JP2002241816A - Method and instrument for detecting breakage of cooling system for furnace body in blast furnace - Google Patents

Method and instrument for detecting breakage of cooling system for furnace body in blast furnace

Info

Publication number
JP2002241816A
JP2002241816A JP2001041379A JP2001041379A JP2002241816A JP 2002241816 A JP2002241816 A JP 2002241816A JP 2001041379 A JP2001041379 A JP 2001041379A JP 2001041379 A JP2001041379 A JP 2001041379A JP 2002241816 A JP2002241816 A JP 2002241816A
Authority
JP
Japan
Prior art keywords
cooling
furnace
cooling water
water
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001041379A
Other languages
Japanese (ja)
Other versions
JP4122716B2 (en
Inventor
Taichi Maruyama
太一 丸山
Akira Maki
章 牧
Akio Shimomura
昭夫 下村
Katsuo Nishie
克緒 西江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001041379A priority Critical patent/JP4122716B2/en
Publication of JP2002241816A publication Critical patent/JP2002241816A/en
Application granted granted Critical
Publication of JP4122716B2 publication Critical patent/JP4122716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely, quickly and accurately diagnose whether the breakage of a cooling system for furnace body in a blast furnace is developed or not, and a range of developed position. SOLUTION: In a process, in which cooling drained water flowing out from respective outlets of a plurality of draining pipes 5 for cooling water in the cooling systems 1, 2, 3 for furnace body in the blast furnace is made to flow into a water receiving vessel, it is visually decided whether gas bubble is mixed in the cooling drained water or not. Then, when the mixed gas bubble is observed, this gas is recovered and CO gas component in the recovered gas is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉炉体の冷却
設備の破損検知技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for detecting breakage of cooling equipment for a blast furnace furnace body.

【0002】[0002]

【従来の技術】高炉炉体の冷却設備の内、特に羽口、ス
テーブクーラー、冷却箱等に冷却水を供給する冷却パイ
プには、過酷な熱負荷と繰返し応力がかかるので、これ
らの設備には疲労破壊により破損し、漏水事故が発生す
ることがある。特に、冷却設備内部を流れる冷却水圧力
の方が、高炉の炉内圧力よりも大きい場所において漏水
事故が発生すると、冷却水が炉内へ漏れて炉内温度が低
下し、炉況不調に陥ることになる。従って、高炉炉体の
冷却水配管の破損による漏水を迅速且つ的確に検出する
技術が重要となっている。
2. Description of the Related Art Severe heat loads and repetitive stresses are applied to cooling pipes for supplying cooling water to tuyeres, stave coolers, cooling boxes and the like, especially in cooling equipment for blast furnace furnace bodies. May be damaged by fatigue failure and water leakage may occur. In particular, if a water leakage accident occurs in a place where the pressure of the cooling water flowing inside the cooling equipment is higher than the pressure inside the furnace of the blast furnace, the cooling water leaks into the furnace, the temperature inside the furnace decreases, and the furnace condition falls. Will be. Therefore, a technique for quickly and accurately detecting water leakage due to breakage of a cooling water pipe of a blast furnace furnace body is important.

【0003】このような冷却水配管の破損を正確に速や
かに且つ精度よく検知し、冷却設備の適切な補修を行な
うと共に、速やかに操業アクションをとるために、従
来、いくつかの技術が開示されている。
[0003] In order to detect such breakage of the cooling water pipe accurately and promptly and accurately, to perform appropriate repair of the cooling equipment, and to promptly take an operation action, several techniques have conventionally been disclosed. ing.

【0004】例えば、特開平6−347361号公報に
は、高炉ステーブパイプの破損検知対象範囲を、その破
損の可能性がある全範囲にわたり、早期に正確にその破
損状況を検知するために、下記方法が提案されている。
一般に、高炉炉体のステーブによる冷却においては、ス
テーブ毎に冷却水系列を別系統に設け、その冷却水圧力
をステーブの炉体高さ方向の位置により変えている。例
えば、高炉シャフト部ではその部位の炉内圧力よりも冷
却水圧力を小さくしているが、ボッシュ部ではその部位
の炉内圧力よりも冷却水圧力を大きくしている。従っ
て、冷却水圧力の方が炉内圧力よりも小さく設定されて
いる冷却用配管に破損が発生すれば、炉内ガスが冷却水
に混入するので、そのガスを分析することにより、破損
を把握することができる。しかしながら、冷却水圧力の
方が炉内圧力よりも大きく設定されている冷却用配管に
おいては、破損が発生しても冷却水中へ炉内ガスは混入
しない。従って、ガスの混入に注目する方法では上記破
損を検知することはできないので、破損を検出できな
い。そこで、通常操業時における冷却水圧力と炉内圧力
との高さ方向位置による大小関係にかかわらず、冷却水
配管等の破損検知試験を行なうときには、冷却装置が下
記所定条件を満たしているときに限定して、炉内圧力よ
りも冷却水圧力を小さくすることにより、冷却装置に破
損が発生している場合にはその破損部から炉内ガスが冷
却水中に侵入してくることを利用して、冷却水中の混入
ガスのCO検知を行なう。ここで、冷却装置が満たして
いるべき条件として、冷却水系列毎に分割されているス
テーブの温度が所定値以下であって、ステーブの温度が
一定値に保持されているか、下降傾向にあるときに限定
している(以下、「先行技術1」という)。
For example, Japanese Patent Application Laid-Open No. Hei 6-347361 discloses a method for detecting a breakage range of a blast furnace stave pipe in an early and accurate manner over the entire range of possible breakage. A method has been proposed.
In general, in cooling a blast furnace furnace with a stave, a cooling water system is provided in a separate system for each stave, and the cooling water pressure is changed depending on the position of the stave in the furnace body height direction. For example, in the shaft part of the blast furnace, the cooling water pressure is lower than the pressure in the furnace at the site, but in the Bosch portion, the pressure of the cooling water is higher than the pressure in the furnace at the site. Therefore, if the cooling pipe pressure is set lower than the furnace pressure and the cooling pipe is damaged, the gas in the furnace is mixed into the cooling water, and the gas is analyzed to determine the damage. can do. However, in a cooling pipe in which the cooling water pressure is set to be higher than the furnace pressure, even if damage occurs, the furnace gas does not enter the cooling water. Therefore, the above-described damage cannot be detected by a method that focuses on the mixing of gas, so that the damage cannot be detected. Therefore, regardless of the magnitude relationship between the height of the cooling water pressure and the furnace pressure during normal operation, when performing a damage detection test on a cooling water pipe or the like, when the cooling device satisfies the following predetermined conditions: By limiting the cooling water pressure to a value lower than the furnace pressure, if the cooling device is damaged, the gas in the furnace enters the cooling water from the damaged part. Then, CO detection of the mixed gas in the cooling water is performed. Here, as a condition to be satisfied by the cooling device, when the temperature of the stave divided for each cooling water series is equal to or lower than a predetermined value and the temperature of the stave is maintained at a constant value or is in a downward trend (Hereinafter referred to as “prior art 1”).

