JP2002226846A - Illuminating fluorescent substance, light-emitting diode using the same illuminating fluorescent substance and method for coating fluorescent substance - Google Patents

Illuminating fluorescent substance, light-emitting diode using the same illuminating fluorescent substance and method for coating fluorescent substance

Info

Publication number
JP2002226846A
JP2002226846A JP2001029093A JP2001029093A JP2002226846A JP 2002226846 A JP2002226846 A JP 2002226846A JP 2001029093 A JP2001029093 A JP 2001029093A JP 2001029093 A JP2001029093 A JP 2001029093A JP 2002226846 A JP2002226846 A JP 2002226846A
Authority
JP
Japan
Prior art keywords
phosphor
light
fluorescent substance
blue
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001029093A
Other languages
Japanese (ja)
Other versions
JP3736357B2 (en
Inventor
Shinya Kawagoe
進也 川越
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001029093A priority Critical patent/JP3736357B2/en
Publication of JP2002226846A publication Critical patent/JP2002226846A/en
Application granted granted Critical
Publication of JP3736357B2 publication Critical patent/JP3736357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an illuminating fluorescent substance providing nearly the same white light as white light of a white light source for general illumination maintaining a well-balanced state of each component of the three primary colors of red, green and blue and a strong light emission with a high luminous intensity especially when a light source emitting a near ultraviolet light at 340-380 nm wavelength is used as an excitation light source. SOLUTION: The illuminating fluorescent substance excited by the near ultraviolet light at 340-380 nm wavelength and emitting the white light comprises a red fluorescent substance at 625-750 nm peak wavelength or an orange fluorescent substance at 575-675 nm peak wavelength, a green fluorescent substance at 500-600 nm peak wavelength and a blue fluorescent substance at 400-500 nm peak wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、照明用蛍光体、こ
の照明用蛍光体を用いた発光ダイオード、および蛍光体
の塗布方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor for lighting, a light emitting diode using the phosphor for lighting, and a coating method of the phosphor.

【0002】[0002]

【従来の技術】近時、高効率でかつ長寿命である発光ダ
イオードを蛍光ランプ等の一般照明用白色光源の代替光
源として用いることが提案されている。
2. Description of the Related Art Recently, it has been proposed to use a light emitting diode having high efficiency and long life as an alternative light source for a white light source for general illumination such as a fluorescent lamp.

【0003】従来の白色発光ダイオードとしては、例え
ば青色発光域(400nm〜530nm)にピーク波長
をもつLEDチップ(発光素子)と、その発光の一部を
吸収し黄色系に発光する蛍光体とを組み合わせたものが
知られている(特開平11−31845号公報や特開平
11−40858号公報等)。
As a conventional white light emitting diode, for example, an LED chip (light emitting element) having a peak wavelength in a blue light emitting region (400 nm to 530 nm) and a phosphor which absorbs a part of the light emission and emits yellow light are used. Combinations are known (JP-A-11-31845, JP-A-11-40858, etc.).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の白色発光ダイオードでは、青色光および黄色
光のみで白色光を実現しているため、赤味成分の不足し
た白色となり、一般照明用の白色光源の代替光源として
は適していないという問題があった。
However, in such a conventional white light emitting diode, since white light is realized only with blue light and yellow light, the white light lacks a red component and becomes white for general lighting. There is a problem that it is not suitable as a substitute for a white light source.

【0005】また、このような発光ダイオードに用いる
蛍光体として、一般的な蛍光ランプ用の蛍光体を使用し
た場合、このような蛍光ランプ用の蛍光体はもともと水
銀から発生する254nmをピーク波長とする紫外線に
よって励起効率が最大となるように構成されているた
め、波長400nm〜530nmの発光によって励起さ
せて発光させても、発光強度が著しく弱く、場合によっ
て発光しないという問題があった。
When a phosphor for a general fluorescent lamp is used as a phosphor for such a light emitting diode, the phosphor for such a fluorescent lamp originally has a peak wavelength of 254 nm generated from mercury. Since the excitation efficiency is maximized by the ultraviolet light, even when the light is excited by the light having a wavelength of 400 nm to 530 nm to emit light, there is a problem that the light emission intensity is extremely weak and the light is not emitted in some cases.

【0006】本発明は、このような問題を解決するため
になされたものであり、励起光源として、特に波長34
0nm〜380nmの近紫外光を発する光源を用いた場
合に、赤色、緑色、青色の三原色の各成分のバランスが
取れた一般照明用の白色光源の白色光とほぼ同様の白色
光であり、かつ発光強度の強い発光を得ることができる
照明用蛍光体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem.
When a light source that emits near-ultraviolet light of 0 nm to 380 nm is used, the white light is substantially the same as the white light of a white light source for general illumination in which the three primary colors of red, green, and blue are balanced, and It is an object of the present invention to provide an illumination phosphor capable of obtaining light emission with high light emission intensity.

【0007】また、本発明は、波長340nm〜380
nmの近紫外光を発する発光素子を有する発光ダイオー
ドであって、赤色、緑色、青色の三原色の各成分のバラ
ンスが取れた一般照明用の白色光源の白色光とほぼ同様
の白色光であり、かつ発光強度の強い発光を得ることが
できる発光ダイオードを提供することを目的とする。
[0007] The present invention also relates to a wavelength range of 340 nm to 380.
a light-emitting diode having a light-emitting element that emits near-ultraviolet light having a wavelength of about 3 nm.Red light, green light, and white light that is substantially the same as white light of a white light source for general illumination in which the components of the three primary colors of blue are balanced; It is another object of the present invention to provide a light emitting diode capable of obtaining light emission with high light emission intensity.

【0008】さらに、本発明は、被塗布部材、例えば発
光ダイオードの発光素子の平面部分に蛍光体膜を形成す
る際、蛍光体膜の膜厚を均一にすることができる蛍光体
の塗布方法を提供することを目的とする。
Further, the present invention provides a phosphor coating method capable of making the thickness of a phosphor film uniform when a phosphor film is formed on a member to be coated, for example, a plane portion of a light emitting element of a light emitting diode. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明の照明用蛍光体
は、波長340nm〜380nmの近紫外光によって励
起されて白色発光する照明用蛍光体であって、ピーク波
長625nm〜750nmの赤色蛍光体またはピーク波
長575nm〜675nmの橙色蛍光体と、ピーク波長
500nm〜600nmの緑色蛍光体と、ピーク波長4
00nm〜500nmの青色蛍光体とを含有している。
The illumination phosphor of the present invention is an illumination phosphor which emits white light when excited by near ultraviolet light having a wavelength of 340 nm to 380 nm, and is a red phosphor having a peak wavelength of 625 nm to 750 nm. Or, an orange phosphor having a peak wavelength of 575 nm to 675 nm, a green phosphor having a peak wavelength of 500 nm to 600 nm, and a peak wavelength of 4
And a blue phosphor of 00 nm to 500 nm.

