JP2002216764A - Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same - Google Patents

Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Info

Publication number
JP2002216764A
JP2002216764A JP2001013765A JP2001013765A JP2002216764A JP 2002216764 A JP2002216764 A JP 2002216764A JP 2001013765 A JP2001013765 A JP 2001013765A JP 2001013765 A JP2001013765 A JP 2001013765A JP 2002216764 A JP2002216764 A JP 2002216764A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
polymer
dimensional polymer
dmf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001013765A
Other languages
Japanese (ja)
Inventor
Junko Shigehara
淳孝 重原
Yoshihiro Asai
美博 浅井
Masaru Onishi
賢 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001013765A priority Critical patent/JP2002216764A/en
Publication of JP2002216764A publication Critical patent/JP2002216764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel lithium secondary battery and a novel lithium ion secondary battery capable of providing high capacity and high energy density, of a long life and superior in repeated charging and discharging characteristics. SOLUTION: This invention relates to positive electrode material composed of oligomer above dimer or one-dimensional polymer of tetranitro or octacyano metal phthalocyanine, or tetranitro or octacyano metal pyrazinocyanine, and the lithium secondary battery and lithium ion secondary battery containing the same material as a positive electrode member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム(イオ
ン)二次電池に関する。さらに詳しくは、金属リチウ
ム、リチウム/アルミニウム合金、グラファイトリチウ
ム(以下、Li・Gpと略)などをアノードとし、ヘキサフ
ロロリン酸リチウム有機溶媒溶液ないしそれをポリマー
ゲルに含浸させたフィルムなどを電解質とするリチウム
(イオン)二次電池、およびそのカソード部材として使
用される材料に関する。
The present invention relates to a lithium (ion) secondary battery. More specifically, lithium metal, lithium / aluminum alloy, lithium graphite (hereinafter abbreviated as Li-Gp) or the like is used as an anode, and a lithium hexafluorophosphate organic solvent solution or a film in which the polymer gel is impregnated with a polymer gel is used as an electrolyte. And a material used as a cathode member thereof.

【0002】[0002]

【従来の技術】従来の技術によるリチウム(イオン)二
次電池は、[金属リチウム/電解質/ポリアニリン]、あ
るいは[Li・Gp/電解質/コバルト酸リチウム]などの構
成になっており、出力は3〜4.2Vであるが、電池容量・
エネルギー密度はカソード部材の低い能力によって制限
され、電池容量150mAh/g、エネルギー密度550Wh/kg程度
でしかない。
2. Description of the Related Art A lithium (ion) secondary battery according to a conventional technique has a configuration of [metal lithium / electrolyte / polyaniline] or [Li · Gp / electrolyte / lithium cobalt oxide], and has an output of 3%. ~ 4.2V, but the battery capacity
The energy density is limited by the low capacity of the cathode member, and the battery capacity is only 150 mAh / g and the energy density is about 550 Wh / kg.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、上記
従来の状況に鑑み、より高容量・高エネルギー密度を得
ることができ、長寿命かつ繰り返し充放電特性に優れた
新規なリチウム(イオン)二次電池を提供することを目
的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a novel lithium (ion) capable of obtaining a higher capacity and a higher energy density, having a long life and excellent repetitive charge / discharge characteristics. It is intended to provide a secondary battery.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、請求項1の(化1)に示すような、テト
ラニトロないしオクタシアノ金属フタロシアニン、また
はテトラニトロないしオクタシアノ金属ピラジノシアニ
ンの、二量体以上のオリゴマーまたは一次元ポリマーか
らなるカソード用材料を提供する。
In order to solve the above problems, the present invention provides a dimer of tetranitro or octacyano metal phthalocyanine or tetranitro or octacyano metal pyrazinocyanine as shown in claim 1 (Chem. 1). A cathode material comprising the above oligomer or one-dimensional polymer is provided.

【0005】また、請求項2および3は、請求項1記載
の材料をカソード部材に含むことを特徴とするリチウム
二次電池およびリチウムイオン二次電池である。なお、
ここでリチウムイオン二次電池とは、アノードとしてLi
・Gpなどの非金属リチウムを用いたものをいう。
[0005] Claims 2 and 3 are lithium secondary batteries and lithium ion secondary batteries comprising the material described in claim 1 in a cathode member. In addition,
Here, a lithium-ion secondary battery refers to Li
-A material using non-metallic lithium such as Gp.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のカソード用材料は、上記(化1)に示すよう
な、テトラニトロないしオクタシアノ金属フタロシアニ
ン、またはテトラニトロないしオクタシアノ金属ピラジ
ノシアニンの、二量体以上のオリゴマーまたは一次元ポ
リマー(以下、一次元ポリマーと略)から構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The cathode material of the present invention is a dimer or higher oligomer or a one-dimensional polymer (hereinafter, abbreviated as a one-dimensional polymer) of tetranitro to octacyano metal phthalocyanine or tetranitro to octacyano metal pyrazinocyanine as shown in the above (Chemical Formula 1). ).

【0007】ただし、上記(化1)において、Mは中心
金属で周期律表の第10〜12族を除く遷移金属イオンまた
はシリコンであり、R=NO2かつR'=H(RとR'は同一ベンゼ
ン環上で相互位置変換可能)、またはR=R'=CNであり、X
=CまたはNであり、-L-は4,4'-ビピリジン、ピラジン、
ジイソシアノベンゼン、フェナジン、テトラメチルパラ
イソシアノベンゼン、アゾビスピリジン、-O-、-S-、-F
-、=N-、-CN-、-SCN-、から選ばれる二座架橋配位子で
ある。なお、上記一次元ポリマーの重合度は、特に限定
されるものではないが、電解液への溶解性低下の観点か
ら、重合度nがn≧2であることが必要とされ、さらに稼
働時に解重合が惹起される可能性に対する安全策を鑑み
てn≧4が好ましく、また、ポリマーが不溶性であってn
が20を超えるポリマーは合成しにくい場合があることを
考え合わせると、n=4〜20が最も好ましい。なお、重合
度nは、上記(化1)に示すように、1つのフタロシア
ニンまたはピラジノシアニン環骨格と一つの二座配位子
Lからなる単位構造の、繰り返し構造数である。
However, in the above (Chemical Formula 1), M is a central metal and is a transition metal ion or silicon excluding groups 10 to 12 of the periodic table, R = NO 2 and R ′ = H (R and R ′ Are mutually reversible on the same benzene ring) or R = R '= CN and X
= C or N, and -L- is 4,4'-bipyridine, pyrazine,
Diisocyanobenzene, phenazine, tetramethylparaisocyanobenzene, azobispyridine, -O-, -S-, -F
-, = N-, -CN-, -SCN-, a bidentate bridging ligand. The degree of polymerization of the one-dimensional polymer is not particularly limited, but it is necessary that the degree of polymerization n is n ≧ 2 from the viewpoint of a decrease in solubility in the electrolytic solution, and furthermore, the degree of polymerization is reduced during operation. In consideration of safety measures against the possibility that polymerization is caused, n ≧ 4 is preferable, and the polymer is insoluble and n ≧ 4.
Considering that it may be difficult to synthesize a polymer having more than 20, n = 4 to 20 is most preferable. In addition, as shown in the above (Chemical Formula 1), the degree of polymerization n is one phthalocyanine or pyrazinocyanine ring skeleton and one bidentate ligand.
This is the number of repeating structures in the unit structure consisting of L.