【0005】特開平10−17911号公報には、羽口
の微小なピンホール等の微小な水漏れ破損を精度よく検
出する方法として、次の方法を提案している。「通常操
業」時に、検知対象とする羽口への冷却水の給水流量と
その羽口からの排水流量との差(差流量)ΔQと、給水
圧力と炉内圧力との差(差圧)ΔPとを測定し、このと
きのΔPをΔPNとする。次に、給水圧力を変化させて
ΔPが、例えばΔPN×80、60、30%等となると
きに対するそれぞれの差流量ΔQ(ΔQ80、ΔQ 60、Δ
30等)を測定し、ΔPとΔQとの回帰曲線を求めてお
く。一方、「羽口破損診断」に際しては、操業時におい
て、差流量ΔQが予め定めた設定値を超えた場合に給水
圧力を各種水準に変化させて、それぞれの給水圧力時に
おける差流量を測定して、この場合のΔPとΔQとの回
帰曲線を求める。ここで、回帰曲線はいずれも、ΔQ=
αA(2gΔPγ)1/2+β、(ΔQ:差流量=炉内へ
の漏水量、αA:破損断面積によって定まる定数、g:
重力加速度、γ:水の比重、β:流量計のオフセット
値)の形式となる。両回帰式を比較して、「通常操業」
時には、ΔQ値に対して流量計オフセット値βは支配的
でないが、「羽口破損診断」時には、ΔQ値に対して流
量計オフセット値βが支配的であるときは、羽口破損に
よるものであると判定する。更に、羽口破損による場合
には、差流量ΔQの所定の算定式に基づき破損口径を破
損診断制御機構により推定するという方法である(以
下、「先行技術2」という)。
[0005] Japanese Patent Application Laid-Open No. 10-17911 discloses a tuyere.
Accurate detection of minute water leak damage such as minute pinholes
The following method has been proposed as a method for issuing the request. "Normal operation
At the time of operation, the flow rate of cooling water supplied to the tuyere
The difference (difference flow rate) ΔQ from the flow rate of drainage from the tuyere
The difference (differential pressure) ΔP between the pressure and the furnace pressure was measured, and
の PNAnd Next, change the water supply pressure
ΔP is, for example, ΔPN× 80, 60, 30% etc.
Flow rate ΔQ (ΔQ80, ΔQ 60, Δ
Q30Etc.) and obtain a regression curve between ΔP and ΔQ
Good. On the other hand, in the case of “Tuyere damage diagnosis”,
When the difference flow rate ΔQ exceeds a predetermined set value,
By changing the pressure to various levels,
The difference flow rate in this case is measured, and the difference between ΔP and ΔQ in this case is measured.
Find the recursive curve. Here, all the regression curves are ΔQ =
αA (2gΔPγ)1/2+ Β, (ΔQ: differential flow rate = into furnace
ΑA: constant determined by the cross-sectional area of breakage, g:
Gravitational acceleration, γ: specific gravity of water, β: offset of flow meter
Value). Compare both regression formulas
Sometimes the flow meter offset value β is dominant over the ΔQ value
However, at the time of “Tuyere damage diagnosis”,
When the meter offset value β is dominant, tuyere damage
It is determined to be due. In addition, due to tuyere damage
Breaks the damaged diameter based on the predetermined formula for calculating the differential flow rate ΔQ.
This is a method of estimating by the loss diagnosis control mechanism (hereafter,
Below, it is called "prior art 2."

【0006】また、特開平1−222005号公報に
は、羽口、ステーブクーラー、あるいは冷却盤等の破損
検知方法として、各冷却体の排水管に連通する位置にガ
ス捕集器を設け、このガス捕集器内の電気的導通・不通
を検知し、電気的不通時に冷却体が破損していると判定
する方法が提案されている(以下、「先行技術3」とい
う)。
In Japanese Patent Application Laid-Open No. 1-222005, as a method for detecting breakage of a tuyere, a stave cooler, or a cooling board, a gas collector is provided at a position communicating with a drain pipe of each cooling body. There has been proposed a method of detecting electrical conduction / disconnection in a gas collector and determining that the cooling body is damaged when the electrical disconnection occurs (hereinafter, referred to as “prior art 3”).

【0007】[0007]

【発明が解決しようとする課題】高炉炉体の冷却体から
の冷却排水中に混入したガス中のCOガス検知や電気的
不通検知により、冷却体や冷却配管等のどの水路に破損
が発生したかを直接把握するためには、冷却排水混入ガ
スのサンプリング箇所を著しく多数設ける必要がある。
例えば、実用高炉においては通常、数百箇所、例えば5
00箇所程度になる。本発明者等は、このように多数箇
所に細分された冷却排水中の混入ガスを分析・検知対象
とすることを前提として、高炉炉体の冷却水配管の破損
を、正確に速やかに且つ精度よく検知する技術を開発し
ようとするものである。
Any water path such as a cooling body or a cooling pipe has been damaged due to detection of CO gas in a gas discharged into a cooling drainage from a cooling body of a blast furnace and detection of electrical interruption. In order to directly grasp the situation, it is necessary to provide a remarkably large number of sampling points for the gas mixed with cooling wastewater.
For example, in a commercial blast furnace, usually several hundred locations, for example, 5
It is about 00 places. The present inventors assumed that the mixed gas in the cooling wastewater subdivided into a large number of such places was analyzed and detected, and it was possible to accurately, promptly and accurately damage the cooling water pipe of the blast furnace furnace body. It is trying to develop a technology to detect well.

【0008】これに対して先行技術1では、冷却水系列
毎に分割されているステーブの温度が所定値以下であっ
て、ステーブの温度が一定値に保持されているか、下降
傾向にあることを機械的にあるいは人の監視により確認
していなければならない。ここで、ステーブ温度挙動の
判定に所定の時間がかかること、多数の判定が必要とな
り、そして、多数の混入ガス中CO検知系統の装置が必
要となる。従って、装置コスト又は作業コストが大きく
なること、及び破損検知の迅速性に問題がある。先行技
術2では、給水圧力が炉内圧力よりも高い(ΔP>0)
条件を満たすような高炉の高さ方向部位においてのみ適
用し得る方法である。従って、通常の高炉では、ボッシ
ュ部には適用されるが、シャフト部には適用できない。
また、先行技術3では、冷却水へのガス混入量が少量の
場合には、電気的導通・不通の判別が困難であるから、
破損検知精度に問題がある。
On the other hand, in the prior art 1, the stave temperature divided for each cooling water system is equal to or lower than a predetermined value, and the stave temperature is maintained at a constant value or tends to decrease. It must be confirmed mechanically or by human monitoring. Here, it takes a predetermined time to determine the stave temperature behavior, a large number of determinations are required, and a large number of devices for detecting CO in mixed gas are required. Therefore, there is a problem in that the apparatus cost or the operation cost increases, and the speed of damage detection is high. In Prior Art 2, the feedwater pressure is higher than the furnace pressure (ΔP> 0).
This is a method that can be applied only to the height direction portion of the blast furnace that satisfies the conditions. Therefore, in a normal blast furnace, it is applied to the Bosch portion, but not to the shaft portion.
Further, according to the prior art 3, when the amount of gas mixed into the cooling water is small, it is difficult to determine the electrical conduction / non-conduction.
There is a problem with the damage detection accuracy.

【0009】従って、この発明の課題及び目的は、高炉
炉体の多数に細分された冷却水配管系統のどこかに破損
が発生した場合、その破損冷却水配管系統を直接特定す
ることができ、しかも正確に速やかに且つ精度よく、設
備コスト及び作業コストを大きくかけることなく検知す
る技術を開発することにあり、これにより、冷却設備の
適切な補修を行なうと共に、速やかに操業アクションを
とることにある。
Accordingly, an object and an object of the present invention is to provide a method for directly specifying a damaged cooling water piping system in the case where a damage has occurred in a part of a cooling water piping system subdivided into a large number of blast furnace furnace bodies. In addition, the aim is to develop a technology to detect accurately, promptly and accurately without increasing equipment costs and work costs. This enables appropriate repair of cooling equipment and prompt operation actions. is there.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために、高炉の各種設備の点検作業者が、炉
体冷却設備を点検巡廻する際に同時に併行して、前述し
た炉体冷却水の多数の排出管の出口全数において、それ
ぞれから流出する冷却排水を、適切な受水容器に流入さ
せて、その排水に気泡が混入していないかを目視観察で
きないかどうかを試みた。その際は、所定の冷却水給水
系統のみについて、破損診断対象部位の冷却水圧力を炉
内圧力よりも小さくして、破損発生が生じている場合の
冷却排水への混入気泡の有無を観察した。そして、混入
気泡が観察されたときには、その気泡を所定のガス補修
器で回収し、直ちにCOガス成分の分析を行なうことに
した。このような試験を重ねると共に、混入気泡を正確
に見分けることができ、且つ携帯に便利な受水容器を試
作し、この作業に要する工数検討を行なった。更に、こ
の診断作業時に限定して、冷却水圧力を炉内圧力よりも
小さくすること(逆圧設定)が必要であり、この逆圧設
定の継続所要時間が、冷却能減殺に及ぼす影響を検討し
た。
Means for Solving the Problems To solve the above-mentioned problems, the present inventors have made it necessary for inspection workers of various facilities of a blast furnace to simultaneously carry out inspection tours of the furnace body cooling equipment. At all outlets of the large number of furnace body cooling water outlets, the cooling wastewater flowing out from each outlet was allowed to flow into an appropriate water receiving container, and it was checked whether bubbles could be visually observed in the wastewater. Tried. At that time, for only the predetermined cooling water supply system, the cooling water pressure at the damage diagnosis target site was made lower than the furnace pressure, and the presence or absence of bubbles mixed into the cooling drainage when damage occurred was observed. . Then, when mixed air bubbles were observed, the air bubbles were collected by a predetermined gas repair device, and the CO gas component was immediately analyzed. In addition to such tests, a portable water-receiving container capable of accurately discriminating mixed air bubbles and being portable was manufactured, and the man-hours required for this work were examined. Furthermore, it is necessary to make the cooling water pressure lower than the pressure inside the furnace (reverse pressure setting) only during this diagnostic work. did.

