JP2002241866A - Method for recovering tellurium - Google Patents

Method for recovering tellurium

Info

Publication number
JP2002241866A
JP2002241866A JP2001034228A JP2001034228A JP2002241866A JP 2002241866 A JP2002241866 A JP 2002241866A JP 2001034228 A JP2001034228 A JP 2001034228A JP 2001034228 A JP2001034228 A JP 2001034228A JP 2002241866 A JP2002241866 A JP 2002241866A
Authority
JP
Japan
Prior art keywords
copper
product
sulfur
tellurium
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001034228A
Other languages
Japanese (ja)
Inventor
Nobuhiko Ikeda
信彦 池田
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2001034228A priority Critical patent/JP2002241866A/en
Publication of JP2002241866A publication Critical patent/JP2002241866A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover high purity tellurium at a low cost which does not contain impurities such as bismuth from copper telluride generated as a by-product in a copper removing treatment stage for anode mud in electrolytic refining for copper. SOLUTION: Copper telluride is subjected to cleaning treatment with hydrochloric acid. After that, sulfur 0.26 to 1.20 times the copper tellrude by weight ratio is added thereto, and heating treatment is performed for a fixed time to obtain a product. An excess of sulfur is evaporated and separated there from, and next, the product after sulfur separation is heated to 200 to 1,000 deg.C under the reduced pressure to obtain high purity tellurium which does not contain impurities, and copper sulfide. The copper sulfide as a by-product is reutilized as a refining raw material for copper.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅(Cu)の電解
精錬において、陽極泥から脱銅処理の際に副産物として
発生するテルル化銅(Cu2 Te)からテルル(Te)
を回収する方法に関するものである。
The present invention relates to a copper in the electrolytic refining of (Cu), tellurium from tellurium copper (Cu 2 Te) generated as a byproduct when the anode mud copper removal treatment (Te)
And a method for collecting the same.

【0002】[0002]

【従来の技術】Teは単独で製錬の対象となる鉱石はな
く、一般にCuの電解精錬の副産物として製造される。
Cuの電解精錬の際に陽極から陽極泥が発生するが、T
eは他の金属と化合物を形成して陽極泥中に沈積する。
陽極泥は硫酸を添加した後、焙焼してセレン(Se)の
大部分を揮発させることにより焙焼物中に酸に可溶の亜
テルル酸が濃縮される。焙焼物は硫酸を含む銅電解液で
浸出し、その浸出液にCu粉を加えると、TeはCu2
Teとして沈殿する。ただし、浸出液に銀(Ag)、セ
レン(Se)が含まれている場合には、Cu2 Teと共
にAg2 Te、Seが沈殿する。
2. Description of the Related Art Te has no ore to be smelted alone and is generally produced as a by-product of electrolytic refining of Cu.
During the electrolytic refining of Cu, anode mud is generated from the anode.
e forms a compound with another metal and deposits in the anode mud.
After adding sulfuric acid, the anode mud is roasted to volatilize most of selenium (Se), whereby the acid soluble tellurous acid is concentrated in the roasted product. The roasted product is leached with a copper electrolytic solution containing sulfuric acid, and when Cu powder is added to the leached solution, Te becomes Cu 2
Precipitates as Te. However, when silver (Ag) and selenium (Se) are contained in the leaching solution, Ag 2 Te and Se are precipitated together with Cu 2 Te.

【0003】従来行われていたCu2 TeからのTeの
回収は、Cu2 Teの分離採取後、チリ硝石およびソー
ダ灰と混合して分銀炉に投入し、Agを金属として分離
した後、TeおよびSeはソーダガラスとする。ソーダ
ガラスは熱湯で浸出し、生成した亜セレン酸ソーダおよ
び亜テルル酸ソーダ溶液を希硫酸で中和するとTeO 2
の沈殿が得られる。
[0003] Conventional CuTwoTe from Te
Recovery is CuTwoAfter separation and extraction of Te, Chile saltpeter and saw
Mix with Da Ash and put into silver separator, separate Ag as metal
After that, Te and Se are soda glass. soda
The glass is leached with boiling water to form the sodium selenite and
And sodium tellurite solution are neutralized with diluted sulfuric acid to obtain TeO Two
Is obtained.

【0004】TeO2 を水酸化ナトリウム溶液に溶解さ
せ、電解採取でカソードにTeを析出させ回収する。ま
た、特開昭61−53103号には、TeO2 の水酸化
ナトリウム溶液に硫化ナトリウムを添加することで不純
物を沈澱除去した後、酸化剤を添加することでテルル酸
ナトリウムを沈澱分離し、次にそのテルル酸ナトリウム
を希塩酸に溶解させた後、亜硫酸ナトリウムや亜硫酸ガ
スなどの還元剤を添加して、Teを液から析出させる方
法が開示されている。
[0004] TeO 2 is dissolved in a sodium hydroxide solution, and Te is deposited on the cathode by electrowinning to collect. JP-A-61-53103 discloses that sodium sulfide is added to a sodium hydroxide solution of TeO 2 to precipitate and remove impurities, and then an oxidizing agent is added to precipitate and separate sodium tellurate. Discloses a method of dissolving the sodium tellurate in dilute hydrochloric acid, and then adding a reducing agent such as sodium sulfite or sulfur dioxide to precipitate Te from the liquid.

