JP2002242027A - Carbon fiber bundle - Google Patents

Carbon fiber bundle

Info

Publication number
JP2002242027A
JP2002242027A JP2001036121A JP2001036121A JP2002242027A JP 2002242027 A JP2002242027 A JP 2002242027A JP 2001036121 A JP2001036121 A JP 2001036121A JP 2001036121 A JP2001036121 A JP 2001036121A JP 2002242027 A JP2002242027 A JP 2002242027A
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
cloth
property
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001036121A
Other languages
Japanese (ja)
Other versions
JP4261075B2 (en
Inventor
Naoki Sugiura
直樹 杉浦
Tomoyuki Kotani
知之 小谷
Norihito Maki
則仁 真木
Tsutomu Daiguuji
勤 大宮司
Takayuki Odagiri
貴之 小田桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001036121A priority Critical patent/JP4261075B2/en
Publication of JP2002242027A publication Critical patent/JP2002242027A/en
Application granted granted Critical
Publication of JP4261075B2 publication Critical patent/JP4261075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber bundle which simultaneously satisfies a bundling property, a resin-impregnating property and the grade of an obtained cloth and has a high strength. SOLUTION: This carbon fiber bundle comprising a plurality of single carbon fibers has a major axis/minor axis (major axis/minor axis) ratio of 1.05 to 1.6 on the cross section of each of the single fibers and having a Si content of >=50 ppm measured by ICP emission spectrometry.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化複合材料
の強化材として使用される炭素繊維束に関する。
The present invention relates to a carbon fiber bundle used as a reinforcing material for a fiber-reinforced composite material.

【0002】[0002]

【従来の技術】繊維強化複合材料の強化材として、炭素
繊維、ガラス繊維、アラミド繊維等が使用されている。
中でも、炭素繊維は、比強度、比弾性率、耐熱性、耐薬
品性等に優れ、航空機用途、ゴルフシャフト、釣り竿等
のスポーツ用途、一般産業用途の繊維強化複合材料に使
用されている。このような繊維強化複合材料は、例え
ば、以下のようにして製造される。
2. Description of the Related Art Carbon fibers, glass fibers, aramid fibers and the like are used as reinforcing materials for fiber reinforced composite materials.
Among them, carbon fibers are excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance and the like, and are used for fiber reinforced composite materials for aircraft applications, sports applications such as golf shafts and fishing rods, and general industrial applications. Such a fiber-reinforced composite material is manufactured, for example, as follows.

【0003】まず、ポリアクリロニトリル系重合体の単
繊維を数千から数万本束ねた前駆体繊維束を、耐炎化工
程(焼成工程)にて空気などの酸化性気体中、200〜
300℃の温度で焼成して耐炎繊維束を得る。次いで、
炭素化工程(焼成工程)にて、不活性雰囲気中、300
〜2000℃の温度で耐炎繊維束を炭素化して炭素繊維
束を得る。そして、この炭素繊維束を、必要に応じてク
ロス等に加工した後、これに合成樹脂を含浸させ、所定
形状に成形することにより繊維強化複合材料を得る。
[0003] First, a precursor fiber bundle obtained by bundling thousands to tens of thousands of single fibers of a polyacrylonitrile-based polymer is subjected to a flame-proofing step (firing step) in an oxidizing gas such as air in an oxidizing gas.
It is fired at a temperature of 300 ° C. to obtain a flame-resistant fiber bundle. Then
In the carbonization process (firing process), in an inert atmosphere, 300
The flame resistant fiber bundle is carbonized at a temperature of 2000 ° C. to obtain a carbon fiber bundle. Then, the carbon fiber bundle is processed into a cloth or the like as necessary, then impregnated with a synthetic resin, and molded into a predetermined shape to obtain a fiber-reinforced composite material.

【0004】[0004]

【発明が解決しようとする課題】炭素繊維束の製造に用
いられる前駆体繊維束には、焼成工程において繊維束が
ばらけて、繊維束を構成する単繊維が隣接する繊維束に
絡まったり、ローラに巻き付いたりしないように、高い
集束性が要求される。そのため、集束性の高い前駆体繊
維束から得られる炭素繊維束は、生来のその集束性の高
さのためばらけ性が悪く、樹脂が含浸しにくいなどの問
題を有していた。
In the precursor fiber bundle used for producing the carbon fiber bundle, the fiber bundle is separated in the firing step, and the single fibers constituting the fiber bundle are entangled with the adjacent fiber bundle. High convergence is required so as not to wrap around the rollers. For this reason, the carbon fiber bundle obtained from the precursor fiber bundle having a high convergence has a problem in that it has poor scatterability due to its inherent high convergence and is difficult to impregnate with a resin.

【0005】また、炭素繊維束を製織して得られるクロ
スは、樹脂を含浸する際に、空気を内包することなく樹
脂を均一に含浸できるように、炭素繊維束の幅にむらが
なく、かつ単繊維が均一にばらけたような外観品位の高
いクロスとする必要がある。しかしながら、集束性の高
い炭素繊維束から得られるクロスは、単繊維が均一にば
らけにくく、その結果、クロス品位が劣るという問題を
有していた。
Further, the cloth obtained by weaving the carbon fiber bundle has a uniform width of the carbon fiber bundle so that the resin can be uniformly impregnated without containing air when impregnating the resin. It is necessary to obtain a high-quality cloth in which single fibers are uniformly dispersed. However, a cloth obtained from a carbon fiber bundle having a high convergence has a problem that single fibers are hardly uniformly dispersed, and as a result, the cloth quality is inferior.

【0006】よって、本発明の目的は、集束性、樹脂含
浸性および得られるクロスのクロス品位を同時に満足
し、かつ強度が高い炭素繊維束を提供することにある。
Accordingly, it is an object of the present invention to provide a carbon fiber bundle which simultaneously satisfies the sizing property, the resin impregnating property and the cloth quality of the obtained cloth, and has high strength.

【0007】[0007]

【課題を解決するための手段】本発明の炭素繊維束は、
複数の炭素繊維の単繊維からなる炭素繊維束において、
単繊維の繊維断面の長径と短径との比(長径/短径)
が、1.05〜1.6であり、ICP発光分析法によっ
て測定されるSi量が、50ppm以上であることを特
徴とする。また、単繊維束の表面に単繊維の長手方向に
延びる複数の皺を有し、単繊維の円周長さ2μmの範囲
で最高部と最低部の高低差が、80nm以上であること
が望ましい。
Means for Solving the Problems The carbon fiber bundle of the present invention comprises:
In a carbon fiber bundle composed of a single fiber of a plurality of carbon fibers,
Ratio of major axis to minor axis of single fiber section (major axis / minor axis)
Is 1.05 to 1.6, and the amount of Si measured by ICP emission analysis is 50 ppm or more. In addition, the surface of the single fiber bundle has a plurality of wrinkles extending in the longitudinal direction of the single fiber, and the height difference between the highest part and the lowest part in the range of the circumferential length of the single fiber of 2 μm is preferably 80 nm or more. .

【0008】また、炭素繊維束のストランド強度は、3
80kgf/mm2 以上であることが望ましい。また、
JIS−L1013に準拠して測定される引掛強さにお
いて、断面積1mm2 として換算した強さが450N以
上であることが望ましい。また、炭素繊維束のフックド
ロップ値は、300mm以下であることが望ましい。
The strand strength of the carbon fiber bundle is 3
It is desirably 80 kgf / mm 2 or more. Also,
In the hooking strength measured according to JIS-L1013, it is desirable that the strength converted into a cross-sectional area of 1 mm 2 is 450 N or more. Further, the hook drop value of the carbon fiber bundle is desirably 300 mm or less.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明における炭素繊維束とは、アクリロニトリル系重
合体、ピッチ等の単繊維を束ねた前駆体繊維束(トウ)
を焼成したもののことである。本発明の炭素繊維束を構
成する単繊維の繊維断面の長径と短径との比(長径/短
径)は、1.05〜1.6であり、好ましくは、1.1
0〜1.4であり、より好ましくは1.15〜1.30
である。長径/短径比がこの範囲内にあれば、集束性お
よび樹脂含浸性を同時に満足し、かつ強度が高い炭素繊
維束となる。長径/短径比が1.05未満では、単繊維
間の空隙が減少し、得られる炭素繊維束の樹脂含浸性が
悪くなる。長径/短径比が1.6を超えると、繊維束の
集束性が低下するため、炭素繊維束を製造する際の焼成
工程通過性が悪化し、炭素繊維束を安定して得ることが
できなくなる。また、繊維断面が不均一化するため、ス
トランド強度および引掛強さが低下する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The carbon fiber bundle in the present invention is a precursor fiber bundle (tow) obtained by bundling single fibers such as acrylonitrile polymer and pitch.
Is fired. The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber constituting the carbon fiber bundle of the present invention is 1.05 to 1.6, and preferably 1.1.
0 to 1.4, and more preferably 1.15 to 1.30.
It is. When the ratio of major axis / minor axis is within this range, a carbon fiber bundle that simultaneously satisfies the sizing property and the resin impregnation property and has high strength is obtained. When the ratio of major axis / minor axis is less than 1.05, the voids between the single fibers decrease, and the resin impregnating property of the obtained carbon fiber bundle deteriorates. If the ratio of major axis / minor axis exceeds 1.6, the bundle property of the fiber bundle is reduced, so that the passing property of the baking step in producing the carbon fiber bundle is deteriorated, and the carbon fiber bundle can be stably obtained. Disappears. Further, since the fiber cross section becomes non-uniform, the strand strength and the hooking strength decrease.

【0010】ここで、単繊維の繊維断面の長径と短径と
の比(長径/短径)は、以下のようにして決定される。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用の
炭素繊維束を通した後、これをナイフで輪切りにして試
料を準備する。ついで、該試料を繊維断面が上を向くよ
うにしてSEM試料台に接着し、さらにAuを約10n
mの厚さにスパッタリングしてから、PHILIPS社
製XL20走査型電子顕微鏡により、加速電圧7.00
kV、作動距離31mmの条件で繊維断面を観察し、単
繊維の繊維断面の長径および短径を測定し、長径÷短径
で長径/短径の比率が決定される。
Here, the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is determined as follows.
After a carbon fiber bundle for measurement is passed through a tube made of a vinyl chloride resin having an inner diameter of 1 mm, the bundle is cut by a knife to prepare a sample. Then, the sample was adhered to a SEM sample stand with the fiber cross section facing upward, and Au was further added to about 10 n.
m, and then accelerated to 7.00 with an XL20 scanning electron microscope manufactured by PHILIPS.
The fiber cross section is observed under the conditions of kV and a working distance of 31 mm, the major axis and the minor axis of the fiber section of the single fiber are measured, and the ratio of major axis / minor axis is determined as major axis ÷ minor axis.

【0011】本発明の炭素繊維束のSi量は、50pp
m以上であり、好ましくは80〜1000ppmの範囲
であり、より好ましくは100〜800ppmの範囲で
ある。Si量がこの範囲内にあれば、集束性とクロス品
位とを同時に満足し、かつ強度が高い炭素繊維束とな
る。Si量が50ppm未満では、繊維束の集束性が低
下するため、炭素繊維束を製造する際の焼成工程通過性
が悪化し、炭素繊維束を安定して得ることができなくな
る。また、ストランド強度も低下する。一方、Si量が
多くなりすぎると、得られる炭素繊維束がばらけにくく
なり、クロス品位(ドレープ性)が悪くなる傾向にあ
る。
The carbon fiber bundle of the present invention has a Si content of 50 pp.
m or more, preferably in the range of 80 to 1000 ppm, more preferably in the range of 100 to 800 ppm. When the Si content is within this range, a carbon fiber bundle that simultaneously satisfies the sizing property and the cross quality and has high strength is obtained. If the amount of Si is less than 50 ppm, the sizing property of the fiber bundle is reduced, so that the passing property of the firing step in producing the carbon fiber bundle is deteriorated, and the carbon fiber bundle cannot be stably obtained. Also, the strand strength decreases. On the other hand, if the amount of Si is too large, the obtained carbon fiber bundles are difficult to disperse, and the cloth quality (draping property) tends to deteriorate.

【0012】このSi量は、前駆体繊維束を製造する際
に使用されるシリコン系油剤に由来するものである。こ
こで、Si量は、ICP発光分析装置を用いて測定する
ことができる。測定は以下のように実施される。試料を
風袋既知の白金るつぼに入れ600〜700℃マッフル
炉で灰化し、その重量を測定して灰分を求める。次に炭
酸ナトリウムを規定量加え、バーナーで溶融し、DI水
で溶解しながら50mlポリメスフラスコに定容する。
本試料をICP発光分析法によりSiの定量を行う。
The amount of Si is derived from a silicon-based oil used when producing a precursor fiber bundle. Here, the amount of Si can be measured using an ICP emission spectrometer. The measurement is performed as follows. The sample is put in a platinum crucible with a known tare and incinerated in a muffle furnace at 600 to 700 ° C., and its weight is measured to determine the ash content. Next, a prescribed amount of sodium carbonate is added, the mixture is melted with a burner, and the volume is dissolved in a 50 ml polymes flask while dissolving with DI water.
This sample is quantified for Si by ICP emission analysis.

【0013】本発明の炭素繊維束は、単繊維の表面に単
繊維の長手方向に延びる複数の皺を有していることが好
ましい。このような皺の存在により、炭素繊維束の樹脂
含浸性がさらに向上し、これら製織したクロスの外観品
位もさらに向上する。このような皺の深さは、単繊維の
円周長さ2μmの範囲で最高部と最低部の高低差によっ
て規定される。高低差は、走査型原子間力顕微鏡(AF
M)や走査型トンネル顕微鏡(STM)を用いて単繊維
の表面を走査して表面形状を測定することができる。具
体的には以下の通りである。
[0013] The carbon fiber bundle of the present invention preferably has a plurality of wrinkles extending in the longitudinal direction of the single fiber on the surface of the single fiber. The presence of such wrinkles further improves the resin impregnation of the carbon fiber bundle, and further improves the appearance quality of these woven cloths. The depth of such wrinkles is defined by the height difference between the highest part and the lowest part in the range of the circumferential length of the single fiber of 2 μm. The height difference is determined by scanning atomic force microscopy (AF
M) or the scanning tunneling microscope (STM) can be used to scan the surface of the single fiber to measure the surface shape. Specifically, it is as follows.