【0011】その結果、上述した冷却排水出口毎での冷
却排水への気泡混入観察、ガス回収、及びCOガス成分
分析という一連の作業・操作により、冷却排水の受水・
観察箇所(回数)が著しく多数になっても、冷却体や冷
却配管等のどの水路範囲に破損が発生したかを、正確に
直接その発生範囲を把握することができ、安定操業に寄
与することが可能であることがわかった。
As a result, the cooling wastewater can be received and received by a series of operations and operations of the above-described observation of air bubble mixing in the cooling wastewater at each cooling wastewater outlet, gas recovery, and CO gas component analysis.
Even if the number of observation points (number of times) becomes extremely large, it is possible to accurately and directly grasp the range of occurrence of damage in the water channel area such as the cooling body and cooling pipe, contributing to stable operation. Turned out to be possible.

【0012】この発明は、上記知見に基づきなされたも
のであり、その要旨は次の通りである。即ち、請求項1
に係る高炉炉体冷却設備の破損検知方法は、破損検知を
診断するに当たり、先ず、診断対象部位を含む範囲内の
冷却水配管を流れる冷却水圧力を、当該診断対象部位の
炉内雰囲気圧力よりも小さく条件設定をする。次いで、
高炉炉体冷却水の複数の排出管の出口のそれぞれから流
出する冷却排水を対象として、それぞれの冷却排水毎に
受水容器に流入させる。そして、その受水容器内に所定
高さ、例えば、20〜30cm程度以上に当該冷却排水
を入れる。その間に、その流入する冷却排水中に気泡が
混入しているか否かを目視判定し、気泡の混入が認めら
れるときはその気泡を回収する。回収された気泡(ガ
ス)中のCOガス成分を検知する。この一連の操作によ
り、高炉炉体の冷却用配管系統の上述した、冷却体や冷
却配管等の既知の水路範囲に破損が発生していると判定
するというものである。
The present invention has been made based on the above findings, and the gist is as follows. That is, claim 1
In the method for detecting damage to the blast furnace furnace body cooling equipment according to the above, in diagnosing the damage detection, first, the cooling water pressure flowing through the cooling water pipe in a range including the diagnosis target portion is calculated from the furnace atmosphere pressure of the diagnosis target portion. Also set the conditions smaller. Then
The cooling water discharged from each of the outlets of the plurality of discharge pipes of the blast furnace furnace cooling water is allowed to flow into the water receiving container for each cooling water. Then, the cooling drainage is put into the water receiving container at a predetermined height, for example, about 20 to 30 cm or more. In the meantime, it is visually determined whether or not air bubbles are mixed in the flowing cooling wastewater. If air bubbles are found, the air bubbles are collected. The CO gas component in the collected bubbles (gas) is detected. Through this series of operations, it is determined that breakage has occurred in the above-mentioned known water channel area of the cooling body or the cooling pipe of the cooling pipe system of the blast furnace furnace body.

【0013】請求項2に係る高炉炉体冷却設備の破損検
知装置は、次の機能を有する、受水容器と光源とを備
え、これら両者を一対として可搬式であることに特徴を
有するものである。ここで、その受水容器は、高炉炉体
冷却水の複数の排出管の出口のそれぞれから流出する冷
却排水を、それぞれの冷却排水毎に受水することができ
る容器とする。そして、この受水容器は少なくとも、そ
の側面の一部又は全部とその底面の一部又は全部とが透
明な物質で構成されているものとする。従って、この受
水容器の底面を通して、所定光度の光源で、受水容器に
流入する冷却排水を照らすと、その冷却排水中に混入し
ている気泡の有無を、受水容器の側壁から目視観察する
ことができる。上記光源は、上記受水容器に冷却排水が
流入しているときに、その冷却排水中に混入している気
泡の有無を、目視観察で判定するために十分な光度を有
するものとする。
According to a second aspect of the present invention, there is provided a blast furnace furnace cooling equipment breakage detecting device having a water receiving container and a light source having the following functions, both of which are portable as a pair. is there. Here, the water receiving container is a container capable of receiving the cooling wastewater flowing out of each of the outlets of the plurality of discharge pipes of the blast furnace furnace body cooling water for each cooling wastewater. Then, at least a part or the whole of the side surface and the part or the whole of the bottom surface of the water receiving container are made of a transparent substance. Therefore, when the cooling water discharged into the water receiving container is illuminated with a light source having a predetermined luminous intensity through the bottom surface of the water receiving container, the presence or absence of air bubbles mixed in the cooling water is visually observed from the side wall of the water receiving container. can do. The light source has sufficient luminous intensity to determine, by visual observation, the presence or absence of bubbles mixed in the cooling wastewater when the cooling wastewater is flowing into the water receiving container.

【0014】なお、高炉炉体冷却水の複数の排出管の出
口から冷却排水を受水するに当っては、この受水作業を
する作業者は、通常、複数の排出管出口の内から、1個
ずつ順番に受水し、混入気泡を観察し、その有無を判定
していくという手順をとるので、受水容器1個に対し
て、光源1個のセットでよい。
[0014] In receiving the cooling drainage from the outlets of the plurality of discharge pipes of the blast furnace furnace cooling water, the worker who receives the water usually works from among the outlets of the plurality of discharge pipes. The procedure of receiving water one by one in order, observing mixed air bubbles, and judging the presence or absence of the air bubbles is adopted. Therefore, a set of one light source may be used for one water receiving container.

【0015】[0015]

【発明の実施の形態】次に、この発明の実施形態の例
を、図面を参照しながら説明する。
Next, an example of an embodiment of the present invention will be described with reference to the drawings.

【0016】図1に、高炉炉体縦断面の中心より片側半
分に相当する、炉体冷却装置の設置場所と、当該冷却装
置への冷却水の給水及びそれらからの排水系統の系統概
念図の例を示す。同図において、1は炉口部冷却装置、
2はシャフト部冷却装置、そして3は朝顔部冷却装置を
指す。上記3部位の各冷却装置はそれぞれ、複数のステ
ーブ冷却盤あるいは羽口冷却環で構成されている。そし
て、各ステーブ冷却盤あるいは各羽口冷却環のそれぞれ
の内部には、複数のパイプ即ちステーブパイプあるいは
羽口冷却パイプが並列して埋め込まれ、当該複数のステ
ーブパイプあるいは羽口冷却パイプは相互に補完する形
で、自らが埋め込まれているステーブ冷却盤あるいは羽
口冷却環の冷却機能を果たしている。
FIG. 1 is a system conceptual diagram of an installation place of a furnace body cooling device corresponding to one half of a longitudinal section of a blast furnace furnace body, supply of cooling water to the cooling device, and a drainage system therefrom. Here is an example. In the figure, 1 is a furnace port cooling device,
2 indicates a shaft cooling device, and 3 indicates a bosh cooling device. Each of the three cooling devices is composed of a plurality of stave cooling boards or tuyere cooling rings. A plurality of pipes, i.e., stave pipes or tuyere cooling pipes are embedded in parallel inside each stave cooling board or each tuyere cooling ring, and the plurality of stave pipes or tuyere cooling pipes are mutually connected. In a complementary fashion, it serves to cool the stave or tuyere cooling ring in which it is embedded.

【0017】上記3部位に属する各冷却装置に対する給
水管4は、各ステーブ冷却盤毎あるいは各羽口冷却環毎
に設けられている。これに対して、各冷却装置から出て
くる冷却排水は、上述した各ステーブパイプあるいは各
羽口冷却パイプのそれぞれの出口から、排水管を通って
排出される。従って、冷却排水の排出管は著しく多数本
で構成されている。一例を挙げると、炉口部冷却装置1
からは合計105本、シャフト部冷却装置からは合計2
32本、そして朝顔部からは合計224本の排水管5が
出ており、排水管の総計561本と多数になる。そし
て、各排水管の出口において冷却排水は大気に開放さ
れ、循環水戻りとなり、クーラーを経て循環タンクへ入
る。但し、上記の多数の排水管出口は、通常、冷却装置
のいかなる経路を通ってきたものであるかにより、近隣
の場所にまとめられている。図1に示した高炉炉体冷却
設備の場合には、561個の排水管出口で、冷却排水中
に気泡が混入していないかどうかを目視判定する。そし
て、気泡の混入が認められたときは、破損ありと判定す
る。同時にそのガスを回収し、クロマトグラフィー等の
ガス分析装置により、COガス成分を分析し、COガス
の検知により破損ありの判定を一層確実なものにする。
気泡の混入が認められないときは、破損なしと判定す
る。破損ありと判定した場合、その破損箇所の絞り込み
や特定を行なう。その場合、排水管出口が著しく多数に
細分化されているので、気泡混入が認められた排水管出
口から冷却排水経路を遡っていくことにより、破損範囲
を精度よく絞り込むことができ、また破損箇所の推定を
行なうことができる。
A water supply pipe 4 for each of the cooling devices belonging to the above three sections is provided for each stave cooling board or each tuyere cooling ring. On the other hand, the cooling water discharged from each cooling device is discharged from each outlet of each stave pipe or each tuyere cooling pipe through a drain pipe. Therefore, the discharge pipe for cooling drainage is constituted by a remarkably large number of pipes. As an example, the furnace port cooling device 1
From the total 105, 2 from the shaft cooling device
There are 32 drain pipes 5 and a total of 224 drain pipes 5 from the morning glory, which is a large number of 561 drain pipes in total. Then, at the outlet of each drain pipe, the cooling drainage is released to the atmosphere, returns to the circulating water, and enters the circulation tank via the cooler. However, the outlets of the above-mentioned many drain pipes are usually grouped in a nearby place depending on the route of the cooling device. In the case of the blast furnace furnace body cooling equipment shown in FIG. 1, it is visually determined whether or not air bubbles are mixed in the cooling drainage at the outlet of 561 drainage pipes. Then, when the inclusion of air bubbles is recognized, it is determined that there is breakage. At the same time, the gas is recovered, the CO gas component is analyzed by a gas analyzer such as chromatography, and the detection of the CO gas further ensures the determination of breakage.
If no air bubbles are found, it is determined that there is no breakage. If it is determined that there is damage, the damaged portion is narrowed down and specified. In such a case, the outlet of the drain pipe is remarkably subdivided, so by tracing the cooling drain path from the outlet of the drain pipe where air bubbles were found, the damage range can be narrowed down accurately, and Can be estimated.

【0018】排水管出口で冷却排水を所定の受水容器で
受水するときに、受水流に大気を巻き込まないようにし
て、冷却排水中に気泡が混入しているか否かを判定する
必要がある。そのためには、例えば受水容器内に予め所
定の高さまで水をためておき、排水管出口をその貯水中
に浸漬すればよい。受水容器及び混入気泡観察用光源を
準備する。
When cooling water is received by a predetermined water receiving container at the outlet of the drain pipe, it is necessary to determine whether or not air bubbles are mixed in the cooling water by preventing the atmosphere from being entrained in the receiving water flow. is there. For this purpose, for example, water may be previously stored in a water receiving container to a predetermined height, and the outlet of the drain pipe may be immersed in the water. Prepare a water receiving container and a light source for observing mixed air bubbles.

【0019】図2に、この発明に係る高炉炉体冷却設備
の破損検知方法を実施するのに適した装置の底部切欠き
概念図を示す。6は同装置の受水容器の部分であり、そ
の周壁7及び底面8は透明な材料で作られている。底面
8の下方から上向きに所要の光度を有する光源9で受水
容器6内部に流入した冷却排水10を照らし、その中に
気泡の混入がないかどうかを目視で判定する。気泡混入
の目視判定は、受水容器6の側壁から行なうのが適切で
ある。従って、上記目視観察ができるだけの形状・広さ
の部分が透明であれば、周壁7全面が透明である必要は
ない。また、底面8についても、光源9からの投射光が
十分に受水容器内に入射されればよいので、底面全面が
透明である必要はない。
FIG. 2 is a conceptual diagram of a bottom cutout of an apparatus suitable for carrying out the method for detecting damage to a blast furnace furnace cooling system according to the present invention. Reference numeral 6 denotes a part of a water receiving container of the same device, and its peripheral wall 7 and bottom surface 8 are made of a transparent material. The cooling water 10 flowing into the water receiving container 6 is illuminated by a light source 9 having a required luminous intensity upward from below the bottom surface 8 and it is visually determined whether or not air bubbles are mixed therein. It is appropriate that the visual determination of the inclusion of air bubbles is performed from the side wall of the water receiving container 6. Therefore, as long as the shape and the width of the portion that allow the visual observation are transparent, the entire peripheral wall 7 need not be transparent. In addition, the bottom surface 8 need only be sufficiently incident on the water receiving container from the light source 9, so that the entire bottom surface does not need to be transparent.

【0020】一方、受水容器6の形状・寸法について
は、排出管出口11からの冷却排水の排出速度(リット
ル/分等)に応じて定める。即ち、受水容器内に予め貯
めた水に、その出口11を浸漬して空気の巻き込みを防
ぐことができる貯水の水位を確保でき、受水容器内に流
入した冷却排水中に気泡の混入があるかないかの判定が
できる時間的余裕を確保するだけの容積があり、且つ、
気泡混入が認められた場合に、そのガスを捕集できるだ
けの容積があることを条件として決める。例えば、市販
の透明ペットボトル入り飲料の空容器を利用し、上部出
口部分を切除して、容器胴部分と同径にした底付き円筒
型容器であればよい。即ち、直径10〜30cm程度、
高さ20〜50cm程度であればよく、上部に取手をつ
けて持運び移動に便利にすればなお望ましい。
On the other hand, the shape and dimensions of the water receiving container 6 are determined according to the discharge speed (liters / minute, etc.) of the cooling water from the discharge pipe outlet 11. That is, the outlet 11 is immersed in the water previously stored in the water receiving container, and the water level of the stored water that can prevent the entrainment of air can be secured, and air bubbles are mixed in the cooling drainage flowing into the water receiving container. There is enough space to secure a time margin to determine whether or not there is
In the case where air bubbles are found, the condition is determined on the condition that there is a volume enough to collect the gas. For example, a cylindrical container with a bottom having the same diameter as the container body may be used by using an empty container of a commercially available transparent plastic bottled beverage and cutting off the upper outlet portion. That is, about 10 to 30 cm in diameter,
The height may be about 20 to 50 cm, and it is more desirable to attach a handle on the upper part to make it easy to carry and move.