【0005】その他、Teを回収する方法としては、T
eO2 をほう砂で覆って、小麦粉または微粉炭と共に加
熱する直接還元法などが報告されている。上述の通り、
従来のTeの回収方法では、Cu2 Teに含まれる不純
物元素を除去しながら中間物としてTeO2 を生成さ
せ、次にTeO2 を電気化学的あるいは化学的に還元す
る手法が一般に用いられてきた。
[0005] Other methods for recovering Te include T
A direct reduction method in which eO 2 is covered with borax and heated together with flour or pulverized coal has been reported. As mentioned above,
In the conventional method of recovering Te, a technique of generating TeO 2 as an intermediate while removing impurity elements contained in Cu 2 Te and then electrochemically or chemically reducing TeO 2 has been generally used. .

【0006】一方で、TeO2 を経由しない方法とし
て、Cu2 Teと硫黄(S)とを反応させて、Cu2
とTeにする方法が提案されているが、この方法は、C
2 Teに付着したビスマス(Bi)の一部がTeと結
合するため、不純物としてBiが混入しやすいという欠
点があった。
On the other hand, as a method not passing through TeO 2 , Cu 2 Te is reacted with sulfur (S) to form Cu 2 S
And Te, a method has been proposed.
Since a part of bismuth (Bi) attached to u 2 Te is bonded to Te, there is a disadvantage that Bi is easily mixed as an impurity.

【0007】[0007]

【発明が解決しようとする課題】Cu2 TeからTeを
回収するときに、TeO2 の生成を経由する従来のTe
の回収方法では、工程数が多いだけでなく、湿式法を主
体とした処理であるため大量の廃水処理が必要であり、
TeO2 を経由しないTeの回収方法では、Biを低減
するためにTeの精製処理工程が必要とされ、結果とし
てコストが高くなるという問題があった。
When recovering Te from Cu 2 Te, conventional Te via the production of TeO 2 is used.
The recovery method requires not only a large number of steps but also a large amount of wastewater treatment because it is a treatment mainly based on the wet method.
In the method of recovering Te that does not pass through TeO 2 , there is a problem that a Te purification treatment step is required to reduce Bi, resulting in an increase in cost.

【0008】本発明は、Teの回収における上記問題を
解決するものであって、Cu2 TeからTeを回収する
ときに、中間物としてTeO2 の生成を経由せず、少な
い工程数でBiなどの不純物を含まない高純度Teを低
コストで回収する方法を提供することを目的とする。
The present invention solves the above-mentioned problem in the recovery of Te. When recovering Te from Cu 2 Te, Bi or the like is produced in a small number of steps without passing through the production of TeO 2 as an intermediate. It is an object of the present invention to provide a method of recovering high-purity Te containing no impurities at low cost.

【0009】[0009]

【課題を解決するための手段】本発明のTeの回収方法
は、Cuの電解精錬で発生するCu2 Teを重量比で
0.26〜1.20倍量のSと共に一定時間加熱処理し
て得られた生成物から過剰のSを蒸発分離し、次いでS
分離後の生成物を減圧下で200〜1000℃に加熱す
ることによってTeとCuSを得るTeの回収方法にお
いて、Cu2 Teを予め塩酸で洗浄処理することにより
上記課題を解決している。
According to the method of recovering Te of the present invention, Cu 2 Te generated by electrolytic refining of Cu is subjected to heat treatment for a certain period of time together with 0.26 to 1.20 times the amount of S in weight ratio. The excess S is evaporated off from the product obtained,
In a method of recovering Te in which Te and CuS are obtained by heating the separated product to 200 to 1000 ° C. under reduced pressure, the above-mentioned problem is solved by previously washing Cu 2 Te with hydrochloric acid.

【0010】本発明のTeの回収方法では、TeO2
Sを反応させるのに先立って、原料であるCu2 Teを
塩酸で洗浄処理することで原料中のBiが除去されるの
で、TeへのBiの混入が阻止される。Cuの電解精錬
で発生するCu2 Teは、粒子の中心部のCu濃度が高
いため実際にはCu2+x Teで示される組成と考えられ
るが、一般的にはCu2 Teと記述されるので、本明細
書中でもCu2 Teとしている。
In the method of recovering Te of the present invention, Bi in the raw material is removed by washing the raw material Cu 2 Te with hydrochloric acid prior to reacting TeO 2 with S, so that Bi in the raw material is removed. Bi is prevented from being mixed. Cu 2 Te generated by electrolytic refining of Cu is considered to be actually a composition represented by Cu 2 + x Te due to a high concentration of Cu in the center of the particle, but is generally described as Cu 2 Te. Therefore, it is referred to as Cu 2 Te in this specification.