【0014】炭素繊維の単繊維を数本試料台上にのせ、
両端を固定し、さらに周囲にドータイトを塗り測定サン
プルとする。原子間力顕微鏡(セイコーインスツルメン
ツ製、SPI3700/SPA−300)によりシリコ
ンナイトライド製のカンチレバーを使用してAFMモー
ドにて測定を行う。単繊維の2〜7μmの範囲を走査し
て得られた測定画像を二次元フーリエ変換にて低周波成
分をカットしたのち逆変換を行い繊維の曲率を除去す
る。このようにして得られた平面画像の断面より、皺の
深さを定量する。
Several carbon fibers are placed on a sample table.
Both ends are fixed, and dotite is further applied to the periphery to prepare a measurement sample. Measurement is performed in an AFM mode using an atomic force microscope (SPI3700 / SPA-300, manufactured by Seiko Instruments) using a cantilever made of silicon nitride. The measurement image obtained by scanning the single fiber in the range of 2 to 7 μm is cut by a two-dimensional Fourier transform to remove low frequency components, and then inversely transformed to remove the curvature of the fiber. The depth of wrinkles is quantified from the cross section of the planar image obtained in this manner.

【0015】本発明の炭素繊維束における単繊維の表面
の皺の深さは、好ましくは80nm以上であり、より好
ましくは100nm以上であり、さらに好ましくは15
0nm以上である。皺の深さが80nm未満では、単繊
維間の空隙が減少し、樹脂含浸性が悪くなる。また、単
繊維が均一にばらけにくくなり、織布の外観品位が悪化
する。一方、皺の深さが深くなりすぎると繊維束の集束
性が低下し、炭素繊維束を製造する際の焼成工程通過性
が悪化し、炭素繊維束を安定して得ることができなくな
る。また、炭素繊維束の表面欠陥が増え、ストランド強
度が低下する。さらに、単繊維間の摩擦が増加して、引
掛強さが低下する傾向にある。
In the carbon fiber bundle of the present invention, the depth of wrinkles on the surface of the single fiber is preferably 80 nm or more, more preferably 100 nm or more, and further preferably 15 nm or more.
0 nm or more. If the depth of the wrinkles is less than 80 nm, the voids between the single fibers decrease, and the resin impregnating property deteriorates. Moreover, it becomes difficult to disperse the single fibers uniformly, and the appearance quality of the woven fabric deteriorates. On the other hand, if the depth of the wrinkles is too large, the bundle property of the fiber bundle is reduced, and the passing property of the baking step in producing the carbon fiber bundle is deteriorated, so that the carbon fiber bundle cannot be stably obtained. Further, surface defects of the carbon fiber bundle increase, and the strand strength decreases. Further, the friction between the single fibers increases, and the hooking strength tends to decrease.

【0016】本発明の炭素繊維束のストランド強度は、
好ましくは380kgf/mm2 以上であり、より好ま
しくは400kgf/mm2 以上であり、さらに好まし
くは420kgf/mm2 以上である。ストランド強度
が380kgf/mm2 未満では、糸切れしやすくなる
ため、炭素繊維束を製造する際の焼成工程通過性が悪化
し、炭素繊維束を安定して得ることができなくなる。ま
た、この炭素繊維束を用いた繊維強化複合材料のコンポ
ジット特性、例えば、繊維の長手方向の曲げ強度(FS
0゜)などが低く十分な性能を発現しなくなる。ここ
で、ストランド強度は、JIS R 7601に記載さ
れた試験法に準拠して測定される。
The strand strength of the carbon fiber bundle of the present invention is:
It is preferably at least 380 kgf / mm 2 , more preferably at least 400 kgf / mm 2 , even more preferably at least 420 kgf / mm 2 . If the strand strength is less than 380 kgf / mm 2 , yarn breakage is liable to occur, so that the baking process passability during the production of the carbon fiber bundle deteriorates, and the carbon fiber bundle cannot be stably obtained. Further, the composite characteristics of the fiber-reinforced composite material using the carbon fiber bundle, for example, the bending strength in the longitudinal direction of the fiber (FS
0 °) and so on, and no sufficient performance is exhibited. Here, the strand strength is measured according to the test method described in JIS R 7601.

【0017】本発明の炭素繊維束の引掛強さは、断面積
1mm2 として換算した強さが450N以上であること
が望ましい。より好ましくは500N以上であり、さら
に好ましくは550N以上である。引掛強さが450N
未満では、糸切れしやすくなるため、炭素繊維束を製造
する際の焼成工程通過性が悪化し、炭素繊維束を安定し
て得ることができなくなる。
The hooking strength of the carbon fiber bundle of the present invention is desirably 450 N or more as converted to a cross-sectional area of 1 mm 2 . It is more preferably at least 500N, even more preferably at least 550N. 450N hooking strength
If it is less than 30%, the yarn is liable to be broken, so that the sintering property at the time of producing the carbon fiber bundle deteriorates, and the carbon fiber bundle cannot be stably obtained.

【0018】ここで、引掛強さは、JIS−L 101
3に記載された試験法に準拠して測定される。以下の測
定方法について詳しく説明する。図1のように、U字状
の炭素繊維束1に、炭素繊維束2を引っ掛け、これをU
字状にし、これら炭素繊維束1,2の交差部分から10
0mmの位置に、長さ25mmの掴み部3,4を取り付
けて、試験体とする。試験体の作製の際、0.1×10
-3N/デニールの荷重を掛けて炭素繊維束の引き揃えを
行う。引張時のクロスヘッド速度は100mm/min
で実施する。
Here, the hooking strength is JIS-L 101
It is measured according to the test method described in 3. The following measurement method will be described in detail. As shown in FIG. 1, a carbon fiber bundle 2 is hooked on a U-shaped carbon fiber bundle 1 and
From the intersection of these carbon fiber bundles 1 and 2.
At the position of 0 mm, the grips 3 and 4 having a length of 25 mm are attached to prepare a test body. 0.1 × 10
The carbon fiber bundle is aligned by applying a load of -3 N / denier. Crosshead speed during tension is 100mm / min
It is carried out in.

【0019】本発明の炭素繊維束のフックドロップ値
(以下、FD値と記す)は、好ましくは350mm以下
であり、より好ましくは、300mm以下であり、さら
に好ましくは、250mm以下である。FD値が350
mmを超えると、繊維束の集束性が低下するため、炭素
繊維束を製造する際の焼成工程通過性が悪化し、炭素繊
維束を安定して得ることができなくなる。一方、FD値
が低くなりすぎると、単繊維が均一にばらけにくくな
り、得られる織布(クロス)の外観品位が悪化する傾向
にある。そのため、FD値の下限は、好ましくは20m
mである。
The hook drop value (hereinafter referred to as the FD value) of the carbon fiber bundle of the present invention is preferably 350 mm or less, more preferably 300 mm or less, and further preferably 250 mm or less. FD value of 350
If it exceeds mm, the convergence of the fiber bundle is reduced, so that the sintering property in the production of the carbon fiber bundle is deteriorated, and the carbon fiber bundle cannot be stably obtained. On the other hand, if the FD value is too low, it is difficult to uniformly disperse the single fibers, and the appearance quality of the obtained woven fabric (cloth) tends to deteriorate. Therefore, the lower limit of the FD value is preferably 20 m
m.

【0020】ここで、FD値は、以下の要領にて測定さ
れる。まず、炭素繊維束を垂下装置の上部に取り付け、
上部つかみ部から上方1mにおもりを取り付け、つり下
げる。ここで用いるおもり荷重は、炭素繊維束目付け
(g/m)の450倍相当とする。該繊維束の上部つか
みから1cm下部の地点に該繊維束を2分割するように
フック(φ1mmのステンレス線材製、フックのR=5
mm)を挿入し、フックを下降させる。該フックは総重
量が15gとなるように重り付け調整している。フック
が該繊維束の絡みによって停止した点までフックの下降
距離を求める。試験回数は、N=50とし、その平均値
をFD値とする。
Here, the FD value is measured in the following manner. First, attach the carbon fiber bundle to the upper part of the hanging device,
Attach the weight 1 m above the upper grip and suspend it. The weight load used here is equivalent to 450 times the carbon fiber bundle weight (g / m). A hook (made of stainless steel wire of φ1 mm, hook R = 5) at a point 1 cm below the upper grip of the fiber bundle so as to divide the fiber bundle into two
mm) and lower the hook. The weight of the hook is adjusted so that the total weight is 15 g. The descending distance of the hook is determined up to the point where the hook is stopped by the entanglement of the fiber bundle. The number of tests is N = 50, and the average value is the FD value.

【0021】次に、本発明の炭素繊維束の製造方法につ
いて説明する。本発明の炭素繊維束は、例えば前駆体繊
維束としてアクリロニトリル系重合体の繊維束を用いた
場合、以下のようにして製造することができる。まず、
湿式紡糸などによってアクリロニトリル系重合体の単繊
維からなる前駆体繊維束を紡糸する。ついで、複数の前
駆体繊維束を平行に揃えた状態で耐炎化炉に導入し、2
00〜300℃に加熱された空気などの酸化性気体を前
駆体繊維束に吹き付けることによって、前駆体繊維束を
耐炎化して耐炎繊維束を得る。ついで、この耐炎繊維束
を炭素化炉に導入し、不活性雰囲気中、1200〜20
00℃の温度で炭素化して炭素繊維束を得る。さらに、
2000〜2800℃の温度で黒鉛化して高弾性炭素繊
維束を得る。
Next, the method for producing a carbon fiber bundle of the present invention will be described. The carbon fiber bundle of the present invention can be produced as follows, for example, when a fiber bundle of an acrylonitrile-based polymer is used as a precursor fiber bundle. First,
A precursor fiber bundle composed of a single fiber of an acrylonitrile polymer is spun by wet spinning or the like. Then, a plurality of precursor fiber bundles were introduced into a stabilization furnace in a state of being aligned in parallel,
By blowing an oxidizing gas such as air heated to 00 to 300 ° C. onto the precursor fiber bundle, the precursor fiber bundle is made to be flame-resistant to obtain a flame-resistant fiber bundle. Then, the flame-resistant fiber bundle is introduced into a carbonization furnace, and is placed in an inert atmosphere at 1200 to 20%.
Carbonization is performed at a temperature of 00 ° C. to obtain a carbon fiber bundle. further,
It is graphitized at a temperature of 2000 to 2800 ° C. to obtain a highly elastic carbon fiber bundle.

【0022】得られた炭素繊維束に、マトリックス樹脂
との親和性を向上させる目的で表面酸化処理を施す。表
面酸化処理法は、特に制限はなく気相酸化処理、溶剤酸
化処理、あるいは電解酸化処理などにより実施される。
続いて、繊維の保護およびマトリックス樹脂との親和性
向上の目的でサイジング処理を施す。サイジング処理
は、ローラー浸漬法、ローラー接触法など一般に工業的
に用いられている方法などによって行われる。サイジン
グ剤を付着した炭素繊維は、続いて乾燥処理され、サイ
ジング剤を付着させる際に同時に付着したサイジング剤
溶液に含まれていた水、あるいは有機溶媒などの除去が
行われる。ここでの乾燥処理は、熱風、熱板、ローラ
ー、各種赤外線ヒーターなどを熱媒として利用した方法
などによって行われる。
The obtained carbon fiber bundle is subjected to a surface oxidation treatment for the purpose of improving the affinity with the matrix resin. The surface oxidation treatment is not particularly limited, and is performed by a gas phase oxidation treatment, a solvent oxidation treatment, an electrolytic oxidation treatment, or the like.
Subsequently, a sizing treatment is performed for the purpose of protecting the fibers and improving the affinity with the matrix resin. The sizing treatment is performed by a generally industrially used method such as a roller dipping method and a roller contact method. The carbon fiber to which the sizing agent has been adhered is subsequently subjected to a drying treatment, and at the same time as the sizing agent is adhered, water or an organic solvent contained in the adhered sizing agent solution is removed. The drying process here is performed by a method using hot air, a hot plate, a roller, various infrared heaters, or the like as a heat medium.

【0023】[0023]

【実施例】以下、本発明を実施例を示して詳しく説明す
る。炭素繊維前駆体繊維束は、アクリルニトリル系重合
体をジメチルアセトアミドに溶解し紡糸原液を調製し、
湿式紡糸にて作製した。紡糸原液は、濃度50〜70重
量%、温度30〜50℃のジメチルアセトアミド水溶液
からなる第一凝固浴中に吐出させて凝固糸とした。次い
で該凝固糸を濃度50〜70重量%、温度30〜50℃
のジメチルアセトアミド水溶液からなる第2凝固浴中に
て所定量の延伸を施し、さらに4倍以上の湿熱延伸を行
い、炭素繊維前駆体繊維束を得た。炭素繊維前駆体繊維
束の断面の長径と短径との比、皺の深さは、凝固浴濃度
および温度、さらに延伸条件を変更することにより調整
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. The carbon fiber precursor fiber bundle is prepared by dissolving an acrylonitrile-based polymer in dimethylacetamide to prepare a spinning solution.
It was produced by wet spinning. The spinning dope was discharged into a first coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 50 to 70% by weight and a temperature of 30 to 50 ° C to obtain a coagulated yarn. The coagulated yarn is then concentrated at a concentration of 50 to 70% by weight at a temperature of 30 to 50 ° C.
In a second coagulation bath made of a dimethylacetamide aqueous solution, a predetermined amount of drawing was performed, and furthermore, a wet heat drawing of 4 times or more was performed to obtain a carbon fiber precursor fiber bundle. The ratio of the major axis to the minor axis of the cross section of the carbon fiber precursor fiber bundle and the depth of the wrinkles were adjusted by changing the concentration and temperature of the coagulation bath and the drawing conditions.

【0024】本実施例における炭素繊維前駆体繊維束お
よび炭素繊維束の物性の測定、評価は、以下の方法によ
って行った。 (炭素繊維前駆体繊維束のSi定量)炭素繊維前駆体繊
維束のSi定量はICP発光分析装置を用いて実施し
た。まず、試料50mgをはさみで裁断し、密閉タイプ
の白金ルツボに入れ秤量した。続いて、NaOH、KO
H混合粉体試薬を0.5g加え、試料と試薬を良く混合
した。これらを210℃マッフル炉で2.5時間加熱処
理を行い、マッフル炉から取り出して冷ました後、密閉
型ボンベ内の白金ルツボを取り出した。これらをDI水
で溶解し100mlポリメスフラスコに定容して、IC
P発光分析法でSiの定量を行った。
The measurement and evaluation of the physical properties of the carbon fiber precursor fiber bundle and the carbon fiber bundle in this example were performed by the following methods. (Quantitative Si Determination of Carbon Fiber Precursor Fiber Bundle) The quantitative Si determination of the carbon fiber precursor fiber bundle was performed using an ICP emission spectrometer. First, 50 mg of a sample was cut with scissors, placed in a closed type platinum crucible, and weighed. Then, NaOH, KO
0.5 g of the H mixed powder reagent was added, and the sample and the reagent were mixed well. These were heated in a muffle furnace at 210 ° C. for 2.5 hours, taken out of the muffle furnace and cooled, and then a platinum crucible in a closed cylinder was taken out. These are dissolved in DI water, and the volume is set in a 100 ml polymer measuring flask.
Si was quantified by P emission analysis.

【0025】(クロス品位)クロスを構成する経糸と緯
糸それぞれの炭素繊維束の幅を100点測定し、その変
動率で評価をした。
(Cross Quality) The width of the carbon fiber bundle of each of the warp and the weft constituting the cloth was measured at 100 points, and the variation was evaluated.

【0026】(樹脂含浸性)離型紙に均一に薄く三菱レ
イヨン製マトリックス用エポキシ樹脂(#321)を塗
布して得られた樹脂フィルム上に、製織したクロスを重
ね、加熱加圧して樹脂を含浸させたクロスプリプレグを
作製した。このときの樹脂含有率は40重量%とした。
このクロスプリプレグを所定の大きさ(200mm×2
00mm)に裁断し、10枚重ねた後、鏡面仕上げ金属
板に接触させ、オートクレーブ成型法により、平板のコ
ンポジット成型品を作製した。成型平板の鏡面仕上げ金
属板に接した面の欠陥部、たとえば残存空気により発生
した小さな穴(ピンホール)を観察した。樹脂含浸性の
優れた炭素繊維束より織られたクロスにおいて、この欠
陥部が非常に少なく、場合により皆無になる。樹脂含浸
性はこの欠陥点の数により評価を行った。
(Resin impregnating property) A woven cloth is superimposed on a resin film obtained by applying an epoxy resin for matrix (# 321) manufactured by Mitsubishi Rayon uniformly and thinly on release paper, and the resin is impregnated by heating and pressing. The prepared cross prepreg was produced. The resin content at this time was 40% by weight.
This cross prepreg is set to a predetermined size (200 mm × 2
00 mm), and after stacking 10 sheets, the sheet was brought into contact with a mirror-finished metal plate, and a flat composite molded product was produced by an autoclave molding method. Defects on the surface of the molded flat plate in contact with the mirror-finished metal plate, for example, small holes (pinholes) generated by residual air were observed. In a cloth woven from carbon fiber bundles having excellent resin impregnation properties, the number of defects is very small, and in some cases, there is no defect. The resin impregnation was evaluated by the number of the defective points.

【0027】[実施例1]単繊維数が3000本であ
り、単繊維の長径/短径比が1.2であり、Si量が2
200ppmであるアクリロニトリル系重合体の前駆体
繊維束を用意した。ついで、該前駆体繊維束を焼成し炭
素繊維束を得た。焼成工程通過性は非常に安定してい
た。ついで、炭素繊維束をたて糸およびよこ糸に用いて
製織し、目付が200g/m2 の平織のクロスを製造し
た。得られた炭素繊維束の長径/短径比、Si量、単繊
維の皺の深さ、ストランド強度、引掛強さおよびFD値
を測定した。また、得られたクロスのクロス品位および
炭素繊維束の樹脂含浸性を評価した。結果を表1および
表2に示す。
Example 1 The number of single fibers was 3,000, the ratio of the major axis to the minor axis was 1.2, and the amount of Si was 2
A precursor fiber bundle of an acrylonitrile-based polymer at 200 ppm was prepared. Next, the precursor fiber bundle was fired to obtain a carbon fiber bundle. The passing property of the firing step was very stable. Next, the carbon fiber bundle was woven using warp yarns and weft yarns to produce a plain woven cloth having a basis weight of 200 g / m 2 . The ratio of the major axis / minor axis of the obtained carbon fiber bundle, the amount of Si, the wrinkle depth of the single fiber, the strand strength, the hooking strength and the FD value were measured. Further, the cloth quality of the obtained cloth and the resin impregnation property of the carbon fiber bundle were evaluated. The results are shown in Tables 1 and 2.

【0028】[実施例2]単繊維数が3000本であ
り、単繊維の長径/短径比が1.2であり、Si量が3
000ppmであるアクリロニトリル系重合体の前駆体
繊維束を用意した。ついで、実施例1と同様にして炭素
繊維束およびクロスを得た。焼成工程通過性は非常に安
定していた。得られた炭素繊維束の長径/短径比、Si
量、単繊維の皺の深さ、ストランド強度、引掛強さおよ
びFD値を測定した。また、得られたクロスのクロス品
位および炭素繊維束の樹脂含浸性を評価した。結果を表
1および表2に示す。
Example 2 The number of single fibers was 3000, the ratio of long diameter to short diameter was 1.2, and the amount of Si was 3
A precursor fiber bundle of an acrylonitrile polymer having a concentration of 000 ppm was prepared. Then, a carbon fiber bundle and a cloth were obtained in the same manner as in Example 1. The passing property of the firing step was very stable. The major axis / minor axis ratio of the obtained carbon fiber bundle, Si
The amount, wrinkle depth, strand strength, hooking strength and FD value of the single fiber were measured. Further, the cloth quality of the obtained cloth and the resin impregnation property of the carbon fiber bundle were evaluated. The results are shown in Tables 1 and 2.

【0029】[実施例3]単繊維数が3000本であ
り、単繊維の長径/短径比が1.2であり、Si量が9
00ppmであるアクリロニトリル系重合体の前駆体繊
維束を用意した。ついで、実施例1と同様にして炭素繊
維束およびクロスを得た。焼成工程通過性は非常に安定
していた。得られた炭素繊維束の長径/短径比、Si
量、単繊維の皺の深さ、ストランド強度、引掛強さおよ
びFD値を測定した。また、得られたクロスのクロス品
位および炭素繊維束の樹脂含浸性を評価した。結果を表
1および表2に示す。
Example 3 The number of single fibers was 3,000, the ratio of the major axis to the minor axis was 1.2, and the Si content was 9
A precursor fiber bundle of an acrylonitrile-based polymer having a concentration of 00 ppm was prepared. Then, a carbon fiber bundle and a cloth were obtained in the same manner as in Example 1. The passing property of the firing step was very stable. The major axis / minor axis ratio of the obtained carbon fiber bundle, Si
The amount, wrinkle depth, strand strength, hooking strength and FD value of the single fiber were measured. Further, the cloth quality of the obtained cloth and the resin impregnation property of the carbon fiber bundle were evaluated. The results are shown in Tables 1 and 2.

【0030】[実施例4]単繊維数が3000本であ
り、単繊維の長径/短径比が1.21であり、Si量が
2500ppmであるアクリロニトリル系重合体の前駆
体繊維束を用意した。ついで、実施例1と同様にして炭
素繊維束およびクロスを得た。焼成工程通過性は非常に
安定していた。得られた炭素繊維束の長径/短径比、S
i量、単繊維の皺の深さ、ストランド強度、引掛強さお
よびFD値を測定した。また、得られたクロスのクロス
品位および炭素繊維束の樹脂含浸性を評価した。結果を
表1および表2に示す。
Example 4 A precursor fiber bundle of an acrylonitrile-based polymer having 3,000 single fibers, a long diameter / short diameter ratio of single fibers of 1.21, and an Si content of 2500 ppm was prepared. . Then, a carbon fiber bundle and a cloth were obtained in the same manner as in Example 1. The passing property of the firing step was very stable. The major axis / minor axis ratio of the obtained carbon fiber bundle, S
The i amount, the wrinkle depth of the single fiber, the strand strength, the hooking strength, and the FD value were measured. Further, the cloth quality of the obtained cloth and the resin impregnation property of the carbon fiber bundle were evaluated. The results are shown in Tables 1 and 2.

【0031】[実施例5]単繊維数が3000本であ
り、単繊維の長径/短径比が1.23であり、Si量が
2500ppmであるアクリロニトリル系重合体の前駆
体繊維束を用意した。ついで、実施例1と同様にして炭
素繊維束およびクロスを得た。焼成工程通過性は非常に
安定していた。得られた炭素繊維束の長径/短径比、S
i量、単繊維の皺の深さ、ストランド強度、引掛強さお
よびFD値を測定した。また、得られたクロスのクロス
品位および炭素繊維束の樹脂含浸性を評価した。結果を
表1および表2に示す。
[Example 5] A precursor fiber bundle of an acrylonitrile-based polymer in which the number of single fibers was 3000, the ratio of the long diameter to the short diameter of the single fibers was 1.23, and the Si content was 2500 ppm was prepared. . Then, a carbon fiber bundle and a cloth were obtained in the same manner as in Example 1. The passing property of the firing step was very stable. The major axis / minor axis ratio of the obtained carbon fiber bundle, S
The i amount, the wrinkle depth of the single fiber, the strand strength, the hooking strength, and the FD value were measured. Further, the cloth quality of the obtained cloth and the resin impregnation property of the carbon fiber bundle were evaluated. The results are shown in Tables 1 and 2.

【0032】[実施例6]単繊維数が3000本であ
り、単繊維の長径/短径比が1.2であり、Si量が2
800ppmであり、さらに表面皺の浅いアクリロニト
リル系重合体の前駆体繊維束を用いた以外は、実施例1
と同様にして炭素繊維束およびクロスを得た。また、実
施例1と同様にして、焼成工程における焼成工程通過性
の評価、得られた炭素繊維束およびクロスの各物性の測
定および評価を行った。結果を表1および表2に示す。
単繊維の表面皺の浅い炭素繊維束は、収束性が良好で、
前駆体繊維束の焼成工程通過性は良く、非常に安定して
いた。また、ストランド強度および引掛強さも高かっ
た。ただし、皺の深さが十分に深くなく、製織したクロ
スの品位および樹脂含浸性は若干劣っていた。
Example 6 The number of single fibers was 3000, the ratio of the major axis to the minor axis was 1.2, and the amount of Si was 2
Example 1 except that the precursor fiber bundle of the acrylonitrile polymer was 800 ppm and the surface wrinkle was shallow.
In the same manner as in the above, a carbon fiber bundle and a cloth were obtained. Further, in the same manner as in Example 1, evaluation of the passing property in the firing step in the firing step, and measurement and evaluation of each physical property of the obtained carbon fiber bundle and cloth were performed. The results are shown in Tables 1 and 2.
Carbon fiber bundles with a single fiber with shallow surface wrinkles have good convergence,
The precursor fiber bundle passed through the firing step well and was very stable. Also, the strand strength and the hooking strength were high. However, the depth of the wrinkles was not sufficiently deep, and the quality and resin impregnation of the woven cloth were slightly inferior.

【0033】[比較例1]単繊維数が3000本であ
り、単繊維の長径/短径比が1.0であり、Si量が2
800ppmであるアクリロニトリル系重合体の前駆体
繊維束を用いた以外は、実施例1と同様にして炭素繊維
束およびクロスを得た。また、実施例1と同様にして、
焼成工程における焼成工程通過性の評価、得られた炭素
繊維束およびクロスの各物性の測定および評価を行っ
た。結果を表1および表2に示す。単繊維の長径/短径
比が1.0である炭素繊維束は、前駆体繊維束の焼成工
程通過性は良く、安定していた。また、ストランド強度
および引掛強さも高かった。しかしながら、皺の深さが
十分に深くなく、製織したクロスの品位および樹脂含浸
性は劣っていた。
[Comparative Example 1] The number of single fibers was 3,000, the ratio of the major axis to the minor axis was 1.0, and the amount of Si was 2
A carbon fiber bundle and a cloth were obtained in the same manner as in Example 1, except that a precursor fiber bundle of an acrylonitrile polymer of 800 ppm was used. Also, in the same manner as in Example 1,
Evaluation of the passing property in the firing step in the firing step, and measurement and evaluation of each physical property of the obtained carbon fiber bundle and cloth were performed. The results are shown in Tables 1 and 2. The carbon fiber bundle having a ratio of the long diameter / short diameter of the single fiber of 1.0 was good in passing the precursor fiber bundle through the firing step and was stable. Also, the strand strength and the hooking strength were high. However, the depth of the wrinkles was not sufficiently deep, and the quality and resin impregnation of the woven cloth were poor.

【0034】[比較例2]単繊維数が3000本であ
り、単繊維の長径/短径比が1.2であり、Si量が3
00ppmであるアクリロニトリル系重合体の前駆体繊
維束を用いた以外は、実施例1と同様にして炭素繊維束
およびクロスを得た。また、実施例1と同様にして、焼
成工程における焼成工程通過性の評価、得られた炭素繊
維束およびクロスの各物性の測定および評価を行った。
結果を表1および表2に示す。Si量が50ppm以下
の炭素繊維束は、前駆体繊維束の焼成工程通過性は収束
性が不十分のため悪く、非常に不安定であった。また、
ストランド強度および引掛強さも低かった。さらに製織
したクロスの品位および樹脂含浸性ともに、毛羽のため
若干悪かった。製織工程の通過性も悪く、毛羽が発生
し、特性を悪くした要因の一つになった。
[Comparative Example 2] The number of single fibers was 3,000, the ratio of long diameter to short diameter was 1.2, and the amount of Si was 3
A carbon fiber bundle and a cloth were obtained in the same manner as in Example 1, except that a precursor fiber bundle of an acrylonitrile-based polymer of 00 ppm was used. Further, in the same manner as in Example 1, evaluation of the passing property in the firing step in the firing step, and measurement and evaluation of each physical property of the obtained carbon fiber bundle and cloth were performed.
The results are shown in Tables 1 and 2. The carbon fiber bundle having an Si content of 50 ppm or less was poor in the sintering property of the precursor fiber bundle due to insufficient convergence, and was very unstable. Also,
The strand strength and hooking strength were also low. Furthermore, both the quality of the woven cloth and the resin impregnating property were slightly poor due to the fluff. Poorness in the weaving process was also poor, and fluff was generated, which was one of the factors that deteriorated the properties.

【0035】[比較例3]単繊維数が3000本であ
り、単繊維の長径/短径比が2.0であり、Si量が3
000ppmであるアクリロニトリル系重合体の前駆体
繊維束を用いた以外は、実施例1と同様にして炭素繊維
束およびクロスを得た。また、実施例1と同様にして、
焼成工程における焼成工程通過性の評価、得られた炭素
繊維束およびクロスの各物性の測定および評価を行っ
た。結果を表1および表2に示す。単繊維の長径/短径
比が2.0である炭素繊維束は、前駆体繊維束の焼成工
程通過性は収束性が不十分のため悪く、非常に不安定で
あった。また、ストランド強度および引掛強さも低かっ
た。さらに製織したクロスの品位および樹脂含浸性とも
に、毛羽のため若干悪かった。製織工程の通過性も悪
く、毛羽が発生し、特性を悪くした要因の一つになっ
た。
[Comparative Example 3] The number of single fibers was 3000, the ratio of the major axis to the minor axis was 2.0, and the amount of Si was 3
A carbon fiber bundle and a cloth were obtained in the same manner as in Example 1 except that a precursor fiber bundle of an acrylonitrile-based polymer of 000 ppm was used. Also, in the same manner as in Example 1,
Evaluation of the passing property in the firing step in the firing step, and measurement and evaluation of each physical property of the obtained carbon fiber bundle and cloth were performed. The results are shown in Tables 1 and 2. The carbon fiber bundle having a long diameter / short diameter ratio of the single fiber of 2.0 was poor because the convergence of the precursor fiber bundle in the firing step was insufficient and was very unstable. Also, the strand strength and the hooking strength were low. Furthermore, both the quality of the woven cloth and the resin impregnating property were slightly poor due to the fluff. Poorness in the weaving process was also poor, and fluff was generated, which was one of the factors that deteriorated the properties.

【0036】[比較例4]単繊維数が3000本であ
り、単繊維の長径/短径比が1.0であり、Si量が2
800ppmであり、さらに表面皺の浅いアクリロニト
リル系重合体の前駆体繊維束を用いた以外は、実施例1
と同様にして炭素繊維束およびクロスを得た。また、実
施例1と同様にして、焼成工程における焼成工程通過性
の評価、得られた炭素繊維束およびクロスの各物性の測
定および評価を行った。結果を表1および表2に示す。
単繊維の表面皺の浅い炭素繊維束は、収束性が良好で、
前駆体繊維束の焼成工程通過性は良く、非常に安定して
いた。また、ストランド強度および引掛強さも高かっ
た。しかしながら、皺の深さが十分に深くなく、製織し
たクロスの品位および樹脂含浸性は劣っていた。
[Comparative Example 4] The number of single fibers was 3000, the ratio of long diameter to short diameter was 1.0, and the amount of Si was 2
Example 1 except that a precursor fiber bundle of an acrylonitrile-based polymer having a surface roughness of 800 ppm and a shallow surface wrinkle was used.
In the same manner as in the above, a carbon fiber bundle and a cloth were obtained. Further, in the same manner as in Example 1, evaluation of the passing property in the firing step in the firing step, and measurement and evaluation of each physical property of the obtained carbon fiber bundle and cloth were performed. The results are shown in Tables 1 and 2.
A carbon fiber bundle with a shallow surface wrinkle of a single fiber has good convergence,
The precursor fiber bundle had good passability in the firing step and was very stable. Also, the strand strength and the hooking strength were high. However, the depth of the wrinkles was not sufficiently deep, and the quality and resin impregnation of the woven cloth were inferior.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上説明したように、本発明の炭素繊維
束は、複数の炭素繊維の単繊維からなる炭素繊維束にお
いて、単繊維の繊維断面の長径と短径との比(長径/短
径)が、1.05〜1.6であり、ICP発光分析法に
よって測定されるSi量が、50ppm以上であるの
で、集束性、樹脂含浸性および得られるクロスのクロス
品位を同時に満足し、かつ強度が高い炭素繊維束とな
る。また、単繊維の表面に単繊維の長手方向に延びる複
数の皺を有し、単繊維の円周長さ2μmの範囲で、最高
部と最低部の高低差が80nm以上であれば、繊維束の
集束性を維持しつつ、樹脂含浸性およびクロス品位をさ
らに向上させることができる。
As described above, in the carbon fiber bundle of the present invention, the ratio of the major axis to the minor axis (major axis / short axis) of the fiber cross section of the single fiber in the carbon fiber bundle composed of a plurality of single fibers of carbon fibers is described. Diameter) is 1.05 to 1.6 and the amount of Si measured by ICP emission spectrometry is 50 ppm or more, so that the sizing property, the resin impregnation property and the cloth quality of the obtained cloth are simultaneously satisfied, And it becomes a carbon fiber bundle with high strength. Further, if the surface of the single fiber has a plurality of wrinkles extending in the longitudinal direction of the single fiber, and if the height difference between the highest part and the lowest part is 80 nm or more within the circumferential length of the single fiber of 2 μm, the fiber bundle , The resin impregnating property and the cloth quality can be further improved.

【0040】また、炭素繊維束のストランド強度が、3
80kgf/mm2 以上であれば、炭素繊維束を安定し
て得ることができる。また、この炭素繊維束を用いた繊
維強化複合材料は、優れたコンポジット特性を有する。
また、炭素繊維束の引掛強さが、断面積1mm2 として
換算したものが450N以上であれば、炭素繊維束を安
定して得ることができる。また、炭素繊維束のフックド
ロップ値が、300mm以下であれば、炭素繊維束を安
定して得ることができる。また、得られるクロスのクロ
ス品位がさらに向上する。
The strand strength of the carbon fiber bundle is 3
If it is 80 kgf / mm 2 or more, a carbon fiber bundle can be stably obtained. Further, the fiber-reinforced composite material using the carbon fiber bundle has excellent composite characteristics.
When the hooking strength of the carbon fiber bundle is 450 N or more as calculated as a cross-sectional area of 1 mm 2 , the carbon fiber bundle can be stably obtained. When the hook drop value of the carbon fiber bundle is 300 mm or less, the carbon fiber bundle can be stably obtained. Further, the cloth quality of the obtained cloth is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 引掛強さの測定に使用される試験体の形状を
示す図である。
FIG. 1 is a view showing a shape of a test body used for measuring a hooking strength.

【符号の説明】[Explanation of symbols]

1 炭素繊維束 2 炭素繊維束 1 carbon fiber bundle 2 carbon fiber bundle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真木 則仁 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 (72)発明者 大宮司 勤 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 (72)発明者 小田桐 貴之 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 Fターム(参考) 4L037 AT05 CS03 FA01 FA03 FA06 PA53 PA65 PF19 PF44  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norihito Maki 4-1-1, Ushikawadori, Toyohashi-shi, Aichi Prefecture Inside the Toyohashi Plant of Mitsui Rayon Co., Ltd. (72) Inventor Tsutomu Omiya 4-1-1 Ushikawadori, Toyohashi-shi, Aichi Prefecture Address No. 2 Mitsubishi Rayon Co., Ltd. Toyohashi Plant (72) Inventor Takayuki Odagiri 4-1-1 Ushikawa-dori, Toyohashi City, Aichi Prefecture No. 2 Mitsubishi Rion Co., Ltd. Toyohashi Plant F-term (reference) 4L037 AT05 CS03 FA01 FA03 FA06 PA06 PA65 PF19 PF44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の炭素繊維の単繊維からなる炭素繊
維束において、 単繊維の繊維断面の長径と短径との比
(長径/短径)が、1.05〜1.6であり、ICP発
光分析法によって測定されるSi量が、50ppm以上
であることを特徴とする炭素繊維束。
1. A carbon fiber bundle comprising a plurality of single fibers of carbon fibers, wherein the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.05 to 1.6, A carbon fiber bundle, wherein the amount of Si measured by ICP emission analysis is 50 ppm or more.
【請求項2】 単繊維の表面に単繊維の長手方向に延び
る複数の皺を有し、単繊維の円周長さ2μmの範囲で最
高部と最低部の高低差が、80nm以上であることを特
徴とする請求項1記載の炭素繊維束。
2. A single fiber having a plurality of wrinkles extending in a longitudinal direction of the single fiber on a surface of the single fiber, and a height difference between a highest portion and a lowest portion in a range of a circumferential length of the single fiber of 2 μm is 80 nm or more. The carbon fiber bundle according to claim 1, wherein:
【請求項3】 ストランド強度が、3800MPa 以
上であることを特徴とする請求項1または請求項2記載
の炭素繊維束。
3. The carbon fiber bundle according to claim 1, wherein the strand strength is 3800 MPa or more.
【請求項4】 JIS L 1013に準拠して測定さ
れる引掛強さにおいて、断面積1mm2 として換算した
強さが450N以上であることを特徴とする請求項1ま
たは請求項2記載の炭素繊維束。
4. The carbon fiber according to claim 1 or 2 , wherein the hooking strength measured according to JIS L 1013 is 450 N or more as converted as a cross-sectional area of 1 mm 2. bundle.
【請求項5】 フックドロップ値が、300mm以下で
あることを特徴とする請求項1ないし4いずれか一項に
記載の炭素繊維束。
5. The carbon fiber bundle according to claim 1, wherein a hook drop value is 300 mm or less.
JP2001036121A 2001-02-13 2001-02-13 Carbon fiber bundle Expired - Lifetime JP4261075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036121A JP4261075B2 (en) 2001-02-13 2001-02-13 Carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036121A JP4261075B2 (en) 2001-02-13 2001-02-13 Carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP2002242027A true JP2002242027A (en) 2002-08-28
JP4261075B2 JP4261075B2 (en) 2009-04-30

Family

ID=18899443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036121A Expired - Lifetime JP4261075B2 (en) 2001-02-13 2001-02-13 Carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP4261075B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber
JPWO2005022026A1 (en) * 2003-08-28 2006-10-26 三菱レイヨン株式会社 High performance pressure vessel and carbon fiber for pressure vessel
WO2012050171A1 (en) 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US11959197B2 (en) * 2017-02-16 2024-04-16 Mitsubishi Chemical Corporation Carbon fiber precursor acrylic fiber, carbon fiber, and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005022026A1 (en) * 2003-08-28 2006-10-26 三菱レイヨン株式会社 High performance pressure vessel and carbon fiber for pressure vessel
US8012584B2 (en) 2003-08-28 2011-09-06 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber
WO2012050171A1 (en) 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US9920456B2 (en) 2010-10-13 2018-03-20 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10233569B2 (en) 2010-10-13 2019-03-19 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10662556B2 (en) 2010-10-13 2020-05-26 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US11332852B2 (en) 2010-10-13 2022-05-17 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US11959197B2 (en) * 2017-02-16 2024-04-16 Mitsubishi Chemical Corporation Carbon fiber precursor acrylic fiber, carbon fiber, and method for producing same

Also Published As

Publication number Publication date
JP4261075B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4945684B2 (en) Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
JP4543922B2 (en) Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame-resistant fiber, carbon fiber and production method thereof
TWI620843B (en) Carbon fiber bundle,method of manufacturing carbon fiber bundle and resin composite material
TW508380B (en) The carbon fiber precursor fiber bundle with the product method
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
JP2023011895A (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP4261075B2 (en) Carbon fiber bundle
JPWO2019172246A1 (en) Carbon fiber and method for producing the same
JP4612207B2 (en) Carbon fiber fabric and prepreg using the same
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP3047731B2 (en) Carbon fiber for filament winding molding and method for producing the same
JP6295874B2 (en) Carbon fiber bundle
US20210381133A1 (en) Method for manufacturing precursor fiber bundle, method for manufacturing carbon fiber bundle, and carbon fiber bundle
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP5313797B2 (en) Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP4715386B2 (en) Carbon fiber bundle manufacturing method
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP2019151956A (en) Carbon fiber bundle, carbon fiber and manufacturing method of carbon fiber bundle
JP7155577B2 (en) Carbon fiber precursor Acrylic fiber Carbon fiber
WO2024090196A1 (en) Carbon fiber bundle, and carbon fiber-reinforced composite material using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4261075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term