【0010】これにより、励起光源として、波長340
nm〜380nmの近紫外光を発する光源を用いた場合
に、赤色、緑色、青色の三原色の各成分のバランスが取
れた一般照明用の白色光源の白色光とほぼ同様の白色光
であり、かつ発光強度の強い発光を得ることができる。
As a result, the wavelength 340 is used as the excitation light source.
When a light source that emits near-ultraviolet light of nm to 380 nm is used, the white light is substantially the same as the white light of a white light source for general illumination in which the three primary colors of red, green, and blue are balanced, and Light emission with high light emission intensity can be obtained.

【0011】また、本発明の発光ダイオードは、波長3
40nm〜380nmの近紫外光を発する発光素子と、
この発光素子から発せられる光によって励起されて発光
する請求項1〜請求項7のいずれかに記載の照明用蛍光
体とを有している。
The light emitting diode of the present invention has a wavelength of 3
A light-emitting element that emits near-ultraviolet light of 40 nm to 380 nm,
The illumination phosphor according to any one of claims 1 to 7, which emits light when excited by light emitted from the light emitting element.

【0012】これにより、赤色、緑色、青色の三原色の
各成分のバランスが取れた一般照明用の白色光源の白色
光とほぼ同様の白色光であり、かつ発光強度の強い発光
を得ることができる。
[0012] This makes it possible to obtain a white light having substantially the same intensity as the white light of the white light source for general illumination, in which the respective components of the three primary colors of red, green and blue are well-balanced, and of high intensity. .

【0013】さらに、本発明の蛍光体の塗布方法は、蛍
光体を被塗布部材の平面部分に塗布する蛍光体の塗布方
法であって、前記蛍光体を含有する蛍光体懸濁液をスピ
ンコーティングによって前記被塗布部材の平面部分に塗
布する方法が用いられている。
Further, the method of applying a phosphor according to the present invention is a method of applying a phosphor to a flat portion of a member to be coated, wherein the phosphor suspension containing the phosphor is spin-coated. In this method, a method of applying the liquid to the flat portion of the member to be coated is used.

【0014】これにより、被塗布部材の平面部分に蛍光
体膜を形成する際、蛍光体膜の膜厚を均一にすることが
できる。
Thus, when the phosphor film is formed on the flat portion of the member to be coated, the thickness of the phosphor film can be made uniform.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】本発明の実施の形態であるチップ型の発光
ダイオードは、図1に示すように、発光軸Xを含む面で
切断した断面形状が凹状の真鍮からなるベース部1と、
このベース部1の凹部2内の底面上に配置された発光素
子3と、この発光素子3等を保護するためにベース部1
の凹部2内に充填されたエポキシ樹脂やシリコーン樹脂
等からなる透明性の樹脂部材4とを備えている。
As shown in FIG. 1, a chip-type light emitting diode according to an embodiment of the present invention has a base portion 1 made of brass having a concave cross section cut along a plane including a light emitting axis X;
The light emitting element 3 disposed on the bottom surface in the concave portion 2 of the base section 1 and the base section 1 for protecting the light emitting element 3 and the like.
And a transparent resin member 4 made of an epoxy resin, a silicone resin, or the like filled in the concave portion 2.

【0017】ベース部1には、ベース部1の外部から発
光素子3に電力を供給する金と錫との合金からなる2つ
の層状の外部電極5a,5bが一体的に形成されてい
る。
The base portion 1 is integrally formed with two layered external electrodes 5a and 5b made of an alloy of gold and tin for supplying power to the light emitting element 3 from outside the base portion 1.

【0018】発光素子3は、サファイアからなる透明基
板6上に、波長340nm〜380nmの近紫外光を発
する例えば窒化ガリウム系化合物半導体7と、P電極8
とが順次積層された構造をなしている。また、半導体7
にはN電極9が形成されている。
The light emitting element 3 includes, for example, a gallium nitride-based compound semiconductor 7 that emits near ultraviolet light having a wavelength of 340 nm to 380 nm on a transparent substrate 6 made of sapphire, and a P electrode 8.
Are sequentially laminated. Semiconductor 7
Is formed with an N electrode 9.

【0019】外部電極5aとP電極8とは直接接触して
接続されている。外部電極5bとN電極9とは金属ワイ
ヤー10を介して接続されている。
The external electrode 5a and the P electrode 8 are connected in direct contact. The external electrode 5b and the N electrode 9 are connected via a metal wire 10.

【0020】なお、発光素子3の発光波長は、半導体材
料やその組成比によって種々選択することができる。
The light emission wavelength of the light emitting element 3 can be variously selected depending on the semiconductor material and its composition ratio.

【0021】透明基板6の表面には、ピーク波長625
nm〜750nmの赤色蛍光体またはピーク波長575
nm〜675nmの橙色蛍光体と、ピーク波長500n
m〜600nmの緑色蛍光体と、ピーク波長400nm
〜500nmの青色蛍光体とを含有し、波長340nm
〜380nmの近紫外光によって励起されて白色発光す
る蛍光体からなる蛍光体膜11が形成されている。
The surface of the transparent substrate 6 has a peak wavelength of 625
red phosphor or peak wavelength 575 nm to 750 nm
orange-phosphor with a peak wavelength of 500 nm
m-600 nm green phosphor, peak wavelength 400 nm
And a blue phosphor having a wavelength of 340 nm.
A phosphor film 11 made of a phosphor that emits white light when excited by near-ultraviolet light of about 380 nm is formed.

【0022】赤色蛍光体には、例えば一般式Axyz
(ただし、AはMg、CaおよびMnの中から選ばれる
少なくとも一種の元素、DはGeおよびMnの中から選
ばれる少なくとも一種の元素であり、x、yおよびzは
20<x<40、0<y<15、z=100−x−yな
る条件を満たす数である)で表される単相の酸化物であ
り、かつ結晶構造が斜方晶であるとともに、空間群がP
bamである蛍光体を用いることが好ましい。
The red phosphor has, for example, the general formula A x D y O z
(Where A is at least one element selected from Mg, Ca and Mn, D is at least one element selected from Ge and Mn, and x, y and z are 20 <x <40, 0 <Y <15, which is a number satisfying the condition z = 100−xy), the crystal structure is orthorhombic, and the space group is P
It is preferable to use a phosphor that is bam.

【0023】以下、一例として赤色蛍光体(Mn,C
a,Mn)x(Ge,Mn)yzにおいて、その組成比
を種々変化させた場合の結晶構造、空間群、および波長
375nmの近紫外光によって励起された際に発光する
発光色を調べたところ、表1に示すとおりの結果が得ら
れた。
Hereinafter, as an example, a red phosphor (Mn, C
In a, Mn) x (Ge, Mn) y O z , the crystal structure, space group, and emission color of light emitted when excited by near-ultraviolet light having a wavelength of 375 nm when the composition ratio is changed variously are examined. As a result, the results shown in Table 1 were obtained.

【0024】なお、表1の「発光色」の欄において、
「赤」はピーク波長625nm〜750nmの発光を、
「紫」はピーク波長380nm〜390nmの発光を、
「青紫」はピーク波長390nm〜400nmの発光を
それぞれ示す(以下の表についても同じ)。また、「判
定」の欄において、「○」は本発明に使用するのに適し
ていることを、「×」は本発明に使用するのに適してい
ないことをそれぞれ示す(以下の表についても同じ)。
In the column of "Emission color" in Table 1,
“Red” indicates light emission with a peak wavelength of 625 nm to 750 nm,
“Purple” emits light with a peak wavelength of 380 nm to 390 nm,
"Blue purple" indicates light emission with a peak wavelength of 390 nm to 400 nm, respectively (the same applies to the following tables). In the column of “determination”, “「 ”indicates that the composition is suitable for use in the present invention, and“ × ”indicates that the composition is not suitable for use in the present invention. the same).