【0011】Cu2 Teは、溶融状態のSと接触させる
と下記の(1)式に従って容易にCuSを形成し、Te
は金属Teとして遊離してくる。SとTeは化合物を形
成するという報告もあるが定かではない。また、CuS
は高温でSの一部が解離し、Cu9 5 、Cu8 5
Cu7 4 、Cu3928、Cu9 8 、Cu1.96Sなど
を形成するが、本文中ではすべてを総称してCuSとす
る。
When Cu 2 Te is brought into contact with S in a molten state, CuS easily forms CuS according to the following equation (1).
Is released as metal Te. There are reports that S and Te form compounds, but it is not clear. Also, CuS
At high temperature, a part of S is dissociated, Cu 9 S 5 , Cu 8 S 5 ,
Cu 7 S 4 , Cu 39 S 28 , Cu 9 S 8 , Cu 1.96 S, etc. are formed, but all are collectively referred to as CuS in the text.

【0012】 Cu2 Te+2S→2CuS+Te・・・・(1) Cu2 Teは、Cuの電解製錬で陽極泥の脱銅処理の際
に副産物として発生するが、このCu2 Teには陽極泥
に含有されていたBiがCuSO4 と共に大量に付着し
ている。(1)式の反応においては、BiがCuSとT
eの両方に分配されるため、Cu2 Teの段階でBi除
去処理を行わないとTeにBiが入り、Teの純度低下
を引き起こす。BiはCu2 TeにBi2 3 もしくは
Bi2 (SO4 3 の形態で付着していると予想され
る。
[0012] Cu 2 Te + 2S → 2CuS + Te ···· (1) Cu 2 Te is generated as a by-product during the copper removal treatment of the anode mud electrolytic smelting Cu, the anode mud into the Cu 2 Te The contained Bi is attached in large quantities together with CuSO 4 . In the reaction of the formula (1), Bi is CuS and T
Therefore, if Bi is not removed at the stage of Cu 2 Te, Bi enters Te and causes a decrease in Te purity. Bi is expected to be attached to Cu 2 Te in the form of Bi 2 O 3 or Bi 2 (SO 4 ) 3 .

【0013】Biを除去するためにCu2 TeはHCl
で洗浄し、その後純水で過剰のHClを洗い流した後、
Sとの反応工程に移る。洗浄にHClを用いるのは、洗
浄用の酸としてHClがBi2 3 もしくはBi2 (S
4 3 に対して最も高い溶解度を示すからである。H
2 SO4 は溶解度が小さく、仮にH2 SO4 の濃度を高
濃度にしてもTeの溶解損失が増加し、非効率的であ
る。HNO3 はCu2 Teを酸化させてしまうためTe
がTeO2となり、Bi2 3 もしくはBi2 (S
4 3 の除去も十分行われない。その他、王水等も洗
浄用の酸として考えられるが、HNO3 の場合と同様に
TeO2が生成し適切でない。
In order to remove Bi, Cu 2 Te is replaced with HCl.
After washing with excess water with pure water,
Move on to the reaction step with S. HCl is used for cleaning because HCl is used as a cleaning acid when Bi 2 O 3 or Bi 2 (S
This is because it shows the highest solubility for O 4 ) 3 . H
2 SO 4 has a low solubility, and even if the concentration of H 2 SO 4 is increased, the dissolution loss of Te increases, which is inefficient. HNO 3 oxidizes Cu 2 Te, so Te
Becomes TeO 2 , and Bi 2 O 3 or Bi 2 (S
O 4 ) 3 is not sufficiently removed. In addition, aqua regia and the like are also considered as cleaning acids, but TeO 2 is generated as in the case of HNO 3 and is not suitable.

【0014】洗浄処理には、濃度が0.5〜3mol/
LのHClを使用することが好ましい。HCl濃度が
0.5mol/Lより低い場合、Bi2 3 もしくはB
2 (SO4 3 の溶解度が小さく殆ど除去できない。
3mol/Lより濃度が高い場合、Teの溶出損出が増
加するばかりでなく、Bi洗浄後に行う過剰HClの水
洗に手間が掛かり、その結果廃水量が増えるため処理費
用が嵩むことになる。
In the cleaning treatment, the concentration is 0.5 to 3 mol /
It is preferred to use L HCl. When the HCl concentration is lower than 0.5 mol / L, Bi 2 O 3 or B
The solubility of i 2 (SO 4 ) 3 is so small that it can hardly be removed.
When the concentration is higher than 3 mol / L, not only does the elution loss of Te increase, but also it takes time and effort to wash the excess HCl after the Bi washing, and as a result, the amount of wastewater increases, thereby increasing the processing cost.