【0008】上記カソード用材料を利用してリチウム
(イオン)二次電池を作製するに際しては、アノードお
よび電解質には従来知られたものを適宜採用することが
できる。アノードの具体例としては、金属リチウム、も
しくはリチウム/アルミニウム合金、グラファイトリチ
ウム(Li・Gp)などを挙げることができ、電解質として
は、ヘキサフロロリン酸リチウム(LiPF6)有機溶媒溶
液などのリチウム塩の非水溶液ないしそれをポリマーゲ
ルに含浸させたフィルムなどが挙げられる。
In producing a lithium (ion) secondary battery using the above-mentioned cathode material, conventionally known anodes and electrolytes can be appropriately employed. Specific examples of the anode include metallic lithium, lithium / aluminum alloy, and graphite lithium (Li · Gp). The electrolyte is a lithium salt such as a lithium hexafluorophosphate (LiPF 6 ) organic solvent solution. And a film in which the polymer gel is impregnated.

【0009】そして、カソード部材には、本発明のカソ
ード用材料(一次元ポリマー)と、例えばアセチレンブ
ラックなどの集電粒子、およびポリビニリデンフロリド
(PVDFと略)などの結着剤とを混練・乾燥させ薄膜とし
たものを用いる。なお、本発明の一次元ポリマーの割合
は、特に限定されるものではないが、カソード部材全体
に対して、50〜85wt%程度とすることが好ましい。ま
た、アセチレンブラックなどの集電粒子は、多すぎると
容量低下をもたらし、逆に少なすぎると内部インピーダ
ンスの増加を引き起こすので、カソード部材全体に対し
て、40〜10wt%程度とすることが好ましい。結着剤の量
は、カソード用材料と集電粒子を結着できる限りにおい
て最小量で良く、概ね25wt%以下、好ましくは5〜15wt%
である。
The cathode member is kneaded with the cathode material (one-dimensional polymer) of the present invention, current-collecting particles such as acetylene black, and a binder such as polyvinylidene fluoride (abbreviated as PVDF). -Use a dried thin film. The proportion of the one-dimensional polymer of the present invention is not particularly limited, but is preferably about 50 to 85 wt% based on the whole cathode member. When the amount of the current-collecting particles such as acetylene black is too large, the capacity is reduced. On the other hand, when the amount is too small, the internal impedance is increased. The amount of the binder may be a minimum amount as long as it can bind the cathode material and the current collecting particles, and is approximately 25 wt% or less, preferably 5 to 15 wt%.
It is.

【0010】[0010]

【実施例】以下、実施例に基づき本発明をさらに詳細に
説明する。なお、実施例1〜15は本発明に係る一次元
ポリマーの合成例であり、実施例16〜41は上記一次
元ポリマーを用いてリチウム二次電池を作製した例であ
る。 (実施例1)4-ニトロフタロニトリル(NPNと略)5.0g
(29mmol)、酢酸第一鉄無水和物1.3g(7.5mmol)を2-
(N,N-ジメチルアミノ)エタノール(DMAEと略)35mlに溶
解し、115℃にて不活性雰囲気下に30分反応させた。黒
緑色固体を含む粘調溶液を弱塩酸酸性水溶液に投じて析
出固体をろ集し、乾燥、少量のジメチルフォルムアミド
(DMFと略)に溶解、クロロフォルムに滴下して再沈精
製して、テトラニトロ鉄フタロシアニン(FePcTNと略)
を1.1g、収率20%で得た。TOF-Massスペクトル:m/z=748
(分子量=748.4)。FePcTN 190mg(0.25mmol)、4,4'-
ビピリジン400mg(2.6mmol)をクロロベンゼン中均一混
合し、80℃にて2時間かき混ぜ、生成するほとんど黒色
の固体をろ集、クロロフォルムで洗浄、乾燥して、上記
(化1)においてX=C、R=NO2、R'=H、M=Fe、L=4,4'-ビ
ピリジンの目的の一次元ポリマーを114mg得た。赤外吸
収スペクトルではフタロシアニン環に特有の環振動が11
00、1300、1500cm-1、ニトロ基に基づく吸収が1340c
m-1、4,4'-ビピリジン単位の特性吸収が1250cm-1に認め
られ、熱重量分析/示差熱分析から約400℃にて計算量
の4,4'-ビピリジン単位が解重合によって放出されるこ
と、また得られた一次元ポリマーのDMF可溶低分子量分
画についてのTOF-Massスペクトルの親ピークと分解物ピ
ークから約7〜12量体であることならびにポリマー繰り
返し単位が-(4,4'-ビピリジン-FePcTN)-より成ることが
確認でき、相当する構造が証明された。
The present invention will be described in more detail with reference to the following examples. Examples 1 to 15 are examples of synthesizing the one-dimensional polymer according to the present invention, and Examples 16 to 41 are examples of manufacturing a lithium secondary battery using the one-dimensional polymer. (Example 1) 5.0 g of 4-nitrophthalonitrile (abbreviated as NPN)
(29 mmol), 1.3 g (7.5 mmol) of ferrous acetate anhydrous,
It was dissolved in 35 ml of (N, N-dimethylamino) ethanol (abbreviated as DMAE) and reacted at 115 ° C. in an inert atmosphere for 30 minutes. A viscous solution containing a black-green solid is poured into a weakly acidic aqueous solution of hydrochloric acid, and the precipitated solid is collected by filtration, dried, dissolved in a small amount of dimethylformamide (abbreviated as DMF), dropped into chloroform, and purified by reprecipitation, Iron phthalocyanine (short for FePcTN)
Was obtained in a yield of 20%. TOF-Mass spectrum: m / z = 748
(Molecular weight = 748.4). FePcTN 190mg (0.25mmol), 4,4'-
400 mg (2.6 mmol) of bipyridine is uniformly mixed in chlorobenzene, and stirred at 80 ° C. for 2 hours. The resulting almost black solid is collected by filtration, washed with chloroform, and dried. In the above (Chemical Formula 1), X = C, R = NO 2 , R '= H, M = Fe, L = 4,4'-bipyridine 114 mg of the desired one-dimensional polymer was obtained. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 11
00, 1300, 1500cm -1 , absorption based on nitro group is 1340c
Characteristic absorption of m -1 and 4,4'-bipyridine units was observed at 1250 cm -1, and the calculated amount of 4,4'-bipyridine units was released by depolymerization at about 400 ° C from thermogravimetric analysis / differential thermal analysis. And the parental and degradant peaks of the TOF-Mass spectrum for the DMF-soluble low molecular weight fraction of the resulting one-dimensional polymer are approximately 7- to 12-mers, and the polymer repeat unit is-(4 , 4'-bipyridine-FePcTN)-, and the corresponding structure was proved.

【0011】(実施例2)酢酸第一鉄の代わりに酢酸コ
バルト5.0g(28mmol)を用い、4,4'-ビピリジンの代わ
りにピラジン230mg(2.8mmol)を用いた他は、全く実施
例1と同様に相当するCoPcTNを経る反応により、上記
(化1)においてX=C、R=NO2、R'=H、M=Co、L=ピラジン
の目的の一次元ポリマーを105mg得た。赤外吸収スペク
トルではフタロシアニン環に特有の環振動が1100、130
0、1500cm-1、ニトロ基に基づく吸収が1340cm-1、ピラ
ジン単位の特性吸収が1280cm-1に認められ、熱重量分析
/示差熱分析から約400℃にて計算量のピラジン単位が
解重合によって放出されること、また得られた一次元ポ
リマーのDMF可溶低分子量分画についてのTOF-Massスペ
クトルの親ピークと分解物ピークから約7〜12量体であ
ることならびにポリマー繰り返し単位が-(ピラジン-CoP
cTN)-より成ることが確認でき、相当する構造が証明さ
れた。
(Example 2) Except that 5.0 g (28 mmol) of cobalt acetate was used instead of ferrous acetate and 230 mg (2.8 mmol) of pyrazine was used instead of 4,4'-bipyridine. As a result of the reaction via CoPcTN, 105 mg of the desired one-dimensional polymer of X = C, R = NO 2 , R ′ = H, M = Co, and L = pyrazine in the above (Chemical Formula 1) was obtained. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 130
0 , 1500 cm -1 , absorption based on nitro group is 1340 cm -1 , characteristic absorption of pyrazine unit is observed at 1280 cm -1, and the calculated amount of pyrazine unit is depolymerized at about 400 ° C from thermogravimetric analysis / differential thermal analysis And about 7 to 12 mer from the parent and decomposed product peaks of the TOF-Mass spectrum for the DMF-soluble low molecular weight fraction of the obtained one-dimensional polymer, and the polymer repeating unit is- (Pyrazine-CoP
cTN)-, and the corresponding structure was proved.

【0012】(実施例3)酢酸第一鉄の代わりにビスア
セチルアセトナトオキソバナジウム5.0gを用いて実施例
1と同様に反応させ、相当するO=VPcTNを118mg得た。TO
F-Massスペクトル:m/z=759(分子量=759.5)。O=VPcTN
2.0gをDMF100mlに溶解し、濃アンモニア水10mlを加え
て室温で1時間かき混ぜ、大量の水に投じて沈殿する黒
緑色固体をろ集、常温で12時間減圧乾燥した。この時点
で錯体はジヒドロキシ体、(HO)2VPcTNに変換されるが、
不安定であるため直ちに500mlのクロロベンゼンに分散
し、10mgのp-トルエンスルフォン酸を加えて沸点還流し
ながら水分採集管により脱水した。沸点還流当初に錯体
が溶解し、脱水縮合重合に伴って沈殿を生じる。12時間
反応後、沈殿をろ集、乾燥して、上記(化1)において
X=C、R=NO2、R'=H、M=V、L=-O-の目的の一次元ポリマー
を定量的に得た。赤外吸収スペクトルではフタロシアニ
ン環に特有の環振動が1100、1300、1500cm-1、ニトロ基
に基づく吸収が1340cm-1、-O-の特性吸収が1050cm-1
認められ、また得られた一次元ポリマーのDMF可溶低分
子量分画についてのTOF-Massスペクトルの親ピークと分
解物ピークから約7〜12量体であることならびにポリマ
ー繰り返し単位が-[O-(VPcTN)]-より成ることが確認で
き、相当する構造が証明された。
Example 3 A reaction was conducted in the same manner as in Example 1 except that 5.0 g of bisacetylacetonatooxovanadium was used instead of ferrous acetate, to obtain 118 mg of the corresponding O = VPcTN. TO
F-Mass spectrum: m / z = 759 (molecular weight = 759.5). O = VPcTN
2.0 g was dissolved in 100 ml of DMF, 10 ml of concentrated aqueous ammonia was added, and the mixture was stirred at room temperature for 1 hour, and poured into a large amount of water to precipitate a black-green solid, which was collected by filtration and dried under reduced pressure at room temperature for 12 hours. At this point, the complex is converted to the dihydroxy form, (HO) 2 VPcTN,
Since it was unstable, it was immediately dispersed in 500 ml of chlorobenzene, and 10 mg of p-toluenesulfonic acid was added thereto, followed by dehydration with a water collecting tube while refluxing the boiling point. At the beginning of the boiling point reflux, the complex dissolves and precipitates with dehydration-condensation polymerization. After reacting for 12 hours, the precipitate is collected by filtration and dried,
The desired one-dimensional polymer of X = C, R = NO 2 , R ′ = H, M = V, L = —O— was obtained quantitatively. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 1300, 1500 cm -1 , the absorption based on the nitro group is 1340 cm -1 , the characteristic absorption of -O- is observed at 1050 cm -1 , and the obtained primary Approximately 7 to 12 mer from the parent and decomposed peaks of the TOF-Mass spectrum of the DMF-soluble low molecular weight fraction of the base polymer and that the polymer repeating unit consists of-[O- (VPcTN)]- Was confirmed, and the corresponding structure was proved.

【0013】(実施例4)実施例3のビスアセチルアセ
トナトオキソバナジウムの代わりにビスアセチルアセト
ナトオキソチタニウムを用いた他は実施例3と同様に、
(HO)2TiPcTNを経て、上記(化1)においてX=C、R=N
O2、R'=H、M=Ti、L=-O-の目的の一次元ポリマーを定量
的に得た。赤外吸収スペクトルではフタロシアニン環に
特有の環振動が1100、1300、1500cm-1、ニトロ基に基づ
く吸収が1340cm-1、-O-の特性吸収が1050cm-1に認めら
れ、また得られた一次元ポリマーのDMF可溶低分子量分
画についてのTOF-Massスペクトルの親ピークと分解物ピ
ークから約7〜12量体であることならびにポリマー繰り
返し単位が-[O-(TiPcTN)]-より成ることが確認でき、相
当する構造が証明された。
(Example 4) In the same manner as in Example 3 except that bisacetylacetonatooxotitanium was used in place of bisacetylacetonatooxovanadium of Example 3,
Via (HO) 2 TiPcTN, X = C, R = N
The desired one-dimensional polymer of O 2 , R ′ = H, M = Ti, L = -O- was obtained quantitatively. In the infrared absorption spectrum, the ring vibration specific to the phthalocyanine ring is 1100, 1300, 1500 cm -1 , the absorption based on the nitro group is 1340 cm -1 , the characteristic absorption of -O- is observed at 1050 cm -1 , and the obtained primary Approximately 7 to 12 mer from the parent and decomposed peaks of TOF-Mass spectrum of DMF-soluble low molecular weight fraction of base polymer, and polymer repeating unit consists of-[O- (TiPcTN)]- Was confirmed, and the corresponding structure was proved.