【0025】[0025]

【表1】 [Table 1]

【0026】橙色蛍光体には、例えば一般式Gxy
z:Eu3+(ただし、GはYおよびGaの中から選ばれ
る少なくとも一種の元素であり、x、yおよびzは35
<x<45、35<y<45、z=100−x−yなる
条件を満たす数である)で表される単相の酸化物であ
り、かつ結晶構造が六方晶であるとともに、空間群がP
−3mである蛍光体を用いることが好ましい。
The orange phosphor includes, for example, a general formula G x O y S
z: Eu 3+ (where G is at least one element selected from Y and Ga, and x, y and z are 35
<X <45, 35 <y <45, z is a number satisfying the condition of 100-xy)), and has a hexagonal crystal structure and a space group. Is P
It is preferable to use a phosphor of -3 m.

【0027】以下、一例として橙色蛍光体(Y,Ca)
xySnz:Eu3+において、その組成比を種々変化さ
せた場合の結晶構造、空間群、および波長375nmの
近紫外光によって励起された際に発光する発光色を調べ
たところ、表2に示すとおりの結果が得られた。
Hereinafter, as an example, an orange phosphor (Y, Ca)
x O y Sn z: In Eu 3+, was examined crystal structure when was varied its composition ratio, space group, and the emission color of light emission when excited by near-ultraviolet light of wavelength 375 nm, the table The result as shown in FIG. 2 was obtained.

【0028】なお、表2の「発光色」の欄において、
「橙」はピーク波長575nm〜675nmの発光を示
す。
In the column of "Emission color" in Table 2,
“Orange” indicates light emission with a peak wavelength of 575 nm to 675 nm.

【0029】[0029]

【表2】 [Table 2]

【0030】緑色蛍光体には、例えば一般式LxGey
z:Mn2+(ただし、LはGaおよびZnの中から選ば
れる少なくとも一種の元素であり、x、yおよびzは2
0<x<30、10<y<20、z=100−x−yな
る条件を満たす数である)で表される単相の酸化物であ
り、かつ結晶構造が菱面晶であるとともに、空間群がR
−3Hである蛍光体を用いることが好ましい。
The green phosphor includes, for example, a general formula L x Ge y O
z : Mn 2+ (where L is at least one element selected from Ga and Zn, and x, y, and z are 2
0 <x <30, 10 <y <20, z = 100-xy), and a rhombohedral crystal structure. Space group is R
It is preferable to use a phosphor that is -3H.

【0031】以下、一例として緑色蛍光体(Ca,Z
n)xGeyz:Mn2+において、その組成比を種々変
化させた場合の結晶構造、空間群、および波長375n
mの近紫外光によって励起された際に発光する発光色を
調べたところ、表3に示すとおりの結果が得られた。
Hereinafter, as an example, a green phosphor (Ca, Z)
n) In x Ge y O z : Mn 2+ , a crystal structure, a space group, and a wavelength of 375 n when its composition ratio is variously changed.
When the emission color emitted when excited by m near-ultraviolet light was examined, the results shown in Table 3 were obtained.

【0032】なお、表3の「発光色」の欄において、
「緑」はピーク波長500nm〜600nmの発光を、
「青緑」はピーク波長475nm〜525nmの発光
を、「黄緑」はピーク波長575nm〜600nmの発
光をそれぞれ示す。
In the column of "Emission color" in Table 3,
“Green” indicates light emission with a peak wavelength of 500 nm to 600 nm,
“Blue-green” indicates light emission with a peak wavelength of 475 nm to 525 nm, and “yellow-green” indicates light emission with a peak wavelength of 575 nm to 600 nm.

【0033】[0033]

【表3】 [Table 3]

【0034】青色蛍光体には、例えば一般式Mx(P
4yClz:Eu2+(ただし、MはSrおよびCaの
中から選ばれる少なくとも一種の元素であり、x、yお
よびzは50<x<60、30<y<40、z=100
−x−yなる条件を満たす数である)で表される単相の
酸化物であり、かつ結晶構造が六方晶であるとともに、
空間群がP63/mである蛍光体を用いることが好まし
い。
The blue phosphor has, for example, the general formula M x (P
O 4 ) y Cl z : Eu 2+ (where M is at least one element selected from Sr and Ca, x, y and z are 50 <x <60, 30 <y <40, z = 100
-X-y), and has a hexagonal crystal structure.
It is preferable to use a phosphor whose space group is P63 / m.

【0035】以下、一例として緑色蛍光体(Sr,C
a)x(PO4yClz:Eu2+において、その組成比を
種々変化させた場合の結晶構造、空間群、および波長3
75nmの近紫外光によって励起された際に発光する発
光色を調べたところ、表4に示すとおりの結果が得られ
た。
The green phosphor (Sr, C
a) In x (PO 4 ) y Cl z : Eu 2+ , the crystal structure, space group and wavelength 3 when the composition ratio is variously changed
When the color of light emitted when excited by near-ultraviolet light of 75 nm was examined, the results shown in Table 4 were obtained.

【0036】なお、表4の「発光色」の欄において、
「青」はピーク波長400nm〜500nmの発光を示
す。
In the column of "Emission color" in Table 4,
“Blue” indicates light emission with a peak wavelength of 400 nm to 500 nm.

【0037】[0037]

【表4】 [Table 4]

【0038】上記赤色蛍光体、緑色蛍光体および青色蛍
光体をそれぞれ用いた場合では、赤色蛍光体の含有量を
重量百分率でa(%)、緑色蛍光体の含有量を重量百分
率でb(%)、青色蛍光体の含有量を重量百分率でc
(%)とすると、50%<a<60%、25%<b<3
5%、c=100−a−b(%)なる関係式が満たされ
ることにより、CIE1931色度図上で(x,y)=
(0.2,0.2)、(x,y)=(0.2,0.
4)、(x,y)=(0.45,0.2)(x,y)=
(0.45,0.4)で囲まれた領域の白色光、つまり
一般照明用の白色光源と同様の白色光を得ることができ
る。
When each of the red, green, and blue phosphors is used, the content of the red phosphor is represented by a (%) by weight percentage, and the content of the green phosphor is represented by b (%) by weight percentage. ), The content of the blue phosphor in percentage by weight
(%), 50% <a <60%, 25% <b <3
By satisfying the relational expression of 5% and c = 100-ab (%), (x, y) = (x, y) on the CIE1931 chromaticity diagram.
(0.2, 0.2), (x, y) = (0.2, 0.
4), (x, y) = (0.45, 0.2) (x, y) =
White light in a region surrounded by (0.45, 0.4), that is, white light similar to a white light source for general illumination can be obtained.

【0039】また、上記橙色蛍光体、緑色蛍光体および
青色蛍光体をそれぞれ用いた場合では、橙色蛍光体の含
有量を重量百分率でd(%)、緑色蛍光体の含有量を重
量百分率でb(%)、青色蛍光体の含有量を重量百分率
でc(%)とした場合、10%<d<20%、55%<
b<65%、c=100−b−d(%)なる関係式が満
たされることにより、上記と同じようにCIE1931
色度図上で(x,y)=(0.2,0.2)、(x,
y)=(0.2,0.4)、(x,y)=(0.45,
0.2)(x,y)=(0.45,0.4)で囲まれた
領域の白色光を得ることができる。
When each of the orange phosphor, the green phosphor and the blue phosphor is used, the content of the orange phosphor is expressed as d (%) by weight percentage and the content of the green phosphor is expressed as b (weight percentage). (%), When the content of the blue phosphor is expressed as c (%) by weight percentage, 10% <d <20%, 55% <
By satisfying the relational expressions of b <65% and c = 100−b−d (%), CIE1931 is performed in the same manner as described above.
On the chromaticity diagram, (x, y) = (0.2, 0.2), (x, y)
y) = (0.2,0.4), (x, y) = (0.45,
0.2) (x, y) = (0.45, 0.4) white light can be obtained in a region surrounded by (0.4, 0.4).

【0040】次に、蛍光体を透明基板6に塗布する方法
について説明する。
Next, a method of applying a phosphor to the transparent substrate 6 will be described.

【0041】まず、ポリエチレンオキサイドが溶かされ
た水溶液に、あらかじめ各色の蛍光体を混合した平均粒
径1.5μm以下の蛍光体を懸濁して蛍光体懸濁液を調
製する。蛍光体を溶液中に懸濁させる際、蛍光体が凝集
するのを防止するため、超音波撹拌を行った後、回転撹
拌を行うことが好ましい。
First, a phosphor having an average particle size of 1.5 μm or less in which phosphors of each color are mixed in advance is suspended in an aqueous solution in which polyethylene oxide is dissolved to prepare a phosphor suspension. When suspending the phosphor in the solution, it is preferable to perform rotational stirring after performing ultrasonic stirring to prevent the phosphor from aggregating.

【0042】この蛍光体懸濁液を所定の速度で回転させ
た被塗布部材である透明基板6の中心部に適量垂らし、
遠心力を利用して透明基板6全体に蛍光体懸濁液を塗布
する(スピンコーティング)。その後、乾燥、焼成工程
を経て蛍光体膜11を形成する。このようなスピンコー
ティングを用いることにより、透明基板6に膜厚が均一
な蛍光体膜11を容易に形成することができる。
An appropriate amount of this phosphor suspension is suspended at the center of a transparent substrate 6 which is a member to be coated, which is rotated at a predetermined speed.
The phosphor suspension is applied to the entire transparent substrate 6 using centrifugal force (spin coating). Then, the phosphor film 11 is formed through a drying and baking process. By using such spin coating, the phosphor film 11 having a uniform film thickness on the transparent substrate 6 can be easily formed.

【0043】なお、蛍光体膜11の膜厚は、蛍光体懸濁
液の粘度、被塗布部材に滴下する蛍光体懸濁液量、被塗
布部材の回転速度、または蛍光体懸濁液中に含まれる蛍
光体量を制御することにより、所望の厚さに調整するこ
とができる。
The thickness of the phosphor film 11 depends on the viscosity of the phosphor suspension, the amount of the phosphor suspension dropped on the member to be coated, the rotation speed of the member to be coated, or the thickness of the phosphor suspension. By controlling the amount of phosphor contained, it is possible to adjust the thickness to a desired thickness.

【0044】ここで、蛍光体の平均粒径を1.5μm以
下に規定した理由について説明する。
Here, the reason why the average particle size of the phosphor is specified to be 1.5 μm or less will be described.

【0045】まず、平均粒径が0.1μm〜10μmの
範囲内で種々の蛍光体を作製し、作製した各々の蛍光体
を用い、上述した製造方法によって透明基板6の表面に
蛍光体膜11を形成し、各蛍光体膜11の表面粗さにつ
いて調べたところ、図2に示すとおりの結果が得られ
た。
First, various phosphors having an average particle diameter in the range of 0.1 μm to 10 μm were produced, and the phosphor film 11 was formed on the surface of the transparent substrate 6 by the above-described production method using each of the produced phosphors. Was formed, and the surface roughness of each phosphor film 11 was examined. The result as shown in FIG. 2 was obtained.

【0046】なお、図2において、縦軸は平均粒径が1
0μmの蛍光体からなる蛍光体膜11の表面粗さを10
0とした場合の各蛍光体膜11の相対的表面粗さを示し
ている。
In FIG. 2, the ordinate represents an average particle size of 1
The surface roughness of the phosphor film 11 made of
The relative surface roughness of each phosphor film 11 when 0 is set is shown.

【0047】図2から明らかなように、平均粒径が1.
5μm以下の蛍光体からなる蛍光体膜11の相対的表面
粗さは30以下であった。一方、平均粒径が1.5μm
を越える、例えば2.0μmの蛍光体からなる蛍光体膜
11の相対的表面粗さは65であり、平均粒径が1.5
μmの蛍光体からなる蛍光体膜11の相対的表面粗さに
比して著しく大きくなることがわかった。
As is apparent from FIG. 2, the average particle size is 1.
The relative surface roughness of the phosphor film 11 made of a phosphor of 5 μm or less was 30 or less. On the other hand, the average particle size is 1.5 μm
, The relative surface roughness of the phosphor film 11 composed of, for example, 2.0 μm phosphor is 65 and the average particle size is 1.5.
It was found that the surface roughness was significantly larger than the relative surface roughness of the phosphor film 11 made of a phosphor of μm.

【0048】したがって、蛍光体の平均粒径を1.5μ
m以下に規定することにより、蛍光体膜11の表面粗さ
を著しく小さくすることができる。また、蛍光体膜11
の表面粗さをより小さくするため、蛍光体の平均粒径を
1.0μm以下に規定することが好ましい。このように
蛍光体の平均粒径は小さければ小さいほど好ましいが、
製造が容易でありかつ高コスト化を防止するため、0.
1μm以上に規定することが好ましい。
Therefore, the average particle size of the phosphor is 1.5 μm.
By setting m or less, the surface roughness of the phosphor film 11 can be significantly reduced. Also, the phosphor film 11
In order to further reduce the surface roughness of the phosphor, it is preferable to set the average particle size of the phosphor to 1.0 μm or less. Thus, the smaller the average particle size of the phosphor is, the better,
In order to facilitate the production and to prevent the cost from increasing, it is necessary to set the value of 0.1.
It is preferable to set the thickness to 1 μm or more.

【0049】以上のように波長340nm〜380nm
の近紫外光を発する発光素子を有する発光ダイオードに
おいて、この発光素子から発せられる光によって励起さ
れて発光する蛍光体として、ピーク波長625nm〜7
50nmの赤色蛍光体またはピーク波長575nm〜6
75nmの橙色蛍光体と、ピーク波長500nm〜60
0nmの緑色蛍光体と、ピーク波長400nm〜500
nmの青色蛍光体とを含有する蛍光体とを用いることに
より、赤色、緑色、青色の三原色の各成分のバランスが
取れた一般照明用の白色光源の白色光とほぼ同様の白色
光であり、かつ発光強度の強い発光を得ることができ
る。
As described above, the wavelength is 340 nm to 380 nm.
In a light emitting diode having a light emitting element that emits near-ultraviolet light, the phosphor that emits light when excited by light emitted from the light emitting element has a peak wavelength of 625 nm to
50 nm red phosphor or peak wavelength 575 nm to 6
75 nm orange phosphor, peak wavelength 500 nm to 60
0 nm green phosphor, peak wavelength 400 nm to 500
By using a phosphor containing a blue phosphor of nm and red, green, and white light of a white light source for general illumination in which each component of the three primary colors of blue is balanced, white light is substantially the same, In addition, light emission with high light emission intensity can be obtained.

【0050】次に、本発明の効果を確認するための実験
例について説明する。
Next, an experimental example for confirming the effect of the present invention will be described.

【0051】図1に示す発光ダイオードにおいて、波長
375nmの近紫外光を発する発光素子と、赤色蛍光体
として(Mg,Ca,Mn)33(Ge,Mn)1255
重量百分率で55%、緑色蛍光体として(Ca,Zn)
29Ge1457:Mn2+を重量百分率で30%、青色蛍光
体として(Sr,Ca)56(PO433Cl11:Eu2 +
を重量百分率で15%になるように混合された蛍光体か
らなる膜厚20μmの蛍光体膜とを有する発光ダイオー
ド(以下、単に「本発明品A」という)を作製し、作製
した発光ダイオードを100mWで発光させて発光強
度、および色度について調べた。
In the light emitting diode shown in FIG. 1, a light emitting element which emits near-ultraviolet light having a wavelength of 375 nm and (Mg, Ca, Mn) 33 (Ge, Mn) 12 O 55 as a red phosphor are 55% by weight percentage, (Ca, Zn) as green phosphor
29 Ge 14 O 57: 30% by weight percentage of Mn 2+, (Sr, Ca) 56 (PO 4) as a blue phosphor 33 Cl 11: Eu 2 +
And a phosphor film having a thickness of 20 μm and comprising a phosphor mixed so that the weight percentage becomes 15% (hereinafter, simply referred to as “product A of the present invention”). Emission was performed at 100 mW, and emission intensity and chromaticity were examined.

【0052】また、比較のために、一般的な蛍光ランプ
用の蛍光体、例えばGdMgB51 0:Ce3+(赤色蛍
光体)、LaPO4:Ce3+(緑色蛍光体)、および
(Ba,Ca,Mg)10(PO4612:Eu+2(青色
蛍光体)とを混合した蛍光体からなる膜厚20μmの蛍
光体膜とを有する点を除いて本発明品Aと同じ構成を備
えている発光ダイオード(以下、単に「比較品」とい
う)についても、100mWで発光させて発光強度、お
よび色度について調べた。
[0052] For comparison, phosphor for general fluorescent lamp, for example, GdMgB 5 O 1 0: Ce 3+ ( red phosphor), LaPO 4: Ce 3+ (green phosphor), and ( The product A of the present invention differs from the product A of the present invention except that it has a phosphor film having a film thickness of 20 μm made of a phosphor mixed with Ba, Ca, Mg) 10 (PO 4 ) 6 C 12 : Eu +2 (blue phosphor). A light-emitting diode having the same configuration (hereinafter simply referred to as “comparative product”) was also made to emit light at 100 mW, and the emission intensity and chromaticity were examined.

【0053】その結果、本発明品Aの発光強度は65c
d/m2であった。一方、比較品の発光強度は20cd
/m2であった。また、本発明品Aの色度はCIE19
31色度図上で(x,y)=(0.28,0.30)で
あった。一方、比較品の色度はCIE1931色度図上
で(x,y)=(0.21,0.22)であった。
As a result, the emission intensity of the product A of the present invention was 65 c
d / m 2 . On the other hand, the emission intensity of the comparative product is 20 cd
/ M 2 . The chromaticity of the product A of the present invention is CIE19.
(X, y) = (0.28, 0.30) on the 31-chromaticity diagram. On the other hand, the chromaticity of the comparative product was (x, y) = (0.21, 0.22) on the CIE1931 chromaticity diagram.

【0054】次に、図1に示す発光ダイオードにおい
て、波長375nmの近紫外光を発する発光素子と、橙
色蛍光体として(Y,Ca)4040Sn20:Eu3+を重
量百分率で13%、緑色蛍光体として(Ca,Zn)29
Ge1457:Mn2+を重量百分率で62%、青色蛍光体
として(Sr,Ca)56(PO433Cl11:Eu2+
重量百分率で25%になるように混合された蛍光体から
なる膜厚20μmの蛍光体膜とを有する発光ダイオード
(以下、単に「本発明品B」という)を作製し、作製し
た発光ダイオードを100mWで発光させて発光強度、
および色度について調べた。
Next, in the light emitting diode shown in FIG. 1, a light emitting element which emits near-ultraviolet light having a wavelength of 375 nm and (Y, Ca) 40 O 40 Sn 20 : Eu 3+ as an orange phosphor are 13% by weight percentage. , As a green phosphor (Ca, Zn) 29
Fluorescence of Ge 14 O 57 : Mn 2+ mixed at 62% by weight and (Sr, Ca) 56 (PO 4 ) 33 Cl 11 : Eu 2+ as blue phosphor mixed at 25% by weight. A light-emitting diode having a 20 μm-thick phosphor film made of a body (hereinafter, simply referred to as “product B of the present invention”) was produced, and the produced light-emitting diode was made to emit light at 100 mW, and the light emission intensity was increased.
And chromaticity.

【0055】その結果、本発明品Bの発光強度は60c
d/m2であった。また、本発明品Bの色度はCIE1
931色度図上で(x,y)=(0.30,0.34)
であった。
As a result, the emission intensity of the product B of the present invention was 60 c
d / m 2 . The chromaticity of the product B of the present invention is CIE1
(X, y) = (0.30, 0.34) on the 931 chromaticity diagram
Met.

【0056】このように本発明は、赤色、緑色、青色の
三原色の各成分のバランスが取れた一般照明用の白色光
源の白色光とほぼ同様の白色光であり、かつ発光強度の
強い発光ダイオードを得ることができることが確認され
た。
As described above, the present invention provides a light emitting diode having a strong light emission intensity, which is substantially the same as the white light of a white light source for general illumination in which the three primary colors of red, green and blue are balanced. It was confirmed that it could be obtained.

【0057】なお、本発明の実施の形態では、蛍光体膜
11を透明基板6の表面に形成した場合について説明し
たが、透明基板6上に透明ガラス板(図示せず)を設
け、この透明ガラス板の平面部分に蛍光体膜11を形成
した場合でも上記と同様の効果を得ることができる。
In the embodiment of the present invention, the case where the phosphor film 11 is formed on the surface of the transparent substrate 6 has been described. However, a transparent glass plate (not shown) is Even when the phosphor film 11 is formed on the flat portion of the glass plate, the same effect as described above can be obtained.

【0058】また、上記実施の形態では、蛍光体膜11
を透明基板6の表面に形成した場合について説明した
が、例えば蛍光体を樹脂部材4内に拡散させた場合や、
図示はしていないが発光ダイオードの前面にレンズを設
け、このレンズの表面に蛍光体膜11を形成した場合で
も上記と同様の効果を得ることができる。
In the above embodiment, the phosphor film 11
Is described on the surface of the transparent substrate 6, for example, when the phosphor is diffused into the resin member 4,
Although not shown, the same effect as described above can be obtained even when a lens is provided on the front surface of the light emitting diode and the phosphor film 11 is formed on the surface of the lens.

【0059】さらに、上記実施の形態では、チップ型の
発光ダイオードを例示したが、本発明は例えば砲弾型の
発光ダイオード等にも適用することができる。
Further, in the above embodiment, a chip type light emitting diode is exemplified, but the present invention can be applied to, for example, a shell type light emitting diode.

【0060】[0060]

【発明の効果】以上説明したように本発明の照明用蛍光
体は、励起光源として、特に波長340nm〜380n
mの近紫外光を発する光源を用いた場合に、赤色、緑
色、青色の三原色の各成分のバランスが取れた一般照明
用の白色光源の白色光とほぼ同様の白色光であり、かつ
発光強度の強い発光を得ることができる照明用蛍光体を
提供することができるものである。
As described above, the illumination phosphor of the present invention can be used as an excitation light source, particularly at a wavelength of 340 nm to 380 n.
When a light source that emits near-ultraviolet light of m is used, the white light is approximately the same as the white light of a white light source for general lighting, in which the three primary colors of red, green, and blue are balanced, and the light emission intensity The present invention can provide an illumination phosphor capable of obtaining strong light emission.

【0061】また、本発明の発光ダイオードは、波長3
40nm〜380nmの近紫外光を発する発光素子を有
する発光ダイオードであって、赤色、緑色、青色の三原
色の各成分のバランスが取れた一般照明用の白色光源の
白色光とほぼ同様の白色光であり、かつ発光強度の強い
発光を得ることができる発光ダイオードを提供すること
ができるものである。
The light emitting diode of the present invention has a wavelength of 3
A light-emitting diode having a light-emitting element that emits near-ultraviolet light having a wavelength of 40 nm to 380 nm. The white light is substantially the same as the white light of a white light source for general illumination in which the three primary colors of red, green, and blue are balanced. An object of the present invention is to provide a light emitting diode capable of emitting light with high emission intensity.

【0062】さらに、本発明の蛍光体の塗布方法は、被
塗布部材の平面部分に蛍光体膜を形成する際、蛍光体膜
の膜厚を均一にすることができる蛍光体の塗布方法を提
供することができるものである。
Further, the phosphor coating method of the present invention provides a phosphor coating method capable of making the thickness of a phosphor film uniform when a phosphor film is formed on a flat portion of a member to be coated. Is what you can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態であるチップ型の発光ダイ
オードの一部切欠正面図
FIG. 1 is a partially cutaway front view of a chip-type light emitting diode according to an embodiment of the present invention.

【図2】蛍光体の平均粒径と蛍光体膜の相対的表面粗さ
との関係を示す図
FIG. 2 is a diagram showing a relationship between an average particle diameter of a phosphor and a relative surface roughness of a phosphor film.

【符号の説明】[Explanation of symbols]