【0015】Cu2 Teは少なからず表面が酸化されて
おり、Sと反応させるときにSO2の発生を伴うことが
あるので、Cu2 TeとSを反応させる前に水素還元あ
るいは炭素還元を行っておくと良い。還元処理を行った
Cu2 Teに重量比で0.26〜1.20倍のSを添加
した後、一定時間加熱処理する。Cu2 Teに対するS
の重量比が0.26より小さい場合には、Teの生成に
よってCu2 TeとSの混合物に流動性が失われるのみ
ならず、反応に関与するSが不足し反応速度を著しく低
下させる。逆に、Cu2 Teに対するSの重量比が1.
20より大きい場合は、過剰に仕込んだSの分離、回収
に長時間を要し生産性が低下する。Cu2 TeとSの反
応速度を早くするために、撹拌混合を行うことが効果的
である。
Since the surface of Cu 2 Te is not less than oxidized and SO 2 may be generated when reacting with S, hydrogen reduction or carbon reduction is performed before reacting Cu 2 Te with S. Good to keep. After adding 0.26 to 1.20 times by weight of S to the reduced Cu 2 Te, heat treatment is performed for a certain period of time. S for Cu 2 Te
If the weight ratio is less than 0.26, not only does the mixture of Cu 2 Te and S lose the fluidity due to the formation of Te, but also the S involved in the reaction becomes insufficient and the reaction rate is remarkably reduced. Conversely, the weight ratio of S to Cu 2 Te is 1.
If it is larger than 20, it takes a long time to separate and recover excessively charged S, and the productivity is reduced. It is effective to perform stirring and mixing in order to increase the reaction rate of Cu 2 Te and S.

【0016】加熱温度は、Sの蒸気圧および酸化を考慮
して112〜445℃が最も適している。加熱処理を行
う雰囲気は、アルゴンまたは窒素気流中もしくは減圧下
で行うことでSの空気酸化で起こるSO2 の発生が抑制
できるが、250℃以下の場合は大気中でもSO2 の発
生量は少なく、大きな支障なく加熱処理を行うことが可
能である。また、オートクレーブ等の密閉容器を使用
し、高いS蒸気圧下で反応を進める手法もあるが、44
5℃より高温の場合はオートクレーブ等の容器材質の耐
圧強度、耐硫化性および耐テルル化性を維持しながら反
応を進めるのは難しい。
The heating temperature is most preferably 112 to 445 ° C. in consideration of the vapor pressure and oxidation of S. Atmosphere in which the heat treatment can suppress the generation of SO 2 that by performing at or under reduced pressure in an argon or nitrogen stream occurs in the air oxidation of S is, the amount of SO 2 in the atmosphere in the case of 250 ° C. or less is small, The heat treatment can be performed without any great trouble. There is also a method in which the reaction is carried out under a high S vapor pressure using a closed vessel such as an autoclave.
When the temperature is higher than 5 ° C., it is difficult to proceed with the reaction while maintaining the pressure resistance, the sulfidation resistance and the tellurium resistance of the container material such as an autoclave.

【0017】CuSとTeを生成させた後、過剰に仕込
んだSを蒸発分離する。過剰のSを分離するために生成
物を加熱し、Sのみを蒸発させる。このときの加熱温度
は300〜445℃が適温である。Sを蒸発分離するに
は、減圧下で加熱する方法もあるが、Sの沸点が445
℃と低いためアルゴン気流中もしくは窒素気流中で行う
のが好ましい。
After producing CuS and Te, the excessively charged S is separated by evaporation. The product is heated to separate excess S and only S is evaporated. The appropriate heating temperature at this time is 300 to 445 ° C. In order to evaporate and separate S, there is a method of heating under reduced pressure, but the boiling point of S is 445.
Since the temperature is as low as ° C., it is preferable to carry out the reaction in an argon stream or a nitrogen stream.

【0018】次にCuSとTeの混合物からTeを分離
するため、減圧下で200〜1000℃に加熱する。T
eの沸点は989.8℃であるので、減圧下で200〜
1000℃に加熱するとTeは速やかに蒸発し、反応容
器に接続したコンデンサーに凝集、固化するので、加熱
終了後コンデンサーから剥離、回収する。一方反応容器
内にはCuSが残留する。真空度は、加熱温度によって
変える必要があるが、通常はコンデンサーを必要以上に
大きくしないために150Pa以下が好ましい。
Next, in order to separate Te from the mixture of CuS and Te, the mixture is heated to 200 to 1000 ° C. under reduced pressure. T
e has a boiling point of 989.8 ° C.
When heated to 1000 ° C., Te evaporates quickly and aggregates and solidifies in the condenser connected to the reaction vessel. On the other hand, CuS remains in the reaction vessel. The degree of vacuum needs to be changed depending on the heating temperature, but is usually preferably 150 Pa or less so as not to make the condenser larger than necessary.

【0019】加熱温度が200℃未満では、Teの蒸発
速度が非常に遅く回収効率が低い。一方1000℃より
高温では、Teの蒸発速度が速すぎるため蒸発損失が大
きくなるだけでなく、沸点の比較的低い不純物の混入が
懸念される。CuS中には不純物としてMn(沸点21
50℃)、Pb(沸点1740℃)、Si(沸点233
5℃)、Fe(沸点3000℃)、Mg(沸点1107
℃)もしくはこれらの硫化物が残留すると予想される
が、1000℃より高温で加熱した場合には特にBiお
よびMgがTeに混入する可能性が高くなる。
If the heating temperature is lower than 200 ° C., the evaporation rate of Te is very slow, and the recovery efficiency is low. On the other hand, if the temperature is higher than 1000 ° C., the evaporation rate of Te is too high, so that not only the evaporation loss is increased, but also impurities having a relatively low boiling point may be mixed. Mn (boiling point 21
50 ° C), Pb (boiling point 1740 ° C), Si (boiling point 233)
5 ° C), Fe (boiling point 3000 ° C), Mg (boiling point 1107)
° C) or these sulfides are expected to remain, but when heated at a temperature higher than 1000 ° C, Bi and Mg are particularly likely to be mixed into Te.

【0020】加熱条件によっては、TeにSが混入する
が、再度減圧下250〜400℃で加熱することでSの
分離ができ、高純度のTeの回収が可能である。以上の
工程によって、Cu2 Teから94%以上の収率でTe
の回収を行うことができる。また、副生成物のCuSは
乾式銅製錬用の原料とし、回収されたSは循環使用す
る。
Depending on the heating conditions, S is mixed into Te, but by heating again at 250 to 400 ° C. under reduced pressure, S can be separated, and high-purity Te can be recovered. By the above steps, Te is obtained from Cu 2 Te with a yield of 94% or more.
Can be collected. The by-product CuS is used as a raw material for dry copper smelting, and the recovered S is recycled.

【0021】[0021]

【発明の実施の形態】Cuの電解精錬の際に発生する陽
極泥を硫酸で浸出した液にCu粉を投入しセメンテーシ
ョンによって生成したCu2 Teをポリプロピレン製の
容器に入れ、0.5〜3mol/L−HClを添加し、
攪拌機にてスラリー化する。洗浄に使うHClの液量
は、Cu2 Teに付着するBi等の不純物量によって変
化させなければならないが、通常Cu2 Te1kg 当り1
0〜30Lが適当である。
BEST MODE FOR CARRYING OUT THE INVENTION Cu powder is introduced into a liquid obtained by leaching an anode mud generated during electrolytic refining of Cu with sulfuric acid, and Cu 2 Te produced by cementation is placed in a polypropylene container. 3 mol / L-HCl was added,
Slurry with a stirrer. Liquid volume of HCl used for washing, but must be changed by the amount of impurities Bi, etc. adhering to the Cu 2 Te, usually Cu 2 Te1kg per
0 to 30 L is appropriate.

【0022】このスラリーをフィルタープレスなどで固
液分離した後、Cu2 Teに付着しているHClを純水
で洗浄し、温風循環乾燥機を用い70℃で6h乾燥す
る。HCl洗浄と純水洗浄は、2〜3回繰り返し行うの
が効果的である。乾燥が終わったCu2 Te200〜1
000gを石英製の流動層に入れ、水素1〜10L/m
inの気流中で200〜1000℃で加熱してCu2
e表面に形成された酸化物を還元除去し、Cu2 Teと
Sの反応時のSO2 発生が原因で起こる原料の容器外へ
の溢出を回避する。加熱時間は、還元の進行状態を測定
し決定すればよいが、一般に1〜3hが適当であり、H
2 は脱水しながら循環使用することで利用率を上げるこ
とができる。
After the slurry is separated into solid and liquid by a filter press or the like, HCl adhering to Cu 2 Te is washed with pure water, and dried at 70 ° C. for 6 hours using a hot air circulating drier. It is effective to repeat the HCl washing and the pure water washing two to three times. The dried Cu 2 Te 200-1
000 g in a fluidized bed made of quartz, and 1 to 10 L / m of hydrogen
in a gas stream of 200 to 1000 ° C. to produce Cu 2 T
The oxide formed on the e-surface is reduced and removed to prevent the raw material from overflowing out of the container due to the generation of SO 2 during the reaction between Cu 2 Te and S. The heating time may be determined by measuring the progress of the reduction, but generally 1 to 3 h is appropriate.
2 can increase the utilization rate by circulating it while dewatering.

【0023】また、炭素粉末で還元する場合には、内容
積2Lのアルミナ製ポットにCu2Te200g、カー
ボンブラック10g、φ10の部分安定化ジルコニアボ
ール1.5kg、および水200mLの割合で入れ、1
25rpmで1h混合する。混合後内容物を取出し、ジ
ルコニアボールを取り除いた混合粉末スラリーをバット
に入れ、温風循環乾燥機で50〜90℃で1〜6h乾燥
し、真空加熱炉で500〜1000℃、3h加熱する。
In the case of reduction with carbon powder, 200 g of Cu 2 Te, 10 g of carbon black, 1.5 kg of partially stabilized zirconia balls of φ10, and 200 mL of water are put into a 2 L alumina pot and put into a 2 L alumina pot.
Mix for 1 h at 25 rpm. After mixing, the contents are taken out, the mixed powder slurry from which the zirconia balls have been removed is put in a vat, dried at 50 to 90 ° C. for 1 to 6 hours by a hot air circulating drier, and heated at 500 to 1000 ° C. for 3 hours in a vacuum heating furnace.