【0021】[0021]

【実施例】この発明を実施例により更に詳細に説明す
る。炉体冷却装置からの排水系統が総計が721系統か
らなる冷却水配管を備えた実用高炉において、721個
の冷却排水の排水管出口で、本発明による破損検知装置
を用いて、冷却装置における破損診断方法を実施した。
破損検知装置として、寸法・形状は、直径20cm、高
さ38cmで、底付き円筒状の取手付き透明PET製容
器を受水容器とし、6Wの電球を備えた懐中電灯を光源
として用いた。この実施例において、破損診断操作の対
象とした排水系統の冷却水圧力は、当該部位の炉内圧力
よりも300〜1200mmAq程度低く設定した。但
し、通常操業時において、冷却水圧力の方が炉内圧力よ
りも高くなるように設定している部位については、冷却
水圧力の方が炉内圧力よりも300〜600mmAq程
度だけ低くするように制限し、しかも短時間の冷却水圧
力低下に留め、炉体熱負荷に悪影響がでないように留意
した。その結果、当該診断に要した工数は、4人×2時
間であり、少ない工数で且つ短時間で精度よく、破損箇
所の診断をすることができた。
The present invention will be described in more detail with reference to examples. In a practical blast furnace equipped with a cooling water pipe having a total of 721 drainage systems from the furnace body cooling device, at the outlet of the drainage pipe of 721 cooling wastewaters, the damage in the cooling device was detected using the damage detection device according to the present invention. The diagnostic method was implemented.
As a damage detection device, a transparent PET container having a diameter of 20 cm, a height of 38 cm, a bottom and a cylindrical shape with a handle and a handle was used as a water receiving container, and a flashlight equipped with a 6 W light bulb was used as a light source. In this example, the cooling water pressure of the drainage system targeted for the damage diagnosis operation was set to be about 300 to 1200 mmAq lower than the pressure in the furnace at the part. However, at the time of normal operation, for a part where the cooling water pressure is set higher than the furnace pressure, the cooling water pressure is set to be lower than the furnace pressure by about 300 to 600 mmAq. Care was taken to limit the cooling water pressure for a short time and not to adversely affect the furnace body heat load. As a result, the man-hour required for the diagnosis was 4 persons × 2 hours, and the diagnosis of the damaged portion could be performed with a small number of man-hours and with high accuracy in a short time.

【0022】[0022]

【発明の効果】以上述べたように、この発明によれば、
高炉炉体の冷却設備について、破損冷却水配管系統を直
接特定することができるので、正確に速やかに且つ精度
よく判定することができる。その際、炉体熱負荷状態に
悪影響がでないように迅速に診断作業を終らせることが
できる。また、診断作業性も向上する。更に、高価な設
備投資をすることなく破損検知ができる。これにより、
冷却設備の適切な補修を行なうと共に、速やかに操業ア
クションをとることができる。このような高炉炉体冷却
設備の破損検知方法及び装置を提供することができ、工
業上有用な効果がもたらされる。
As described above, according to the present invention,
As for the cooling equipment of the blast furnace furnace body, the damaged cooling water piping system can be directly specified, so that it is possible to make an accurate, prompt and accurate determination. At this time, the diagnostic work can be quickly completed so that the furnace body thermal load state is not adversely affected. Also, the diagnostic workability is improved. Further, damage can be detected without expensive capital investment. This allows
Appropriate repair of the cooling equipment can be performed, and operation actions can be taken promptly. It is possible to provide a method and an apparatus for detecting the damage of the blast furnace furnace body cooling equipment, which brings about an industrially useful effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉炉体縦断面の中心より片側半分に相当す
る、炉体冷却装置の設置場所と、当該冷却装置への冷却
水の給水及びそれらからの排水系統の系統概念図の例で
ある。
FIG. 1 is an example of a system conceptual diagram of an installation location of a furnace body cooling device, a supply of cooling water to the cooling device, and a drainage system therefrom, corresponding to one half of a center of a longitudinal section of a blast furnace furnace body. .

【図2】この発明に係る高炉炉体冷却設備の破損検知方
法を実施するのに適した装置の底部切欠き概念図を示
す。
FIG. 2 is a conceptual diagram of a bottom cutout of an apparatus suitable for carrying out a method for detecting damage to a blast furnace furnace cooling facility according to the present invention.

【符号の説明】[Explanation of symbols]

