JP2002239322A - Porous ceramic honeycomb structure - Google Patents

Porous ceramic honeycomb structure

Info

Publication number
JP2002239322A
JP2002239322A JP2001037993A JP2001037993A JP2002239322A JP 2002239322 A JP2002239322 A JP 2002239322A JP 2001037993 A JP2001037993 A JP 2001037993A JP 2001037993 A JP2001037993 A JP 2001037993A JP 2002239322 A JP2002239322 A JP 2002239322A
Authority
JP
Japan
Prior art keywords
exhaust gas
cell
cell wall
honeycomb structure
surrounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001037993A
Other languages
Japanese (ja)
Other versions
JP3503823B2 (en
Inventor
Yasuhiko Otsubo
靖彦 大坪
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001037993A priority Critical patent/JP3503823B2/en
Publication of JP2002239322A publication Critical patent/JP2002239322A/en
Application granted granted Critical
Publication of JP3503823B2 publication Critical patent/JP3503823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a honeycomb structure which is not of a complicated structure and is easily manufactured and further captures fine particles contained in an exhaust gas with high efficiency and also cuts a pressure loss to a low level. SOLUTION: This porous ceramic honeycomb structure comprises an outer peripheral wall and numerous cells surrounded by a cell wall on the inner peripheral side of the outer peripheral wall. Both edge faces of the exhaust gas inflow side and the exhaust gas outflow side of the cells are alternately sealed and the exhaust gas is made to flow into the adjacent cells by allowing the exhaust gas to pass through the pores of the cell wall. Thus fine particles contained in the exhaust gas are captured by the cell wall. In addition, the structure has a section of a square shape surrounded by the cell wall whose thickness is 0.1 to 0.3 mm, with a cell pitch of 1.4 to 3 mm. Besides the sectional area surrounded by the cell wall is 1.3 mm2 or more, or the inside dimension between both internal faces of the cell wall is 1.15 mm or more. Further, the surface of a filter per unit volume is 7 cm2/cm3 or more, preferably 10 cm2/cm3 or more and the porosity of the cell wall is 50 to 70%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、デイーゼ
ルエンジンから排出される排気ガス中の微粒子を捕集す
る多孔質セラミックハニカム構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous ceramic honeycomb structure for collecting fine particles in exhaust gas discharged from a diesel engine, for example.

【0002】[0002]

【従来技術】地域環境や地球環境の保全面から、自動車
などのエンジンから排出される排気ガスに含まれる有害
物質の削減が求められ、これに応えるため排気ガス浄化
用の触媒コンバータが用いられている。この触媒コンバ
ータのひとつにセラミックハニカム触媒コンバータがあ
る。また、最近はディーゼルエンジンからの排気ガス中
に含まれる微粒子を捕集するために、多孔質セラミック
ハニカム構造体(以下、「多孔質セラミックハニカム構
造体」を略して「ハニカム構造体」という)で、セルの
排気ガス流入側及び排気ガス流出側の両端面を交互に目
封じした排気ガス浄化フィルタが使用されてきている。
2. Description of the Related Art From the standpoint of preserving the local environment and the global environment, it is required to reduce harmful substances contained in exhaust gas emitted from engines of automobiles and the like. To meet this demand, catalytic converters for purifying exhaust gas have been used. I have. One of the catalytic converters is a ceramic honeycomb catalytic converter. Recently, a porous ceramic honeycomb structure (hereinafter, referred to as a "honeycomb structure" for short) is used to collect fine particles contained in exhaust gas from a diesel engine. An exhaust gas purification filter in which both end surfaces on the exhaust gas inflow side and the exhaust gas outflow side of the cell are alternately plugged has been used.

【0003】図1はハニカム構造体11の斜視図であ
り、図2は、図1のハニカム構造体11の断面模式図で
ある。図1及び図2に示すように、通常、ハニカム構造
体11は略円筒状で、外周壁11aと、この外周壁11
aの内周側でセル壁11bにより囲まれた無数のセル1
1cを有し、セル11cの流入側端面11d、流出側端
面11eの両端面を交互に封止材13a、13bで目封
じされている。そしてハニカム構造体11は、その外周
壁11aを把持部材(図示せず)で把持して収納容器
(図示せず)内に収納され排気ガス浄化フィルタとして
いる。また排気ガス浄化フィルタは、例えば自動車の排
気マニホルドの後などに配置されている。
FIG. 1 is a perspective view of a honeycomb structure 11, and FIG. 2 is a schematic sectional view of the honeycomb structure 11 of FIG. As shown in FIGS. 1 and 2, the honeycomb structure 11 is usually substantially cylindrical, and has an outer peripheral wall 11a and an outer peripheral wall 11a.
countless cells 1 surrounded by cell walls 11b on the inner peripheral side of a
1c, and both ends of the inflow side end face 11d and the outflow side end face 11e of the cell 11c are alternately sealed with sealing materials 13a and 13b. The outer peripheral wall 11a of the honeycomb structure 11 is gripped by a gripping member (not shown) and is housed in a housing container (not shown) to form an exhaust gas purification filter. The exhaust gas purification filter is disposed, for example, after an exhaust manifold of a vehicle.

【0004】排気ガス浄化フィルタでの排気ガス浄化
は、以下の通り行われる。図2で、排気ガスは、ハニカ
ム構造体11の流入側端面11dで開口しているセル1
1cから流入(10aで示す)し、セル壁11bに形成
された細孔(図示せず)を通過した後、流出側端面11
eから排出(10bで示す)される。そして、排気ガス
中に含まれる微粒子などは、セル壁11b内で連続する
細孔から隣接セルに通過する際に濾過され、捕集され
る。
[0004] Exhaust gas purification by an exhaust gas purification filter is performed as follows. In FIG. 2, the exhaust gas is supplied to the cell 1 that is open at the inflow side end face 11 d of the honeycomb structure 11.
1c, flows through a small hole (not shown) formed in the cell wall 11b, and then flows out of the outlet end surface 11 (shown by 10a).
e (shown as 10b). The fine particles and the like contained in the exhaust gas are filtered and collected when passing through the continuous pores in the cell wall 11b to the adjacent cells.