【0024】流動層または真空加熱炉から取出したCu
2 Teは、水冷式の冷却トラップが取付けられた上蓋を
有し、雰囲気制御が可能な石英製容器に入れ、Cu2
eに対し重量比で0.26〜1.20倍のSを添加後、
窒素100〜1000mL/minを容器内に流しなが
ら電気抵抗ヒーターで加熱を開始する。加熱温度は、硫
黄の蒸気圧が低く、反応温度が速い200〜250℃が
最適である。加熱時間は1〜10hの範囲で行うのがよ
いが、仕込み量、加熱温度およびCu2 TeとSの混合
状態によって任意に変化させなければならない。冷却ト
ラップには、内側トラップの表面の温度が50℃以下に
なるように冷却水を十分に流す必要がある。
Cu removed from a fluidized bed or vacuum heating furnace
2 Te has a lid which water-cooled cold trap is attached, placed in a quartz container capable atmosphere control, Cu 2 T
After adding 0.26 to 1.20 times by weight of S to e,
Heating is started with an electric resistance heater while flowing 100 to 1000 mL / min of nitrogen into the container. The heating temperature is optimally 200 to 250 ° C. where the sulfur vapor pressure is low and the reaction temperature is fast. The heating time is preferably in the range of 1 to 10 h, but it must be arbitrarily changed depending on the charged amount, the heating temperature, and the mixed state of Cu 2 Te and S. In the cooling trap, it is necessary to sufficiently supply cooling water so that the temperature of the surface of the inner trap becomes 50 ° C. or less.

【0025】次に、石英製容器を300〜445℃に1
〜5h保持する。過剰なSは、冷却トラップに凝集し、
石英製容器内には、CuSとTeの混合物が残留する。
加熱温度および加熱時間は、Teの蒸発損失が防げる範
囲であれば任意に変更が可能である。石英製容器を室温
に冷却した後、冷却トラップが取付けられた上蓋を石英
製容器から取外し、同型の上蓋を新たに取付ける。
Next, the quartz container is heated to 300 to 445 ° C. for 1 hour.
Hold for ~ 5h. Excess S aggregates in the cold trap,
A mixture of CuS and Te remains in the quartz container.
The heating temperature and the heating time can be arbitrarily changed as long as the evaporation loss of Te can be prevented. After cooling the quartz container to room temperature, the upper lid having the cooling trap attached thereto is removed from the quartz container, and a new upper lid of the same type is attached.

【0026】冷却トラップに水を十分に流しながら、石
英製容器を油回転ポンプで150Pa以下まで減圧した
後、石英製容器を電気抵抗ヒータで加熱し、200〜1
000℃、1〜5h保持する。加熱温度は300〜60
0℃がより好ましい。CuSとTeの混合物からTeが
蒸発し、冷却トラップに凝集する。石英製容器を室温ま
で冷却後、冷却トラップに凝集したTeを剥離回収す
る。
After sufficiently reducing the pressure of the quartz container to 150 Pa or less with an oil rotary pump while sufficiently flowing water through the cooling trap, the quartz container was heated by an electric resistance heater and then heated to 200 to 1 mm.
Hold at 000 ° C. for 1-5 h. Heating temperature is 300-60
0 ° C. is more preferred. Te evaporates from the mixture of CuS and Te and aggregates in the cooling trap. After cooling the quartz container to room temperature, the Te aggregated in the cooling trap is peeled and collected.

【0027】ただし、TeにSが混入していた場合に
は、回収したTeを再度150Pa以下、250〜40
0℃で加熱し、Sのみを蒸発分離することで高純度Te
回収する。
However, when S is mixed in Te, the recovered Te is again reduced to 150 Pa or less, 250 to 40 Pa.
By heating at 0 ° C. and evaporating and separating only S, high purity Te is obtained.
to recover.

【0028】[0028]

【実施例】〔実施例1〕Cu2 Teを300gをポリプ
ロピレン製容器に入れ、そこに1mol/L−HCl3
Lを添加し、撹拌でスラリー化した後、3h撹拌を継続
し、No.5Bの濾紙で濾過することでスラリーからC
2 Teを分離、回収した。次にCu2Teをポリプロ
ピレン製容器に入れ、そこに純水3Lを入れて撹拌する
ことで再度スラリー化させてから3h撹拌を継続し、再
び濾過で固液分離を行なった。以上の操作を3回繰り返
した。
[Example 1] 300 g of Cu 2 Te was placed in a polypropylene container, and 1 mol / L-HCl 3 was added thereto.
L was added, and the mixture was slurried with stirring. The slurry is filtered through 5B filter paper to remove C from the slurry.
u 2 Te was separated and recovered. Next, Cu 2 Te was placed in a polypropylene container, 3 L of pure water was added thereto, and the mixture was stirred to form a slurry again. Then, stirring was continued for 3 hours, and solid-liquid separation was performed again by filtration. The above operation was repeated three times.

【0029】洗浄後のCu2 Teを温風循環乾燥機を用
い70℃で6h乾燥した。乾燥が終了したCu2 Te2
00gを石英製の流動層に入れ、3L/minの水素気
流中において300℃で3h加熱した。流動層から取出
したCu2 Teは、水冷式の冷却トラップが取付けられ
た上蓋を有し、雰囲気制御が可能な内容積2Lの石英製
容器に入れ、Cu2 Teに対し重量比で0.5倍のSを
添加後、窒素100mL/minを容器内に流しながら
電気抵抗加熱ヒーターで加熱した。加熱は250℃で3
h行い、冷却トラップには、水を100mL/minで
給水した。
The washed Cu 2 Te was dried at 70 ° C. for 6 hours using a circulating hot air drier. Cu 2 Te2 after drying
00 g was put in a fluidized bed made of quartz and heated at 300 ° C. for 3 h in a hydrogen stream at 3 L / min. Cu 2 Te removed from the fluidized bed was placed in a quartz container having an inner volume of 2 L capable of controlling the atmosphere, having an upper lid equipped with a water-cooled cooling trap, and having a weight ratio of 0.5 to Cu 2 Te. After adding twice the amount of S, the mixture was heated with an electric resistance heater while flowing 100 mL / min of nitrogen into the vessel. Heating at 250 ° C 3
The cooling trap was supplied with water at a rate of 100 mL / min.

【0030】次に、石英製容器を445℃で2h保持し
た。過剰なSは、冷却トラップに凝集し、石英製容器内
には、CuSとTeの混合物が残留した。石英製容器を
室温まで冷却した後、冷却トラップを取付けた上蓋を石
英製容器から取外し、同型の上蓋を新たに取付けた。冷
却トラップに水を100mL/min流しながら、石英
製容器を油回転ポンプで150Pa以下まで減圧した
後、石英製容器を電気抵抗ヒータで加熱し、400℃、
3h保持した。CuSとTeの混合物からTeが蒸発
し、冷却トラップに凝集するので、室温まで冷却後、冷
却トラップに凝集したTeを剥離回収した。次に、回収
したTeを再度150Paで200℃、1h加熱し、C
uSの解離によって混入したSを蒸発分離し高純度Te
を得た。
Next, the quartz container was kept at 445 ° C. for 2 hours. Excess S aggregated in the cooling trap, and a mixture of CuS and Te remained in the quartz container. After cooling the quartz container to room temperature, the upper lid equipped with the cooling trap was removed from the quartz container, and an upper lid of the same type was newly attached. While flowing water at a rate of 100 mL / min through the cooling trap, the quartz container was depressurized to 150 Pa or less with an oil rotary pump, and then the quartz container was heated with an electric resistance heater at 400 ° C.
Held for 3 h. Te evaporates from the mixture of CuS and Te and aggregates in the cooling trap. After cooling to room temperature, Te aggregated in the cooling trap was separated and collected. Next, the recovered Te was heated again at 150 ° C. and 200 ° C. for 1 hour,
S mixed by the dissociation of uS is separated by evaporation to obtain high purity Te.
I got

【0031】この条件で回収したTeは、回収率が98
%であり、純度は99.99%であった。 〔実施例2〕Cu2 Teに対し重量比で1.2倍のSを
添加した以外は実施例1と同様に操作した。
The Te recovered under these conditions has a recovery rate of 98.
% And the purity was 99.99%. Example 2 The same operation as in Example 1 was carried out except that S was added in a weight ratio of 1.2 times that of Cu 2 Te.

【0032】この条件で回収したTeは、回収率が99
%であり、純度は99.99%であった。 〔実施例3〕Cu2 TeとSを加熱処理し、S分離後、
CuSとTeが残留した石英製容器を電気抵抗加熱ヒー
タで加熱し、1000℃、2h保持する以外は実施例1
と同様に操作した。
Te recovered under these conditions has a recovery rate of 99%.
% And the purity was 99.99%. [Example 3] Cu 2 Te and S were heat-treated, and after S separation,
Example 1 except that a quartz container in which CuS and Te remained was heated by an electric resistance heater and kept at 1000 ° C. for 2 hours.
The same operation was performed.

【0033】この条件で回収したTeは、回収率が94
%であり、純度は99.99%であった。 〔実施例4〕Cu2 Te300gをポリプロピレン製容
器に入れ、そこに2.5mol/L−HCl3Lを添加
し、洗浄操作を行った以外は実施例1と同様に操作し
た。
The Te recovered under these conditions has a recovery rate of 94
% And the purity was 99.99%. Example 4 The same operation as in Example 1 was performed except that 300 g of Cu 2 Te was placed in a polypropylene container, 3 L of 2.5 mol / L-HCl was added thereto, and a washing operation was performed.

【0034】この条件で回収したTeは、回収率が94
%であり、純度は99.99%であった。
The Te recovered under these conditions has a recovery rate of 94
% And the purity was 99.99%.

【0035】[0035]

【発明の効果】本発明のテルルの回収方法によれば、テ
ルル化銅からテルルを回収するときに、中間物として二
酸化テルルを経由せず、少ない工程数でビスマスなどの
不純物を含まない高純度テルルを回収することができ、
コスト低減が可能となる。また、副生成物である硫化銅
と硫黄は、銅の製錬原料としてあるいは反応原料として
再利用可能であり、資源の有効利用に貢献できる。
According to the method for recovering tellurium of the present invention, when recovering tellurium from copper telluride, high purity which does not pass through tellurium dioxide as an intermediate and contains no impurities such as bismuth in a small number of steps. Tellurium can be recovered,
The cost can be reduced. Further, copper sulfide and sulfur, which are by-products, can be reused as a raw material for smelting copper or as a raw material for reaction, and can contribute to effective utilization of resources.

【0036】テルル化銅を洗浄処理する塩酸として、
0.5〜3mol/Lの塩酸を使用すると、Bi2 3
もしくはBi2 (SO4 3 の溶解度が大きく、より効
果的な洗浄が可能となる。
As hydrochloric acid for washing copper telluride,
When 0.5 to 3 mol / L hydrochloric acid is used, Bi 2 O 3
Alternatively, the solubility of Bi 2 (SO 4 ) 3 is large, and more effective cleaning can be performed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅の電解精錬で発生するテルル化銅を重
量比で0.26〜1.20倍量の硫黄と共に一定時間加
熱処理して得られた生成物から過剰の硫黄を蒸発分離
し、次いで硫黄分離後の生成物を減圧下で200〜10
00℃に加熱することによってテルルと硫化銅を得るテ
ルルの回収方法であって、テルル化銅を予め塩酸で洗浄
処理することを特徴とするテルルの回収方法。
An excess sulfur is removed from a product obtained by heat-treating copper telluride generated by electrolytic refining of copper together with sulfur in a weight ratio of 0.26 to 1.20 times for a certain period of time. The product after sulfur separation is then reduced under reduced pressure to 200-10
A method for recovering tellurium, which obtains tellurium and copper sulfide by heating to 00 ° C., wherein copper telluride is washed with hydrochloric acid in advance.
【請求項2】 テルル化銅を洗浄処理する塩酸として、
0.5〜3mol/Lの塩酸を使用することを特徴とす
る請求項1記載のテルルの回収方法。
2. Hydrochloric acid for washing copper telluride,
The method for recovering tellurium according to claim 1, wherein 0.5 to 3 mol / L hydrochloric acid is used.
JP2001034228A 2001-02-09 2001-02-09 Method for recovering tellurium Withdrawn JP2002241866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034228A JP2002241866A (en) 2001-02-09 2001-02-09 Method for recovering tellurium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034228A JP2002241866A (en) 2001-02-09 2001-02-09 Method for recovering tellurium

Publications (1)

Publication Number Publication Date
JP2002241866A true JP2002241866A (en) 2002-08-28

Family

ID=18897874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034228A Withdrawn JP2002241866A (en) 2001-02-09 2001-02-09 Method for recovering tellurium

Country Status (1)

Country Link
JP (1) JP2002241866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550611A (en) * 2019-10-18 2019-12-10 江西理工大学 Method for efficiently leaching tellurium from copper separating slag of copper anode slime enhanced by external field effect
CN112375917A (en) * 2020-11-11 2021-02-19 昆明理工大学 Method for recovering tellurium copper from copper telluride slag
CN114920208A (en) * 2022-04-24 2022-08-19 中南大学 Method for efficiently separating tellurium or tellurium and selenium from tellurium-containing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550611A (en) * 2019-10-18 2019-12-10 江西理工大学 Method for efficiently leaching tellurium from copper separating slag of copper anode slime enhanced by external field effect
CN112375917A (en) * 2020-11-11 2021-02-19 昆明理工大学 Method for recovering tellurium copper from copper telluride slag
CN114920208A (en) * 2022-04-24 2022-08-19 中南大学 Method for efficiently separating tellurium or tellurium and selenium from tellurium-containing material
CN114920208B (en) * 2022-04-24 2023-08-15 中南大学 Method for efficiently separating tellurium or separating tellurium and selenium from tellurium-containing material

Similar Documents

Publication Publication Date Title
US5932086A (en) Process for making manganese
US20080124269A1 (en) Purified molybdenum technical oxide from molybdenite
JP2001316735A (en) Method for treating anode slime
CA1059771A (en) Hydrometallurgical process for the recovery of valuable components from the anode slime produced in the electrolytical refining of copper
CN112063854B (en) Method for comprehensively recovering bismuth, silver and copper metals by taking precious lead as raw material
CN105129839A (en) Method for producing micron-grade zinc oxide with high fluorine and chlorine crude zinc oxide as raw material
CN111575483A (en) Method for separating selenium, tellurium, arsenic, copper, lead and silver and enriching gold from copper anode slime
JP5146017B2 (en) Chlorine leaching method for lead anode slime
CN111621646A (en) Zinc dross recycling method
JPH10509212A (en) Recovery of metal and chemical value
JP6656709B2 (en) Manufacturing method of zinc ingot
CN106884093A (en) A kind of thick aurin smelting method
US4666514A (en) Hydrometallurgical process for recovering silver from copper-electrolysis anode sludge
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
JPS6139383B2 (en)
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JP4574826B2 (en) How to recover tellurium
JP2002241866A (en) Method for recovering tellurium
JP2000169116A (en) Selectively leaching recovery process of selenium
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
JP4358594B2 (en) Collection method of valuable materials
AU2013220926B2 (en) Process for zinc oxide production from ore
CN111268655A (en) Method for producing tellurium dioxide by self-purification of coarse tellurium powder
JP4155177B2 (en) Method for recovering silver from silver-lead-containing materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513