【0014】(実施例5)酢酸鉄の代わりにギ酸イット
リウム5.0g(28mmol)を用いた他は実施例3と同様に操
作して、(CH3COO)YPcTNを得て、そのDMF濃厚溶液をKF水
溶液に滴下し、生成する沈殿をろ集、乾燥して、上記
(化1)においてX=C、R=NO2、R'=H、M=Y、L=-F-の、目
的の一次元ポリマーを106mg得た。赤外吸収スペクトル
ではフタロシアニン環に特有の環振動が1100、1300、15
00cm-1、ニトロ基に基づく吸収が1340cm-1、-F-の特性
吸収が1200cm-1に認められ、また得られた一次元ポリマ
ーのDMF可溶低分子量分画についてのTOF-Massスペクト
ルの親ピークと分解物ピークから約7〜12量体であるこ
とならびにポリマー繰り返し単位が-[F-(YPcTN)]-より
成ることが確認でき、相当する構造が証明された。
Example 5 (CH 3 COO) YPcTN was obtained in the same manner as in Example 3 except that 5.0 g (28 mmol) of yttrium formate was used in place of iron acetate, and a concentrated solution of DMF was obtained. The resulting precipitate is collected by filtration, dried, and the desired compound of X = C, R = NO 2 , R ′ = H, M = Y, L = -F- 106 mg of a one-dimensional polymer was obtained. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 1300, 15
00cm -1, absorption based on the nitro group of TOF-Mass spectrum of 1340 cm -1, characteristic absorption of -F- was observed at 1200 cm -1, The DMF Allowed溶低molecular weight fraction of one-dimensional polymer obtained From the parent peak and the decomposition product peak, it was confirmed that it was about 7-12 mer and that the polymer repeating unit was composed of-[F- (YPcTN)]-, and the corresponding structure was proved.

【0015】(実施例6)テトラシアノベンゼン5.0g
(28mmol)と酢酸第一鉄無水和物1.3g(7.3mmol)をス
ルホラン35mlに溶解し、0.05mlのジサザビシクロウンデ
センを加えて窒素気流下に135℃にて2時間反応、約1lの
クロロホルムに注下して黒緑色沈殿をろ集した。最小量
のDMFに溶解し、クロロホルムに再沈殿精製して、オク
タシアノ鉄フタロシアニン(以後、FePcOC)3.4g(収率
60%)を得た。TOF-Massスペクトル:m/z=768(分子量=7
68.5)。FePcOC 190mg(0.25mmol)とジイソシアノベン
ゼン(dibと略) 330mg(2.6mmol)をo-ジクロロベンゼ
ン50mlに分散し、80℃で6時間反応させて第5,6座にdib
が配位した錯体溶液を得て、次に130℃で10時間反応さ
せ、再び沈殿する目的物をろ集、o-ジクロロベンゼン、
DMFで洗浄、乾燥して、上記(化1)においてX=C、R=R'
=CN、M=Fe、L=dibの一次元ポリマーを定量的に得た。赤
外吸収スペクトルではフタロシアニン環に特有の環振動
が1100、1300、1500cm-1、ニトロ基に基づく吸収が1340
cm-1、-O-の特性吸収が1050cm-1に認められ、また得ら
れた一次元ポリマーのDMF可溶低分子量分画についてのT
OF-Massスペクトルの親ピークと分解物ピークから約7〜
12量体であることならびにポリマー繰り返し単位が-[di
b-(FePcOC)]-より成ることが確認でき、相当する構造が
証明された。
Example 6 5.0 g of tetracyanobenzene
(28 mmol) and 1.3 g (7.3 mmol) of anhydrous ferrous acetate are dissolved in 35 ml of sulfolane, and 0.05 ml of disazabicycloundecene is added. The mixture is reacted at 135 ° C. for 2 hours under a nitrogen stream, and about 1 l of The mixture was poured into chloroform, and a black-green precipitate was collected by filtration. Dissolved in a minimum amount of DMF, reprecipitated and purified in chloroform, and purified 3.4 g of octacyanoiron phthalocyanine (hereinafter FePcOC) (yield
60%). TOF-Mass spectrum: m / z = 768 (molecular weight = 7
68.5). 190 mg (0.25 mmol) of FePcOC and 330 mg (2.6 mmol) of diisocyanobenzene (abbreviated as dib) are dispersed in 50 ml of o-dichlorobenzene and reacted at 80 ° C. for 6 hours to dib at the 5th and 6th positions.
Is obtained, then reacted at 130 ° C. for 10 hours, and the target substance which precipitates again is collected by filtration, o-dichlorobenzene,
After washing with DMF and drying, X = C and R = R ′
= CN, M = Fe, L = dib One-dimensional polymer was quantitatively obtained. In the infrared absorption spectrum, the ring vibration unique to the phthalocyanine ring is 1100, 1300, 1500 cm -1 , the absorption based on the nitro group is 1340
cm -1, characteristic absorption of -O- is observed at 1050 cm -1, also the DMF allowed溶低molecular weight fraction of one-dimensional polymer obtained in T
About 7 ~ from parent peak and decomposition peak of OF-Mass spectrum
12-mer and the polymer repeating unit is-[di
b- (FePcOC)]-, and the corresponding structure was proved.

【0016】(実施例7)酢酸第一鉄の替わりに酢酸コ
バルト無水和物1.3g(7.3mmol)を用いた他は、実施例
6と全く同様にしてオクタシアノコバルトフタロシアニ
ン(CoPcOC)を中間体として得て[310mg、収率=55%、TO
F-Massスペクトル:m/z=772(分子量=771.6)]、同様に
dibと反応させて、上記(化1)においてX=C、R=R'=C
N、M=Co、L=dibの一次元ポリマーを定量的に得た。赤外
吸収スペクトルではフタロシアニン環に特有の環振動が
1100、1300、1500cm-1、ニトロ基に基づく吸収が1340cm
-1、-O-の特性吸収が1050cm-1に認められ、また得られ
た一次元ポリマーのDMF可溶低分子量分画についてのTOF
-Massスペクトルの親ピークと分解物ピークから約7〜12
量体であることならびにポリマー繰り返し単位が-[dib-
(CoPcOC)]-より成ることが確認でき、相当する構造が証
明された。
Example 7 Octacyanocobalt phthalocyanine (CoPcOC) was used as an intermediate in exactly the same manner as in Example 6 except that 1.3 g (7.3 mmol) of cobalt acetate anhydrate was used instead of ferrous acetate. [310 mg, yield = 55%, TO
F-Mass spectrum: m / z = 772 (molecular weight = 771.6)]
Reaction with dib, X = C, R = R ′ = C
One-dimensional polymers of N, M = Co, L = dib were quantitatively obtained. In the infrared absorption spectrum, a ring vibration peculiar to the phthalocyanine ring
1100, 1300, 1500cm -1 , absorption based on nitro group is 1340cm
-1 and -O- characteristic absorption were observed at 1050 cm -1 , and TOF was obtained for the DMF-soluble low molecular weight fraction of the obtained one-dimensional polymer.
-About 7 to 12 from parent peak and decomposition peak of Mass spectrum
And the polymer repeating unit is-[dib-
(CoPcOC)]-, and the corresponding structure was proved.

【0017】(実施例8)酢酸第一鉄の替わりに酢酸ク
ロム無水和物1.2g(7.3mmol)を用いた他は、実施例6
と同様にしてオクタシアノクロムフタロシアニン(CrPc
OC)を中間体として得て[330mg、収率=60%、TOF-Massス
ペクトル:m/z=775(分子量=775.6)]、同様にdibと反
応させて、上記(化1)においてX=C、R=R'=CN、M=Cr、
L=dibの一次元ポリマーを定量的に得た。赤外吸収スペ
クトルではフタロシアニン環に特有の環振動が1100、13
00、1500cm-1、シアノ基に基づく吸収が2200cm-1、-dib
-の特性吸収が1280cm-1に認められ、また得られた一次
元ポリマーのDMF可溶低分子量分画についてのTOF-Mass
スペクトルの親ピークと分解物ピークから約7〜12量体
であることならびにポリマー繰り返し単位が-[dib-(CrP
cOC)]-より成ることが確認でき、相当する構造が証明さ
れた。
Example 8 Example 6 was repeated except that 1.2 g (7.3 mmol) of chromium acetate anhydride was used instead of ferrous acetate.
Octacyanochrome phthalocyanine (CrPc
OC) as an intermediate [330 mg, yield = 60%, TOF-Mass spectrum: m / z = 775 (molecular weight = 775.6)], and similarly reacted with dib to obtain X = C, R = R '= CN, M = Cr,
One-dimensional polymer of L = dib was obtained quantitatively. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 13
00,1500cm -1, absorption based on cyano group 2200cm -1, -dib
-Absorption at 1280 cm -1 and TOF-Mass for DMF-soluble low molecular weight fraction of the obtained one-dimensional polymer
Approximately 7 to 12 mer from the parent peak and decomposition product peak of the spectrum, and the polymer repeating unit is-[dib- (CrP
cOC)]-, and the corresponding structure was proved.

【0018】(実施例9)テトラシアノピラジン5.0g
(28mmol)、酢酸マンガン無水和物1.3g(7.3mmol)を
用いた他は実施例6と同様にして、マンガンオクタシア
ノピラジノシアニン(MnPycOC)を280mg(収率=50%)得
て、同様にdibと反応させ、上記(化1)においてX=N、
R=R'=CN、M=Mn、L=dibの一次元ポリマーを定量的に得
た。赤外吸収スペクトルではフタロシアニン環に特有の
環振動が1100、1300、1500cm-1、シアノ基に基づく吸収
が2200cm-1、-dib-の特性吸収が1280cm-1に認められ、
また得られた一次元ポリマーのDMF可溶低分子量分画に
ついてのTOF-Massスペクトルの親ピークと分解物ピーク
から約7〜12量体であることならびにポリマー繰り返し
単位が-[dib-(MnPycOC)]-より成ることが確認でき、相
当する構造が証明された。
Example 9 5.0 g of tetracyanopyrazine
(28 mmol) and 280 mg (yield = 50%) of manganese octacyanopyrazinocyanine (MnPycOC) were obtained in the same manner as in Example 6 except that manganese acetate anhydrate 1.3 g (7.3 mmol) was used. To dib, and in the above (Chemical Formula 1), X = N,
One-dimensional polymers of R = R '= CN, M = Mn, L = dib were obtained quantitatively. Infrared ring vibration specific to the phthalocyanine ring in absorption spectrum 1100,1300,1500cm -1, absorption based on cyano group 2200 cm -1, characteristic absorption of -dib- was observed at 1280 cm -1,
In addition, the parental and degraded product peaks of the TOF-Mass spectrum for the DMF-soluble low molecular weight fraction of the obtained one-dimensional polymer are approximately 7 to 12-mers, and the polymer repeating unit is-[dib- (MnPycOC) ]-, And the corresponding structure was proved.

【0019】(実施例10)テトラシアノピラジン5.0g
(28mmol)、四塩化珪素1.2g(7.3mmol)を用いた他
は、実施例6と同様にして、ジクロロオクタシアノシリ
コンピラジノシアニン(Cl2SiPycOC)を得て、水1mlを
加えて40℃にて1時間反応、5,6-座の-Clを-OHに加水分
解して重合させ、大量の水に注下して黒緑色沈殿をろ集
した。排除限界分子量=1000のGPCカラムを用いてDMFで
展開し、黒緑色の高分子量分画を採取、大量の水に注下
して生ずる沈殿をろ集、乾燥して、上記(化1)におい
てX=N、R=R'=CN、M=Si、L=-O-の一次元ポリマーを定量
的に得た。赤外吸収スペクトルではフタロシアニン環に
特有の環振動が1100、1300、1500cm-1、ニトロ基に基づ
く吸収が1340cm-1、-O-の特性吸収が1050cm-1に認めら
れ、また得られた一次元ポリマーのDMF可溶低分子量分
画についてのTOF-Massスペクトルの親ピークと分解物ピ
ークから約7〜12量体であることならびにポリマー繰り
返し単位が-[O-(SiPycOC)]-より成ることが確認でき、
相当する構造が証明された。
Example 10 5.0 g of tetracyanopyrazine
(28 mmol) and 1.2 g (7.3 mmol) of silicon tetrachloride, except that dichlorooctacyanosilicon pyrazinocyanine (Cl 2 SiPycOC) was obtained in the same manner as in Example 6, and 1 ml of water was added to the mixture at 40 ° C. For 1 hour, hydrolyzing the 5,6-position of -Cl to -OH to polymerize, poured into a large amount of water, and the black-green precipitate was collected by filtration. The mixture was developed with DMF using a GPC column with an exclusion limit molecular weight of 1000, and a black-green high molecular weight fraction was collected. The resulting precipitate was poured into a large amount of water, and the resulting precipitate was collected by filtration and dried. One-dimensional polymers of X = N, R = R '= CN, M = Si, L = -O- were quantitatively obtained. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 1300, 1500 cm -1 , the absorption based on the nitro group is 1340 cm -1 , the characteristic absorption of -O- is observed at 1050 cm -1 , and the obtained primary The parental and degraded product peaks of the TOF-Mass spectrum of the DMF-soluble low molecular weight fraction of the base polymer are about 7 to 12-mers, and the polymer repeating unit consists of-[O- (SiPycOC)]- Can be confirmed,
A corresponding structure has been proven.

【0020】(実施例11)テトラシアノピラジン5.0g
(28mmol)、塩化ジイソプロポキシアルミニウム1.1g
(7.3mmol)を用いた他は実施例6と同様にして、クロ
ロアルミニウムオクタシアノピラジノシアニン(ClAlPy
cOC)を290g(収率=50%)得た。TOF-Mass:m/z=783(分
子量=783)。ClAlPycOC全量とKF10gをスルホラン300ml
に溶解、60℃にて6時間反応させ、生成する黒緑色沈殿
をろ集、スルホラン、つぎにテトラヒドロフラン(THF
と略)で洗浄、乾燥して、上記(化1)においてX=N、R
=R'=CN、M=Al、L=Fの一次元ポリマーを定量的に得た。
赤外吸収スペクトルではフタロシアニン環に特有の環振
動が1100、1300、1500cm-1、シアノ基に基づく吸収が22
00cm-1、-F-の特性吸収が1200cm-1に認められ、また得
られた一次元ポリマーのDMF可溶低分子量分画について
のTOF-Massスペクトルの親ピークと分解物ピークから約
7〜12量体であることならびにポリマー繰り返し単位が-
[F-(AlPycOC)]-より成ることが確認でき、相当する構造
が証明された。
(Example 11) 5.0 g of tetracyanopyrazine
(28 mmol), 1.1 g of diisopropoxy aluminum chloride
(7.3 mmol) in the same manner as in Example 6, except that chloroaluminum octacyanopyrazinocyanine (ClAlPy
290 g (yield = 50%) of cOC). TOF-Mass: m / z = 783 (molecular weight = 783). ClAlPycOC total amount and KF10g in 300ml sulfolane
, And reacted at 60 ° C for 6 hours. The resulting black-green precipitate was collected by filtration, sulfolane, and then tetrahydrofuran (THF
) And dried. In the above (Chemical formula 1), X = N, R
= R '= CN, M = Al, L = F One-dimensional polymer was quantitatively obtained.
In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 1300, 1500 cm −1 , and the absorption based on the cyano group is 22
00cm -1, characteristic absorption of -F- about the TOF-Mass parent peak and decomposition product peak in the spectrum of the DMF allowed溶低molecular weight fraction of one-dimensional polymers observed in 1200 cm -1, also resulting
7 to 12-mer and the polymer repeating unit is-
It was confirmed to consist of [F- (AlPycOC)]-, and the corresponding structure was proved.

【0021】(実施例12)実施例6の中間物質として
得られたFePcOC2.0gのDMF100ml溶液に、十分に粉砕した
無水K2CO38.0gを加えて激しく攪拌しながらH2Sガスを10
ml/minの流量で6時間通じた。過剰のK2CO3と副成する塩
をろ過して取り除き、12時間130℃に加温した後、大量
のクロロホルムに注下して得られる黒緑色固体をろ集、
水、メタノールで洗浄、乾燥して上記(化1)において
X=C、R=R'=CN、M=Fe、L=Sの一次元ポリマーを定量的に
得た。赤外吸収スペクトルではフタロシアニン環に特有
の環振動が1100、1300、1500cm-1、シアノ基に基づく吸
収が2200cm-1に認められ、また得られた一次元ポリマー
のDMF可溶低分子量分画についてのTOF-Massスペクトル
の親ピークと分解物ピークから約9〜14量体であること
ならびにポリマー繰り返し単位が-[S-(FePcOC)]-より成
ることが確認でき、相当する構造が証明された。
Example 12 To a solution of 2.0 g of FePcOC obtained as an intermediate in Example 6 in 100 ml of DMF was added 8.0 g of sufficiently ground anhydrous K 2 CO 3, and H 2 S gas was added with vigorous stirring for 10 hours.
It was run for 6 hours at a flow rate of ml / min. The excess K 2 CO 3 and salts formed as a by-product were removed by filtration, and the mixture was heated to 130 ° C. for 12 hours.
After washing with water and methanol and drying, in the above (Chemical formula 1)
One-dimensional polymers of X = C, R = R '= CN, M = Fe, L = S were quantitatively obtained. Infrared absorption spectrum 1100,1300,1500Cm -1 peculiar ring vibration to the phthalocyanine ring is, absorption based on cyano group was observed at 2200 cm -1, also the DMF allowed溶低molecular weight fraction of one-dimensional polymer obtained From the parent peak and the decomposition product peak of the TOF-Mass spectrum, it was confirmed that it was about 9 to 14-mer and that the polymer repeating unit consisted of-[S- (FePcOC)]-, and the corresponding structure was proved .

【0022】(実施例13)実施例7の中間物質として
得られたCoPcOC2.0gのDMF50ml溶液に、KCN0.2gを加えて
攪拌した。水50mlを加えて−20℃に放置し、得られた黒
緑色針状結晶をろ集、ジメチルアセトアミド100mlに溶
解した。この溶液に、10%過酸化水素水10mlを0℃にて2
時間かけて滴下し、さらに1時間反応後、大量の水に注
下して析出する黒緑色沈殿をろ集、水、メタノールで洗
浄、乾燥して、上記(化1)においてX=C、R=R'=CN、M=
Co、L=CNの一次元ポリマーを1.8g得た。赤外吸収スペク
トルではフタロシアニン環に特有の環振動が1100、130
0、1500cm-1、環置換シアノ基に基づく吸収が2200c
m-1、Lに相当するシアノ基が2160cm-1に認められ、また
得られた一次元ポリマーのDMF可溶低分子量分画につい
てのTOF-Massスペクトルの親ピークと分解物ピークから
約6〜14量体であることならびにポリマー繰り返し単位
が-[CN-(CoPcOC)]-より成ることが確認でき、相当する
構造が証明された。
Example 13 To a solution of 2.0 g of CoPcOC obtained as an intermediate in Example 7 in 50 ml of DMF was added 0.2 g of KCN and stirred. 50 ml of water was added and the mixture was allowed to stand at −20 ° C., and the obtained needles were collected by filtration and dissolved in 100 ml of dimethylacetamide. To this solution, 10 ml of 10% hydrogen peroxide solution was added at 0 ° C for 2 hours.
The reaction mixture was added dropwise over a period of time, and after further reacting for 1 hour, the mixture was poured into a large amount of water, and the precipitated black-green precipitate was collected by filtration, washed with water and methanol, and dried. = R '= CN, M =
1.8 g of a one-dimensional polymer of Co, L = CN was obtained. In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 130
0 , 1500 cm -1 , 2200 c absorption based on ring-substituted cyano group
m -1 , a cyano group corresponding to L was observed at 2160 cm -1 , and the parental peak and decomposition product peak of the TOF-Mass spectrum for the DMF-soluble low molecular weight fraction of the obtained one-dimensional polymer were about 6 to It was confirmed that it was a 14-mer and that the polymer repeating unit consisted of-[CN- (CoPcOC)]-, and the corresponding structure was proved.

【0023】(実施例14)実施例13と同様に、ただ
しKCNの替わりにKSCN0.2gを用いて同様に操作し、上記
(化1)においてX=C、R=R'=CN、M=Fe、L=SCNの一次元
ポリマーを1.9g得た。赤外吸収スペクトルではフタロシ
アニン環に特有の環振動が1100、1300、1500cm-1、シア
ノ基に基づく吸収が2200cm-1、SCNに基づく吸収が2040c
m-1に認められ、また得られた一次元ポリマーのDMF可溶
低分子量分画についてのTOF-Massスペクトルの親ピーク
と分解物ピークから約8〜13量体であることならびにポ
リマー繰り返し単位が-[SCN-(FePcOC)]-より成ることが
確認でき、相当する構造が証明された。
Example 14 The same operation as in Example 13 was carried out except that 0.2 g of KSCN was used instead of KCN, and X = C, R = R ′ = CN, M = 1.9 g of a one-dimensional polymer of Fe, L = SCN was obtained. Infrared absorption spectrum 1100,1300,1500Cm -1 peculiar ring vibration to the phthalocyanine ring is, absorption based on cyano group 2200 cm -1, absorption based on the SCN 2040C
m- 1 and the parental and degraded product peaks of the TOF-Mass spectrum for the DMF-soluble low molecular weight fraction of the resulting one-dimensional polymer are approximately 8-13 mer and the polymer repeat unit is -[SCN- (FePcOC)]-, and the corresponding structure was proved.

【0024】(実施例15)TCB5.0g(28mmol)を300ml
の蒸留メタノールに溶解し、0〜5℃にて乾燥アンモニア
ガスを1.5時間通じて、同温度以下でメタノールを減圧
留去して、5,6-ジシアノジイミノイソインドレニンを定
量的に得た。このもの全量、ReCl32.5g(8.4mmol)を10
0mlのスルホランに溶解、窒素気流下で6時間135℃にて
反応させ、大量の水に注下、析出する沈殿をろ集、水、
メタノールで洗浄、乾燥して、上記(化1)においてX=
C、R=R'=CN、M=Re、L=Nの一次元ポリマーを2.8g得た。
赤外吸収スペクトルではフタロシアニン環に特有の環振
動が1100、1300、1500cm-1、シアノ基に基づく吸収が22
00cm-1、Lに相当するNに基づく吸収が2010cm-1に認めら
れ、また得られた一次元ポリマーのDMF可溶低分子量分
画についてのTOF-Massスペクトルの親ピークと分解物ピ
ークから約12〜18量体であることならびにポリマー繰り
返し単位が-[-N=(RePcOC)]-より成ることが確認でき、
相当する構造が証明された。
Example 15 5.0 g (28 mmol) of TCB in 300 ml
Was dissolved in distilled methanol, and dried ammonia gas was passed at 0 to 5 ° C. for 1.5 hours, and methanol was distilled off under reduced pressure at the same temperature or lower to obtain 5,6-dicyanodiiminoisoindolenine quantitatively. . 2.5 g (8.4 mmol) of ReCl 3 in 10
Dissolved in 0 ml of sulfolane, reacted at 135 ° C. for 6 hours under a nitrogen stream, poured into a large amount of water, and the precipitated precipitate was collected by filtration, water,
After washing with methanol and drying, X =
2.8 g of a one-dimensional polymer of C, R = R ′ = CN, M = Re, and L = N was obtained.
In the infrared absorption spectrum, the ring vibration peculiar to the phthalocyanine ring is 1100, 1300, 1500 cm -1 , and the absorption based on the cyano group is 22
00 cm -1 , an absorption based on N corresponding to L was observed at 2010 cm -1 , and the parental and degraded product peaks of the TOF-Mass spectrum for the DMF-soluble low molecular weight fraction of the obtained one-dimensional polymer were approximately It can be confirmed that the polymer is a 12 to 18-mer and the polymer repeating unit consists of-[-N = (RePcOC)]-,
A corresponding structure has been proven.

【0025】(実施例16)厚み1300μm、16mmφの金
属リチウム箔(アノード)、0.5M LiPF6のジメトキシエ
タン(DME)溶液をしみ込ませた空孔率=37%、厚み25μm
のポリプロピレン製セパレータ、および実施例1で得た
一次元ポリマー60wt%、アセチレンブラック25wt%および
ポリフッ化ビニリデン(PVDF)15wt%を100μm厚に成型
したカソードを2016ボタン型電池に組み込み、放電終止
電圧1.0V、充電終止電圧4.2V、放電速度0.5C、の定電流
充放電試験を行った。その結果、開放電圧=3.9V、平均
出力=1.65V、カソード容量=880mAh/g、カソードエネル
ギー密度=1450Wh/kg、エネルギー密度が最大値の80%に
低下する充放電回数=1540回のリチウム二次電池が得ら
れた。
Example 16 Metallic foil (anode) having a thickness of 1300 μm and 16 mmφ, porosity impregnated with a dimethoxyethane (DME) solution of 0.5 M LiPF 6 = 37%, thickness 25 μm
And a cathode formed by molding 60% by weight of the one-dimensional polymer obtained in Example 1, 25% by weight of acetylene black and 15% by weight of polyvinylidene fluoride (PVDF) to a thickness of 100 μm into a 2016 button type battery, and a discharge end voltage of 1.0 A constant current charge / discharge test at V, a charge termination voltage of 4.2 V and a discharge rate of 0.5 C was performed. As a result, open-circuit voltage = 3.9 V, average output = 1.65 V, cathode capacity = 880 mAh / g, cathode energy density = 1450 Wh / kg, and energy density decreases to 80% of the maximum value. The following battery was obtained.

【0026】(実施例17〜26)実施例16と同様
に、ただし、実施例2〜11の一次元ポリマーを用いて
充放電試験を行い、(表1)の結果を得た。
Examples 17 to 26 A charge / discharge test was performed in the same manner as in Example 16 except that the one-dimensional polymers of Examples 2 to 11 were used, and the results shown in Table 1 were obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施例27)約400メッシュのグラファ
イト粉末75wt%とPVDF25wt%を500μmの厚みに成型し、0.
5M LiPF6-DME電解質溶液中で金属リチウムをアノードと
して放電させ、グラファイト中にリチウムが層間化合物
としてドープされたグラファイトリチウム(Gp・Li)電
極を作製した。このGp・Li電極をアノードとした他は実
施例16と同様に電池系を作製し、放電終止電圧1.0V、
充電終止電圧4.2V、放電速度0.5C、の定電流充放電試験
を行った。その結果、開放電圧=3.98V、平均出力=1.73
V、カソード容量=890mAh/g、カソードエネルギー密度=1
540Wh/kg、エネルギー密度が最大値の80%に低下する充
放電回数=1250回のリチウムイオン二次電池が得られ
た。
(Example 27) About 75% by weight of graphite powder of about 400 mesh and 25% by weight of PVDF were molded to a thickness of 500 µm.
Discharge was performed using lithium metal as an anode in a 5M LiPF 6 -DME electrolyte solution to produce a graphite lithium (Gp · Li) electrode in which lithium was doped as an interlayer compound in graphite. A battery system was prepared in the same manner as in Example 16 except that the Gp / Li electrode was used as an anode, and a discharge end voltage of 1.0 V,
A constant current charge / discharge test was performed at a charge end voltage of 4.2 V and a discharge rate of 0.5 C. As a result, open-circuit voltage = 3.98 V, average output = 1.73
V, cathode capacity = 890mAh / g, cathode energy density = 1
A lithium ion secondary battery having 540 Wh / kg and the number of times of charge and discharge = 1250 times in which the energy density was reduced to 80% of the maximum value was obtained.

【0029】(実施例28〜41)実施例12と同様
に、ただし、参考例2〜15の一次元ポリマーを用いて
充放電試験を行い、(表2)の結果を得た。
(Examples 28 to 41) A charge / discharge test was performed in the same manner as in Example 12, except that the one-dimensional polymers of Reference Examples 2 to 15 were used, and the results shown in Table 2 were obtained.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】以上、本発明のカソード用材料は、カソ
ード半電池反応において容量580〜1020mAh/g、エネルギ
ー密度1030〜1850Wh/kgの高い能力を示すため、[金属リ
チウム/電解質/一次元ポリマー]の形のリチウム二次
電池として平均出力1.71〜1.81V、容量580〜1020mAh/
g、エネルギー密度1030〜1850Wh/kg、また[Li・Gp/電解
質/一次元ポリマー]の形のリチウムイオン二次電池と
して平均出力1.59〜1.71V、容量590〜1030mAh/g、エネ
ルギー密度980〜1750Wh/kgという高容量・高エネルギー
密度を達成することができる。この高容量・高エネルギ
ー密度のリチウム(イオン)二次電池は、長寿命かつ繰り
返し充放電特性に優れた電源として、各種ポータブル電
子機器などに搭載できる。
As described above, the cathode material of the present invention exhibits a high capacity of 580 to 1020 mAh / g and an energy density of 1030 to 1850 Wh / kg in a cathode half-cell reaction, so that [metal lithium / electrolyte / one-dimensional polymer ] Type lithium secondary battery, average output 1.71 ~ 1.81V, capacity 580 ~ 1020mAh /
g, energy density 1030-1850Wh / kg, average output 1.59-1.71V, capacity 590-1030mAh / g, energy density 980-1750Wh as a lithium-ion secondary battery in the form of [LiGp / electrolyte / one-dimensional polymer] / kg high capacity and high energy density can be achieved. This high-capacity, high-energy-density lithium (ion) secondary battery can be mounted on various portable electronic devices as a power source having a long life and excellent repetitive charge and discharge characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 美博 東京都小金井市東町2−11−4 (72)発明者 大西 賢 神奈川県横浜市旭区若葉台2−22−1402 Fターム(参考) 5H029 AJ03 AJ05 AK16 AL07 AL12 AM00 AM02 AM07 AM16 HJ02 5H050 AA07 AA08 BA16 BA17 CA22 CB08 CB12 HA02  ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mihiro Asai 2-11-4 Higashicho, Koganei-shi, Tokyo (72) Inventor Ken Satoshi 2-22-1402 Wakabadai, Asahi-ku, Yokohama-shi, Kanagawa F-term (reference) 5H029 AJ03 AJ05 AK16 AL07 AL12 AM00 AM02 AM07 AM16 HJ02 5H050 AA07 AA08 BA16 BA17 CA22 CB08 CB12 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記(化1)に示すような、テトラニト
ロないしオクタシアノ金属フタロシアニン、またはテト
ラニトロないしオクタシアノ金属ピラジノシアニンの、
二量体以上のオリゴマーまたは一次元ポリマーからなる
カソード用材料。 【化1】 ただし(化1)において、 Mは中心金属で周期律表の第10〜12族を除く遷移金属イ
オンまたはシリコンであり、R=NO2かつR'=H(RとR'は同
一ベンゼン環上で相互位置変換可能)、またはR=R'=CN
であり、X=CまたはNであり、-L-は4,4'-ビピリジン、ピ
ラジン、ジイソシアノベンゼン、フェナジン、テトラメ
チルパライソシアノベンゼン、アゾビスピリジン、-O
-、-S-、-F-、=N-、-CN-、-SCN-、から選ばれる二座架
橋配位子である。
1. A method for preparing a tetranitro or octacyano metal pyrazinocyanine as shown in the following chemical formula 1.
Cathode material consisting of oligomer or one-dimensional polymer of dimer or more. Embedded image However, in (Chemical Formula 1), M is a central metal and is a transition metal ion or silicon excluding groups 10 to 12 of the periodic table, R = NO 2 and R ′ = H (R and R ′ are on the same benzene ring Can be converted to each other), or R = R '= CN
And X = C or N, and -L- is 4,4'-bipyridine, pyrazine, diisocyanobenzene, phenazine, tetramethylparaisocyanobenzene, azobispyridine, -O
It is a bidentate bridging ligand selected from-, -S-, -F-, = N-, -CN- and -SCN-.
【請求項2】 請求項1記載の材料をカソード部材に含
むことを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising the material according to claim 1 in a cathode member.
【請求項3】 請求項1記載の材料をカソード部材に含
むことを特徴とするリチウムイオン二次電池。
3. A lithium ion secondary battery comprising the material according to claim 1 in a cathode member.
JP2001013765A 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same Pending JP2002216764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013765A JP2002216764A (en) 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013765A JP2002216764A (en) 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2002216764A true JP2002216764A (en) 2002-08-02

Family

ID=18880571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013765A Pending JP2002216764A (en) 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2002216764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249565A (en) * 2008-04-09 2009-10-29 Nippon Shokubai Co Ltd Phthalocyanine compound
JP2010118320A (en) * 2008-11-14 2010-05-27 Denso Corp Secondary battery
CN104538633A (en) * 2014-12-15 2015-04-22 刘国政 Lithium-ion battery electrode material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249565A (en) * 2008-04-09 2009-10-29 Nippon Shokubai Co Ltd Phthalocyanine compound
JP2010118320A (en) * 2008-11-14 2010-05-27 Denso Corp Secondary battery
CN104538633A (en) * 2014-12-15 2015-04-22 刘国政 Lithium-ion battery electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5239160B2 (en) Method for producing polyradical compound
JP5493356B2 (en) Polyradical compound production method and battery
TWI249869B (en) Polyfluorinated boron cluster anions for lithium electrolytes
JP5526399B2 (en) Electrode active material, method for producing the same, and secondary battery
JP2013544422A (en) Rechargeable metal battery or metal ion battery
JP2009298873A (en) Preparation method of polyradical compound and battery
JP5437399B2 (en) Electrode active material for power storage device, power storage device, electronic device and transport device
JP5907373B2 (en) COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL AND POSITIVE FOR NON-AQUEOUS SECONDARY BATTERY, NON-AQUEOUS SECONDARY BATTERY, AND VEHICLE
JP5240808B2 (en) Molecular crystalline secondary battery
JP2002216764A (en) Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same
WO2011074367A1 (en) Secondary battery
JP5799782B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP5425694B2 (en) Positive electrode active material for lithium ion secondary battery obtained by performing overcharge / discharge treatment, positive electrode for lithium ion secondary battery comprising the positive electrode active material, and lithium ion secondary battery comprising the positive electrode as components
JP5280806B2 (en) Secondary battery active material and secondary battery
JP2005002278A (en) New high energy density polyaniline derivative
JP4737365B2 (en) Electrode active material, battery and polymer
JP2007305481A (en) Electrode active material and secondary battery
JP5164236B2 (en) Isothiocyanate derivatives, redox active polymers, electrode materials, lithium batteries
JP4476788B2 (en) Polymer compound for electrode material, electrode using the same and non-aqueous battery
JP2003155288A (en) Indole compound having supermolecular structure and secondary battery and capacitor using the same
WO2021106834A1 (en) Electrode material
JP2002216765A (en) Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same
CN114230789B (en) Hyperbranched polymer and preparation method and application thereof
Aqil et al. A novel synthetic route toward a PTA as active materials for organic radical batteries
JP5534589B2 (en) Electrode active material and secondary battery