JP2002216734A - Separator for lithium battery - Google Patents

Separator for lithium battery

Info

Publication number
JP2002216734A
JP2002216734A JP2001007420A JP2001007420A JP2002216734A JP 2002216734 A JP2002216734 A JP 2002216734A JP 2001007420 A JP2001007420 A JP 2001007420A JP 2001007420 A JP2001007420 A JP 2001007420A JP 2002216734 A JP2002216734 A JP 2002216734A
Authority
JP
Japan
Prior art keywords
layer
battery
separator
microporous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001007420A
Other languages
Japanese (ja)
Other versions
JP5207569B2 (en
JP2002216734A5 (en
Inventor
Norio Tsujioka
則夫 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001007420A priority Critical patent/JP5207569B2/en
Publication of JP2002216734A publication Critical patent/JP2002216734A/en
Publication of JP2002216734A5 publication Critical patent/JP2002216734A5/ja
Application granted granted Critical
Publication of JP5207569B2 publication Critical patent/JP5207569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a lithium ion secondary battery, capable of realizing a battery manufactured by the conventional manufacturing process for the lithium ion secondary battery and having no possibility of electrolyte leakage, and keeping the safety of the battery by intercepting the flow of lithium ion when the temperature of the interior of the battery is raised due to shutdown characteristic. SOLUTION: This separator for the lithium battery is mad of a three-layer structure porous film in which both surface layers are porous layers formed of copolymer containing vinylidene fluoride and having a melting point of 145 deg.C or higher, and an intermediate layer is a porous layer formed of polyolefin and having a melting point of 140 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム一次電
池、リチウムイオン二次電池、リチウムポリマー二次電
池などのリチウム電池に最適のセパレータに関する。
The present invention relates to a separator most suitable for a lithium battery such as a lithium primary battery, a lithium ion secondary battery, and a lithium polymer secondary battery.

【0002】[0002]

【従来の技術】近年高エネルギー密度の二次電池の需要
が高まり、これに対応する電池として、電解液に有機溶
剤を使用するリチウム一次電池、リチウムイオン二次電
池などが開発された。該電池は電解液に有機溶剤を使用
するため、特に安全性は重要である。通常セパレータに
ポリオレフィン微多孔膜を使用して、電池が一定温度以
上になると微多孔を溶融閉塞させ、電流の流れをシャッ
トダウンさせるなどの対策を講じている。またパッケー
ジングに鉄缶あるいはアルミ缶など金属容器が使用され
るが、完全に漏液を防止することは至難の業である。
2. Description of the Related Art In recent years, demand for secondary batteries having a high energy density has increased, and as corresponding batteries, lithium primary batteries and lithium ion secondary batteries using an organic solvent for an electrolyte have been developed. Since the battery uses an organic solvent for the electrolyte, safety is particularly important. Usually, a microporous polyolefin membrane is used for the separator, and when the battery temperature exceeds a certain temperature, measures are taken to melt the micropores and shut down the flow of current. In addition, metal containers such as iron cans or aluminum cans are used for packaging, but it is extremely difficult to completely prevent liquid leakage.

【0003】一方たとえば米国特許第5429891号
では、ポリフッ化ビニリデン系樹脂に、可塑剤とともに
架橋性のモノマーとして、アクリレートエステル、ジま
たはトリアリルエステル、ジまたはトリグリシジルエス
テルを共存させて架橋させた材料を作成し、ついでこれ
に電解液を含浸させた高分子固体電解質が提案された。
この固体電解質をリチウムイオン二次電池に使用すれば
漏液の心配はなく安全性に優れるとともに、パッケージ
ングに非金属性材料が使用可能となり、形状自由度が高
まった。
On the other hand, for example, US Pat. No. 5,429,891 discloses a material obtained by crosslinking a polyvinylidene fluoride resin together with a plasticizer and an acrylate ester, di- or triallyl ester, di- or triglycidyl ester as a crosslinking monomer. And then a polymer solid electrolyte impregnated with an electrolyte was proposed.
When this solid electrolyte is used for a lithium ion secondary battery, there is no risk of liquid leakage and the safety is excellent, and a non-metallic material can be used for packaging, thereby increasing the degree of freedom in shape.

【0004】しかしながらこうした固体電解質を使用す
る電池は、従来のリチウムイオン二次電池の製造工程で
は製造できず、全く新しい独自の製造工程を設置する必
要がある。また電池特性、とくに低温放電特性などは非
常に低かった。そのため、従来のリチウムイオン二次電
池の製造工程を使用できて、且つ電解液の漏液に不安が
なく、かつ優れた特性を有する電池が切望された。
[0004] However, a battery using such a solid electrolyte cannot be manufactured by the conventional lithium ion secondary battery manufacturing process, and a completely new and unique manufacturing process must be provided. Also, battery characteristics, especially low-temperature discharge characteristics, were very low. Therefore, a battery that can use the conventional lithium ion secondary battery manufacturing process, has no fear of electrolyte leakage, and has excellent characteristics has been desired.

【0005】これに対し例えば、特開平8−25012
7号公報では、フッ化ビニリデン系樹脂からなる多孔膜
に電解液を含浸させ、該電解液含浸多孔膜を隔膜部分に
用いる方法が提案された。この場合、従来のリチウムイ
オン二次電池製造工程で電池製造が作成可能で、且つ電
解液がフッ化ビニリデン系樹脂微多孔膜とゲルを形成す
るため、漏液しない電池が得られる。しかしながら、フ
ッ化ビニリデン微多孔膜の強度は低く、電池捲廻工程で
切断しやすいために、従来の工程で電池製造することは
困難であった。更に該微多孔膜を使用して作成した電池
は、電池内温度が150℃以下の温度で電流の流れをシ
ャットダウンすることが必要であるにも拘わらず、該セ
パレータには微多孔が閉塞して電流の流れをシャットダ
ウンする機能がなかった。
On the other hand, for example, Japanese Patent Application Laid-Open No. 8-25012
In Japanese Patent Application Publication No. 7 (1995) -1995, there has been proposed a method in which an electrolyte is impregnated in a porous membrane made of a vinylidene fluoride resin, and the electrolyte-impregnated porous membrane is used for a diaphragm portion. In this case, the battery can be manufactured in the conventional lithium ion secondary battery manufacturing process, and the electrolyte forms a gel with the vinylidene fluoride resin microporous membrane, so that a battery that does not leak can be obtained. However, since the strength of the microporous vinylidene fluoride membrane is low and it is easy to cut in the battery winding step, it has been difficult to manufacture the battery in the conventional process. Further, in the battery prepared using the microporous membrane, although the internal temperature of the battery is required to shut down the flow of current at a temperature of 150 ° C. or less, microporous is closed in the separator. There was no function to shut down the current flow.

【0006】特開平6−76808号公報にはポリオレ
フィン多孔質体とフッ素樹脂多孔質体との積層構造から
なる電池セパレータが提案されている。その趣旨は、ポ
リオレフィン多孔質体セパレータをリチウム電池に使用
した場合、シャットダウン時に完全溶融や溶融亀裂を生
じて、電極間の接触が起こり、短絡状態になりやすい
が、含フッ素樹脂多孔体との積層体では、フッ素樹脂多
孔質体が高い耐熱性をもち、200℃の長時間使用に耐
えることから、セパレータの亀裂溶融を抑え、電極間絶
縁を保持できることにある。そして発明の趣旨から、フ
ッ素樹脂として好ましくは4フッ化エチレン樹脂が提案
されている。更に、特開平8−323910号公報に
は、非水溶媒で膨潤する樹脂からなる多孔膜層と高融点
結晶性樹脂からなる多孔膜層の積層膜が開示された。1
60℃以上の高融点樹脂の微多孔膜に、膨潤性樹脂を電
解液で膨潤させて孔を閉塞させ、電流の流れをシャット
ダウンさせることを試みるものである。
Japanese Patent Application Laid-Open No. Hei 6-76808 proposes a battery separator having a laminated structure of a polyolefin porous body and a fluororesin porous body. The idea is that when a porous polyolefin separator is used in a lithium battery, complete shutdown or melt cracking occurs when shutting down, causing contact between the electrodes and short-circuiting. In the body, since the fluororesin porous body has high heat resistance and withstands long-time use at 200 ° C., cracking of the separator can be suppressed and insulation between electrodes can be maintained. And, from the gist of the invention, preferably, a tetrafluoroethylene resin is proposed as the fluororesin. Further, Japanese Patent Application Laid-Open No. 8-323910 discloses a laminated film of a porous film layer made of a resin swelling with a non-aqueous solvent and a porous film layer made of a high melting crystalline resin. 1
An attempt is made to shut down the flow of current by swelling a swellable resin with an electrolytic solution in a microporous film of a high melting point resin having a temperature of 60 ° C. or higher to close pores.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来のリチ
ウムイオン二次電池の製造工程を使用して製造される電
池であって、且つ電解液の漏液の心配がない電池を実現
でき、且つ優れたシャットダウン特性を有するために電
池内部の温度が上昇した場合にリチウムイオンの流れを
遮断し、電池の安全性を維持するセパレータを提供せん
とするものである。
SUMMARY OF THE INVENTION The present invention can provide a battery which is manufactured by using a conventional lithium ion secondary battery manufacturing process and which is free from electrolyte leakage. Another object of the present invention is to provide a separator that has excellent shutdown characteristics, shuts off the flow of lithium ions when the temperature inside the battery rises, and maintains the safety of the battery.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究を重ねた結果、以下の発明を見出し
た。 (1)両表層がフッ化ビニリデンを含む共重合体からな
る融点145℃以下の微多孔層で、中間層がポリオレフ
ィンからなる融点140℃以下の微多孔層であることを
特徴とする三層構造微多孔膜より構成されるリチウム電
池用セパレータ。 (2)微多孔膜が表層−中間層−表層の三層積層膜であ
って、各層が接着剤を使用することなしに積層されてお
り、かつ層間の剥離強度が2g/cmである上記(1)
記載のリチウム電池用セパレータ。 (3)表層を形成する微多孔層が架橋されており、その
ゲル分率が10%以上である上記(1)または(2)記
載のリチウム電池用セパレータ。 (4)上記(1)を構成する積層膜。 (5)上記(2)を構成する積層膜。 (6)上記(3)を構成する積層膜。 に関する。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found the following invention. (1) A three-layer structure in which both surface layers are microporous layers having a melting point of 145 ° C. or less made of a copolymer containing vinylidene fluoride, and the intermediate layer is a microporous layer made of a polyolefin having a melting point of 140 ° C. or less. A lithium battery separator composed of a microporous membrane. (2) The microporous film is a three-layer laminated film of surface layer-intermediate layer-surface layer, wherein each layer is laminated without using an adhesive, and the peel strength between layers is 2 g / cm. 1)
The separator for a lithium battery according to the above. (3) The separator for a lithium battery according to the above (1) or (2), wherein the microporous layer forming the surface layer is crosslinked, and the gel fraction thereof is 10% or more. (4) A laminated film constituting the above (1). (5) A laminated film constituting the above (2). (6) A laminated film constituting the above (3). About.

【0009】以下本発明を詳細に説明する。本発明に関
する三層微多孔膜は、フッ化ビニリデンを含む共重合体
からなる微多孔層がポリエチレン微多孔層を中間層に挟
んでなることが重要である。リチウムイオン二次電池を
製造する工程に於いて、セパレータは正極と負極間に挟
まれ、コイル状に捲廻されたのち、電池内に装着され、
電解液が注入される。電解液はセパレータの微多孔内に
浸透し、リチウムイオンの導通経路を形成するが、表層
のフッ化ビニリデンを含む共重合体は、浸透した電解液
を一定量吸収する効果があり、そのために電解液はセパ
レータに保持された状態となり、簡単には流出しなくな
る。しかしながらリチウムイオン導通性は十分発揮され
る。更に電解液で膨潤したフッ化ビニリデンを含む共重
合体層は、電池内部で直接正極負極と接触するため、従
来のポリオレフィン微多孔膜からなるセパレータを使用
した場合に比較して、電極とセパレータ間の界面電気抵
抗が小さくなり電池特性上有利である。
Hereinafter, the present invention will be described in detail. In the three-layer microporous membrane according to the present invention, it is important that the microporous layer made of a copolymer containing vinylidene fluoride has a microporous polyethylene layer sandwiched between intermediate layers. In the process of manufacturing a lithium ion secondary battery, the separator is sandwiched between the positive electrode and the negative electrode, and wound into a coil, and then mounted in the battery,
The electrolyte is injected. The electrolyte penetrates into the micropores of the separator to form a conduction path for lithium ions, but the copolymer containing vinylidene fluoride on the surface has the effect of absorbing a certain amount of the permeated electrolyte. The liquid is held in the separator and does not easily flow out. However, lithium ion conductivity is sufficiently exhibited. Furthermore, the copolymer layer containing vinylidene fluoride swollen with the electrolytic solution is in direct contact with the positive electrode and the negative electrode inside the battery, so that the distance between the electrode and the separator is lower than when a separator made of a conventional microporous polyolefin membrane is used. Has a small interface electric resistance, which is advantageous in battery characteristics.

【0010】なお中間のポリオレフィン微多孔層におい
ては、電解液はポリマーに吸収膨潤されないで微多孔内
に存在するが、表層ゲル層にシールされた状態にあるこ
とにより、電解液は漏れ出さない。一方電池内温度が上
昇した場合、中間のポリオレフィン微多孔層の孔が閉塞
し、電流がシャットダウンされるため、電池の安全性は
保証される。中間層に融点140℃以下のポリオレフィ
ン微多孔層が存在しない場合、シャットダウン機構が働
かず、電池の安全を維持することが困難となる。
In the intermediate microporous polyolefin layer, the electrolyte is present in the microporous without being absorbed and swollen by the polymer. However, since the electrolyte is sealed in the surface gel layer, the electrolyte does not leak out. On the other hand, when the temperature in the battery rises, the pores of the intermediate microporous microporous layer are closed and the current is shut down, so that the safety of the battery is guaranteed. When the polyolefin microporous layer having a melting point of 140 ° C. or less does not exist in the intermediate layer, the shutdown mechanism does not work, and it is difficult to maintain the safety of the battery.

【0011】中間微多孔層に使用されるポリオレフィン
は、融点140℃以下の、ポリエチレン、ポリ(エチレ
ン−プロピレン)共重合体など、あるいはそれと、ポリ
プロピレン、ポリブテン1、ポリ(エチレン−プロピレ
ン)共重合体、ポリ(プロピレン−ブテン1)共重合体
などとの混合物があげられる。融点が140℃より高い
場合、セパレータのシャットダウン温度が高くなり、電
池安全上好ましくない。
The polyolefin used for the intermediate microporous layer may be polyethylene, poly (ethylene-propylene) copolymer, etc. having a melting point of 140 ° C. or less, or polypropylene, polybutene 1, poly (ethylene-propylene) copolymer. And poly (propylene-butene 1) copolymer. When the melting point is higher than 140 ° C., the shutdown temperature of the separator becomes high, which is not preferable for battery safety.

【0012】フッ化ビニリデンを含む共重合体として
は、融点145℃以下の、ポリ(ビニリデンフロライド
ーヘキサフルオロプロピレン)共重合体、ポリ(ビニリ
デンフロライドーヘキサフルオロプロピレンーテトラフ
ルオロエチレン)共重合体、ポリ(テトラフルオロエチ
レンービニリデンフロライド)共重合体などがあげられ
る。表層のフッ化ビニリデンを含む共重合体からなる層
は、架橋されている方がより好ましい。これは電解液を
吸収することにより高温で著しく膨潤したり溶解するな
ど、形状変化を起こすため、これを防止する方が好まし
いためである。簡便で工業的に優れた架橋方法として
は、電子線、γ線などを照射する方法があるが、とくに
電子線照射による方法は優れた方法である。架橋程度は
フッ化ビニリデンを含む共重合体のゲル分率が10%以
上であることが好ましい。ゲル分率はフッ化ビニリデン
を含む共重合体の良溶媒に溶解して、未溶解分率を測定
することによって測定できる。良溶媒はポリマーの種類
により異なるが、フッ化ビニリデン系ポリマーには通常
N−メチルピロリドン、ジメチルホルムアミド、テトラ
ヒドロフランなどがある。
Examples of the copolymer containing vinylidene fluoride include poly (vinylidene fluoride-hexafluoropropylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene) copolymer having a melting point of 145 ° C. or less. And poly (tetrafluoroethylene-vinylidene fluoride) copolymer. The surface layer made of a copolymer containing vinylidene fluoride is more preferably crosslinked. This is because absorption of the electrolytic solution causes a change in shape such as remarkable swelling and dissolution at high temperatures, and it is preferable to prevent such a change. As a simple and industrially excellent crosslinking method, there is a method of irradiating an electron beam, a γ-ray, or the like. In particular, a method of irradiating an electron beam is an excellent method. The degree of crosslinking is preferably such that the gel fraction of the copolymer containing vinylidene fluoride is 10% or more. The gel fraction can be measured by dissolving the copolymer containing vinylidene fluoride in a good solvent and measuring the undissolved fraction. The good solvent varies depending on the type of the polymer, and the vinylidene fluoride-based polymer usually includes N-methylpyrrolidone, dimethylformamide, tetrahydrofuran and the like.

【0013】三層微多孔膜を作成するには、例えば、フ
ッ化ビニリデンを含む共重合体微多孔膜と、ポリオレフ
ィン微多孔膜をあらかじめ作成した後、これを重ね合わ
せ、延伸、圧着等により製造される。それぞれ個別に微
多孔膜を作成する方法は特に限定されるものでなく、公
知の延伸開孔法や相分離法が適用でき、例えば特開平3
−215535号公報記載の方法、特公昭61−382
07号公報記載の方法、特開昭54−16382号公報
記載の方法等を利用することができる。三層微多孔膜の
層間接着力は、電池製造工程でのトラブルを防止するの
に重要であり、層間の剥離強度が2g/cm以上である
ことが好ましい。
In order to form a three-layer microporous membrane, for example, a microporous copolymer membrane containing vinylidene fluoride and a microporous polyolefin membrane are prepared in advance, and then laminated, stretched, and crimped. Is done. The method for individually forming the microporous membrane is not particularly limited, and a known stretching opening method and a phase separation method can be applied.
No. 215535, JP-B-61-382.
No. 07, the method described in JP-A-54-16382, and the like can be used. The interlayer adhesion of the three-layer microporous membrane is important for preventing trouble in the battery manufacturing process, and the peel strength between the layers is preferably 2 g / cm or more.

【0014】しかしながら、剥離強度を高めるために接
着剤を使用することは、膜の連通孔を塞ぐ恐れがあり好
ましくない。また熱あるいは圧力により層間接着を行う
場合でも、表層および内層の連通微多孔が閉塞されない
ことが重要である。連通孔を損なうことなしに剥離強度
の高い積層膜を作る方法として、たとえばフッ化ビニリ
デンを含む共重合体微多孔膜とポリエチレン微多孔膜を
あらかじめ作成し、これら3枚重ね合わせた後、両ポリ
マーの融点より10〜20℃低い温度で加圧下で延伸す
る方法があり、高温加圧下での延伸としては、ロール延
伸などが好ましい。
However, the use of an adhesive to increase the peel strength is not preferable because it may block the communication holes of the film. It is important that the communicating micropores of the surface layer and the inner layer are not blocked even when the interlayer bonding is performed by heat or pressure. As a method for producing a laminated film having a high peel strength without impairing the communication holes, for example, a microporous copolymer film containing vinylidene fluoride and a microporous polyethylene film are prepared in advance, and after these three sheets are laminated, the polymer There is a method in which the film is stretched under pressure at a temperature lower by 10 to 20 ° C. than the melting point of the polymer.

【0015】また相分離を利用した共押し出しによっ
て、三層微多孔膜を作成することも可能である。この場
合、それぞれのポリマーと溶剤(可塑剤)を混合後、三
層シートを押し出し、冷却相分離させた後溶剤(可塑
剤)を除去、次いで延伸するか、あるいは延伸した後、
溶剤を除去して、三層微多孔膜を得る。共押し出し法あ
るいは積層法のいずれの場合であっても層間の剥離強度
を得るには、それぞれのポリマーの融点の差が小さいこ
とが好ましい。
It is also possible to produce a three-layer microporous membrane by coextrusion utilizing phase separation. In this case, after mixing each polymer and a solvent (plasticizer), extrude the three-layer sheet, remove the solvent (plasticizer) after cooling phase separation, and then stretch or stretch.
The solvent is removed to obtain a three-layer microporous membrane. In either case of the co-extrusion method or the lamination method, in order to obtain the peel strength between the layers, it is preferable that the difference between the melting points of the respective polymers is small.

【0016】リチウム二次電池に使用されるセパレータ
の厚みは100μm以下が好ましく、更に好ましくは1
0〜50μmである。10μmより薄い場合は電極間絶
縁が保証されず、100μmより厚い場合、セパレータ
の電気抵抗が大きくなり好ましくない。表層と中間層の
厚みは特に限定されるものではないが、中間層ポリエチ
レン層の厚さはシャットダウン機能を十分発現させるた
めには5μm以上が好ましく、また電気抵抗をできるだ
け低く押さえるために40μm以下が好ましい。三層微
多孔膜の平面安定性を維持するには両表面層の厚さは等
しく面対称であるのが好ましい。
The thickness of the separator used in the lithium secondary battery is preferably 100 μm or less, more preferably 1 μm or less.
0 to 50 μm. When the thickness is less than 10 μm, insulation between the electrodes is not guaranteed. When the thickness is more than 100 μm, the electrical resistance of the separator increases, which is not preferable. The thicknesses of the surface layer and the intermediate layer are not particularly limited, but the thickness of the intermediate polyethylene layer is preferably 5 μm or more in order to sufficiently exhibit the shutdown function, and 40 μm or less in order to suppress the electric resistance as low as possible. preferable. In order to maintain the planar stability of the three-layer microporous membrane, the thickness of both surface layers is preferably equal and plane-symmetric.

【0017】三層微多孔膜は、電池の捲廻工程で切断し
たり伸びたりすることなく、安定して捲廻するに十分な
引っ張り強度、引っ張り弾性率が必要であるが、中間層
にポリオレフィン微多孔層が使用されることにより、効
果的に達成される。また三層微多孔膜の気孔率はセパレ
ータの電気特性を決定するのに重要であり、両外層、中
間層ともに30〜70%程度が好ましい。
The three-layer microporous membrane needs to have sufficient tensile strength and tensile modulus to be wound stably without being cut or stretched in the battery winding step. It is effectively achieved by using a microporous layer. The porosity of the three-layer microporous membrane is important for determining the electrical characteristics of the separator, and is preferably about 30 to 70% for both outer and intermediate layers.

【0018】[0018]

【本発明の実施の形態】以下実施例および比較例によっ
て、本発明を更に詳細に説明するが、本発明はこれらに
限定されるものではない。本発明で用いた各種物性は、
以下の試験方法に基づいて測定した。 (1)融点(℃) サンプルを測定容器に装着し、10℃/min速度で昇
温させ、吸熱ピーク温度を測定した.測定にはセイコー
インスツルーメント社製のDSC220Cを使用した。 (2)剥離強度(g/cm) JIS P−8117に準拠し、T型剥離試験にて測定
した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Various physical properties used in the present invention,
It measured based on the following test methods. (1) Melting point (° C.) A sample was attached to a measuring vessel, and the temperature was increased at a rate of 10 ° C./min, and an endothermic peak temperature was measured. For the measurement, DSC220C manufactured by Seiko Instruments Inc. was used. (2) Peel strength (g / cm) Measured by a T-peel test in accordance with JIS P-8117.

【0019】(3)ゲル分率(%) 多孔質膜サンプル約1gを50℃で真空乾燥した後、重
量を測定して溶解前重量(Wx)を求めた。該サンプル
を約1cm角の大きさにカットしてガラス製サンプルビ
ンに入れ、N−メチルピロリドン100mlを添加し
た.ついで80℃に加温しながら24時間攪拌した後、
粒子保持能0.7μmのガラス繊維濾紙を用いて濾過し
た。続いて20mlのN−メチルピロリドンで洗浄した
のち、濾過する操作を2回行い、さらに20mlのエタノ
ールで2回洗浄した後、50℃で真空乾燥した。その重
量を濾過器ごと測定し、予め測定した濾過器のみの重量
から差し引いて溶解残差重量(Wz)を求めた。次式か
らゲル分率を計算した。 ゲル分率(%)=100×Wz/Wx (4)シャットダウン温度(℃) 図1にシャットダウン温度の測定装置の概略図を示す。
1はセパレータであり、2A及び2Bは厚さ10μmの
ニッケル箔、3A及び3Bはガラス板である。4は電気
抵抗測定装置(安藤電気製LCRメーターAG−431
1)でありニッケル箔2A、2Bと接続されている。5
は熱電対であり温度計6と接続されている。7はデータ
ーコレクターであり、電気抵抗装置4及び温度計6と接
続されている。8はオーブンであり、セパレータを加熱
する。
(3) Gel Fraction (%) About 1 g of the porous membrane sample was vacuum-dried at 50 ° C., and the weight was measured to determine the weight before dissolution (Wx). The sample was cut into a size of about 1 cm square, placed in a glass sample bottle, and 100 ml of N-methylpyrrolidone was added. Then, after stirring at 80 ° C. for 24 hours,
Filtration was performed using a glass fiber filter paper having a particle retention capacity of 0.7 μm. Subsequently, after washing with 20 ml of N-methylpyrrolidone, the operation of filtering was performed twice, further washing with 20 ml of ethanol twice, and vacuum drying at 50 ° C. The weight was measured for each filter and subtracted from the previously measured weight of only the filter to determine the residual weight of dissolution (Wz). The gel fraction was calculated from the following equation. Gel fraction (%) = 100 × Wz / Wx (4) Shutdown temperature (° C.) FIG. 1 shows a schematic diagram of a device for measuring the shutdown temperature.
1 is a separator, 2A and 2B are 10-micrometer-thick nickel foils, 3A and 3B are glass plates. 4 is an electric resistance measurement device (LCR meter AG-431 manufactured by Ando Electric)
1) and is connected to the nickel foils 2A and 2B. 5
Is a thermocouple, which is connected to the thermometer 6. Reference numeral 7 denotes a data collector, which is connected to the electric resistance device 4 and the thermometer 6. An oven 8 heats the separator.

【0020】さらに詳細に説明すると、図2に示すよう
にニッケル箔2A上にセパレータ1を重ねて、縦方向に
テフロン(登録商標)テープでニッケル箔2Aに固定さ
れている。セパレータ1には電解液として1mol/リ
ットルのホウフッ化リチウム溶液(溶媒:プロピレンカ
ーボネート/エチレンカーボネート/γ−ブチルラクト
ン=1/1/2)が含浸されている。ニッケル箔2B上
には図3に示すようにテフロンテープを貼り合わせ、箔
2Bの中央部分に15mm×10mmの窓の部分を残し
てマスキングしてある。
More specifically, as shown in FIG. 2, the separator 1 is placed on the nickel foil 2A and fixed to the nickel foil 2A in the vertical direction with a Teflon (registered trademark) tape. The separator 1 is impregnated with a 1 mol / liter lithium borofluoride solution (solvent: propylene carbonate / ethylene carbonate / γ-butyl lactone = 1/1/2) as an electrolytic solution. As shown in FIG. 3, a Teflon tape is stuck on the nickel foil 2B, and the nickel foil 2B is masked in a central portion of the foil 2B except for a window of 15 mm × 10 mm.

【0021】ニッケル箔2Aとニッケル箔2Bをセパレ
ータ1をはさむような形で重ね合わせ、さらにその両側
からガラス板3A、3Bによって2枚のニッケル箔をは
さみこむ。このとき、箔2Bの窓の部分と、セパレータ
1が相対する位置に来るようになっている。2枚のガラ
ス板は市販のダブルクリップではさむことにより固定す
る。熱電対5はテフロンテープでガラス板に固定する。
このような装置で連続的に温度と電気抵抗を測定する。
なお、温度は25℃から200℃まで2℃/minの速
度にて昇温させ、電気抵抗値は1kHzの交流にて測定
する。ここでシャットダウン温度とはセパレータの電気
抵抗値が10Ωに達するときの温度と定義する。
The nickel foil 2A and the nickel foil 2B are overlapped so as to sandwich the separator 1, and two nickel foils are sandwiched between glass plates 3A and 3B from both sides. At this time, the window portion of the foil 2B and the separator 1 are located at positions facing each other. The two glass plates are fixed by being sandwiched between commercially available double clips. The thermocouple 5 is fixed to a glass plate with Teflon tape.
The temperature and electric resistance are continuously measured with such an apparatus.
The temperature was raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electric resistance was measured with an alternating current of 1 kHz. Here, the shutdown temperature is defined as a temperature at which the electrical resistance value of the separator reaches 10 3 Ω.

【0022】[0022]

【実施例1】融点139℃のポリ(ビニリデンフロライ
ドーヘキサフルオロプロピレン)共重合体(エルフ・ア
トケム・ジャパン社製KYNAR2800)32.4容
量%、比表面積110m2/gの疎水性シリカ微粉1
4.2容量%、ジブチルフタレート4.4容量%、ジエ
チルヘキシルフタレート48.5容量%をヘンシルミキ
サーで混合し、該混合物を二軸押し出し機にTダイを取
り付けたシート製造装置を使用して押し出し、厚さ50
μmのシートを得た。該シートを塩化メチレン中に浸漬
して、ジブチルフタレートおよびジエチルヘキシルフタ
レートを抽出除去した後、更に20重量%苛性ソーダ水
溶液中に浸漬し、シリカを抽出除去したのち、水洗乾燥
して、ポリ(ビニリデンフロライドーヘキサフルオロプ
ロピレン)共重合体微多孔膜を得た。この膜の融点は1
39℃であった。
EXAMPLE 1 melting point 139 ° C. for poly (vinylidene fluoride over hexafluoropropylene) copolymer (Elf Atochem Japan Co. KYNAR2800) 32.4 volume%, a specific surface area of 110m 2 / g hydrophobic silica fine 1
4.2% by volume, 4.4% by volume of dibutyl phthalate and 48.5% by volume of diethylhexyl phthalate were mixed with a Hensyl mixer, and the mixture was mixed using a sheet manufacturing apparatus equipped with a T-die on a twin screw extruder. Extruded, thickness 50
A μm sheet was obtained. The sheet was immersed in methylene chloride to extract and remove dibutyl phthalate and diethylhexyl phthalate. The sheet was further immersed in a 20% by weight aqueous solution of caustic soda to extract and remove silica, washed with water and dried to obtain poly (vinylidene fluoride). Thus, a microporous membrane of (dodohexafluoropropylene) copolymer was obtained. The melting point of this film is 1
39 ° C.

【0023】次に重量平均分子量25万、融点135℃
の高密度ポリエチレン34重量%、親水性シリカ微粉1
9重量%、ジエチルヘキシルフタレート47重量%を同
様にしてヘンシルミキサーで混合し、二軸押し出し機
で、厚さ50μmのシートを押し出し、塩化メチレンお
よび苛性ソーダ水溶液でジエチルヘキシルフタレートと
シリカを抽出除去し、ポリエチレン微多孔膜を得た。こ
の膜の融点は135℃であった。
Next, the weight average molecular weight is 250,000 and the melting point is 135 ° C.
34% by weight of high density polyethylene, hydrophilic silica fine powder 1
9% by weight and 47% by weight of diethylhexyl phthalate were similarly mixed with a Hensyl mixer, a 50 μm thick sheet was extruded with a twin screw extruder, and diethylhexyl phthalate and silica were extracted and removed with an aqueous solution of methylene chloride and sodium hydroxide. Thus, a polyethylene microporous membrane was obtained. The melting point of this film was 135 ° C.

【0024】こうして得た二種類の微多孔膜を、両表層
にポリ(ビニリデンフロライドーヘキサフルオロプロピ
レン)共重合体膜、中間層にポリエチレン微多孔膜を用
いて三枚重ね、ロール延伸機で張力下に長さ方向に4倍
延伸し、次いで幅方向に2倍延伸して、25μm厚みの
三層積層膜(延伸膜)を得た。該延伸膜を構成する各層
の厚さはそれぞれ9μm/8μm/8μmである。該延
伸膜を剥離分離して気孔率を測定したところ、気孔率は
それぞれ50%/55%/45%であった。
The two types of microporous membranes thus obtained are stacked in three layers using a poly (vinylidene fluoride-hexafluoropropylene) copolymer film for both surface layers and a polyethylene microporous film for the intermediate layer, and tension is applied by a roll stretching machine. The film was stretched four times downward in the length direction and then twice in the width direction to obtain a three-layer laminated film (stretched film) having a thickness of 25 μm. The thickness of each layer constituting the stretched film is 9 μm / 8 μm / 8 μm. When the porosity was measured by peeling and separating the stretched film, the porosity was 50% / 55% / 45%, respectively.

【0025】該積層膜を室温で電解液(エチレンカーボ
ネート/プロピレンカーボネート/γブチルラクトンの
1:1:2混合溶媒にLiBF4を1.5mol/リッ
トルの濃度で溶かした溶液)中に浸漬し液中で保持した
後、引き上げて表面に付着している余分な電解液を拭き
取った。こうして得られた三層膜は、電解液を含んだま
ま液がにじみ出ない電解液含浸膜となった。また電解液
中に長時間浸漬した後、電解液へのポリマーの溶出を観
測したが、溶出は検出されなかった。この電解液含浸膜
をステンレスシートで挟み、電極間に印加して、抵抗成
分を測定し、コールコールプロットの実数インピーダン
ス切片からイオン伝導度を計算した。該三層積層膜の、
室温におけるイオン伝導度は1.2mS/cmであっ
た。また該三層積層膜のシャットダウン温度は136℃
で、シャットダウン温度以上で電流は遮断された。
The laminated film is immersed in an electrolytic solution (a solution in which LiBF 4 is dissolved at a concentration of 1.5 mol / l in a 1: 1: 2 mixed solvent of ethylene carbonate / propylene carbonate / γ-butyl lactone) at room temperature to obtain a solution. After holding in the inside, it was pulled up to wipe off excess electrolyte adhering to the surface. The three-layer film thus obtained was an electrolyte-impregnated film in which the solution did not ooze while containing the electrolyte. After immersion in the electrolyte for a long time, elution of the polymer into the electrolyte was observed, but no elution was detected. The electrolyte impregnated membrane was sandwiched between stainless steel sheets, applied between the electrodes, the resistance component was measured, and the ionic conductivity was calculated from the real impedance intercept of the Cole-Cole plot. Of the three-layer laminated film,
The ionic conductivity at room temperature was 1.2 mS / cm. The shutdown temperature of the three-layer film is 136 ° C.
Then, the current was cut off at a temperature higher than the shutdown temperature.

【0026】[0026]

【実施例2】実施例1で作成した三層積層膜に、照射線
量15Mradで電子線照射し、架橋膜を作成した。該
架橋膜の表層と中間層を剥離分離し、それぞれのゲル分
率を測定したところ、表層のポリ(ビニリデンフロライ
ドーヘキサフルオロプロピレン)共重合体微多孔層のゲ
ル分率は60%、中間層のポリエチレン微多孔膜のゲル
分率は70%であった。
Example 2 The three-layer laminated film prepared in Example 1 was irradiated with an electron beam at an irradiation dose of 15 Mrad to form a crosslinked film. The surface layer and the intermediate layer of the crosslinked film were separated and separated, and the respective gel fractions were measured. The gel fraction of the poly (vinylidene fluoride-hexafluoropropylene) copolymer microporous layer of the surface layer was 60%, The gel fraction of the polyethylene microporous membrane was 70%.

【0027】実施例1と同様にして、架橋された三層積
層膜を室温で電解液中に浸漬し、液中で保持したとこ
ろ、電解液は架橋膜に含浸した。引き上げて表面にある
電解液を拭き取ったところ、電解液を含んだまま、液の
にじみ出ない含浸膜を得た。電解液中に長時間浸漬した
後、電解液へのポリマーの溶出をチェックしたところ、
ほとんど観察されなかった。該架橋膜の、室温における
イオン伝導度は1.5mS/cmであった。また該架橋
膜のシャットダウン温度は136℃で、シャットダウン
温度以上で電流は遮断された。
In the same manner as in Example 1, the crosslinked three-layer laminated film was immersed in an electrolytic solution at room temperature and held in the solution, and the electrolytic solution was impregnated in the crosslinked film. When the electrolytic solution on the surface was wiped off by pulling up, an impregnated film in which the electrolytic solution was contained and the liquid did not ooze out was obtained. After being immersed in the electrolyte for a long time, when the elution of the polymer into the electrolyte was checked,
Little was observed. The ionic conductivity of the crosslinked membrane at room temperature was 1.5 mS / cm. The shutdown temperature of the crosslinked film was 136 ° C., and the current was cut off at the shutdown temperature or higher.

【0028】[0028]

【比較例1】重量平均分子量25万、融点135℃の高
密度ポリエチレンを34重量%、親水性シリカ微粉19
重量%、ジエチルヘキシルフタレート47重量%をヘン
シルミキサーで混合し、30mmΦ二軸押し出し機で厚
さ150μmの膜状成形体を得、塩化メチレンおよび苛
性ソーダ水溶液でジエチルヘキシルフタレートを抽出除
去し、その後ロ−ル延伸機で長さ方向に4倍延伸し、次
いでテンターで幅方向に2倍延伸して、厚さ25μm、
気孔率50%のポリエチレン微多孔膜を得た。
Comparative Example 1 34% by weight of high-density polyethylene having a weight average molecular weight of 250,000 and a melting point of 135 ° C., and hydrophilic silica fine powder 19
% By weight and 47% by weight of diethylhexyl phthalate were mixed with a Hensyl mixer to obtain a film-like molded product having a thickness of 150 μm with a 30 mmφ twin screw extruder. Diethylhexyl phthalate was extracted and removed with an aqueous solution of methylene chloride and sodium hydroxide. -Stretched 4 times in the length direction with a stretching machine, and then stretched 2 times in the width direction with a tenter,
A polyethylene microporous membrane having a porosity of 50% was obtained.

【0029】実施例1と同様にして、該ポリエチレン微
多孔膜を室温で電解液中に浸漬し、液中で保持した。引
き上げて表面にある電解液を拭き取ったところ、膜中に
残存する電解液は付着程度であって、ほとんどなかっ
た。また室温におけるイオン伝導度は測定できなかっ
た。また電解液中から引き上げて、拭き取らずに放置し
た場合、電解液は膜に保持されず、したたり落ちた。
In the same manner as in Example 1, the polyethylene microporous membrane was immersed in an electrolytic solution at room temperature and held in the solution. When the film was lifted up and the electrolytic solution on the surface was wiped off, the amount of the electrolytic solution remaining in the film was only small and hardly adhered. Also, the ionic conductivity at room temperature could not be measured. Also, when the electrolyte was lifted out of the electrolyte and left without wiping, the electrolyte was not retained by the membrane and dropped.

【0030】[0030]

【発明の効果】本発明になる三層積層微多孔膜からなる
セパレータは、従来のリチウムイオン二次電池の製造工
程をそのまま使用して電池製造が可能で、かつ本セパレ
ータは電解液の保持性が良く、更に140℃以下の温度
でシャットダウンして電流遮断するため、極めて安全な
電池を提供することが可能になる。
According to the present invention, a separator comprising a three-layer laminated microporous membrane according to the present invention can be used to manufacture a battery using the conventional lithium ion secondary battery manufacturing process as it is, and the present separator is capable of retaining an electrolyte. In addition, since the battery is shut down at a temperature of 140 ° C. or less to cut off the current, an extremely safe battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いたシャットダウン温度の測定装置
の概略図。
FIG. 1 is a schematic diagram of a shutdown temperature measuring device used in the present invention.

【図2】本発明で用いたシャットダウン温度の測定装置
の部分図。
FIG. 2 is a partial view of a shutdown temperature measuring device used in the present invention.

【図3】本発明で用いたシャットダウン温度の測定装置
の部分図。
FIG. 3 is a partial view of a shutdown temperature measuring device used in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両表層がフッ化ビニリデンを含む共重合
体からなる融点145℃以下の微多孔層で、中間層がポ
リオレフィンからなる融点140℃以下の微多孔層であ
ることを特徴とする三層構造微多孔膜より構成されるリ
チウム電池用セパレータ。
1. A method according to claim 3, wherein both surface layers are microporous layers of a copolymer containing vinylidene fluoride having a melting point of 145 ° C. or less, and the intermediate layer is a microporous layer of a polyolefin having a melting point of 140 ° C. or less. A lithium battery separator composed of a layered microporous membrane.
【請求項2】 微多孔膜が表層−中間層−表層の三層積
層膜であって、各層が接着剤を使用することなしに積層
されており、かつ層間の剥離強度が2g/cmである請
求項1記載のリチウム電池用セパレータ。
2. The microporous film is a three-layer laminated film composed of a surface layer, an intermediate layer and a surface layer, wherein each layer is laminated without using an adhesive, and the peel strength between the layers is 2 g / cm. The lithium battery separator according to claim 1.
【請求項3】 表層を形成する微多孔層が架橋されてお
り、そのゲル分率が10%以上である請求項1または2
記載のリチウム電池用セパレータ。
3. The microporous layer forming the surface layer is crosslinked, and its gel fraction is 10% or more.
The separator for a lithium battery according to the above.
JP2001007420A 2001-01-16 2001-01-16 Lithium battery separator Expired - Lifetime JP5207569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007420A JP5207569B2 (en) 2001-01-16 2001-01-16 Lithium battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007420A JP5207569B2 (en) 2001-01-16 2001-01-16 Lithium battery separator

Publications (3)

Publication Number Publication Date
JP2002216734A true JP2002216734A (en) 2002-08-02
JP2002216734A5 JP2002216734A5 (en) 2008-02-21
JP5207569B2 JP5207569B2 (en) 2013-06-12

Family

ID=18875172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007420A Expired - Lifetime JP5207569B2 (en) 2001-01-16 2001-01-16 Lithium battery separator

Country Status (1)

Country Link
JP (1) JP5207569B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1401037A2 (en) * 2002-09-17 2004-03-24 Tomoegawa Paper Co. Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP2005019156A (en) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd Separator for electronic component, and electronic component
JP2006004873A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7781094B2 (en) 2003-11-19 2010-08-24 Tonen Chemical Corporation Microporous composite membrane and its production method and use
WO2012137375A1 (en) * 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
CN103187549A (en) * 2011-12-28 2013-07-03 山东东岳高分子材料有限公司 Diaphragm for lithium ion battery and preparation method thereof
WO2014030899A1 (en) * 2012-08-21 2014-02-27 주식회사 아모그린텍 Composite porous separation membrane having shut-down function, method for manufacturing same, and secondary batteries using same
CN103650203A (en) * 2011-07-07 2014-03-19 丰田自动车株式会社 Secondary battery
WO2014113944A1 (en) * 2013-01-23 2014-07-31 华南理工大学 Diaphragm paper, and preparation method and application thereof
JP2014523936A (en) * 2011-06-16 2014-09-18 スリーエム イノベイティブ プロパティズ カンパニー Microporous material with fine fiber mesh structure and method for producing and using the same
WO2015022862A1 (en) * 2013-08-13 2015-02-19 日立マクセル株式会社 Separator for electrochemical devices, and electrochemical device
KR20150032280A (en) * 2015-03-06 2015-03-25 주식회사 아모그린텍 Complex fibrous separator having shutdown function and secondary battery using the same
KR101551358B1 (en) * 2014-09-26 2015-09-09 주식회사 아모그린텍 Complex fibrous separator having shutdown function, manufacturing method thereof and secondary battery using the same
TWI500507B (en) * 2014-04-08 2015-09-21 Benq Materials Corp Porous separator and method for manufacturing thereof
CN107706342A (en) * 2017-09-27 2018-02-16 上海恩捷新材料科技股份有限公司 Battery isolating film, lithium ion battery and preparation method thereof
WO2018212252A1 (en) * 2017-05-17 2018-11-22 帝人株式会社 Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
WO2019192474A1 (en) * 2018-04-03 2019-10-10 Shanghai Energy New Materials Technology Co., Ltd. Coating slurries for preparing separators, separators for electrochemical devices and preparation methods therefor
WO2020195948A1 (en) 2019-03-28 2020-10-01 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676808A (en) * 1992-06-29 1994-03-18 Japan Gore Tex Inc Battery diaphragm and battery
JPH08323910A (en) * 1995-06-02 1996-12-10 Kureha Chem Ind Co Ltd Laminated porous film and separator for non-aqueous solvent type battery composed thereof
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte
JPH107831A (en) * 1996-06-24 1998-01-13 Asahi Chem Ind Co Ltd Finely porous membrane of polyethylene having high thermal stability
JPH10247520A (en) * 1997-02-28 1998-09-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
US5834135A (en) * 1997-04-14 1998-11-10 Motorola, Inc. Multilayered gel electrolyte bonded rechargeable electrochemical cell
JPH10316793A (en) * 1997-05-19 1998-12-02 Asahi Chem Ind Co Ltd Porous film prepared from vinylidene fluoride resin
JPH11135097A (en) * 1997-10-30 1999-05-21 Nitto Denko Corp Manufacture of battery separator
JPH11176239A (en) * 1997-12-12 1999-07-02 Fujikura Ltd Solid ion conductive composition
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JPH11307133A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Manufacture of organic electrolyte battery
JP2000215875A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676808A (en) * 1992-06-29 1994-03-18 Japan Gore Tex Inc Battery diaphragm and battery
JPH08323910A (en) * 1995-06-02 1996-12-10 Kureha Chem Ind Co Ltd Laminated porous film and separator for non-aqueous solvent type battery composed thereof
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte
JPH107831A (en) * 1996-06-24 1998-01-13 Asahi Chem Ind Co Ltd Finely porous membrane of polyethylene having high thermal stability
JPH10247520A (en) * 1997-02-28 1998-09-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
US5834135A (en) * 1997-04-14 1998-11-10 Motorola, Inc. Multilayered gel electrolyte bonded rechargeable electrochemical cell
JPH10316793A (en) * 1997-05-19 1998-12-02 Asahi Chem Ind Co Ltd Porous film prepared from vinylidene fluoride resin
JPH11135097A (en) * 1997-10-30 1999-05-21 Nitto Denko Corp Manufacture of battery separator
JPH11176239A (en) * 1997-12-12 1999-07-02 Fujikura Ltd Solid ion conductive composition
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JPH11307133A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Manufacture of organic electrolyte battery
JP2000215875A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1401037A2 (en) * 2002-09-17 2004-03-24 Tomoegawa Paper Co. Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
EP1401037A3 (en) * 2002-09-17 2006-12-20 Tomoegawa Paper Co. Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP2005019156A (en) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd Separator for electronic component, and electronic component
US7781094B2 (en) 2003-11-19 2010-08-24 Tonen Chemical Corporation Microporous composite membrane and its production method and use
JP2006004873A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
US9065119B2 (en) 2011-04-08 2015-06-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2012137375A1 (en) * 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2014523936A (en) * 2011-06-16 2014-09-18 スリーエム イノベイティブ プロパティズ カンパニー Microporous material with fine fiber mesh structure and method for producing and using the same
CN103650203A (en) * 2011-07-07 2014-03-19 丰田自动车株式会社 Secondary battery
CN103187549A (en) * 2011-12-28 2013-07-03 山东东岳高分子材料有限公司 Diaphragm for lithium ion battery and preparation method thereof
US9601740B2 (en) 2012-08-21 2017-03-21 Amogreentech Co., Ltd. Composite porous separation membrane having shut-down function, method of manufacturing same, and secondary batteries using same
WO2014030899A1 (en) * 2012-08-21 2014-02-27 주식회사 아모그린텍 Composite porous separation membrane having shut-down function, method for manufacturing same, and secondary batteries using same
KR101551359B1 (en) * 2012-08-21 2015-09-08 주식회사 아모그린텍 Complex fibrous separator having shutdown function, manufacturing method thereof and secondary battery using the same
CN104584269A (en) * 2012-08-21 2015-04-29 阿莫绿色技术有限公司 Composite porous separation membrane having shut-down function, method for manufacturing same, and secondary batteries using same
WO2014113944A1 (en) * 2013-01-23 2014-07-31 华南理工大学 Diaphragm paper, and preparation method and application thereof
WO2015022862A1 (en) * 2013-08-13 2015-02-19 日立マクセル株式会社 Separator for electrochemical devices, and electrochemical device
TWI500507B (en) * 2014-04-08 2015-09-21 Benq Materials Corp Porous separator and method for manufacturing thereof
KR101551358B1 (en) * 2014-09-26 2015-09-09 주식회사 아모그린텍 Complex fibrous separator having shutdown function, manufacturing method thereof and secondary battery using the same
KR101601168B1 (en) * 2015-03-06 2016-03-09 주식회사 아모그린텍 Complex fibrous separator having shutdown function and secondary battery using the same
KR20150032280A (en) * 2015-03-06 2015-03-25 주식회사 아모그린텍 Complex fibrous separator having shutdown function and secondary battery using the same
WO2018212252A1 (en) * 2017-05-17 2018-11-22 帝人株式会社 Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP6487130B1 (en) * 2017-05-17 2019-03-20 帝人株式会社 Non-aqueous secondary battery separator, non-aqueous secondary battery, and non-aqueous secondary battery manufacturing method
CN107706342A (en) * 2017-09-27 2018-02-16 上海恩捷新材料科技股份有限公司 Battery isolating film, lithium ion battery and preparation method thereof
WO2019192474A1 (en) * 2018-04-03 2019-10-10 Shanghai Energy New Materials Technology Co., Ltd. Coating slurries for preparing separators, separators for electrochemical devices and preparation methods therefor
WO2020195948A1 (en) 2019-03-28 2020-10-01 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
KR20210148080A (en) 2019-03-28 2021-12-07 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery

Also Published As

Publication number Publication date
JP5207569B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5207569B2 (en) Lithium battery separator
JP6002291B2 (en) Non-aqueous electrolyte secondary battery including laminate, non-aqueous electrolyte secondary battery separator including laminate, and non-aqueous electrolyte secondary battery separator
US7087343B2 (en) High melt integrity battery separator for lithium ion batteries
JP4540607B2 (en) Polyolefin microporous membrane
EP2572880B1 (en) Laminated porous film, separator for lithium cell and cell
JP5495210B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP6896875B2 (en) Polyolefin microporous membrane and lithium ion secondary battery using it
CN108025539B (en) Laminated porous film, separator for nonaqueous electrolyte secondary battery, and method for producing laminated porous film
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP2002321323A (en) Polyolefin micro-porous film
JP2006289985A (en) Multi-component composite film, polymer separation membrane containing the same, and polymer electrolyte system containing the same
WO2007116672A1 (en) Polyolefin microporous film
JP6093636B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US5409588A (en) Electrochemical cell diaphragm and an electrochemical cell
JP6459694B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20180022668A (en) Separator for non-aqueous secondary battery, method for manufacturing non-aqueous secondary battery and non-aqueous secondary battery
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP5629542B2 (en) Polyolefin microporous membrane
JPH11115084A (en) Laminated porous film
JP2000204188A (en) Finely porous membrane of polyethylene
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009138159A (en) Microporous membrane
JPH0620671A (en) Separator for aprotic electrolytic battery
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2023164113A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5207569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term