【0005】しかし、捕集される微粒子の量が多くなる
と細孔が微粒子によって詰まり、エンジンに用いた場合
に背圧が増加してエンジン出力を低下させる。このた
め、捕集された微粒子が一定量を超えたときに微粒子を
除去することで背圧増加を抑える必要がある。微粒子
は、固定炭素成分と有機溶剤に溶解可能で可燃性の可溶
性有機成分であるので、約650℃以上の温度に加熱す
れば燃焼する。そこで、電気ヒータ、バーナ、熱風など
の加熱手段を用いて微粒子を再燃焼させて、排気ガス浄
化フィルタを再生している。又、触媒を使用して低温で
連続的に微粒子を再生する方法もとられている。
However, when the amount of collected fine particles increases, the pores are clogged with the fine particles, and when used in an engine, the back pressure increases and the engine output decreases. For this reason, it is necessary to suppress an increase in back pressure by removing the fine particles when the amount of the collected fine particles exceeds a certain amount. Since the fine particles are a flammable soluble organic component that is soluble in a fixed carbon component and an organic solvent, they burn when heated to a temperature of about 650 ° C. or higher. Therefore, the exhaust gas purification filter is regenerated by reburning the fine particles using a heating means such as an electric heater, a burner, and hot air. Also, a method of continuously regenerating fine particles at a low temperature using a catalyst has been proposed.

【0006】この排気ガス浄化フィルタの特性で重要な
ことは、一定以下の圧力損失で、エンジンの背圧増加を
抑えつつ捕集が継続できる時間、即ち捕集時間が長いこ
とである。捕集時間が短いと再生までのインターバルが
短くなり、必然的に排気ガス浄化フィルタの容積を大き
くしなければならなくなる。
What is important in the characteristics of the exhaust gas purifying filter is that the trapping time is long, that is, the trapping time can be continued while suppressing an increase in the back pressure of the engine with a pressure loss of a certain level or less. If the collection time is short, the interval until regeneration becomes short, and the volume of the exhaust gas purification filter must necessarily be increased.

【0007】これに対して従来技術には、排気ガスの流
入側と流出側のセルの開口率やセルの流路方向の断面積
を調整して圧力損失を少なくしようとしたハニカムフィ
ルタの開示がある。即ち、特開平5−68828号公報
には、排気ガス浄化装置のハニカムフィルタにおいて、
排気ガス流入側の開口率が60〜70%のとき流出側の
開口率を20〜30%、流入側に開口する各セルのセル
ピッチを2.5〜5.0mmに設定することで、排気ガ
スがフィルタを通過する際の圧力損失を低く、またセル
中に排気ガスを容易に導入できるとしている。また、こ
の特開平5−68828号公報には、排気ガス流入側に
開口する各セルは断面六角形状の中空部を有すると共
に、排気ガス流出側に開口する各セルは断面三角形状の
中空部とする記載がある。
On the other hand, the prior art discloses a honeycomb filter in which the opening ratio of cells on the inflow side and the outflow side of exhaust gas and the cross-sectional area of the cells in the flow direction are adjusted to reduce pressure loss. is there. That is, JP-A-5-68828 discloses a honeycomb filter for an exhaust gas purifying apparatus.
By setting the opening ratio on the outflow side to 20 to 30% when the opening ratio on the exhaust gas inflow side is 60 to 70% and the cell pitch of each cell opening on the inflow side to 2.5 to 5.0 mm, the exhaust gas Discloses that the pressure loss when passing through a filter is low and exhaust gas can be easily introduced into the cell. Japanese Patent Application Laid-Open No. 5-68828 discloses that each cell opening to the exhaust gas inflow side has a hollow portion having a hexagonal cross section, and each cell opening to the exhaust gas outflow side has a hollow portion having a triangular cross section. There is a description to do.

【0008】また別の特開平10−57730号公報に
は、外周壁と、この外周壁と一体にかつ外周壁内にハニ
カム状に形成された貫通孔隔壁と、貫通孔隔壁により仕
切られた複数の貫通孔と、貫通孔の一端部のみに形成さ
れた封止体と、を備えたセラミックハニカムフィルタで
あって、封止体はセラミックハニカムフィルタの両端面
において略市松模様状に形成されていると共に、貫通孔
の封止体形成部の断面積を、封止体非形成部の断面積よ
りも小さく、好ましくは封止体形成部の断面積を封止体
非形成部の断面積に対し20%〜50%にすることで、
排ガスの流入時及び流出時における圧力損失を低減でき
るとする記載がある。
Further, Japanese Patent Application Laid-Open No. Hei 10-57730 discloses an outer peripheral wall, a through-hole partition formed integrally with the outer peripheral wall and formed in a honeycomb shape in the outer peripheral wall, and a plurality of partitions partitioned by the through-hole partition. And a sealing body formed only at one end of the through hole, wherein the sealing body is formed in a substantially checkered pattern on both end faces of the ceramic honeycomb filter. In addition, the cross-sectional area of the sealing body forming portion of the through hole is smaller than the cross-sectional area of the sealing body non-forming portion, By making it 20% to 50%,
There is a description that pressure loss at the time of inflow and outflow of exhaust gas can be reduced.

【0009】また、特開平7−163822号公報に
は、気孔率30%以上のコージェライト粉末を骨材と
し、これにコージェライト化原料粉末、造孔剤、成形助
剤等を加えて、混練、成形、焼成を行って得た、フィル
タの平均細孔径が骨材の平均径×0.15±5μm以
内、気孔率が30%以上であるコージェライト質セラミ
ックフィルタによって、捕集効率が高く、圧力損失が小
さく、軽量且つコンパクトで自動車に搭載可能な強度を
有するフィルタが提供できるとする記載がある。
Japanese Patent Application Laid-Open No. Hei 7-163822 discloses that a cordierite powder having a porosity of 30% or more is used as an aggregate, and a cordierite-forming raw material powder, a pore-forming agent, a molding aid, and the like are added thereto and kneaded. The collection efficiency is high by a cordierite ceramic filter having an average pore diameter of the filter obtained by performing molding, baking, and having an average pore diameter of less than 0.15 ± 5 μm of the aggregate and a porosity of 30% or more, There is a description that a filter having a small pressure loss, a light weight, a compact size, and a strength capable of being mounted on an automobile can be provided.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記特
開平5−68828号公報に記載のハニカムフィルタ
は、排気ガス流入側と流出側の開口率を異ならせて所定
範囲としているが、排気ガス流入側と流出側で開口率を
制御することは難しく、構造も複雑となる。また、各セ
ルの断面を、排気ガスの流入側を六角形状、流出側を三
角形状とするのは、坏土からハニカムフィルタ素材を成
形する際の押出用金型の構造も複雑となる。
However, in the honeycomb filter disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-68828, the opening ratios of the exhaust gas inflow side and the outflow side are made different from each other to be within a predetermined range. It is difficult to control the aperture ratio on the outflow side, and the structure becomes complicated. Further, when the cross section of each cell has a hexagonal shape on the inflow side of the exhaust gas and a triangular shape on the outflow side, the structure of the extrusion die when forming the honeycomb filter material from the clay is complicated.

【0011】また、特開平10−57730号公報に記
載のセラミックハニカムフィルタは、貫通孔の封止体形
成部の断面積と封止体非形成部の断面積を異ならせて所
定範囲としているが、貫通孔の断面積を異ならせ制御す
ることは難しく、構造も複雑となる。また、貫通孔の封
止体非形成部の断面積を拡張変更する工程が増加する。
In the ceramic honeycomb filter described in Japanese Patent Application Laid-Open No. H10-57730, the cross-sectional area of the through-hole of the sealing body forming portion and the cross-sectional area of the non-sealing body forming portion are set to a predetermined range. In addition, it is difficult to control the cross-sectional area of the through-hole by changing it, and the structure becomes complicated. Further, the number of steps for expanding and changing the cross-sectional area of the sealing body non-formed portion of the through hole increases.

【0012】特開平7−163822号公報に記載のコ
ージェライト質セラミックフィルタは、気孔率30%以
上のコージェライト骨材を使用していることから、その
細孔構造は径の大きなコージェライト化原料による細孔
と、径の小さな連鎖孔からなる。そのため、その強度特
性を確保するために、流路隔壁の厚さが300〜200
0μm必要なため、流入側と流出側の差圧が大きくな
り、圧力損失が大きくなるという問題がある。
The cordierite-based ceramic filter described in JP-A-7-163822 uses cordierite aggregate having a porosity of 30% or more. And a chain hole with a small diameter. Therefore, in order to secure the strength characteristics, the thickness of the flow path partition is 300 to 200.
Since 0 μm is required, there is a problem that the pressure difference between the inflow side and the outflow side increases, and the pressure loss increases.

【0013】また近年、ハニカム構造体のセル壁や細孔
に白金族金属触媒などの触媒を担持することで、排気ガ
ス中の微粒子を捕集すると共に、排気ガス中に含まれる
窒素酸化物など有害物質を浄化することも行われてきて
いる。しかし、流路隔壁の厚さが300〜2000μm
ある場合は、ハニカム構造体の熱容量が大きくなるた
め、エンジン始動直後から触媒が活性化されるまでの時
間が長くなり、その間、有害物質が排出されてしまうと
いう問題もある。
In recent years, by supporting a catalyst such as a platinum group metal catalyst on the cell walls and pores of the honeycomb structure, it is possible to not only trap fine particles in the exhaust gas but also to remove nitrogen oxides and the like contained in the exhaust gas. Purification of harmful substances has also been performed. However, the thickness of the flow path partition is 300 to 2000 μm.
In some cases, since the heat capacity of the honeycomb structure becomes large, the time from immediately after the start of the engine until the catalyst is activated becomes long, and during that time, there is a problem that harmful substances are discharged.

【0014】従って、本発明の課題は、構造が複雑でな
く、製造が容易で、且つ、排気ガスに含まれる微粒子を
高効率に捕集すると共に、圧力損失を低くできるハニカ
ム構造体を得ることにある。更に、触媒を担持しても、
排気ガスに含まれる微粒子を高効率に捕集すると共に圧
力損失を低くできるハニカム構造体を得ることにある。
Accordingly, an object of the present invention is to provide a honeycomb structure which has a simple structure, is easy to manufacture, and can efficiently collect fine particles contained in exhaust gas and reduce pressure loss. It is in. Furthermore, even if a catalyst is supported,
An object of the present invention is to obtain a honeycomb structure that can efficiently collect fine particles contained in exhaust gas and reduce pressure loss.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み鋭意研究した。その結果、セル壁で囲まれる断面
を四角形状とし、セル壁厚、セルピッチ、セル壁で囲ま
れる断面積又はセル壁間の内寸、単位体積あたりのフィ
ルタ表面積、又は更にセル壁の気孔率を適切に選択すれ
ば、構造が複雑でなく、製造が容易で、且つ、排気ガス
に含まれる微粒子を高効率に捕集すると共に圧力損失を
低くできるハニカム構造体が得られ、更に触媒を担持し
ても、排気ガスに含まれる微粒子を高効率に捕集すると
共に、圧力損失を低くできるハニカム構造体が得られる
との知見を得、本発明に想到した。
Means for Solving the Problems The present inventors have made intensive studies in view of the above problems. As a result, the cross section surrounded by the cell walls is made into a square shape, and the cell wall thickness, the cell pitch, the cross-sectional area surrounded by the cell walls or the inner dimensions between the cell walls, the filter surface area per unit volume, or the porosity of the cell walls are further reduced. If properly selected, a honeycomb structure can be obtained which has a simple structure, is easy to manufacture, and can efficiently collect fine particles contained in exhaust gas and reduce pressure loss, and further support a catalyst. However, the present inventors have found that a honeycomb structure that can efficiently collect fine particles contained in exhaust gas and reduce pressure loss can be obtained, and arrived at the present invention.

【0016】即ち、本発明のハニカム構造体は、外周壁
と、この外周壁の内周側でセル壁により囲まれた無数の
セルを有し、セルの排気ガス流入側及び排気ガス流出側
の両端面を交互に目封じして、排気ガスをセル壁の細孔
を通過させて隣接セルに流し、排気ガスに含まれる微粒
子をセル壁で捕集する多孔質セラミックハニカム構造体
であって、前記セル壁で囲まれる断面が四角形状を有
し、セル壁厚が0.1〜0.3mm、セルピッチが1.
4〜3mmで、セル壁で囲まれる断面積を1.3mm2
以上又はセル壁間の内寸を1.15mm以上、単位体積
あたりのフィルタ表面積を7cm2/cm3以上としてい
ることを特徴とする。
That is, the honeycomb structure of the present invention has an outer peripheral wall and countless cells surrounded by cell walls on the inner peripheral side of the outer peripheral wall, and the cells on the exhaust gas inflow side and the exhaust gas outflow side of the cell. A porous ceramic honeycomb structure in which both end faces are alternately plugged, exhaust gas is passed through the pores of the cell wall to flow to adjacent cells, and fine particles contained in the exhaust gas are collected by the cell wall, The cross section surrounded by the cell wall has a square shape, the cell wall thickness is 0.1 to 0.3 mm, and the cell pitch is 1.
4 to 3 mm, the cross-sectional area surrounded by the cell wall is 1.3 mm 2
Alternatively, the inner dimensions between the cell walls are 1.15 mm or more, and the filter surface area per unit volume is 7 cm 2 / cm 3 or more.

【0017】本発明においては、前記単位体積あたりの
フィルタ表面積を10cm2/cm3以上としていること
が好ましい。更に、本発明においては、前記セル壁の気
孔率を50〜70%としていることが好ましい。
In the present invention, the filter surface area per unit volume is preferably set to 10 cm 2 / cm 3 or more. Further, in the present invention, it is preferable that the porosity of the cell wall is 50 to 70%.

【0018】次に、本発明での構成の理由を説明する。 (セル壁で囲まれる断面の形状)セル壁で囲まれる断面
を四角形状とすれば、構造が複雑でなく、製造が容易な
ハニカム構造体となる。また坏土からハニカム構造の成
形体とする際の押出用金型も、構造が複雑でないため製
作が容易である。なお、四角形状は一辺の長さが20%
近く異なる略四角形状も含むものとする。
Next, the reason for the configuration according to the present invention will be described. (Shape of the cross section surrounded by the cell wall) If the cross section surrounded by the cell wall is square, the honeycomb structure has a simple structure and is easy to manufacture. In addition, an extrusion die for forming a formed body having a honeycomb structure from kneaded clay is easy to manufacture because the structure is not complicated. The square shape has a side length of 20%
It also includes substantially square shapes that differ from each other.

【0019】(セル壁厚)セル壁厚が0.1mm未満で
は、坏土からハニカム構造の成形体とするのに用いる押
出用金型の坏土排出通路が細すぎて坏土が排出されにく
く生産性が低下する。一方、セル壁厚が0.3mmを超
えると、流入側と流出側の差圧が大きくなり、圧力損失
が大きくなる。従って、セル壁厚を0.1〜0.3mm
とする。
(Cell Wall Thickness) If the cell wall thickness is less than 0.1 mm, the kneaded material discharge passage of the extrusion die used to convert the kneaded material into a formed body having a honeycomb structure is too narrow to discharge the kneaded material. Productivity decreases. On the other hand, if the cell wall thickness exceeds 0.3 mm, the differential pressure between the inflow side and the outflow side increases, and the pressure loss increases. Therefore, the cell wall thickness is set to 0.1 to 0.3 mm.
And

【0020】(セルピッチ)セルピッチが1.4mm未
満では、排気ガスがセル11cの流入側11dに入る際
の抵抗が大きくなる。一方、セルピッチが3mmを超え
ると、単位断面積当たりのセル数が減ることから単位体
積当たりのフィルタ表面積が小さくなるため、圧力損失
が大きくなるためである。従って、セルピッチを1.4
〜3mmとする。
(Cell pitch) If the cell pitch is less than 1.4 mm, the resistance of the exhaust gas when it enters the inflow side 11d of the cell 11c increases. On the other hand, if the cell pitch exceeds 3 mm, the number of cells per unit cross-sectional area decreases, and the filter surface area per unit volume decreases, so that the pressure loss increases. Therefore, the cell pitch is set to 1.4.
33 mm.

【0021】(セル壁で囲まれる断面積又はセル壁間の
内寸)セル壁で囲まれる断面積が1.3mm2 未満又は
セル壁間の内寸が1.15mm未満であると、フィルタ
表面積との関係で排気ガスがセル11cの流入側11d
に入る際の抵抗が大きくなる。なお、セル壁で囲まれる
断面積は、一つのセルの流路方向の断面積を示す。
(Cross Section Area Enclosed by Cell Walls or Inner Dimension Between Cell Walls) When the cross section area enclosed by the cell walls is less than 1.3 mm 2 or the inner dimension between the cell walls is less than 1.15 mm, the filter surface area is reduced. The exhaust gas flows into the inflow side 11d of the cell 11c
The resistance when entering is increased. The cross-sectional area surrounded by the cell wall indicates the cross-sectional area of one cell in the flow channel direction.

【0022】(単位体積あたりのフィルタ表面積)フィ
ルタ表面積とは、排気ガスが通過するセルの幾何学的表
面積をいい、 単位体積あたりのフィルタ表面積=セル壁間の内寸×4
÷(セルピッチ)×1/2 で表される。ハニカム構造体において単位体積あたりの
フィルタ表面積が7cm 2/cm3未満であると、セル壁
で囲まれる断面積又はセル壁の内寸との関係で排気ガス
が通過時の圧力損失が大きくなる。従って、単位体積あ
たりのフィルタ表面積を7cm2/cm3以上、好ましく
は、単位体積あたりのフィルタ表面積を10cm2/c
3以上とする。
(Filter surface area per unit volume)
The filter surface area is a geometric table of cells through which exhaust gas passes.
Area means filter surface area per unit volume = inner dimension between cell walls x 4
÷ (cell pitch)2× 1/2. Per unit volume in honeycomb structure
7cm filter surface area Two/ CmThreeLess than the cell wall
Exhaust gas in relation to the cross-sectional area enclosed by
Increases the pressure loss when passing through. Therefore, the unit volume
7cm filter surface areaTwo/ CmThreeAbove, preferably
Means the filter surface area per unit volume is 10 cmTwo/ C
mThreeAbove.

【0023】(気孔率)セル壁の気孔率が50%未満で
あると、セル壁で囲まれる断面積又はセル壁の内寸、単
位体積あたりのフィルタ表面積との関係で排気ガスが通
過時の圧力損失が大きくなる。また、セル壁や細孔に白
金族金属触媒など触媒を担持する場合には触媒の担持が
難しくなる。一方、気孔率が70%を超えると、強度が
低下するのと微粒子の捕集効率が低下する。従って、気
孔率は50〜70%とする。なお気孔率は、水銀圧入式
ポロシメータを用いて測定する。
(Porosity) If the porosity of the cell wall is less than 50%, the cross-sectional area surrounded by the cell wall, the inner dimensions of the cell wall, and the filter surface area per unit volume may cause the exhaust gas to pass. Pressure loss increases. In addition, when a catalyst such as a platinum group metal catalyst is supported on the cell walls and pores, it becomes difficult to support the catalyst. On the other hand, if the porosity exceeds 70%, the strength is reduced and the collection efficiency of the fine particles is reduced. Therefore, the porosity is set to 50 to 70%. The porosity is measured using a mercury intrusion porosimeter.

【0024】[0024]

【発明の実施の形態】以下、発明の実施の形態を詳細に
説明する。
Embodiments of the present invention will be described below in detail.

【0025】図1及び図2に示すハニカム構造体11を
以下のようにして作製した。 (基本原料粉末の調整)カオリン、タルク、シリカ、水
酸化アルミ、アルミナなどの粉末を計量して、化学組成
が質量比で、SiO2 :47〜53%、Al23:32
〜38%、MgO:12〜16%となるコーディエライ
ト質セラミックス原料粉末を調整した。該セラミックス
原料粉末は他に不可避的に混入する成分例えば、Ca
O、Na2O 、K2O、TiO2、Fe23、PbO、P
25を全体として2.5質量%以下含んでいる。
The honeycomb structure 11 shown in FIGS. 1 and 2 was manufactured as follows. (Basic material preparation of powder) kaolin, talc, silica, aluminum hydroxide, and weighed powders such as alumina, a chemical composition by weight ratio, SiO 2: 47~53%, Al 2 O 3: 32
3838%, MgO: 12-16% Cordierite ceramic raw material powder was prepared. The ceramic raw material powder is a component that is unavoidably mixed with other components, for example, Ca
O, Na 2 O, K 2 O, TiO 2, Fe 2 O 3 , PbO, P
It contains 2.5 mass% or less of 2 O 5 as a whole.

【0026】(成形助剤及び造孔剤の添加と、坏土の精
製)次に、このコーディエライト質セラミックの原料粉
末に対し、成形助剤としてメチルセルロースとヒドロキ
シプロピルメチルセルロース、造孔剤として、グラファ
イト、小麦粉、でん粉などを適宜選定して添加し、乾式
で十分混合した。次いで、規定量の水を注入して更に十
分な混合を行い、押出成形可能な坏土を作製した。
(Addition of a molding aid and a pore-forming agent and purification of clay) Next, methylcellulose and hydroxypropylmethylcellulose as molding aids and a pore-forming agent were added to the raw material powder of cordierite ceramic. Graphite, flour, starch and the like were appropriately selected and added, followed by dry mixing. Next, a prescribed amount of water was injected to perform further sufficient mixing to produce a kneaded clay that can be extruded.

【0027】(押出成形)次に、一般的な構造の押出成
形用金型を用い押出成形した。図3で、(a)はハニカ
ム構造を有する成形体の部分図、(b)は押出成形用金
型の要部断面図である。なお、図3(a)で括弧した符
号は焼成後のハニカム構造体11の部位を示す。図3
で、押出成形用金型20は、多数の供給通路21aとこ
の供給通路21aから坏土を集合すると共に格子状に形
成する排出通路21bを持つダイ21と、ハニカム構造
体11の外周壁11aを所定形状に形成するために、坏
土流入量の調整をするマスキングプレート22、坏土の
排出量の調節をすると共にハニカム構造体11の外周壁
11aの調節を行う押さえ枠23などからなる。なお、
押出成形用金型20は、下から上が押出方向(矢印で示
す)であり、坏土を供給通路21aから排出通路21b
に押し出している。そして、押出成形用金型20で、セ
ル壁で囲まれる断面が四角形状を有し、セル壁厚11
t、セルピッチ11i、セル壁で囲まれる断面積11g
及びセル壁間の内寸11h、単位体積あたりのフィルタ
表面積を変えた、ハニカム構造を有する成形体を作製し
た。
(Extrusion molding) Next, extrusion molding was performed using an extrusion molding die having a general structure. 3A is a partial view of a formed body having a honeycomb structure, and FIG. 3B is a cross-sectional view of a main part of an extrusion molding die. Note that the reference numerals in parentheses in FIG. 3A indicate portions of the honeycomb structure 11 after firing. FIG.
The extrusion molding die 20 includes a die 21 having a large number of supply passages 21a, a discharge passage 21b that collects the clay from the supply passages 21a and forms a lattice, and an outer peripheral wall 11a of the honeycomb structure 11. In order to form into a predetermined shape, it is composed of a masking plate 22 for adjusting the amount of clay inflow, a holding frame 23 for adjusting the discharge amount of the clay and adjusting the outer peripheral wall 11a of the honeycomb structure 11. In addition,
The extrusion molding die 20 has an extrusion direction (shown by an arrow) from the bottom to the top, and the clay is supplied from the supply passage 21a to the discharge passage 21b.
Extruded. Then, in the extrusion molding die 20, the cross section surrounded by the cell wall has a square shape, and the cell wall thickness 11
t, cell pitch 11i, sectional area 11g surrounded by cell walls
In addition, a molded article having a honeycomb structure in which the inner dimension between cell walls was 11 h and the filter surface area per unit volume was changed.

【0028】(焼成)次に、このハニカム構造を有する
成形体を、バッチ式焼成炉を用いて焼成を行った。焼成
後、外周壁11aの外径が150mm、長さが150m
m、セル壁11bの気孔率が60%で、セル壁11bで
囲まれる断面が四角形状を有し、表1に示すように、セ
ル壁厚11t、セルピッチ11i、セル壁で囲まれる断
面積11g又はセル壁間の内寸11i、単位体積あたり
のフィルタ表面積を変えたハニカム構造体11を得た。
(Firing) Next, the formed body having the honeycomb structure was fired using a batch-type firing furnace. After firing, the outer diameter of the outer peripheral wall 11a is 150 mm and the length is 150 m
m, the porosity of the cell wall 11b is 60%, and the cross section surrounded by the cell wall 11b has a square shape, and as shown in Table 1, the cell wall thickness 11t, the cell pitch 11i, and the cross sectional area 11g surrounded by the cell wall. Alternatively, the honeycomb structure 11 having the inner dimensions 11i between the cell walls and the filter surface area per unit volume was changed.

【0029】(目封じ)次に、ハニカム構造を有する焼
成体の流入側端面11dのセル11cを一個おきに封止
材13aで目封じし、排気ガス流出側端面11eでは流
入側端面11dで目封じしてないセル11cについての
み封止材13bで目封じした。なお、封止材13a、1
3bはコーディエライト質セラミックを用いた。
(Closing) Next, every other cell 11c on the inflow-side end face 11d of the fired body having a honeycomb structure is sealed with a sealing material 13a, and the exhaust gas outflow-side end face 11e is sealed with the inflow-side end face 11d. Only the unsealed cell 11c was sealed with the sealing material 13b. The sealing materials 13a, 1
3b used cordierite ceramic.

【0030】次に、圧力損失試験装置(図示せず)で、
各ハニカム構造体11に流量7.5Nm3 /minとし
て空気を流入し、流入側11dと流出側11eの差圧
(mmAq)を測定し、各ハニカム構造体11の圧力損
失を評価した。なお、圧力損失の評価は、差圧が250
mmAq未満を優(◎)、250〜350mmAqを良
(○)、350mmAqを超えるものをNG(×)とし
て行った。その結果を表1に纏めて示す。
Next, a pressure loss test device (not shown)
Air was introduced into each of the honeycomb structures 11 at a flow rate of 7.5 Nm 3 / min, and the differential pressure (mmAq) between the inflow side 11d and the outflow side 11e was measured to evaluate the pressure loss of each honeycomb structure 11. In addition, the evaluation of the pressure loss was performed when the differential pressure was 250
A sample with less than mmAq was evaluated as excellent (◎), a sample with 250 to 350 mmAq was evaluated as good (○), and a sample with more than 350 mmAq was evaluated as NG (×). The results are summarized in Table 1.

【0031】 (表1) 区分 セル壁厚 セルヒ゜ッチ 断面積 内寸 フィルタ表面積 差圧 圧力損失 (mm) (mm) (mm2) (mm) (cm2/cm3) (mmAq) の評価 発明例1 0.30 1.80 2.25 1.50 9.3 266 ○ 発明例2 0.30 1.47 1.37 1.17 10.8 249 ◎ 発明例3 0.25 1.47 1.49 1.22 11.3 238 ◎ 発明例4 0.23 1.51 1.64 1.31 11.0 233 ◎ 比較例1 0.43 2.54 4.45 2.11 6.5 414 × 比較例2 0.15 1.27 1.25 1.12 13.9 452 × 比較例3 0.30 3.00 7.29 2.70 6.0 368 × 比較例4 0.30 1.27 0.94 0.97 12.0 425 × 比較例5 0.30 3.50 10.24 3.20 5.2 371 × (注)表1で、断面積はセル壁で囲まれる断面積11gを、内寸はセル壁間の内 寸11hを、フィルタ表面積は単位体積あたりのフィルタ表面積をそれぞれ略し て示す。(Table 1) Category Cell wall thickness Cell switch Cross-sectional area Inner dimensions Filter surface area Differential pressure Pressure loss  (mm) (mm) (mm 2 ) (mm) (cm 2 / cm 3 ) (mmAq) Evaluation of  Invention Example 1 0.30 1.80 2.25 1.50 9.3 266 ◎ Invention Example 2 0.30 1.47 1.37 1.17 10.8 249 ◎ Invention Example 3 0.25 1.47 1.49 1.22 11.3 238 ◎ Invention Example 4 0.23 1.51 1.64 1.31 11.0 233 ◎ Comparative Example 1 0.43 2.54 4.45 2.11 6.5 414 × Comparative Example 2 0.15 1.27 1.25 1.12 13.9 452 × Comparative Example 3 0.30 3.00 7.29 2.70 6.0 368 × Comparative Example 4 0.30 1.27 0.94 0.97 12.0 425 × Comparative Example 5 0.30 3.50 10.24 3.20 5.2 371 × (Note) In Table 1, the cross-sectional area is The cross-sectional area surrounded by the cell walls is 11 g, the inner size is the inner size 11 h between the cell walls, and the filter surface area is the filter surface area per unit volume.

【0032】表1から、発明例1〜4は、セル壁厚11
cが0.1〜0.3mm、またセルピッチ11iが1.
4〜3mm、セル壁で囲まれる断面積11gが1.3m
2以上又はセル壁間の内寸11hが1.15mm以
上、単位体積あたりのフィルタ表面積が7cm2/c
3、好ましくは10cm2/cm3以上であるので、差
圧が小さくて圧力損失の少ないハニカム構造体11とな
っていることがわかる。
As shown in Table 1, the invention examples 1 to 4 show that the cell wall thickness 11
c is 0.1 to 0.3 mm, and the cell pitch 11i is 1.
4-3mm, cross section 11g surrounded by cell wall is 1.3m
m 2 or more or inner dimension 11h between cell walls is 1.15 mm or more, and filter surface area per unit volume is 7 cm 2 / c
Since it is m 3 , preferably 10 cm 2 / cm 3 or more, it can be seen that the honeycomb structure 11 has a small differential pressure and a small pressure loss.

【0033】一方、比較例1は、セル壁で囲まれる断面
積11gが1.3mm2 以上又はセル壁間の内寸11i
が1.15mm以上であるが、セル壁厚が0.3mmを
越えているため、単位体積あたりのフィルタ表面積が7
cm2/cm3未満であり、差圧が大きく、圧力損失が大
きいことがわかる。比較例2、4は、単位体積あたりの
フィルタ表面積が7cm2/cm3以上ではあるが、セル
壁で囲まれる断面積11gが1.3mm2 未満又はセル
壁間の内寸11hが1.15mm未満であり、またセル
ピッチ11iが1.4未満であり、差圧が大きく、圧力
損失が大きいことがわかる。比較例3は、セル壁で囲ま
れる断面積11gが1.3mm2 以上又はセル壁間の内
寸11iが1.15mm以上であるが、単位体積あたり
のフィルタ表面積が7cm2/cm3未満であり、差圧が
大きく、圧力損失が大きいことがわかる。比較例5は、
セル壁で囲まれる断面積11gが1.3mm2 以上又は
セル壁間の内寸11iが1.15mm以上であるが、セ
ルピッチが3mmを超え、単位体積あたりのフィルタ表
面積が7cm2/cm3未満であるので、差圧が大きく、
圧力損失が大きいことがわかる。
On the other hand, in Comparative Example 1, the cross-sectional area 11g surrounded by the cell wall was not less than 1.3 mm 2 or the inner dimension 11i between the cell walls.
Is 1.15 mm or more, but since the cell wall thickness exceeds 0.3 mm, the filter surface area per unit volume is 7 mm.
cm 2 / cm 3 , indicating that the differential pressure is large and the pressure loss is large. Comparative Examples 2 and 4 have a filter surface area per unit volume of 7 cm 2 / cm 3 or more, but have a cross-sectional area 11 g surrounded by cell walls of less than 1.3 mm 2 or an inner dimension 11 h between cell walls of 1.15 mm. It can be seen that the cell pitch 11i is less than 1.4, the differential pressure is large, and the pressure loss is large. Comparative Example 3 has a cross-sectional area 11 g surrounded by cell walls of 1.3 mm 2 or more or an inner dimension 11i between cell walls of 1.15 mm or more, but a filter surface area per unit volume of less than 7 cm 2 / cm 3 . It can be seen that the differential pressure is large and the pressure loss is large. Comparative Example 5
The cross-sectional area 11g surrounded by the cell wall is not less than 1.3 mm 2 or the inner dimension 11i between the cell walls is not less than 1.15 mm, but the cell pitch exceeds 3 mm, and the filter surface area per unit volume is less than 7 cm 2 / cm 3. Therefore, the differential pressure is large,
It can be seen that the pressure loss is large.

【0034】(触媒担持)発明例1〜4のハニカム構造
体11は、必要に応じて、セル壁11b及び細孔内に触
媒を担持する。ハニカム構造体11に白金族金属触媒を
担持した場合には、捕集したカーボンが排気ガス成分中
のNOxの触媒反応によって形成されるNO2との化学
反応により連続的に低温で燃焼されることから、燃焼温
度は電気ヒーターやバーナなどで燃焼させる場合に比べ
低下させることでハニカム構造体を溶損させることな
く、連続的に再生することが出来る。
(Catalyst Support) The honeycomb structures 11 of Invention Examples 1 to 4 support a catalyst in the cell walls 11b and in the pores as necessary. When carrying a platinum group metal catalyst on the honeycomb structure 11, the trapped carbon is continuously burned at a low temperature by chemical reaction with the NO 2 formed by the catalytic reaction of the NOx in the exhaust gas components Therefore, the honeycomb structure can be continuously regenerated without lowering the combustion temperature by melting the honeycomb structure as compared with the case of burning with an electric heater or a burner.

【0035】[0035]

【発明の効果】以上詳細に説明のとおり、本発明のハニ
カム構造体によれば、構造が複雑でなく、製造が容易と
なり、且つ、排気ガスに含まれる微粒子を高効率に捕集
すると共に圧力損失を低くできる。
As described above in detail, according to the honeycomb structure of the present invention, the structure is not complicated, the production is easy, the fine particles contained in the exhaust gas are efficiently collected, and the pressure is reduced. Loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ハニカム構造体の斜視図である。FIG. 1 is a perspective view of a honeycomb structure.

【図2】図1のハニカム構造体を用いた排気ガス浄化フ
ィルタ10の一例の断面模式図である。
FIG. 2 is a schematic sectional view of an example of an exhaust gas purification filter 10 using the honeycomb structure of FIG.

【図3】(a)はハニカム構造を有する成形体の部分
部、(b)は押出成形用金型の要部断面図である。
3A is a partial section of a molded body having a honeycomb structure, and FIG. 3B is a cross-sectional view of a main part of an extrusion molding die.

【符号の説明】[Explanation of symbols]

10a:流入 10b:流出 11:ハニカム構造体 11a:外周壁 11b:セル壁 11c:セル 11d:流入側端面 11e:流出側端面 11f:流入側端面 11g:セル壁で囲まれる断面積 11h:セル壁間の内寸 11i:セルピッチ 11t:セル壁厚 13a,13b:封止材 20:押出成形用金型 21:ダイ 21a:供給通路 21b:排出通路 22:マスキングプレート 23:押さえ枠 10a: Inflow 10b: Outflow 11: Honeycomb structure 11a: Outer peripheral wall 11b: Cell wall 11c: Cell 11d: Inflow side end surface 11e: Outflow side end surface 11f: Inflow side end surface 11g: Cross-sectional area surrounded by cell wall 11h: Cell wall Inner dimensions between 11i: cell pitch 11t: cell wall thickness 13a, 13b: sealing material 20: extrusion mold 21: die 21a: supply passage 21b: discharge passage 22: masking plate 23: holding frame

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 38/06 F01N 3/02 321A 4G069 F01N 3/02 301 3/24 E 321 B01D 53/36 ZABC 3/24 104A Fターム(参考) 3G090 AA02 AA03 BA01 3G091 AA02 AA18 AB02 AB13 BA00 GA06 GB05W GB06W GB17X 4D019 AA01 BA05 BB06 BC07 BD01 CA01 CB04 CB06 4D048 AA06 AA14 BA30Y BA31Y BA32Y BA33Y BB02 BB14 CA07 CC41 4G054 AA05 AB09 AC00 BD19 4G069 AA01 AA03 AA08 BC69B CA03 CA13 CA18 DA06 EA19 EA27 EB14X EB14Y EB15X EB15Y EC30 FA03 FB67──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 38/06 F01N 3/02 321A 4G069 F01N 3/02 301 3/24 E 321 B01D 53/36 ZABC 3 / 24 104A F-term (reference) 3G090 AA02 AA03 BA01 3G091 AA02 AA18 AB02 AB13 BA00 GA06 GB05W GB06W GB17X 4D019 AA01 BA05 BB06 BC07 BD01 CA01 CB04 CB06 4D048 AA06 AA14 BA30Y BA31Y BA32Y BA33A04 A04 AB03 A04 A03 A04 A03 A04 BC69B CA03 CA13 CA18 DA06 EA19 EA27 EB14X EB14Y EB15X EB15Y EC30 FA03 FB67

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外周壁と、この外周壁の内周側でセル壁
により囲まれた無数のセルを有し、セルの排気ガス流入
側及び排気ガス流出側の両端面を交互に目封じして、排
気ガスをセル壁の細孔を通過させて隣接セルに流し、排
気ガスに含まれる微粒子をセル壁で捕集する多孔質セラ
ミックハニカム構造体であって、セル壁で囲まれる断面
が四角形状を有し、セル壁厚が0.1〜0.3mm、セ
ルピッチが1.4〜3mmで、セル壁で囲まれる断面積
を1.3mm2 以上又はセル壁間の内寸を1.15mm
以上、単位体積あたりのフィルタ表面積を7cm2/c
3以上としていることを特徴とする多孔質セラミック
ハニカム構造体。
1. An outer peripheral wall and countless cells surrounded by cell walls on the inner peripheral side of the outer peripheral wall, and both end surfaces on the exhaust gas inflow side and the exhaust gas outflow side of the cell are alternately plugged. A porous ceramic honeycomb structure in which the exhaust gas passes through the pores of the cell wall and flows to adjacent cells, and the fine particles contained in the exhaust gas are collected by the cell wall, and the cross section surrounded by the cell wall is square. It has a shape, a cell wall thickness of 0.1 to 0.3 mm, a cell pitch of 1.4 to 3 mm, a cross-sectional area surrounded by cell walls of 1.3 mm 2 or more, or an inner dimension between cell walls of 1.15 mm.
As described above, the filter surface area per unit volume is 7 cm 2 / c.
A porous ceramic honeycomb structure, wherein m 3 or more.
【請求項2】 前記単位体積あたりのフィルタ表面積を
10cm2/cm3以上としていることを特徴とする請求
項1に記載の多孔質セラミックハニカム構造体。
2. The porous ceramic honeycomb structure according to claim 1, wherein the filter surface area per unit volume is 10 cm 2 / cm 3 or more.
【請求項3】 前記セル壁の気孔率を50〜70%とし
ていることを特徴とする請求項1又は請求項2に記載の
多孔質セラミックハニカム構造体。
3. The porous ceramic honeycomb structure according to claim 1, wherein the porosity of the cell wall is 50 to 70%.
JP2001037993A 2001-02-15 2001-02-15 Porous ceramic honeycomb structure Expired - Lifetime JP3503823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037993A JP3503823B2 (en) 2001-02-15 2001-02-15 Porous ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037993A JP3503823B2 (en) 2001-02-15 2001-02-15 Porous ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2002239322A true JP2002239322A (en) 2002-08-27
JP3503823B2 JP3503823B2 (en) 2004-03-08

Family

ID=18901047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037993A Expired - Lifetime JP3503823B2 (en) 2001-02-15 2001-02-15 Porous ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP3503823B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042205A1 (en) * 2002-11-07 2004-05-21 Ngk Insulators, Ltd. Honeycomb structure
WO2008026675A1 (en) 2006-08-30 2008-03-06 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP2008137185A (en) * 2006-11-30 2008-06-19 Denso Corp Honeycomb structure molding die
CN107233930A (en) * 2016-03-28 2017-10-10 日本碍子株式会社 Honeycomb structured body
EP3528928A4 (en) * 2016-10-20 2020-11-04 Corning Incorporated Filtration articles and methods of making and using the same
WO2021020014A1 (en) 2019-07-29 2021-02-04 株式会社デンソー Exhaust gas purification filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024147B (en) * 2006-02-17 2011-12-28 陈妙生 Wast gas purifier
CN102748758B (en) * 2012-07-23 2015-04-29 山西科德技术陶瓷有限公司 Honeycomb ceramic

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142209A (en) * 1987-11-30 1989-06-05 Toyota Motor Corp Filter for collecting diesel particulate
JPH0929024A (en) * 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH119925A (en) * 1997-06-20 1999-01-19 Matsushita Electric Ind Co Ltd Exhaust gas filter and its production
JP2001096116A (en) * 1999-09-29 2001-04-10 Ibiden Co Ltd Ceramic filter aggregate and honeycomb filter
JP2001096117A (en) * 1999-09-29 2001-04-10 Ibiden Co Ltd Ceramic filter aggregate and honeycomb filter
JP2001162119A (en) * 1999-09-29 2001-06-19 Ibiden Co Ltd Ceramic filter aggregate
JP2001269585A (en) * 2000-03-24 2001-10-02 Ngk Insulators Ltd Filter for cleaning exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142209A (en) * 1987-11-30 1989-06-05 Toyota Motor Corp Filter for collecting diesel particulate
JPH0929024A (en) * 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH119925A (en) * 1997-06-20 1999-01-19 Matsushita Electric Ind Co Ltd Exhaust gas filter and its production
JP2001096116A (en) * 1999-09-29 2001-04-10 Ibiden Co Ltd Ceramic filter aggregate and honeycomb filter
JP2001096117A (en) * 1999-09-29 2001-04-10 Ibiden Co Ltd Ceramic filter aggregate and honeycomb filter
JP2001162119A (en) * 1999-09-29 2001-06-19 Ibiden Co Ltd Ceramic filter aggregate
JP2001269585A (en) * 2000-03-24 2001-10-02 Ngk Insulators Ltd Filter for cleaning exhaust gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042205A1 (en) * 2002-11-07 2004-05-21 Ngk Insulators, Ltd. Honeycomb structure
US8039084B2 (en) 2002-11-07 2011-10-18 Ngk Insulators, Ltd. Honeycomb structure
US8039087B2 (en) 2002-11-07 2011-10-18 Ngk Insulators, Ltd. Honeycomb structure
WO2008026675A1 (en) 2006-08-30 2008-03-06 Hitachi Metals, Ltd. Ceramic honeycomb filter
US8435320B2 (en) 2006-08-30 2013-05-07 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP2008137185A (en) * 2006-11-30 2008-06-19 Denso Corp Honeycomb structure molding die
CN107233930A (en) * 2016-03-28 2017-10-10 日本碍子株式会社 Honeycomb structured body
EP3528928A4 (en) * 2016-10-20 2020-11-04 Corning Incorporated Filtration articles and methods of making and using the same
WO2021020014A1 (en) 2019-07-29 2021-02-04 株式会社デンソー Exhaust gas purification filter

Also Published As

Publication number Publication date
JP3503823B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
JP5444716B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP4917230B2 (en) Catalytic device
JP3727550B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP5964564B2 (en) Wall flow type exhaust gas purification filter
CN105008050B (en) Ceramic honeycomb structural body and its manufacture method
EP1604726A1 (en) Honeycomb filter and method of manufacturing the same
JP2001269585A (en) Filter for cleaning exhaust gas
JP2002357114A (en) Exhaust gas cleaning filter and manufacturing method therefor
JP4421858B2 (en) Honeycomb structure and manufacturing method thereof
JPH09173866A (en) Diesel exhaust gas purifying filter
KR20060024323A (en) Honeycomb structure body
WO2007102561A1 (en) Ceramic structure and process for producing the same
JPH07163822A (en) Cordierite ceramic filter and its preparation
JP3874443B2 (en) Particulate collection filter
JP2003001029A (en) Porous ceramic honeycomb filter
JP4577752B2 (en) Ceramic honeycomb filter
JP4320702B2 (en) Exhaust gas purification device
JP2002349234A (en) Diesel exhaust emission control filter
JP2002239322A (en) Porous ceramic honeycomb structure
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP4426381B2 (en) Honeycomb structure and manufacturing method thereof
JPH0929024A (en) Exhaust gas filter
JP3405536B2 (en) Porous ceramic honeycomb structure
JPH1181983A (en) Particulate filter
JP4476896B2 (en) Method for producing porous ceramic structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

R150 Certificate of patent or registration of utility model

Ref document number: 3503823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

EXPY Cancellation because of completion of term