1 ベース部 2 凹部 3 発光素子 4 樹脂部材 5a,5b 外部電極 6 透明基板 7 半導体 8 P電極 9 N電極 10 金属ワイヤー 11 蛍光体膜 DESCRIPTION OF SYMBOLS 1 Base part 2 Depression 3 Light emitting element 4 Resin member 5a, 5b External electrode 6 Transparent substrate 7 Semiconductor 8 P electrode 9 N electrode 10 Metal wire 11 Phosphor film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 33/00 H01L 33/00 N Fターム(参考) 4H001 XA08 XA12 XA15 XA20 XA30 XA31 XA32 XA38 XA39 5F041 AA14 CA40 CA46 DA07 DA44 DA45 DB01 DB09 EE25 FF11──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01L 33/00 H01L 33/00 NF term (Reference) 4H001 XA08 XA12 XA15 XA20 XA30 XA31 XA32 XA38 XA39 5F041 AA14 CA40 CA46 DA07 DA44 DA45 DB01 DB09 EE25 FF11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 波長340nm〜380nmの近紫外光
によって励起されて白色発光する照明用蛍光体であっ
て、ピーク波長625nm〜750nmの赤色蛍光体ま
たはピーク波長575nm〜675nmの橙色蛍光体
と、ピーク波長500nm〜600nmの緑色蛍光体
と、ピーク波長400nm〜500nmの青色蛍光体と
を含有することを特徴とする照明用蛍光体。
An illumination phosphor that emits white light when excited by near-ultraviolet light having a wavelength of 340 nm to 380 nm, comprising: a red phosphor having a peak wavelength of 625 nm to 750 nm or an orange phosphor having a peak wavelength of 575 nm to 675 nm; An illumination phosphor comprising a green phosphor having a wavelength of 500 nm to 600 nm and a blue phosphor having a peak wavelength of 400 nm to 500 nm.
【請求項2】 前記赤色蛍光体は、一般式Axy
z(ただし、AはMg、CaおよびMnの中から選ばれ
る少なくとも一種の元素、DはGeおよびMnの中から
選ばれる少なくとも一種の元素であり、x、yおよびz
は20<x<40、0<y<15、z=100−x−y
なる条件を満たす数である)で表される単相の酸化物で
あり、かつ結晶構造が斜方晶であるとともに、空間群が
Pbamであることを特徴とする請求項1記載の照明用
蛍光体。
2. The red phosphor of the general formula A x D y O
z (where A is at least one element selected from Mg, Ca and Mn, D is at least one element selected from Ge and Mn, x, y and z
Is 20 <x <40, 0 <y <15, z = 100-xy
2. The fluorescent light for illumination according to claim 1, wherein the single-phase oxide is a single-phase oxide represented by the formula (1) and has a crystal structure of orthorhombic and a space group of Pbam. body.
【請求項3】 前記橙色蛍光体は、一般式GxySz:
Eu3+(ただし、GはYおよびGaの中から選ばれる少
なくとも一種の元素であり、x、yおよびzは35<x
<45、35<y<45、z=100−x−yなる条件
を満たす数である)で表される単相の酸化物であり、か
つ結晶構造が六方晶であるとともに、空間群がP−3m
であることを特徴とする請求項1記載の照明用蛍光体。
3. The orange phosphor has a general formula of G x O y Sz:
Eu 3+ (where G is at least one element selected from Y and Ga, and x, y and z are 35 <x
<45, 35 <y <45, which is a number satisfying the condition of z = 100-xy), and has a hexagonal crystal structure and a space group of P -3m
2. The lighting phosphor according to claim 1, wherein:
【請求項4】 前記緑色蛍光体は、一般式LxGe
yz:Mn2+(ただし、LはCaおよびZnの中から選
ばれる少なくとも一種の元素であり、x、yおよびzは
20<x<30、10<y<20、z=100−x−y
なる条件を満たす数である)で表される単相の酸化物で
あり、かつ結晶構造が菱面晶であるとともに、空間群が
R−3Hであることを特徴とする請求項1〜請求項3の
いずれかに記載の照明用蛍光体。
4. The green phosphor has a general formula of L x Ge.
y O z : Mn 2+ (where L is at least one element selected from Ca and Zn, and x, y and z are 20 <x <30, 10 <y <20, z = 100−x) -Y
A single-phase oxide represented by the formula (1), wherein the crystal structure is rhombohedral, and the space group is R-3H. 4. The phosphor for illumination according to any one of 3.
【請求項5】 前記青色蛍光体は、一般式Mx(PO4
yClz:Eu2+(ただし、MはSrおよびCaの中から
選ばれる少なくとも一種の元素であり、x、yおよびz
は50<x<60、30<y<40、z=100−x−
yなる条件を満たす数である)で表される単相の酸化物
であり、かつ結晶構造が六方晶であるとともに、空間群
がP63/mであることを特徴とする請求項1〜請求項
4のいずれかに記載の照明用蛍光体。
5. The blue phosphor has a general formula M x (PO 4 )
y Cl z : Eu 2+ (where M is at least one element selected from Sr and Ca, x, y and z
Are 50 <x <60, 30 <y <40, z = 100−x−
y is a number that satisfies the condition of y), has a hexagonal crystal structure, and has a space group of P63 / m. 5. The phosphor for illumination according to any one of 4.
【請求項6】 請求項2記載の前記赤色蛍光体と、請求
項4記載の前記緑色蛍光体と、請求項5記載の前記青色
蛍光体とを含有し、前記赤色蛍光体の含有量を重量百分
率でa(%)、前記緑色蛍光体の含有量を重量百分率で
b(%)、前記青色蛍光体の含有量を重量百分率でc
(%)とした場合、50%<a<60%、25%<b<
35%、c=100−a−b(%)なる関係式が満たさ
れていることを特徴とする請求項1記載の照明用蛍光
体。
6. The red phosphor according to claim 2, the green phosphor according to claim 4, and the blue phosphor according to claim 5, wherein the content of the red phosphor is determined by weight. The percentage of a (%) is a (%), the content of the green phosphor is b (%) in percentage by weight, and the content of the blue phosphor is c in percentage by weight.
(%), 50% <a <60%, 25% <b <
The lighting phosphor according to claim 1, wherein a relational expression of 35% and c = 100-ab (%) is satisfied.
【請求項7】 請求項3記載の前記橙色蛍光体と、請求
項4記載の前記緑色蛍光体と、請求項5記載の前記青色
蛍光体とを含有し、前記橙色蛍光体の含有量を重量百分
率でd(%)、前記緑色蛍光体の含有量を重量百分率で
b(%)、前記青色蛍光体の含有量を重量百分率でc
(%)とした場合、10%<d<20%、55%<b<
65%、c=100−b−d(%)なる関係式が満たさ
れていることを特徴とする請求項1記載の照明用蛍光
体。
7. The orange phosphor according to claim 3, the green phosphor according to claim 4, and the blue phosphor according to claim 5, wherein the content of the orange phosphor is expressed by weight. D (%) in percentage, the content of the green phosphor is b (%) in weight percentage, and the content of the blue phosphor is c in weight percentage.
(%), 10% <d <20%, 55% <b <
The lighting phosphor according to claim 1, wherein a relational expression of 65% and c = 100-bd (%) is satisfied.
【請求項8】 波長340nm〜380nmの近紫外光
を発する発光素子と、この発光素子から発せられる光に
よって励起されて発光する請求項1〜請求項7のいずれ
かに記載の照明用蛍光体とを有することを特徴とする発
光ダイオード。
8. A lighting device according to claim 1, which emits near-ultraviolet light having a wavelength of 340 nm to 380 nm, and emits light when excited by light emitted from the light emitting device. A light emitting diode comprising:
【請求項9】 蛍光体を被塗布部材の平面部分に塗布す
る蛍光体の塗布方法であって、前記蛍光体を含有する蛍
光体懸濁液をスピンコーティングによって前記被塗布部
材の平面部分に塗布することを特徴とする蛍光体の塗布
方法。
9. A method of applying a phosphor to a flat portion of a member to be coated, wherein the phosphor suspension containing the phosphor is applied to the flat portion of the member by spin coating. A method of applying a phosphor.
【請求項10】 前記蛍光体の平均粒径は1.5μm以
下であることを特徴とする請求項9記載の蛍光体の塗布
方法。
10. The method according to claim 9, wherein the phosphor has an average particle size of 1.5 μm or less.
【請求項11】 前記蛍光体懸濁液の調製において、前
記蛍光体を溶液中に懸濁させる際、超音波撹拌を行った
後、回転攪拌を行うことを特徴とする請求項9または請
求項10記載の蛍光体の塗布方法。
11. The method according to claim 9, wherein, in the preparation of the phosphor suspension, when the phosphor is suspended in a solution, ultrasonic stirring is performed, and then rotational stirring is performed. 11. The method for applying a phosphor according to item 10.
JP2001029093A 2001-02-06 2001-02-06 Illumination phosphor, light emitting diode using the illumination phosphor, and phosphor coating method Expired - Fee Related JP3736357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029093A JP3736357B2 (en) 2001-02-06 2001-02-06 Illumination phosphor, light emitting diode using the illumination phosphor, and phosphor coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029093A JP3736357B2 (en) 2001-02-06 2001-02-06 Illumination phosphor, light emitting diode using the illumination phosphor, and phosphor coating method

Publications (2)

Publication Number Publication Date
JP2002226846A true JP2002226846A (en) 2002-08-14
JP3736357B2 JP3736357B2 (en) 2006-01-18

Family

ID=18893478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029093A Expired - Fee Related JP3736357B2 (en) 2001-02-06 2001-02-06 Illumination phosphor, light emitting diode using the illumination phosphor, and phosphor coating method

Country Status (1)

Country Link
JP (1) JP3736357B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359404A (en) * 2001-05-31 2002-12-13 Nichia Chem Ind Ltd Light-emitting device using phosphor
JP2004088003A (en) * 2002-08-29 2004-03-18 Citizen Electronics Co Ltd Light-emitting diode and manufacturing method thereof
JP2005264031A (en) * 2004-03-19 2005-09-29 Kun-Chui Lee White light-emitting device
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP2006063233A (en) * 2004-08-27 2006-03-09 Dowa Mining Co Ltd Phosphor mixture and light emitting device
JP2006124501A (en) * 2004-10-28 2006-05-18 Dowa Mining Co Ltd Phosphor mixture and light-emitting device
JP2006152254A (en) * 2004-10-29 2006-06-15 Showa Denko Kk Phosphor and lamp using phosphor
US7075116B2 (en) 2003-01-27 2006-07-11 Rohm Co., Ltd. Semiconductor light emitting device
JP2006269778A (en) * 2005-03-24 2006-10-05 Nichia Chem Ind Ltd Optical device
US7238304B2 (en) 2003-08-04 2007-07-03 Kabushiki Kaisha Fine Rubber Kenkyuusho Green light emitting phosphor and light emitting device
JP2007317431A (en) * 2006-05-24 2007-12-06 Ushio Inc Lighting system
US7345318B2 (en) 2004-07-05 2008-03-18 Citizen Electronics Co., Ltd. Light-emitting diode
JP2009512741A (en) * 2005-09-30 2009-03-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cerium-based phosphor material for solid-state lighting applications
JP2009545142A (en) * 2006-07-28 2009-12-17 ヴァーシテック・リミテッド Manufacturing method of white light LED and LED capable of continuous color adjustment
JP2010045418A (en) * 2009-11-27 2010-02-25 Showa Denko Kk Method of manufacturing light-emitting element
JP2012114333A (en) * 2010-11-26 2012-06-14 Koito Mfg Co Ltd Light-emitting module
TWI398306B (en) * 2009-12-24 2013-06-11 Wei Han Lee Method for coating fluorescence material
CN110419108A (en) * 2016-12-22 2019-11-05 亮锐有限责任公司 Light emitting diode with the sensor segment for operational feedback
CN116574508A (en) * 2023-04-26 2023-08-11 桂林电子科技大学 Novel red stress luminescent material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923827A (en) * 1972-06-27 1974-03-02
JP2000183408A (en) * 1998-12-16 2000-06-30 Toshiba Electronic Engineering Corp Semiconductor light-emitting device
JP2000509912A (en) * 1997-03-03 2000-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ White light emitting diode
JP2001022308A (en) * 1999-07-12 2001-01-26 Nemoto & Co Ltd Double layer display and display device using the double layer display
JP2002171000A (en) * 2000-09-21 2002-06-14 Sharp Corp Semiconductor light emitting device and light emitting display comprising it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923827A (en) * 1972-06-27 1974-03-02
JP2000509912A (en) * 1997-03-03 2000-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ White light emitting diode
JP2000183408A (en) * 1998-12-16 2000-06-30 Toshiba Electronic Engineering Corp Semiconductor light-emitting device
JP2001022308A (en) * 1999-07-12 2001-01-26 Nemoto & Co Ltd Double layer display and display device using the double layer display
JP2002171000A (en) * 2000-09-21 2002-06-14 Sharp Corp Semiconductor light emitting device and light emitting display comprising it

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359404A (en) * 2001-05-31 2002-12-13 Nichia Chem Ind Ltd Light-emitting device using phosphor
JP2004088003A (en) * 2002-08-29 2004-03-18 Citizen Electronics Co Ltd Light-emitting diode and manufacturing method thereof
US7075116B2 (en) 2003-01-27 2006-07-11 Rohm Co., Ltd. Semiconductor light emitting device
US7238304B2 (en) 2003-08-04 2007-07-03 Kabushiki Kaisha Fine Rubber Kenkyuusho Green light emitting phosphor and light emitting device
JP2005264031A (en) * 2004-03-19 2005-09-29 Kun-Chui Lee White light-emitting device
US7345318B2 (en) 2004-07-05 2008-03-18 Citizen Electronics Co., Ltd. Light-emitting diode
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP4546176B2 (en) * 2004-07-16 2010-09-15 京セラ株式会社 Light emitting device
JP2006063233A (en) * 2004-08-27 2006-03-09 Dowa Mining Co Ltd Phosphor mixture and light emitting device
JP4543250B2 (en) * 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
JP2006124501A (en) * 2004-10-28 2006-05-18 Dowa Mining Co Ltd Phosphor mixture and light-emitting device
JP4543253B2 (en) * 2004-10-28 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
JP2006152254A (en) * 2004-10-29 2006-06-15 Showa Denko Kk Phosphor and lamp using phosphor
JP2006269778A (en) * 2005-03-24 2006-10-05 Nichia Chem Ind Ltd Optical device
JP2009512741A (en) * 2005-09-30 2009-03-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cerium-based phosphor material for solid-state lighting applications
US8920676B2 (en) 2005-09-30 2014-12-30 The Regents Of The University Of California Cerium based phosphor materials for solid-state lighting applications
JP2007317431A (en) * 2006-05-24 2007-12-06 Ushio Inc Lighting system
JP2009545142A (en) * 2006-07-28 2009-12-17 ヴァーシテック・リミテッド Manufacturing method of white light LED and LED capable of continuous color adjustment
JP2010045418A (en) * 2009-11-27 2010-02-25 Showa Denko Kk Method of manufacturing light-emitting element
TWI398306B (en) * 2009-12-24 2013-06-11 Wei Han Lee Method for coating fluorescence material
JP2012114333A (en) * 2010-11-26 2012-06-14 Koito Mfg Co Ltd Light-emitting module
CN110419108A (en) * 2016-12-22 2019-11-05 亮锐有限责任公司 Light emitting diode with the sensor segment for operational feedback
JP2020503679A (en) * 2016-12-22 2020-01-30 ルミレッズ リミテッド ライアビリティ カンパニー Light-emitting diode with sensor segment for motion feedback
US11094851B2 (en) 2016-12-22 2021-08-17 Lumileds Llc Light emitting diodes with sensor segment for operational feedback
CN110419108B (en) * 2016-12-22 2023-10-27 亮锐有限责任公司 Light emitting diode with sensor segment for operational feedback
CN116574508A (en) * 2023-04-26 2023-08-11 桂林电子科技大学 Novel red stress luminescent material and preparation method thereof

Also Published As

Publication number Publication date
JP3736357B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP3736357B2 (en) Illumination phosphor, light emitting diode using the illumination phosphor, and phosphor coating method
US7462983B2 (en) White light emitting device
US7075225B2 (en) White light emitting device
TWI249867B (en) Light-emitting diode package, cold cathode fluorescence lamp and photoluminescence material thereof
JP3931239B2 (en) Light emitting device and lighting apparatus
JP5899304B2 (en) Color-stable manganese-doped phosphor
CN105814699B (en) White light emitting device with high color rendering
US20070090381A1 (en) Semiconductor light emitting device
JP2005264160A (en) Phosphor, method for producing the same and light emitting device
WO2003032407A1 (en) Semiconductor light emitting element and light emitting device using this
US20060249739A1 (en) Multi-wavelength white light emitting diode
JP2008541422A (en) Method for manufacturing white light-emitting diode using phosphor
TWI741532B (en) Led-filaments and led-filament lamps
JP6149606B2 (en) Method for producing fluoride phosphor
TW200901502A (en) Light emitting diode device and fabrication method thereof
US7804162B2 (en) Multi-wavelength white light-emitting structure
JP2007173408A (en) Light-emitting device
KR20050089490A (en) White color light emitting diode using violet light emitting diode
JP2003224304A (en) Light-emitting device
JP2006152254A (en) Phosphor and lamp using phosphor
JP2006319373A (en) Led and lighting apparatus
TWI228837B (en) Light emitting device
KR20030063832A (en) White Light-emitting Diode and Method of Manufacturing the Same
JP2019062063A (en) Light-emitting device
JP2006100623A (en) Light emitting device and lighting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees