JP2002216936A - Plane shape heating body and its manufacturing method - Google Patents

Plane shape heating body and its manufacturing method

Info

Publication number
JP2002216936A
JP2002216936A JP2001175802A JP2001175802A JP2002216936A JP 2002216936 A JP2002216936 A JP 2002216936A JP 2001175802 A JP2001175802 A JP 2001175802A JP 2001175802 A JP2001175802 A JP 2001175802A JP 2002216936 A JP2002216936 A JP 2002216936A
Authority
JP
Japan
Prior art keywords
heating element
oxide
temperature
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001175802A
Other languages
Japanese (ja)
Inventor
Mizuho Tanaka
瑞穂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONG KONG SEIRYU YUGENKOSHI
Original Assignee
HONG KONG SEIRYU YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONG KONG SEIRYU YUGENKOSHI filed Critical HONG KONG SEIRYU YUGENKOSHI
Priority to JP2001175802A priority Critical patent/JP2002216936A/en
Priority to US10/165,345 priority patent/US6728479B2/en
Priority to EP02012440A priority patent/EP1267592A3/en
Priority to CN02122773.XA priority patent/CN1394104A/en
Publication of JP2002216936A publication Critical patent/JP2002216936A/en
Priority to US10/830,645 priority patent/US20050003243A1/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plane shape heating body that has durability and high power-saving effect. SOLUTION: The solution containing a compound of zinc and tin which gives an oxide by heating is sprayed in the high temperature chamber where a substrate is set and a film containing zinc oxide and tin oxide is formed on the substrate. The film is superior in oxidation resistance, waterproofing and chemical resistance, and has a high rate of temperature increase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は安定性に富むに面状
発熱体およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly stable sheet heating element and a method for producing the same.

【0002】[0002]

【従来の技術】従来、基材上に酸化亜鉛または酸化スズ
の薄膜を形成した面状発熱体が提供されている。
2. Description of the Related Art Conventionally, there has been provided a sheet heating element in which a thin film of zinc oxide or tin oxide is formed on a substrate.

【0003】[0003]

【発明が解決しようとする課題】しかし上記面状発熱体
は安定性に乏しく、繰返し通電加熱によって抵抗値が次
第に上ると云う問題点があった。
However, the above-mentioned sheet heating element has poor stability, and has a problem that the resistance value gradually increases by repeated energization heating.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来の課題
を解決するための手段として、酸化亜鉛と酸化スズとを
含む薄膜を基材上に形成した面状発熱体を提供するもの
である。該基材は通常セラミック、ガラス、あるいは陶
磁器またはプラスチックである。また加熱により酸化物
を与える亜鉛とスズの化合物を含む溶液を基材をセット
した高温反応室内にスプレーし、該基材表面に酸化亜鉛
と酸化スズとを含む沈積物からなる薄膜を形成せしめる
面状発熱体の製造方法を提供するものである。該反応室
の温度は200〜700℃に調節されていることが望ま
しい。
SUMMARY OF THE INVENTION The present invention, as a means for solving the above-mentioned conventional problems, provides a planar heating element in which a thin film containing zinc oxide and tin oxide is formed on a substrate. . The substrate is usually ceramic, glass, or ceramic or plastic. Further, a solution containing a compound of zinc and tin that gives an oxide by heating is sprayed into a high-temperature reaction chamber in which a base material is set, and a thin film composed of a deposit containing zinc oxide and tin oxide is formed on the surface of the base material. It is intended to provide a method for producing a heating element in a shape of a circle. The temperature of the reaction chamber is desirably adjusted to 200 to 700 ° C.

【0005】[0005]

【発明の実施の形態】本発明を以下に詳細に説明する。
本発明の面状発熱体は基材上に酸化亜鉛と酸化スズとを
含む薄膜を形成したものである。上記酸化スズとしては
Sn O、Sn34 、Sn O2 のいづれもが含まれる。上
記酸化亜鉛としては、Zn O2 の他Zn Oも含まれる。
酸化亜鉛と酸化スズの比率は所定の面状発熱体の性質に
よって種々に設定されて良いが、通常は1:99〜9
9:1重量比と広い範囲で安定性に富む面状発熱体が得
られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below.
The sheet heating element of the present invention is obtained by forming a thin film containing zinc oxide and tin oxide on a substrate. As the tin oxide includes also Izure of Sn O, Sn 3 O 4, Sn O 2. As the zinc oxide, other Zn O of Zn O 2 is also included.
The ratio of zinc oxide to tin oxide may be variously set depending on the properties of the predetermined sheet heating element, but is usually from 1:99 to 9
A 9: 1 weight ratio and a wide range of stable heating elements can be obtained.

【0006】上記酸化亜鉛と酸化スズ以外に所望なれば
酸化アンチモン、酸化ビスマス、酸化鉛、酸化ガリウ
ム、酸化インジウム、ITO等の他の金属酸化物が少量
含有されてもよい。上記金属酸化物としては種々の原子
価の酸化物が使用されることが出来る。更に本発明の薄
膜には亜鉛、スズ、アンチモン、ビスマス、鉛、ガリウ
ム、インジウム等の金属単体が含まれてもよい。一般的
に高原子価酸化物は高抵抗値を与え、低原子価酸化物お
よび金属単体は低抵抗値を与える。
If desired, a small amount of other metal oxides such as antimony oxide, bismuth oxide, lead oxide, gallium oxide, indium oxide, and ITO may be contained in addition to the above zinc oxide and tin oxide. Various valence oxides can be used as the metal oxide. Further, the thin film of the present invention may contain a simple metal such as zinc, tin, antimony, bismuth, lead, gallium, and indium. In general, high valence oxides provide high resistance, low valence oxides and simple metals provide low resistance.

【0007】本発明で基材として使用される材料は、一
般に雲母、セラミック、ガラス、デビトロセラミック
ス、陶磁器、あるいはプラスチックである。セラミック
としてはアルミナ、ジルコニア、酸化チタン、炭化ケイ
素、窒化ケイ素等が例示され、プラスチックとしてはメ
ラミン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹
脂、ウレタン樹脂等の熱硬化性樹脂、シリコン樹脂、弗
化ビニル樹脂、高融点ポリエステル、高融点アミド、ポ
リアセタール、ポリカーボネート、ポリスルホン、ポリ
エーテルスルホン、ポリフェニレンオキシド、ポリフェ
ニレンスルフィド、ポリアリレート、ポリエーテルエー
テルケトン、ポリアミドイミド、ポリイミド、ポリエー
テルイミド、ポリアミノビスマレイミド、メチルペンテ
ンコポリマー、ポリアミノビスマレイミド、ビスマレイ
ミド−トリアジン系熱硬化型芳香族ポリイミド等のエン
ジニアリングプラスチック等の耐熱性熱可塑性樹脂等が
例示されるが、適用温度が低い場合には、ポリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、
低融点ポリエステル、低融点ポリアミド等の一般的な熱
可塑性樹脂を使用することも出来る。
The material used as a substrate in the present invention is generally mica, ceramic, glass, devitroceramics, porcelain, or plastic. Examples of ceramics include alumina, zirconia, titanium oxide, silicon carbide, and silicon nitride. Examples of plastics include thermosetting resins such as melamine resin, urea resin, phenol resin, epoxy resin, and urethane resin, silicon resin, and vinyl fluoride. Resin, high melting point polyester, high melting point amide, polyacetal, polycarbonate, polysulfone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyetheretherketone, polyamideimide, polyimide, polyetherimide, polyaminobismaleimide, methylpentene copolymer And heat-resistant thermoplastic resins such as engineering plastics such as polyaminobismaleimide, bismaleimide-triazine-based thermosetting aromatic polyimides, and the like. But if the application temperature is low, polyethylene, polypropylene, polyvinyl chloride, polystyrene,
General thermoplastic resins such as low-melting polyesters and low-melting polyamides can also be used.

【0008】本発明の面状発熱体はスズおよび亜鉛と所
望なれば上記他の金属とを、塩化物、硫化物、水酸化
物、酸化水酸化物、炭酸水酸化物、炭酸塩、重炭酸塩、
シュウ酸塩、アルコシド等加熱により金属酸化物を与え
る金属化合物の形で水あるいは有機溶剤に溶解した溶液
を上記基材に塗布し焼成する方法、あるいは高温反応室
内に基材をセットし、該室内に上記溶液をスプレーする
方法等によって製造される。上記有機溶剤としては、例
えばメタノール、エタノール、イソプロパノール、n−
ブタノール、エチレングリコール、プロピレングリコー
ル、グリセリン等のアルコール類、エチルエーテル、メ
チルエチルエーテル等のエチル類、酢酸メチル、酢酸エ
チル、酢酸n−ブチル等の酢酸エステル類、ベンゼン、
トルエン、キシレン等の芳香族類、アセトン、メチルエ
チルケトン、メチルイソブチルケトン等のケトン類、ピ
リジン、アニリン等が使用される。上記有機溶剤は二種
類以上あるいは水と混合して使用されてもよい。特にア
ルコール類、エーテル類、ケトン類等の含酸素溶剤は上
記金属化合物、なかでも金属塩化物に対して良好な溶剤
性を示す。
The sheet heating element of the present invention comprises tin and zinc and, if desired, the above-mentioned other metals, chlorides, sulfides, hydroxides, oxidized hydroxides, carbonated hydroxides, carbonates, bicarbonates. salt,
A method in which a solution dissolved in water or an organic solvent in the form of a metal compound that gives a metal oxide by heating such as oxalate, an alkoxide, or the like is applied to the above-mentioned base material and baked, or the base material is set in a high-temperature reaction chamber, And by spraying the above solution. Examples of the organic solvent include methanol, ethanol, isopropanol, n-
Butanol, ethylene glycol, propylene glycol, alcohols such as glycerin, ethyl ethers, ethyls such as methyl ethyl ether, methyl acetate, ethyl acetate, acetates such as n-butyl acetate, benzene,
Aromatic substances such as toluene and xylene, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, pyridine and aniline are used. The organic solvent may be used in combination of two or more kinds or water. In particular, oxygen-containing solvents such as alcohols, ethers and ketones show good solvent properties for the above-mentioned metal compounds, especially metal chlorides.

【0009】上記金属塩化物の溶液には更に低原子価酸
化物あるいは金属単体を生成して薄膜の抵抗を下げるた
めに、弗化アンモニウム、弗化水素酸等の弗化物、リン
ゴ酸、クエン酸、酒石酸等のヒドロキシカルボン酸等が
添加されてもよい。更に上記溶液には、例えばポリアク
リル酸、ポリメタクリル酸、ポリアクリル酸ナトリウ
ム、ポリアクリル酸カリウム、ポリアクリル酸アンモニ
ウム、ポリメタクリル酸ナトリウム、ポリアクリルアミ
ド、ホリビニルアルコール等の水溶性樹脂、ポリメチル
メタクリレート、ポリスチレン、ポリ酢酸ビニル等の熱
可塑性樹脂、アクリルゴム、ブチルゴム、ブタジエンゴ
ム、イソプレンゴム、クロロプレンゴム、ポリイソブチ
レンゴム、ポリブテンゴム、イソブテン−イソプレンゴ
ム、アクリレート−ブタジエンゴム、スチレン−ブタジ
エンゴム、アクリロニトリル−ブタジエンゴム、ピリジ
ン−ブタジエンゴム、スチレン−イソプレンゴム、アク
リロニトリル−クロロプレンゴム、スチレン−クロロプ
レンゴム等の合成ゴム等が増粘剤として添加されてもよ
い。増粘剤を添加することによって該溶液の塗布量を増
やし、膜厚を増大させることが出来る。
In order to lower the resistance of the thin film by further forming a low-valent oxide or a simple metal in the above-mentioned metal chloride solution, fluorides such as ammonium fluoride and hydrofluoric acid, malic acid, citric acid And hydroxycarboxylic acids such as tartaric acid. Further, the above solution includes, for example, water-soluble resins such as polyacrylic acid, polymethacrylic acid, sodium polyacrylate, potassium polyacrylate, polyammonium acrylate, sodium polymethacrylate, polyacrylamide, and polyvinyl alcohol, and polymethyl methacrylate. , Polystyrene, thermoplastic resin such as polyvinyl acetate, acrylic rubber, butyl rubber, butadiene rubber, isoprene rubber, chloroprene rubber, polyisobutylene rubber, polybutene rubber, isobutene-isoprene rubber, acrylate-butadiene rubber, styrene-butadiene rubber, acrylonitrile- Synthetic rubbers such as butadiene rubber, pyridine-butadiene rubber, styrene-isoprene rubber, acrylonitrile-chloroprene rubber, and styrene-chloroprene rubber are used as thickeners. It may be pressurized. By adding a thickener, the coating amount of the solution can be increased and the film thickness can be increased.

【0010】上記溶液を上記基材表面に塗布するには、
スプレー塗装、ロールコーター塗装、ナイフコーター塗
装、カーテンフロー塗装、デッピング塗装、スクリーン
印刷等の一般的な塗布方法が適用される。塗布後は所望
なれば上記塗膜を常温または加熱して乾燥させた上で焼
成を行なう。焼成は通常200〜700℃、望ましくは
250〜650℃の温度で行われる。
In order to apply the above solution to the surface of the substrate,
General application methods such as spray coating, roll coater coating, knife coater coating, curtain flow coating, dipping coating, and screen printing are applied. After the application, if desired, the coating is dried at room temperature or by heating, and then baked. The calcination is usually performed at a temperature of 200 to 700C, preferably 250 to 650C.

【0011】上記焼成において、上記溶液に含まれてい
た金属化合物は酸化し、酸化亜鉛と酸化スズとを含む薄
膜を形成する。また高温反応室内に基材をセットして、
該室内に上記溶液をスプレーする方法では、該室内の温
度を通常200〜700℃、望ましくは250〜650
℃、更に望ましくは300〜600℃に調節する。この
場合該室内にスプレーした溶液に含まれる金属化合物
は、金属酸化物となって基材表面に沈積する。この方法
で形成された薄膜は高い熱転換率を示す。
[0011] In the firing, the metal compound contained in the solution is oxidized to form a thin film containing zinc oxide and tin oxide. Also set the substrate in the high temperature reaction chamber,
In the method of spraying the solution into the room, the temperature in the room is usually 200 to 700 ° C, preferably 250 to 650 ° C.
C., more preferably 300-600.degree. In this case, the metal compound contained in the solution sprayed into the chamber becomes a metal oxide and deposits on the substrate surface. Thin films formed by this method exhibit high heat conversion.

【0012】このようにして基材上に形成された薄膜は
通常直流または交流で3〜380ボルトの広範囲の電圧
をかければ、速やかに昇温し、最高温度は900℃程度
になる。そして長時間連続的あるいは断続的な通電によ
っても抵抗値は殆んど変化せず安定であり、また電力消
費量も従来のものより少ない。
The thin film formed on the base material in this manner usually rises quickly when a wide voltage of 3 to 380 volts is applied by direct current or alternating current, and the maximum temperature becomes about 900 ° C. The resistance is hardly changed even by continuous or intermittent energization for a long time, and the resistance is stable, and the power consumption is smaller than that of the conventional one.

【0013】上記薄膜の抵抗値を調節するためには上記
スズおよび亜鉛の金属化合物に更にインジウムやアンチ
モンの金属化合物あるいは上記弗化物、ヒドロキシカル
ボン酸等を添加する。インジウム化合物の場合はスズ化
合物と共に焼成によりITOが生成され、薄膜の抵抗が
高くなり、またアンチモン化合物や特に弗化物はスズの
抵抗を下げ、薄膜に低抵抗を与える。
In order to adjust the resistance value of the thin film, a metal compound of indium or antimony, or a fluoride, a hydroxycarboxylic acid or the like is further added to the metal compound of tin and zinc. In the case of the indium compound, ITO is generated by firing together with the tin compound, and the resistance of the thin film increases, and the resistance of the antimony compound and especially fluoride lowers the resistance of tin and gives the thin film a low resistance.

【0014】〔実施例1〕塩化亜鉛10g 、塩化第二ス
ズ水和物15g を精製エタール100g に溶解した。6
0mm×130mmのSi C基板上に上記溶液をスプレー塗
布し、80℃、30分加熱乾燥せしめ、その後420
℃、30分焼成して該基材表面に酸化亜鉛と酸化スズと
からなる薄膜を形成した。このようにして得られた面状
発熱体の両端に銀ペーストを塗布し、その上から銅箔を
被覆して電極を形成した。温度27℃、湿度80%RH
の条件下で上記面状発熱体の電極に直流13.5ボル
ト、600mAの電流を通じて薄膜の抵抗値を測定した
ところ22.5Ωであった。更に同条件下で昇温テスト
を行った結果を図1に示す。
Example 1 10 g of zinc chloride and 15 g of stannic chloride hydrate were dissolved in 100 g of purified ethanol. 6
The above solution is spray-coated on a SiC substrate of 0 mm × 130 mm, and dried by heating at 80 ° C. for 30 minutes.
C. for 30 minutes to form a thin film composed of zinc oxide and tin oxide on the surface of the substrate. Silver paste was applied to both ends of the sheet heating element thus obtained, and a copper foil was coated thereon to form an electrode. Temperature 27 ° C, Humidity 80% RH
The resistance value of the thin film was measured by passing a current of 13.5 V DC and a current of 600 mA to the electrode of the sheet heating element under the conditions described above, and it was 22.5Ω. FIG. 1 shows the results of a temperature rise test performed under the same conditions.

【0015】図1によれば通電後、面状発熱体の表面温
度は略10分で77℃に達し、以後平衡した。15分後
に通電を停止した。上記昇温テストを100回繰返した
が、毎回のテストでも図1に示す時間−温度曲線は殆ん
ど変化せず、100回繰返し後の薄膜の抵抗値(22.
5Ω)の上昇もみられなかった。上記面状発熱体に35
℃において50 g/l の塩化ナトリウム溶液を24時間
噴霧し、その後抵抗値を測定したが抵抗値(22.5
Ω)に変化はなかった。この面状発熱体の熱転換率は9
3%であり、節電作用が高いことが確認された。
According to FIG. 1, after energization, the surface temperature of the sheet heating element reached 77 ° C. in approximately 10 minutes, and thereafter equilibrated. After 15 minutes, the energization was stopped. The above temperature rise test was repeated 100 times, but the time-temperature curve shown in FIG. 1 hardly changed in each test, and the resistance value of the thin film (22.
5Ω) was not observed. 35 for the sheet heating element
At 50 ° C., a 50 g / l sodium chloride solution was sprayed for 24 hours, and the resistance was measured.
Ω) did not change. The heat conversion rate of this planar heating element is 9
It was 3%, and it was confirmed that the power saving action was high.

【0016】〔実施例2〕炭酸水酸化亜鉛5g 、酸化二
水酸化スズ20g 、三塩化インジウム1g をアセトン1
00g に溶解し、更に増粘剤としてポリメチルメタクリ
レート15重量%を溶解した酢酸エチル溶液10g を添
加した。上記溶液を60mm×90mmのエポキシ樹脂板表
面にシルクスクリーン印刷によって塗布し、1日室温に
放置して乾燥せしめ、その後480℃、20分焼成して
該基材表面に酸化亜鉛と酸化スズと酸化インジウムと若
干のITOとからなる薄膜を形成した。このようにして
得られた面状発熱体の両端に実施例1と同様にして電極
を形成した。温度29℃、湿度90%RHの条件下で上
記面状発熱体の電極に直流12ボルト、400mAの電
流を通じて薄膜の抵抗値を測定したところ30Ωであっ
た。更に同条件下で昇温テストを行った結果を図2に示
す。
Example 2 5 g of zinc carbonate, 20 g of tin dihydroxide, 1 g of indium trichloride and 1 g of acetone
The resulting mixture was dissolved in 100 g of an ethyl acetate solution, and 10 g of an ethyl acetate solution containing 15% by weight of polymethyl methacrylate was added as a thickener. The above solution is applied to the surface of an epoxy resin plate of 60 mm × 90 mm by silk screen printing, allowed to dry at room temperature for one day, and then baked at 480 ° C. for 20 minutes to oxidize zinc oxide, tin oxide and zinc oxide on the substrate surface. A thin film composed of indium and some ITO was formed. Electrodes were formed on both ends of the sheet heating element thus obtained in the same manner as in Example 1. Under the conditions of a temperature of 29 ° C. and a humidity of 90% RH, the resistance of the thin film was measured by passing a current of 12 VDC and 400 mA through the electrode of the sheet heating element, and found to be 30 Ω. FIG. 2 shows the results of a temperature rise test performed under the same conditions.

【0017】図2によれば、通電後面状発熱体の表面温
度は略15分で85℃に達し、以後平衡した。20分後
に通電を停止した。上記昇温テストを100回繰返した
が、毎回のテストでも図2に示す時間−温度曲線は殆ん
ど変化せず、100回繰返し後の薄膜の抵抗値(30
Ω)の上昇もみられなかった。上記面状発熱体に実施例
1と同様な塩水噴霧試験を行ったところ、抵抗値(30
Ω)に変化はなかった。この面状発熱体の熱転換率は9
1%であり、節電作用が高いことが確認された。
According to FIG. 2, the surface temperature of the sheet heating element reached 85.degree. C. in about 15 minutes after energization, and thereafter equilibrated. Power supply was stopped after 20 minutes. The above temperature rise test was repeated 100 times, but the time-temperature curve shown in FIG. 2 hardly changed in each test, and the resistance value of the thin film (30
Ω) did not rise. When a salt spray test similar to that in Example 1 was performed on the sheet heating element, the resistance (30
Ω) did not change. The heat conversion rate of this planar heating element is 9
It was 1%, and it was confirmed that the power saving action was high.

【0018】〔実施例3〕実施例1の溶液に更に10重
量%の弗化アンモニウム水溶液1ccを追加して充分混合
した。上記溶液を使用して実施例1と同様なプロセスに
よって面状発熱体を製造した。温度27℃、湿度80%
RHの条件下で上記面状発熱体の電極に直流13.5ボ
ルト、600mAの電流を通じて薄膜の抵抗値を測定し
たところ20.4Ωであった。更に同条件下で昇温テス
トを行った結果を図3に示す。
Example 3 1 cc of a 10% by weight aqueous solution of ammonium fluoride was further added to the solution of Example 1 and mixed well. A sheet heating element was manufactured by the same process as in Example 1 using the above solution. Temperature 27 ℃, humidity 80%
The resistance value of the thin film was measured to be 20.4Ω by applying a direct current of 13.5 volts and a current of 600 mA to the electrode of the sheet heating element under the condition of RH. FIG. 3 shows the results of a temperature rise test performed under the same conditions.

【0019】図3によれば通電後、面状発熱体の表面温
度は略10分で60℃に達し、以後平衡した。14分後
に通電を停止した。上記昇温テストを100回繰返した
が、毎回のテストでも図3に示す時間−温度曲線は殆ん
ど変化せず、100回繰返し後の薄膜の抵抗値(20.
4Ω)の上昇もみられなかった。この面状発熱体の熱転
換率は89%であり、節電作用が高いことが確認され
た。
According to FIG. 3, after energization, the surface temperature of the sheet heating element reached 60 ° C. in approximately 10 minutes, and thereafter equilibrated. After 14 minutes, the energization was stopped. The above temperature rise test was repeated 100 times, but the time-temperature curve shown in FIG. 3 hardly changed in each test, and the resistance value of the thin film (20.
4Ω) was not observed. The heat conversion rate of this planar heating element was 89%, and it was confirmed that the power saving action was high.

【0020】〔実施例4〕60mm×130mmのデビトロ
セラミックス基板を400℃に加熱した高温反応室内に
セットし、実施例1の溶液を該高温反応室内にスプレー
することによって、該基材表面に酸化亜鉛と酸化スズと
の沈積物からなる薄膜を形成した。このようにして得ら
れた面状発熱体の両端に実施例1と同様な方法を形成
し、温度27℃、温度80%RHの条件下で上記面状発
熱体の電極に直流13.5ボルト、600mAの電流を
通じて薄膜の抵抗値を測定したところ23.4Ωであっ
た。更に同条件下で昇温テストを行った結果を図4に示
す。
Example 4 A 60 mm × 130 mm devitroceramic substrate was set in a high-temperature reaction chamber heated to 400 ° C., and the solution of Example 1 was sprayed into the high-temperature reaction chamber, whereby the substrate surface was coated. A thin film composed of a deposit of zinc oxide and tin oxide was formed. A method similar to that of Example 1 was formed on both ends of the sheet heating element thus obtained, and a voltage of 13.5 VDC was applied to the electrode of the sheet heating element at a temperature of 27 ° C. and a temperature of 80% RH. When the resistance of the thin film was measured through a current of 600 mA, it was 23.4Ω. FIG. 4 shows the results of a temperature rise test performed under the same conditions.

【0021】図4によれば通電後、面状発熱体の表面温
度は略10分で80℃近辺に達し、以後平衡した。15
分後に通電を停止した。上記昇温テストを100回繰返
したが、毎回のテストでも図4に示す時間−温度曲線に
変化はみられず、100回繰返し後の薄膜の抵抗値(2
3.4Ω)に変化はなかった。この面状発熱体の熱転換
率は94.7%であり、節電作用が高いことが確認され
た。
According to FIG. 4, after energization, the surface temperature of the sheet heating element reached about 80 ° C. in approximately 10 minutes, and thereafter equilibrated. Fifteen
After a minute, the energization was stopped. The temperature increase test was repeated 100 times, but the time-temperature curve shown in FIG. 4 did not change in each test, and the resistance value (2
3.4 Ω). The heat conversion rate of this planar heating element was 94.7%, and it was confirmed that the power saving action was high.

【0022】[0022]

【発明の効果】本発明の面状発熱体は安価に提供出来、
しかも電力消費量は例えば従来のチタン酸バリウム塩の
焼結体薄膜に比して35%以上もありかつ昇温速度が大
で、また長時間の通電あるいは繰返し通電でも抵抗値は
殆んど変化せず安定であって、更に耐水性、耐酸性等耐
化学性にも優れ、良好な耐久性を有する。本発明の面状
発熱体は家庭用温水器、調理器、ティッシュペーパーや
食物の保温器、オーブン、電熱式アイロン等各種の加熱
製品に適用される。
The sheet heating element of the present invention can be provided at low cost.
In addition, the power consumption is, for example, 35% or more as compared with the conventional barium titanate sintered body thin film, the rate of temperature rise is large, and the resistance value changes substantially even when the current is applied for a long time or repeatedly. It is stable without water, and has excellent chemical resistance such as water resistance and acid resistance, and has good durability. The sheet heating element of the present invention is applied to various heating products such as household water heaters, cookers, tissue paper and food warmers, ovens, and electric irons.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における昇温テストの時間−温度曲線
FIG. 1 is a time-temperature curve diagram of a temperature rise test in Example 1.

【図2】実施例2における昇温テストの時間−温度曲線
FIG. 2 is a time-temperature curve diagram of a temperature rise test in Example 2.

【図3】実施例3における昇温テストの時間−温度曲線
FIG. 3 is a time-temperature curve diagram of a temperature rise test in Example 3.

【図4】実施例4における昇温テストの時間−温度曲線
FIG. 4 is a time-temperature curve diagram of a temperature rise test in Example 4.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年5月15日(2002.5.1
5)
[Submission date] May 15, 2002 (2002.5.1)
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】〔実施例4〕60mm×130mmのデビトロ
セラミックス基板を400℃に加熱した高温反応室内に
セットし、実施例1の溶液を該高温反応室内にスプレー
することによって、該基材表面に酸化亜鉛と酸化スズと
の沈積物からなる薄膜を形成した。このようにして得ら
れた面状発熱体の両端に実施例1と同様な方法で電極
形成し、温度27℃、温度80%RHの条件下で上記面
状発熱体の電極に直流13.5ボルト、600mAの電
流を通じて薄膜の抵抗値を測定したところ23.4Ωで
あった。更に同条件下で昇温テストを行った結果を図4
に示す。
Example 4 A 60 mm × 130 mm devitroceramic substrate was set in a high-temperature reaction chamber heated to 400 ° C., and the solution of Example 1 was sprayed into the high-temperature reaction chamber, whereby the substrate surface was coated. A thin film composed of a deposit of zinc oxide and tin oxide was formed. Electrodes were formed on both ends of the sheet heating element thus obtained in the same manner as in Example 1, and a direct current was applied to the electrode of the sheet heating element at a temperature of 27 ° C. and a temperature of 80% RH. When the resistance of the thin film was measured through a current of 5 volts and 600 mA, it was 23.4 Ω. FIG. 4 shows the results of a temperature rise test performed under the same conditions.
Shown in

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K034 AA03 AA10 AA15 AA34 AA37 BB05 BB06 BB07 BB08 BB13 BB14 BC04 BC12 CA02 CA03 CA14 CA17 HA01 HA06 HA10 3K092 PP01 PP02 PP03 PP20 QA05 QB04 QB74 QB76 QC05 QC07 QC20 QC56 RF03 RF11 RF12 RF14 RF17 RF22 VV16 VV40 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3K034 AA03 AA10 AA15 AA34 AA37 BB05 BB06 BB07 BB08 BB13 BB14 BC04 BC12 CA02 CA03 CA14 CA17 HA01 HA06 HA10 3K092 PP01 PP02 PP03 PP20 QA05 QB04 QB74 QB76 QC05 RF07 QC05 RF17 RF22 VV16 VV40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛と酸化スズとを含む薄膜を基材上
に形成したことを特徴とする面状発熱体
1. A sheet heating element characterized in that a thin film containing zinc oxide and tin oxide is formed on a substrate.
【請求項2】該基材は雲母、セラミック、ガラス、ある
いは陶磁器からなる請求項1に記載の面状発熱体
2. The sheet heating element according to claim 1, wherein said substrate is made of mica, ceramic, glass, or ceramic.
【請求項3】該基材はプラスチックからなる請求項1に
記載の面状発熱体
3. The planar heating element according to claim 1, wherein said substrate is made of plastic.
【請求項4】加熱により酸化物を与える亜鉛とスズの化
合物を含む溶液を基材をセットした高温反応室内にスプ
レーし、該基材表面に酸化亜鉛と酸化スズとを含む沈積
物からなる薄膜を形成せしめることを特徴とする請求項
1または2または3に記載の面状発熱体の製造方法
4. A thin film comprising a deposit containing zinc oxide and tin oxide on a surface of a substrate, wherein a solution containing a compound of zinc and tin that gives an oxide by heating is sprayed into a high-temperature reaction chamber in which a substrate is set. 4. The method for manufacturing a sheet heating element according to claim 1, wherein the heating element is formed.
【請求項5】該反応室の温度は200〜700℃に調節
されている請求項4に記載の面状発熱体の製造方法
5. The method for producing a sheet heating element according to claim 4, wherein the temperature of the reaction chamber is adjusted to 200 to 700 ° C.
JP2001175802A 2000-11-17 2001-06-11 Plane shape heating body and its manufacturing method Withdrawn JP2002216936A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001175802A JP2002216936A (en) 2000-11-17 2001-06-11 Plane shape heating body and its manufacturing method
US10/165,345 US6728479B2 (en) 2001-06-11 2002-06-07 Panel-type heating element and method for the manufacture thereof
EP02012440A EP1267592A3 (en) 2001-06-11 2002-06-10 A panel-type heating element and method for the manufacture thereof
CN02122773.XA CN1394104A (en) 2001-06-11 2002-06-11 Panel-shaped heating body and its making method
US10/830,645 US20050003243A1 (en) 2001-06-11 2004-04-23 Panel type heating element and method for the manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-351265 2000-11-17
JP2000351265 2000-11-17
JP2001175802A JP2002216936A (en) 2000-11-17 2001-06-11 Plane shape heating body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002216936A true JP2002216936A (en) 2002-08-02

Family

ID=26604192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175802A Withdrawn JP2002216936A (en) 2000-11-17 2001-06-11 Plane shape heating body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002216936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113640A (en) * 2015-02-11 2017-10-12 포샨 순더 메이디 일렉트리컬 히팅 어플라이언시스 메뉴팩쳐링 코., 리미티드 A method of manufacturing a heat transfer film layer, a heat transfer film layer, an electric heating plate and a cooking device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113640A (en) * 2015-02-11 2017-10-12 포샨 순더 메이디 일렉트리컬 히팅 어플라이언시스 메뉴팩쳐링 코., 리미티드 A method of manufacturing a heat transfer film layer, a heat transfer film layer, an electric heating plate and a cooking device
JP2018508958A (en) * 2015-02-11 2018-03-29 佛山市順徳区美的電熱電器制造有限公司 Method for producing electrothermal film layer, electrothermal film layer, electric heating plate and cooking utensil
KR101949833B1 (en) * 2015-02-11 2019-02-19 포샨 순더 메이디 일렉트리컬 히팅 어플라이언시스 메뉴팩쳐링 코., 리미티드 A method of manufacturing a heat transfer film layer, a heat transfer film layer, an electric heating plate and a cooking device

Similar Documents

Publication Publication Date Title
US3694627A (en) Heating element & method of making
WO2015033989A1 (en) Production method for electrode for electrolysis
JP4156522B2 (en) Conductive composition, conductive film and method for forming conductive film
US6728479B2 (en) Panel-type heating element and method for the manufacture thereof
JP2010021028A (en) Planar heating element and method of manufacturing the same
EP0967838B1 (en) Thin film heating assemblies
JP2002216936A (en) Plane shape heating body and its manufacturing method
CN104602375A (en) Thermal sensitive ceramic electrically heated glass and preparation method thereof
RU113624U1 (en) THIN FILM ELECTRIC HEATER
KR20020038439A (en) Sheet exothermic body
JP3084987U (en) Constant temperature device
JPH0238555B2 (en) ENSEKIGAISENHIITAANARABINISONOSEIZOHO
JP2004207212A (en) Heat generating functional material, its manufacturing method, and heater using it
JPH0714668A (en) Fog-proof mirror
CN213783619U (en) Graphite alkene coating toughened glass heater that generates heat
CN203057553U (en) Transparent heat-emission film
EP0654956A1 (en) A method of manufacturing an electric heating film
GB2308080A (en) Method for forming a transparent conductive layer
JP3245337B2 (en) Heating heater, fixing heat roller, and fixing device
CN112385899A (en) Heater and electric heating system using same
JPS6237894A (en) Far infrared ray heater and manufacture thereof
JPH0217629B2 (en)
JP2007173038A (en) Sheet heating element
CN204408653U (en) Thermal sensitive ceramics electrically heated glass structure
JPH043084B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902