1 炉口部冷却装置 2 シャフト部冷却装置 3 朝顔部冷却装置 4 給水管 5 排水管 6 受水容器 7 周壁 8 底面 9 光源 10 冷却排水 11 排出管出口 DESCRIPTION OF SYMBOLS 1 Furnace cooling device 2 Shaft cooling device 3 Boss cooling device 4 Water supply pipe 5 Drain pipe 6 Water receiving container 7 Peripheral wall 8 Bottom 9 Light source 10 Cooling drain 11 Drain pipe outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 昭夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 西江 克緒 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K015 KA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akio Shimomura 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Katsushio Nishie 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. F-term (reference) 4K015 KA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉体冷却設備の破損検知方法におい
て、診断対象部位を含む範囲内の冷却水配管を流れる冷
却水圧力を、当該診断対象部位の炉内雰囲気圧力よりも
小さく条件設定をし、高炉炉体冷却水の複数の排出管の
出口のそれぞれから流出する冷却排水を、それぞれの冷
却排水毎に受水容器に流入させ、当該受水容器内に所定
高さ以上に当該冷却排水を入れる過程において、当該冷
却排水に気泡が混入しているか否かを目視判定し、当該
気泡の混入が認められるときは当該気泡を回収し、回収
された当該気泡中のCOガス成分を検知することによ
り、当該高炉炉体の冷却装置に破損が発生していると判
定すると共に、その破損発生位置の範囲を推定すること
を特徴とする、高炉炉体冷却設備の破損検知方法。
In a method for detecting damage to a blast furnace furnace body cooling system, conditions for setting a cooling water pressure flowing through a cooling water pipe within a range including a diagnosis target portion to be smaller than a furnace atmosphere pressure at the diagnosis target portion are set. Cooling water discharged from each of the outlets of the plurality of discharge pipes of the blast furnace furnace cooling water flows into a water receiving vessel for each cooling water discharged, and the cooling water discharged to a predetermined height or more in the water receiving vessel. In the process of filling, visually determine whether or not air bubbles are mixed in the cooling wastewater, and if the air bubbles are mixed, collect the air bubbles and detect the CO gas component in the collected air bubbles. A method for detecting damage to the cooling device of the blast furnace furnace body, and estimating a range of a position where the damage occurs in the cooling device for the blast furnace furnace body.
【請求項2】 高炉炉体冷却水の複数の排出管の出口の
それぞれから流出する冷却排水を、それぞれの冷却排水
毎に受水する容器であって、当該容器は少なくとも、そ
の側面の一部又は全部とその底面の一部又は全部とが透
明な物質で構成されている受水容器と、前記受水容器に
前記冷却排水が流入する過程において、当該冷却排水中
に混入している気泡の有無を目視観察することができる
光度を有する光源とを備えており、しかも、前記受水容
器及び前記光源は可搬式であることを特徴とする、高炉
炉体冷却設備の破損検知装置。
2. A container for receiving cooling water discharged from each of a plurality of outlets of a plurality of discharge pipes of blast furnace furnace cooling water for each cooling water, the container being at least a part of a side surface thereof. Or a water receiving container in which all or a part of or the entire bottom surface is made of a transparent substance, and in a process in which the cooling wastewater flows into the water receiving container, bubbles in the cooling wastewater are mixed. A light source having a luminous intensity capable of visually observing the presence / absence thereof, and the water receiving container and the light source are portable;
JP2001041379A 2001-02-19 2001-02-19 Damage detection method and apparatus for blast furnace cooling equipment Expired - Fee Related JP4122716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041379A JP4122716B2 (en) 2001-02-19 2001-02-19 Damage detection method and apparatus for blast furnace cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041379A JP4122716B2 (en) 2001-02-19 2001-02-19 Damage detection method and apparatus for blast furnace cooling equipment

Publications (2)

Publication Number Publication Date
JP2002241816A true JP2002241816A (en) 2002-08-28
JP4122716B2 JP4122716B2 (en) 2008-07-23

Family

ID=18903835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041379A Expired - Fee Related JP4122716B2 (en) 2001-02-19 2001-02-19 Damage detection method and apparatus for blast furnace cooling equipment

Country Status (1)

Country Link
JP (1) JP4122716B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805678A (en) * 2017-11-23 2018-03-16 中冶赛迪工程技术股份有限公司 A kind of drainage system for discharging State of Blast Furnace internal water accumulation
CN116875754A (en) * 2023-08-10 2023-10-13 广东中南钢铁股份有限公司 Damping down method for water leakage of blast furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643765B (en) * 2019-03-15 2022-01-11 广东韶钢松山股份有限公司 Online water-checking process for blast furnace cooling wall and water tank applied to process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805678A (en) * 2017-11-23 2018-03-16 中冶赛迪工程技术股份有限公司 A kind of drainage system for discharging State of Blast Furnace internal water accumulation
CN107805678B (en) * 2017-11-23 2023-03-14 中冶赛迪工程技术股份有限公司 Drainage system for discharging accumulated water in blast furnace
CN116875754A (en) * 2023-08-10 2023-10-13 广东中南钢铁股份有限公司 Damping down method for water leakage of blast furnace

Also Published As

Publication number Publication date
JP4122716B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
KR100776035B1 (en) Gas Auto-detector of Stave Pipe Arrangement For Stave Blast Furnace
US4133373A (en) Leak detecting apparatus
CA2274613C (en) A method of leak testing an assembled plate type heat exchanger
US20070277593A1 (en) High performance generator stator leak monitoring system
CN106282462A (en) A kind of blast furnace sealed cooling system concentrates leakage detection apparatus and method
JP2002241816A (en) Method and instrument for detecting breakage of cooling system for furnace body in blast furnace
CN107858467B (en) Blast furnace cooling water leakage detection method and system
DK168606B1 (en) Method for leak detection and quantification in pipeline systems
JPS602610B2 (en) Cooling water leak detection method
KR200153860Y1 (en) Apparatus for monitor inflow of cooling water in a blast furnace
JP4262428B2 (en) Water leak detection method in metallurgical furnace
JPS6339626Y2 (en)
CN217212672U (en) Device for monitoring hydrogen leakage amount of generator fixed cold water
CN217634574U (en) Pipeline water quality testing robot
KR200284334Y1 (en) Ultrasonic Testing Jig's Water Circulator
CN220932279U (en) Cooler internal leakage judging device
KR20010064937A (en) Apparatus for measuring and collecting the leakage gas from tuyer of furnace
KR20120008492U (en) Water quality checking system for boiler water
JPH03177724A (en) Closed circulating air cooling device
CN113604620A (en) Device and method for checking water leakage condition of cooling wall of blast furnace and blast furnace
JPH10219322A (en) Detection of water leakage into blast furnace
CN2699300Y (en) Water quality total organic carbon online automatic monitoring instrument
JPH11220853A (en) Detecting method for leakage of hydrogen gas or secondary cooling water from hydrogen gas cooler for turbine generator
KR20050007124A (en) Entraped gas bubble collector, entraped gas detector and method of inspecting entrapment
JPH09196803A (en) Method for detecting breakdown position of stave

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees