the difference are reduced. For this reason, for example, even when the air-fuel ratio is changed to lean by increasing the water temperature and moving from cold to warm while operating at a constant accelerator opening, there is no sharp decrease in torque, A decrease in running feeling is prevented.

【0051】しかも、冷間時に上記のようなバルブタイ
ミングとされることにより、冷間時の燃焼安定性の悪化
が防止される。
Further, by setting the valve timing as described above at the time of cold, deterioration of the combustion stability at the time of cold is prevented.

【0052】すなわち、バルブタイミング可変装置を用
いて冷間時に吸気充填効率を低下させるようにする手法
としては、吸気弁の開閉タイミングを進角させることに
より、吸気弁閉時期を吸気充填効率にとって最適な時期
より早くするとともに吸・排気弁の開弁オーバラップ期
間を大きくして後記内部EGRを増大させることによ
り、新気の吸入量を減少させるようにすることが考えら
れ、あるいはまた、後述のように排気弁閉時期を吸気上
死点よりも早い時期とすることにより内部EGRを増大
させてその分だけ新気量を減少させるようにすることが
考えられるが、これらの手法では冷間時に内部EGR
(残留既燃ガス)が増加することにより燃焼安定性が阻
害され易い。これに対し、当実施形態では吸気弁開閉タ
イミングが遅くされ、かつ、上記冷間時に排気弁の開閉
タイミングは閉時期ExCが吸気上死点TDC以後とな
るように設定されていることにより、吸気充填効率は低
下しながら、内部EGRが多くなることはなく、冷間時
の燃焼安定性が損なわれることはない。
That is, as a method of using the variable valve timing device to lower the intake charging efficiency at the time of cold, the opening and closing timing of the intake valve is advanced so that the intake valve closing timing is optimized for the intake charging efficiency. It is conceivable to reduce the intake amount of fresh air by increasing the internal EGR, which will be described later, by increasing the valve-opening overlap period of the intake / exhaust valves, and increasing the valve overlap overlap period. As described above, it is conceivable to increase the internal EGR by setting the exhaust valve closing timing earlier than the intake top dead center so as to reduce the fresh air amount by that amount. Internal EGR
The combustion stability is likely to be impaired due to an increase in (residual burned gas). On the other hand, in the present embodiment, the intake valve opening / closing timing is delayed, and the opening / closing timing of the exhaust valve is set such that the closing timing ExC is set to be after the intake top dead center TDC during the cold period. While the charging efficiency is reduced, the internal EGR is not increased, and the combustion stability during cold operation is not impaired.

【0053】また、温間時にリーン運転領域Aでリーン
運転が行なわれているとき、排気ガス中のNOxがNO
x触媒32に吸収され、この運転状態が持続してNOx
触媒32のNOx吸蔵量が所定値以上に増加すると、図
6中のステップS11でのYESの判定に続くステップ
S14,S15の処理により空燃比がリッチ(λ≦1)
とされることにより、NOxパージ、つまりNOx触媒
からのNOxの放出及び還元が行なわれる。また、リー
ン運転領域Aからそれ以外の運転領域Bへの移行時に
も、NOxパージが行われる。
When the lean operation is being performed in the lean operation region A during the warm period, NOx in the exhaust gas becomes NO.
x is absorbed by the x-catalyst 32, and this operating state continues to be NOx
When the NOx storage amount of the catalyst 32 increases to a predetermined value or more, the air-fuel ratio becomes rich (λ ≦ 1) by the processing of steps S14 and S15 following the determination of YES in step S11 in FIG.
As a result, NOx purge, that is, release and reduction of NOx from the NOx catalyst are performed. The NOx purge is also performed at the time of transition from the lean operation region A to the other operation region B.

【0054】これらのNOxパージ時に、図5(c)に
示すように、吸気弁の開閉タイミングが遅角されること
により吸気充填効率が低下するように吸気弁閉時期In
Cが遅くなるとともに、吸気弁開時期InOが吸気上死
点TDC以後となり、かつ、排気弁の開閉タイミングが
進角されることによって排気弁閉時期ExCは吸気上死
点TDCより前とされる。これにより、排気行程で燃焼
室内の既燃ガスを排出し終える前に排気弁が閉じるため
燃焼室5内に既燃ガスが残留して、いわゆる内部EGR
効果が得られ、外部から排気ガスを還流させる外部EG
Rと同様にNOxが低減される。
At the time of these NOx purging, as shown in FIG. 5C, the intake valve closing timing In is set so that the intake valve opening / closing timing is retarded to reduce the intake charging efficiency.
With the delay of C, the intake valve opening timing InO is after the intake top dead center TDC, and the exhaust valve closing timing ExC is made earlier than the intake top dead center TDC by advancing the opening and closing timing of the exhaust valve. . As a result, the burned gas remains in the combustion chamber 5 because the exhaust valve closes before the burned gas in the combustion chamber is completely exhausted in the exhaust stroke.
An external EG that provides the effect and recirculates exhaust gas from outside
NOx is reduced similarly to R.

【0055】そして、NOxパージ時には排気ガス中に
含まれるCO等の還元材によりNOx触媒32からのN
Oxの放出、還元が行なわれ、この場合に排気ガス中の
NOxの量に対するCOの量の比率が大きくなる程NO
xの放出、還元が促進されるが、空燃比がリッチ化され
るとともに上記のように内部EGRによってNOxが低
減されることにより、NOxの量に対するCOの量の比
率が素早く増大され、NOxパージ性能が高められる。
At the time of NOx purging, the NOx from the NOx catalyst 32 is reduced by a reducing agent such as CO contained in the exhaust gas.
Ox is released and reduced. In this case, the larger the ratio of the amount of CO to the amount of NOx in the exhaust gas, the more NO
Although the release and reduction of x are promoted, the ratio of the amount of CO to the amount of NOx is quickly increased by enriching the air-fuel ratio and reducing NOx by the internal EGR as described above. Performance is enhanced.

【0056】しかも、上記のように吸気充填効率が低下
するように吸気弁閉時期InCが遅くされるとともに内
部EGRが行われることにより、新気の吸入量が減少す
るため、NOxパージ時の空燃比のリッチ化によるトル
クの急増が抑制され、トルクショックが軽減される。
Further, as described above, the intake valve closing timing InC is delayed so that the intake charging efficiency is reduced, and the internal EGR is performed, so that the intake amount of fresh air is reduced. A sudden increase in torque due to a rich fuel ratio is suppressed, and torque shock is reduced.

【0057】[0057]

【発明の効果】以上説明したように、エンジンの低速低
負荷域における設定空燃比を、エンジン温間時はリー
ン、エンジン冷間時は理論空燃比以下のリッチとしたエ
ンジンにおいて、バルブタイミング可変装置及びバルブ
タイミング制御手段により、低速低負荷域におけるエン
ジン冷間時の吸気弁閉時期を同一アクセル開度状態での
エンジン温間時の吸気弁閉時期に対して吸気充填効率が
低下する遅れ側に設定するようにした発明によると、冷
間時と温間時とでの空燃比の違いに対し、トルク格差を
小さくするように吸入空気量を調整することができる。
As described above, in an engine in which the set air-fuel ratio in the low-speed low-load region of the engine is lean when the engine is warm and rich below the stoichiometric air-fuel ratio when the engine is cold. And the valve timing control means shifts the intake valve closing timing when the engine is cold in the low-speed low-load range to the lag side where the intake charging efficiency decreases with respect to the intake valve closing timing when the engine is warm with the same accelerator opening degree. According to the invention that is set, the intake air amount can be adjusted so as to reduce the torque difference with respect to the difference in the air-fuel ratio between the cold state and the warm state.

【0058】従って、燃焼安定性を損なわないように空
燃比がリッチとされる冷間時と燃費改善のため空燃比が
リーンとされる温間時とでトルク格差が生じることを避
けて、走り感を良好に保ち得るようにしつつ、そのため
の吸入空気量の調整を、電気的にスロットル弁を制御す
るような手段を用いる必要なく、バルブタイミング可変
装置を用いて効果的に行なうことができる。
Therefore, it is possible to avoid a torque difference between a cold state in which the air-fuel ratio is rich and a warm state in which the air-fuel ratio is lean so as to improve fuel efficiency so as not to impair the combustion stability. The adjustment of the amount of intake air for that purpose can be effectively performed by using the variable valve timing device without maintaining a means for electrically controlling the throttle valve while maintaining a good feeling.

【0059】また、NOx触媒を排気通路に具備すると
ともに、リーン運転状態から空燃比を理論空燃比以下に
変更することでNOx放出処理を行うようにしたエンジ
ンにおいて、バルブタイミング可変装置及びバルブタイ
ミング制御手段により、リーン運転からのNOx放出処
理開始時に、排気弁閉時期を吸気上死点より所定期間
前、吸気弁開時期を吸気上死点以後とするようにした発
明によると、NOx放出処理時に、バルブタイミングの
制御によりいわゆる内部EGRを増加させてNOxを低
減し、NOx触媒からのNOxの放出、還元を促進する
ことができる。
Further, in an engine in which a NOx catalyst is provided in an exhaust passage and a NOx release process is performed by changing an air-fuel ratio from a lean operation state to a stoichiometric air-fuel ratio or less, a variable valve timing apparatus and a variable valve timing control apparatus are provided. According to the invention, when the NOx release process is started from the lean operation, the exhaust valve closing timing is set to a predetermined period before the intake top dead center and the intake valve opening timing is set to be after the intake top dead center. By controlling the valve timing, the so-called internal EGR is increased to reduce NOx, and the release and reduction of NOx from the NOx catalyst can be promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による自動車用リーンバー
ンエンジンの概略図である。
FIG. 1 is a schematic view of a lean burn engine for an automobile according to an embodiment of the present invention.

【図2】冷間時用及び温間時用の燃料噴射制御のための
マップを示す図である。
FIG. 2 is a diagram showing a map for fuel injection control for a cold time and for a warm time.

【図3】吸気弁及び排気弁の開閉タイミングを示すため
のカムリフト曲線を表した図である。
FIG. 3 is a diagram showing a cam lift curve for indicating the opening / closing timing of an intake valve and an exhaust valve.

【図4】カムリフト曲線の部分拡大図である。FIG. 4 is a partially enlarged view of a cam lift curve.

【図5】冷間時、温間時及びNOxパージ時の吸気弁及
び排気弁の開閉タイミングを示す図である。
FIG. 5 is a diagram showing opening / closing timings of an intake valve and an exhaust valve in a cold state, a warm state, and a NOx purge.

【図6】燃料噴射及びバルブタイミングの制御の具体例
を示すフローチャートである。
FIG. 6 is a flowchart showing a specific example of control of fuel injection and valve timing.

【符号の説明】[Explanation of symbols]

1 エンジン本体 5 燃焼室 9 吸気弁 10 排気弁 13,14 バルブタイミング可変装置 32 NOx触媒 40 ECU 41 運転状態判別手段 42 温度状態判別手段 43 燃料噴射制御手段 44 バルブタイミング制御手段 DESCRIPTION OF SYMBOLS 1 Engine main body 5 Combustion chamber 9 Intake valve 10 Exhaust valve 13 and 14 Variable valve timing device 32 NOx catalyst 40 ECU 41 Operating state determination means 42 Temperature state determination means 43 Fuel injection control means 44 Valve timing control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/06 320 F02D 41/06 320 45/00 301 45/00 301G 312 312B Fターム(参考) 3G084 AA04 BA09 BA13 BA15 BA23 CA02 CA03 CA06 CA09 DA10 DA11 EA11 EB08 EC01 FA10 FA18 FA20 FA29 FA33 3G091 AA12 AA17 AA24 AB06 BA14 CB02 CB03 CB07 EA01 EA02 EA16 EA34 FA04 FA08 FA09 FA13 FA14 FB10 FB12 GB03Y GB05W GB06W GB06Y GB09W GB10Y GB17X HA36 3G092 AA09 AA11 BB01 BB06 DA01 DA02 DA10 DA12 DC15 EA03 EA04 EA05 EA07 EC01 FA04 FA17 GA02 GA05 GA06 GA17 GA18 HA00Z HA11Z HA13X HD00Z HE01Z HE08Z 3G301 HA16 HA19 JA04 JA25 KA05 KA08 KA16 KB04 LA07 MA01 MA11 MA19 NA08 NC02 NE11 NE12 NE14 NE15 PA11Z PA17Z PD02A PE01Z PE04Z PE08Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/06 320 F02D 41/06 320 45/00 301 45/00 301G 312 312B F-term (Reference) 3G084 AA04 BA09 BA13 BA15 BA23 CA02 CA03 CA06 CA09 DA10 DA11 EA11 EB08 EC01 FA10 FA18 FA20 FA29 FA33 3G091 AA12 AA17 AA24 AB06 BA14 CB02 CB03 CB07 EA01 EA02 EA16 EA34 FA04 FA08 FA09 FA13 FA14 FB10 GB10 AGB11 GB03 AGB11 GB03 AGB11 GB03 GB03 BB06 DA01 DA02 DA10 DA12 DC15 EA03 EA04 EA05 EA07 EC01 FA04 FA17 GA02 GA05 GA06 GA17 GA18 HA00Z HA11Z HA13X HD00Z HE01Z HE08Z 3G301 HA16 HA19 JA04 JA25 KA05 KA08 KA16 KB04 LA07 MA01 MA11 MA19 NA08 PE02Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの低速低負荷域における設定空
燃比を、エンジン温間時は理論空燃比よりも大きくし、
エンジン冷間時には理論空燃比以下とした自動車用リー
ンバーンエンジンにおいて、吸気弁の開閉タイミングを
変更可能とするバルブタイミング可変装置と、このバル
ブタイミング可変装置をエンジンの運転状態及び温度状
態に応じて制御するバルブタイミング制御手段とを備
え、このバルブタイミング制御手段は、低速低負荷域に
おけるエンジン冷間時の吸気弁閉時期を同一アクセル開
度状態でのエンジン温間時の吸気弁閉時期に対して吸気
充填効率が低下する遅れ側に設定するようになっている
ことを特徴とする自動車用リーンバーンエンジン。
1. A set air-fuel ratio in a low-speed low-load region of an engine is made larger than a stoichiometric air-fuel ratio when the engine is warm,
A variable valve timing device that can change the opening and closing timing of an intake valve in an automotive lean-burn engine that has a stoichiometric air-fuel ratio or less when the engine is cold, and controls the variable valve timing device according to the operating state and temperature state of the engine Valve timing control means for controlling the intake valve closing timing when the engine is cold in a low-speed low-load range with respect to the intake valve closing timing when the engine is warm in the same accelerator opening state. A lean-burn engine for an automobile, wherein the lean-burn engine is set on a delay side where intake air charging efficiency is reduced.
【請求項2】 低速低負荷域におけるエンジン冷間時の
吸気弁開時期を同一アクセル開度状態でのエンジン温間
時の吸気弁開時期に対して遅くすることを特徴とする請
求項1記載の自動車用自動車用リーンバーンエンジン。
2. An intake valve opening timing in a low-speed low-load region when the engine is cold is delayed with respect to an intake valve opening timing in a case where the engine is warm with the same accelerator opening degree. Lean burn engine for automobiles.
【請求項3】 酸素過剰雰囲気でNOxを吸収して酸素
濃度が減少するに伴いNOxを放出するNOx触媒を排
気通路に具備するとともに、エンジン温間時において空
燃比が理論空燃比よりも大きい値から理論空燃比以下に
変更される移行時に、吸気弁閉時期を吸気充填効率が低
下する遅れ側に変更し、かつ、少なくともこの移行時
に、排気弁用カムリフト特性における加速度区間から定
速度区間への移行時点をもって定義した排気弁閉時期を
吸気上死点より前に設定したことを特徴とする請求項1
又は2記載の自動車用リーンバーンエンジン。
3. An exhaust passage having a NOx catalyst that absorbs NOx in an oxygen-excess atmosphere and releases NOx as the oxygen concentration decreases, and the air-fuel ratio is larger than the stoichiometric air-fuel ratio when the engine is warm. At the time of the transition to be changed to the stoichiometric air-fuel ratio or less, the intake valve closing timing is changed to the delay side where the intake charging efficiency is reduced, and at least at this transition, the acceleration section in the exhaust valve cam lift characteristic is changed from the acceleration section to the constant speed section. 2. The exhaust valve closing timing defined at the transition point is set before the intake top dead center.
Or a lean burn engine for an automobile according to 2.
【請求項4】 吸気弁及び排気弁のそれぞれに対してバ
ルブタイミング可変装置を具備し、バルブタイミング制
御手段は、吸気弁に対するバルブタイミング可変装置の
制御に加えて、排気弁に対するバルブタイミング可変装
置の制御を行い、エンジンの冷間時における低速低負荷
域では上記排気弁閉時期を吸気上死点以後に設定したこ
とを特徴とする請求項3記載の自動車用リーンバーンエ
ンジン。
4. A variable valve timing device for each of the intake valve and the exhaust valve, wherein the valve timing control means controls the variable valve timing device for the exhaust valve in addition to controlling the variable valve timing device for the intake valve. 4. The lean burn engine according to claim 3, wherein the control is performed to set the exhaust valve closing timing after the intake top dead center in a low-speed low-load region when the engine is cold.
【請求項5】 酸素過剰雰囲気でNOxを吸収して酸素
濃度が減少するに伴いNOxを放出するNOx触媒を排
気通路に具備するとともに、低速低負荷域で空燃比を理
論空燃比よりも大きくしてリーン運転を行い、かつ、特
定時にリーン運転状態から空燃比を理論空燃比以下に変
更することでNOx触媒からNOxを放出させるNOx
放出処理を行うようにした自動車用リーンバーンエンジ
ンにおいて、吸気弁及び排気弁に対してそれぞれバルブ
開閉タイミングを変更可能とするバルブタイミング可変
装置を備えるとともに、これらのバルブタイミング可変
装置を制御するバルブタイミング制御手段を備え、この
バルブタイミング制御手段は、リーン運転からのNOx
放出処理開始時に、排気弁用カムリフト特性における加
速度区間から定速度区間への移行時点をもって定義した
排気弁閉時期を吸気上死点より所定期間前、吸気弁用カ
ムリフト特性における定速度区間から加速度区間への移
行時点をもって定義した吸気弁開時期を吸気上死点以後
とするように上記バルブタイミング可変装置を制御する
ことを特徴とする自動車用リーンバーンエンジン。
5. An exhaust passage having a NOx catalyst that absorbs NOx in an oxygen-excess atmosphere and releases NOx as the oxygen concentration decreases, and makes the air-fuel ratio larger than the stoichiometric air-fuel ratio in a low-speed low-load region. NOx that releases NOx from the NOx catalyst by performing lean operation at a specific time and changing the air-fuel ratio from the lean operation state to a stoichiometric air-fuel ratio or less at the time of specific operation
In a vehicle lean burn engine that performs a release process, a valve timing variable device that can change a valve opening / closing timing for each of an intake valve and an exhaust valve is provided, and a valve timing that controls these valve timing variable devices is provided. Control means for controlling the NOx from the lean operation.
At the start of the discharge process, the exhaust valve closing timing defined by the transition point from the acceleration section to the constant speed section in the exhaust valve cam lift characteristic is a predetermined period before the intake top dead center, the constant velocity section to the acceleration section in the intake valve cam lift characteristic. A lean-burn engine for an automobile, characterized in that the variable valve timing device is controlled so that the opening timing of the intake valve defined at the time of the transition to (i) is after the intake top dead center.
【請求項6】 少なくとも吸気弁に対するバルブタイミ
ング可変装置は、開弁期間を一定としつつ開閉タイミン
グを変更可能とする位相式のバルブタイミング可変装置
であり、上記吸気弁開時期が吸気上死点後とされたとき
は吸気弁閉時期が吸気充填効率の低下を招くような遅い
時期となるようにしたことを特徴とする請求項5記載の
自動車用リーンバーンエンジン。
6. A variable valve timing device for at least the intake valve is a phase-type variable valve timing device capable of changing the opening / closing timing while keeping the valve opening period constant, wherein the intake valve opening timing is after the intake top dead center. 6. The lean burn engine for an automobile according to claim 5, wherein the intake valve closing timing is set so as to be late so as to cause a decrease in intake air charging efficiency.
JP2001037528A 2001-02-14 2001-02-14 Lean burn engine for automobile Expired - Fee Related JP4517517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037528A JP4517517B2 (en) 2001-02-14 2001-02-14 Lean burn engine for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037528A JP4517517B2 (en) 2001-02-14 2001-02-14 Lean burn engine for automobile

Publications (2)

Publication Number Publication Date
JP2002242710A true JP2002242710A (en) 2002-08-28
JP4517517B2 JP4517517B2 (en) 2010-08-04

Family

ID=18900641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037528A Expired - Fee Related JP4517517B2 (en) 2001-02-14 2001-02-14 Lean burn engine for automobile

Country Status (1)

Country Link
JP (1) JP4517517B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176607A (en) * 2002-11-26 2004-06-24 Mitsubishi Automob Eng Co Ltd Engine
US6978771B2 (en) 2004-04-27 2005-12-27 Kabushiki Kaisha Toyota Jidoshokki Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
JP2008274963A (en) * 2008-08-11 2008-11-13 Toyota Motor Corp Spark ignition internal combustion engine
JP2009062946A (en) * 2007-09-10 2009-03-26 Hitachi Ltd Control device of cylinder injection type internal combustion engine
JP2014047645A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type direct-injection engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209552A (en) * 1992-01-31 1993-08-20 Mazda Motor Corp Engine control device
JPH07158473A (en) * 1993-12-03 1995-06-20 Mazda Motor Corp Intake air quantity controller of engine
JPH07217460A (en) * 1994-02-04 1995-08-15 Nissan Motor Co Ltd Intake and exhaust valve open/close timing control device for internal combustion engine
JPH11247674A (en) * 1998-02-27 1999-09-14 Toyota Motor Corp Control device of internal combustion engine
JP2000130204A (en) * 1998-10-28 2000-05-09 Nissan Motor Co Ltd Control device for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209552A (en) * 1992-01-31 1993-08-20 Mazda Motor Corp Engine control device
JPH07158473A (en) * 1993-12-03 1995-06-20 Mazda Motor Corp Intake air quantity controller of engine
JPH07217460A (en) * 1994-02-04 1995-08-15 Nissan Motor Co Ltd Intake and exhaust valve open/close timing control device for internal combustion engine
JPH11247674A (en) * 1998-02-27 1999-09-14 Toyota Motor Corp Control device of internal combustion engine
JP2000130204A (en) * 1998-10-28 2000-05-09 Nissan Motor Co Ltd Control device for hybrid vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176607A (en) * 2002-11-26 2004-06-24 Mitsubishi Automob Eng Co Ltd Engine
US6978771B2 (en) 2004-04-27 2005-12-27 Kabushiki Kaisha Toyota Jidoshokki Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
JP2009062946A (en) * 2007-09-10 2009-03-26 Hitachi Ltd Control device of cylinder injection type internal combustion engine
JP4528813B2 (en) * 2007-09-10 2010-08-25 日立オートモティブシステムズ株式会社 In-cylinder injection internal combustion engine control device
US8229652B2 (en) 2007-09-10 2012-07-24 Hitachi, Ltd. Control apparatus for cylinder injection type internal combustion engine
JP2008274963A (en) * 2008-08-11 2008-11-13 Toyota Motor Corp Spark ignition internal combustion engine
JP2014047645A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type direct-injection engine

Also Published As

Publication number Publication date
JP4517517B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP3052856B2 (en) Exhaust heating device
EP1028243B1 (en) Control apparatus for direct injection engine
EP0824188B1 (en) Control apparatus for an in-cylinder injection internal combustion engine
US6085718A (en) Control system for a direct injection-spark ignition engine
US6233921B1 (en) Method for reducing harmful exhaust gas emissions of a spark-ignition engine operating with a lean fuel/air mixture
JP2000110614A (en) Exhaust emission control device for internal combustion engine
JP4385531B2 (en) 4-cycle engine with catalyst
JP2000145511A (en) Exhaust gas temperature raising device
JP5050941B2 (en) Engine air-fuel ratio control
JP4517517B2 (en) Lean burn engine for automobile
JPH11280522A (en) Start control device for cylinder injection engine
JP4254607B2 (en) Engine starter
US6055956A (en) Control system for an engine equipped with exhaust gas recirculation system
JP2000257473A (en) Cylinder injection engine controller
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JPH11280532A (en) Control device of engine for automobible
JP2001182601A (en) Early warm-up control device for exhaust emission control catalyst
JP2002242714A (en) 4-cycle engine for automobile
JP2001241340A (en) Contol device for internal combustion engine
JP3899922B2 (en) Internal combustion engine
JP2005315203A (en) Engine starter
JP4315056B2 (en) Engine starter
JP2001271685A (en) Catalyst temperature control method for fuel cylinder injection engine and control device for engine
JP3551057B2 (en) Combustion control device for lean burn internal combustion engine
JP4285091B2 (en) Control device for spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees