JP2002212605A - Nonsintered molded getter - Google Patents

Nonsintered molded getter

Info

Publication number
JP2002212605A
JP2002212605A JP2001010137A JP2001010137A JP2002212605A JP 2002212605 A JP2002212605 A JP 2002212605A JP 2001010137 A JP2001010137 A JP 2001010137A JP 2001010137 A JP2001010137 A JP 2001010137A JP 2002212605 A JP2002212605 A JP 2002212605A
Authority
JP
Japan
Prior art keywords
getter
powder
molded
average particle
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001010137A
Other languages
Japanese (ja)
Other versions
JP3416654B2 (en
Inventor
Nobushige Hiraishi
平石信茂
Shinji Nakanishi
中西真二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001010137A priority Critical patent/JP3416654B2/en
Publication of JP2002212605A publication Critical patent/JP2002212605A/en
Application granted granted Critical
Publication of JP3416654B2 publication Critical patent/JP3416654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensively producible molded getter which enable the highly accurate removal of impurity gas components. SOLUTION: A powdery mixture consisting of alloy powder having the average particle size of <=60 μm and essentially consisting of Zr and Ti powder having the average particle size equal to or above that of the alloy powder is prepared in a ratio so that the content of Ti powder is controlled to 10 to 50 mass%. The powdery mixture is subjected to cold die molding by using a press to obtain a nonsintered molded getter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気体を物理的あるい
は化学的に吸着する成形ゲッタに係り、より詳しくは、
多種のガスを効率よく吸着し、かつパーティクルの発生
を抑えられる成形ゲッタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded getter that physically or chemically adsorbs a gas, and more particularly, to a molded getter.
The present invention relates to a molding getter capable of efficiently adsorbing various kinds of gases and suppressing generation of particles.

【0002】[0002]

【従来の技術】IT産業(情報技術産業)の急速な発展
は、半導体技術の進歩によって成り立っている。半導体
技術の進歩により、扱える情報量は格段に増加し、さら
なる情報量の増大の要求から、より一層の半導体装置の
高速化、高集積化が求められるようになってきた。
2. Description of the Related Art The rapid development of the IT industry (information technology industry) is based on advances in semiconductor technology. With the advancement of semiconductor technology, the amount of information that can be handled has increased remarkably, and the demand for a further increase in the amount of information has led to a demand for higher speed and higher integration of semiconductor devices.

【0003】半導体装置の配線パターンの高集積化が進
むと、配線の幅は小さくなるため、配線に流れる電荷量
(=信号電流)は必然的に小さくなる。その結果、暗電
流、リーク電流などのバックグラウンド電流に対し、信
号電流は、相対的に小さいものとなり、信号電流の誤認
識が発生しやすくなる。
[0003] As the integration density of the wiring pattern of the semiconductor device increases, the width of the wiring decreases, so that the amount of charge (= signal current) flowing through the wiring necessarily decreases. As a result, the signal current is relatively smaller than the background current such as the dark current and the leak current, and the signal current is likely to be erroneously recognized.

【0004】バックグラウンド電流の発生には様々な原
因があるが、その一つとして、半導体装置に付着する不
純物が挙げられる。この不純物は、ドライエッチングな
どを行う際に使用する希ガス等に起因する。したがっ
て、現在の製造プロセスでは、希ガス中に含まれる不純
物の濃度まで配慮した製造を行わざるを得なくなった。
しかし、希ガスそのものの純度を上げるには限界があ
る。そのため、不純物を化学的または物理的に吸着して
除去するゲッタと呼ばれる合金を用い、希ガス中の不純
物成分を除去することが行われている。
There are various causes for the generation of the background current. One of them is an impurity adhering to a semiconductor device. The impurities are caused by a rare gas or the like used when performing dry etching or the like. Therefore, in the current manufacturing process, manufacturing must be performed in consideration of the concentration of impurities contained in the rare gas.
However, there is a limit in increasing the purity of the rare gas itself. Therefore, an impurity called a getter, which removes impurities by chemically or physically adsorbing them, is used to remove impurity components in the rare gas.

【0005】Zrはゲッタ特性が高いという性質を有す
る。そのため、ゲッタとしてZrをベースとした合金の発
明あるいはそのような合金を利用した方法の発明が多く
開示されている(特開平3−47933号公報、特公平
6−17525号公報、特開平6−135707号公報
他)。
[0005] Zr has the property of having high getter characteristics. For this reason, many inventions of alloys based on Zr or methods using such alloys as getters have been disclosed (JP-A-3-47933, JP-B-6-17525, JP-A-6-17525). No. 135707, etc.).

【0006】希ガス中の不純物を除去するゲッタ能力
は、希ガス中の不純物の種類にも依存するため、複数の
ゲッタ材を組み合わせることにより、よりゲッタ能力を
高めることができる。例えば、特公昭61−33613
号公報には、Tiからなる粒状ゲッタとZr-V-Feの三元合
金からなる粒状ゲッタを部分焼結し、高い気孔度を有す
るゲッタを得ることで、ゲッタ自身に起因するパーティ
クルを発生させることなく、水素(H)や一酸化炭素
(CO)といったガスを吸着する発明が記載されてい
る。
The getter ability for removing impurities in a rare gas also depends on the type of impurities in the rare gas. Therefore, the getter ability can be further enhanced by combining a plurality of getter materials. For example, Japanese Patent Publication No. 61-33613
In the publication, a granular getter composed of Ti and a granular getter composed of a ternary alloy of Zr-V-Fe are partially sintered to obtain a getter having a high porosity, thereby generating particles caused by the getter itself. There is described an invention in which a gas such as hydrogen (H 2 ) or carbon monoxide (CO) is adsorbed without a gas.

【0007】[0007]

【発明が解決しようとする課題】ゲッタのゲッタ能力を
高めるためには、ゲッタの比表面積を大きくすることが
好ましい。したがって、ゲッタは、比表面積が大きい粉
末状態で使うことが好ましい。しかし、粉末状態で使用
すると、ゲッタから発生するパーティクルが半導体装置
を汚染する。そのため、通常、粉末状のゲッタを焼結し
ペレット化するか、パーティクルをフィルタで除去する
方法が取られている。前出した特公昭61−33613
号公報に記載の発明でも、パーティクルの汚染を防止す
るため、前者の方法が取られている。
In order to enhance the getter capability of the getter, it is preferable to increase the specific surface area of the getter. Therefore, the getter is preferably used in a powder state having a large specific surface area. However, when used in a powder state, particles generated from the getter contaminate the semiconductor device. Therefore, usually, a method of sintering a powdery getter to form a pellet or removing particles with a filter has been adopted. Tokiko Sho 61-33613
In the invention described in Japanese Patent Application Laid-Open Publication No. H10-209, the former method is adopted in order to prevent particle contamination.

【0008】しかし、この方法では、焼結前における個
々のゲッタ自体の能力は高いものの、成形ゲッタを作製
する際、焼結工程を経るために、Ti及び三元合金(Zr-
V-Fe)が部分的に焼結され、新しい化合物が生成され
る場合がある。さらに、焼結工程では、成形ゲッタが活
性化されるため、焼結雰囲気中の不純物ガスを吸着し、
ゲッタ能力が無駄に浪費されるという問題があった。
However, in this method, although the individual getters themselves have a high ability before sintering, Ti and ternary alloys (Zr-
V-Fe) may be partially sintered to produce new compounds. Further, in the sintering process, the molding getter is activated, so that the impurity gas in the sintering atmosphere is adsorbed,
There is a problem that the getter ability is wasted.

【0009】また、焼結工程を経れば、成形ゲッタの製
造に時間がかかるだけでなく、温度を上げるためエネル
ギーコストも増加する。より安価に高性能なものを提供
することが好まれるIT産業の分野では、コスト削減への
ニーズは高い。
[0009] After the sintering step, not only does it take much time to manufacture the molded getter, but also the energy cost increases because the temperature is raised. The need for cost reduction is high in the IT industry, where it is desirable to provide higher performance at lower cost.

【0010】本発明の課題は、従来の成形ゲッタに替わ
る、短時間にかつ安価に製造できる高いゲッタ能力を有
するペレット状の成形ゲッタを提供することにある。
An object of the present invention is to provide a pellet-shaped getter having a high getter capability which can be manufactured in a short time and at a low cost, in place of the conventional shaped getter.

【0011】[0011]

【課題を解決するための手段】本発明者らは、Ti粉末ゲ
ッタ及びZrを主成分とする三元合金(Zr-V-Fe)からな
る粉末ゲッタを焼結せず、ペレット状にする方法につい
て検討した。まず、Tiは延性が高く、塑性変形に対する
能力が高いという特性に注目し、Tiにバインダ的な役割
を担わせることを考えた。この場合、Ti自体にも十分な
ゲッタ能力があるため、ペレット化するのに、バインダ
を用いる必要もなく、ゲッタ能力が低下することもな
い。
Means for Solving the Problems The present inventors have developed a method of pelletizing a powder getter made of a Ti powder getter and a ternary alloy (Zr-V-Fe) containing Zr as a main component without sintering. Was considered. First, we paid attention to the property that Ti has high ductility and high ability to plastically deform, and considered to make Ti play a binder role. In this case, since Ti itself has a sufficient getter ability, it is not necessary to use a binder for pelletizing, and the getter ability does not decrease.

【0012】そこで、Tiにバインダ的な役割を担わせる
手段を検討した結果、Ti粉末ゲッタ及びZrを主成分とす
る三元合金(例えば、Zr-V-Fe)からなる粉末ゲッタ
を、プレスを用いて冷間金型成形さえすれば、ゲッタ能
力を高く維持したまま、十分にペレット状にできること
を確認し、本発明の完成に至った。
Therefore, as a result of examining means for making Ti play a role of a binder, a Ti powder getter and a powder getter made of a ternary alloy containing Zr as a main component (for example, Zr-V-Fe) are pressed. It was confirmed that the pellets could be sufficiently formed while maintaining the getter ability at a high level by using only cold mold molding, and the present invention was completed.

【0013】本発明は、平均粒径が60μm以下のZrを主
成分とする合金粉末と、この合金粉末の平均粒径以上の
平均粒径を有するTi粉末からなる混合粉末を、Ti粉末が
10〜50mass%となる割合で調合し、プレスを用いて冷間
金型成形した非焼成成形ゲッタ、を提供する。
According to the present invention, a mixed powder comprising an alloy powder containing Zr as a main component having an average particle diameter of not more than 60 μm and a Ti powder having an average particle diameter not less than the average particle diameter of the alloy powder is used.
The present invention provides a non-fired molded getter prepared at a ratio of 10 to 50 mass% and cold-molded using a press.

【0014】[0014]

【発明の実施の形態】本発明に係る成形ゲッタは、Zrを
主成分とする合金粉末(以下、「Zr合金粉末」と略す)
とTi粉末からなる混合粉末を調合し、圧縮成形するによ
り得られる。この際、圧縮成形後、成形ゲッタを焼結す
る必要はない。
BEST MODE FOR CARRYING OUT THE INVENTION A molded getter according to the present invention is an alloy powder containing Zr as a main component (hereinafter abbreviated as "Zr alloy powder").
And a mixed powder of Ti powder and compression molding. At this time, it is not necessary to sinter the molding getter after the compression molding.

【0015】Zr合金粉末とは、Zrを最も多く含有する合
金の粉末のことを言う。Zrが最も多く含まれていれば、
その他の成分は問わないので、すでに公知のZr合金の粉
末を本発明でいう「Zr合金粉末」として用いることがで
きる。Zr合金粉末は、JIS標準の呼び寸法が106μmの網
ふるいを通過することができる粉末であることが好まし
い。このような粉末を用いることで、反応界面の面積を
大きくできるので、多種のガスを効率よく吸収できると
いう効果が得られるからである。
[0015] Zr alloy powder refers to an alloy powder containing the largest amount of Zr. If Zr is contained most,
Since other components are not limited, a known Zr alloy powder can be used as the “Zr alloy powder” in the present invention. The Zr alloy powder is preferably a powder that can pass through a mesh sieve having a nominal size of 106 μm according to the JIS standard. By using such a powder, the area of the reaction interface can be increased, so that the effect of efficiently absorbing various gases can be obtained.

【0016】ここで、Zr合金粉末の平均粒径は60μm以
下であることが必要である。Zr合金粉末の平均粒径が60
μm以下であることで、成形ゲッタは炭化水素系ガスを
十分に吸着し、いずれの不純物ガスに対しても高いゲッ
タ能力が得られる。
Here, the average particle size of the Zr alloy powder needs to be 60 μm or less. Average particle size of Zr alloy powder is 60
When the thickness is not more than μm, the molded getter sufficiently adsorbs the hydrocarbon-based gas, and a high getter ability can be obtained for any impurity gas.

【0017】Ti粉末とは、Tiを主成分とする粉末のこと
をいう。Ti粉末を用いることで、酸素を含むガスに対す
るゲッタ能力が高くなる。また、前述の通り、Ti粉末は
バインダとしての役割も果たす。したがって、高いゲッ
タ能力とバインダ特性を発揮できるならば、Ti粉末は、
高純度である必要はない。しかし、これらの特性を十分
に発揮するには、Ti粉末中のTi元素の量は98mass%以上
含まれていることが好ましく、99mass%以上含まれてい
ることがさらに好ましい。
The term "Ti powder" refers to a powder containing Ti as a main component. By using Ti powder, the getter ability for a gas containing oxygen is increased. Further, as described above, the Ti powder also serves as a binder. Therefore, if high getter ability and binder properties can be exhibited, Ti powder
It does not need to be of high purity. However, in order to sufficiently exhibit these characteristics, the amount of the Ti element in the Ti powder is preferably 98 mass% or more, and more preferably 99 mass% or more.

【0018】Ti粉末の平均粒径は、Zr合金粉末の平均粒
径以上であることが必要である。Ti粉末の平均粒径が、
Zr合金粉末の平均粒径より小さいと、Zr合金粉末の間隙
に延性の高いTi粉末が配置され、プレスを用いて冷間金
型成形することによりTiが前記間隙を埋めてしまうた
め、最終製品に含まれる気孔が少なくなり、ゲッタ能力
が低下する。最終製品により高いゲッタ能力を持たせる
には、Ti粉末の平均粒径とZr合金粉末の平均粒径の比
(Ti粉末の平均粒径/Zr合金粉末の平均粒径)が1.1以
上であることが好ましい。
The average particle size of the Ti powder must be equal to or larger than the average particle size of the Zr alloy powder. The average particle size of the Ti powder is
When the average particle size of the Zr alloy powder is smaller than the average particle size of the Zr alloy powder, a highly ductile Ti powder is arranged in a gap between the Zr alloy powders, and the compact is cold-molded using a press, so that Ti fills the gap. And the getter ability is reduced. The ratio of the average particle diameter of Ti powder to the average particle diameter of Zr alloy powder (average particle diameter of Ti powder / average particle diameter of Zr alloy powder) must be 1.1 or more in order to have higher getter ability in the final product. Is preferred.

【0019】以上の2つの粉末を調合し、混合粉末を作
製する。この際、混合粉末に含まれるTi粉末の量が50ma
ss%以下であることが必要である。Ti粉末は炭化水素系
ガスに対するゲッタ能力がZr合金粉末に比べて低いた
め、Ti粉末の量が50mass%を超える場合には、最終製品
である成形ゲッタの炭化水素系ガスに対するゲッタ能力
が低くなるからである。混合粉末に含まれるTi粉末の量
は30mass%以下が好ましい。炭化水素系ガスを吸着でき
る量が多くなるので、長時間の使用に耐えうることがで
きるからである。なお、Ti粉末の下限量は10mass%であ
る。Ti粉末が10mass%に満たない場合は、バインダとし
ての役割が十分に果たせず、“圧粉体をかごの中で繰り
返し回転、落下させ、その重量減少率で表す圧粉体のエ
ッジ強さ”を表すラトラ値が大きな値となり、崩れやす
くなるためである。
The above two powders are mixed to prepare a mixed powder. At this time, the amount of the Ti powder contained in the mixed powder was 50 ma.
It must be less than ss%. Since Ti powder has a lower getter ability with respect to hydrocarbon-based gas than Zr alloy powder, if the amount of Ti powder exceeds 50 mass%, the getter ability with respect to hydrocarbon-based gas of the molded getter, which is the final product, becomes lower. Because. The amount of the Ti powder contained in the mixed powder is preferably 30 mass% or less. This is because the amount by which the hydrocarbon-based gas can be adsorbed is increased, so that it can withstand long-term use. Note that the lower limit of the Ti powder is 10 mass%. If the Ti powder content is less than 10 mass%, it does not play a sufficient role as a binder. "The edge strength of the green compact expressed by the weight loss rate by repeatedly rotating and dropping the green compact in a basket" Is a large value, and the value is likely to collapse.

【0020】以上のような混合粉末を、プレスを用いて
冷間金型成形することで、ペレット状にする。冷間金型
成形は、通常用いられる粉末成形プレス装置を用いれば
十分である。この際、成形後の成形ゲッタの形状は、特
に問わない。使用する態様に合わせて成形すればよい。
圧縮成形をすることにより、混合粉末は十分な強度を有
するペレットになるので、使用時のパーティクル発生を
防止できる。なお、このようにプレスを用いて冷間金型
成形した成形ゲッタは、Ti粉末とZr合金粉末との間に焼
結製品に見られるような反応層がないといった特徴があ
り、EPMAにより反応層の有無を調べることにより、非焼
結ゲッタか否かが容易に判断できる。
The above-mentioned mixed powder is formed into a pellet by cold molding using a press. For cold die molding, it is sufficient to use a commonly used powder molding press. At this time, the shape of the molded getter after molding is not particularly limited. What is necessary is just to shape | mold according to the aspect used.
By performing compression molding, the mixed powder becomes pellets having sufficient strength, so that generation of particles during use can be prevented. In this way, the getter obtained by cold molding using a press is characterized in that there is no reaction layer between Ti powder and Zr alloy powder as seen in sintered products. By examining the presence or absence of a getter, whether or not it is a non-sintered getter can be easily determined.

【0021】また、本発明に係る成形ゲッタは、その気
孔率が20%以上であることが好ましい。ここで、気孔率
とは、多孔質体の総体積に対するすべての気孔の体積の
割合をいう。プレスを用いて冷間金型成形した成形品
は、十分な強度を有し、割れや欠けによるパーティクル
発生は非常に少ないが、過大な荷重をかけて成形した場
合には、成形品の内部に存在するはずの気孔が閉塞して
しまい、ゲッタ能力が著しく低下する。このような問題
を避けるためにも、十分な気孔が成形品中に存在する必
要がある。気孔率は、25%以上であることがより好まし
い。
Further, the molded getter according to the present invention preferably has a porosity of 20% or more. Here, the porosity refers to the ratio of the volume of all pores to the total volume of the porous body. Molded products that have been cold-molded using a press have sufficient strength, and particle generation due to cracking and chipping is extremely small.However, when molded with an excessive load, The pores that should have been present are blocked, and the getter capability is significantly reduced. In order to avoid such a problem, sufficient pores need to be present in the molded article. The porosity is more preferably 25% or more.

【0022】[0022]

【実施例】本発明の実施に当たり、複数の成形ゲッタを
作製した。
EXAMPLES In implementing the present invention, a plurality of molded getters were made.

【0023】まず、V:19mass%、Fe:4mass%、Ni:1.5
mass%及び除去が困難な不純物を含み、残部がZrからな
るZr合金粉末の作製を行った。Zr合金粉末の原料とし
て、Zrは、ASTM B494 Grade R60702に準拠した一般工業
用スポンジZrおよびジルコニウム合金のスクラップを用
いた。Vは、不純物として0.02mass%以下のAl、Si、Fe
等を含む金属バナジウム、および不純物として3.0mass%
のAl、0.64mass%のSi等を含むV-17.4mass%Feを用い
た。Feは、電解Feを用いた。Niは純度99.8mass%以上の
電解Niショットを用いた。
First, V: 19 mass%, Fe: 4 mass%, Ni: 1.5
A Zr alloy powder containing mass% and impurities that are difficult to remove, and the balance being Zr, was produced. As a raw material of the Zr alloy powder, Zr used was a general industrial sponge Zr conforming to ASTM B494 Grade R60702 and scrap of a zirconium alloy. V is 0.02 mass% or less of Al, Si, Fe
Including metal vanadium, and 3.0mass% as impurities
Was used, and V-17.4 mass% Fe containing 0.64 mass% Si or the like was used. As Fe, electrolytic Fe was used. Ni used was an electrolytic Ni shot having a purity of 99.8 mass% or more.

【0024】これらの原料金属を成分調整し、合計質量
が25kgになるように秤量し、まず高周波誘導加熱炉で、
マグネシア製坩堝に装入したZr、V、Fe、Niについて、
真空引きとAr導入を繰り返し、Ar減圧雰囲気下66.5kPa
(=500mmHg)で溶解を行った。さらに、これらの原料が
溶解した後、Zr、Vを追加装入して、全ての原料を完全
に溶解することで、均質化した板状Zr合金を得た。
The components of these raw metals were adjusted and weighed so that the total mass became 25 kg.
About Zr, V, Fe, Ni charged in the magnesia crucible,
Repeat evacuation and introduction of Ar, 66.5kPa under Ar reduced pressure atmosphere
(= 500 mmHg). Further, after these raw materials were melted, Zr and V were additionally charged, and all the raw materials were completely melted to obtain a homogenized plate-like Zr alloy.

【0025】また、別の組成を有するZr合金として、
V:24.6mass%、Fe:5.4mass%を含有する板状Zr合金も
得た。なお、このZr合金についても、その製造方法は上
記Zr合金と同じである。
Also, as a Zr alloy having another composition,
A plate-like Zr alloy containing V: 24.6 mass% and Fe: 5.4 mass% was also obtained. The manufacturing method of the Zr alloy is the same as that of the Zr alloy.

【0026】続いて、板状Zr合金をハンマーで10〜50mm
角に粉砕した後、ジョークラッシャーおよびロータリー
クラッシャーを用い、Ar雰囲気中で粒度150μm以下に
粉砕して、粉末化した。得られた粉末は、所定のふるい
目を有する網ふるいで分級し、粒度の調整を行った。粒
度はレーザ回折散乱法を利用したマイクロトラックを用
いて、粒度分布を確認した。
Subsequently, the plate-like Zr alloy is hammered to 10 to 50 mm.
After pulverizing into corners, using a jaw crusher and a rotary crusher, the powder was pulverized in an Ar atmosphere to a particle size of 150 μm or less, and powdered. The obtained powder was classified with a mesh sieve having a predetermined sieve to adjust the particle size. As for the particle size, the particle size distribution was confirmed using a microtrack using a laser diffraction scattering method.

【0027】一方、Ti粉末は、一般的な試薬として購入
可能な純度が99%以上のTi粉末を粒度調整して用いた。
なお、Ti粉末についてもZr合金粉末と同様に、マイクロ
トラックを用いて、粒度の確認を行った。
On the other hand, as the Ti powder, a Ti powder having a purity of 99% or more, which can be purchased as a general reagent, was used after adjusting the particle size.
Note that the particle size of the Ti powder was confirmed using a microtrack similarly to the Zr alloy powder.

【0028】Zr合金粉末とTi粉末は任意の平均粒度、混
合比となるように秤量し、ステンレス鋼容器に入れ混合
した。混合はブレンダーを用い、Ar雰囲気中で、ステン
レス鋼容器を100rpmで回転させて、20分間の混合を行っ
た。この十分に混合した粉末をプレスにセットしたダイ
スとポンチを用いた冷間金型により圧縮成形し、直径3m
m、厚さ4mmの大きさにペレット化した成形ゲッタを得
た。
The Zr alloy powder and the Ti powder were weighed so as to have an arbitrary average particle size and a mixing ratio, and were mixed in a stainless steel container. Mixing was performed for 20 minutes by rotating the stainless steel container at 100 rpm in an Ar atmosphere using a blender. This sufficiently mixed powder is compression-molded by a cold die using a die and a punch set in a press, and has a diameter of 3 m.
A molded getter pelletized to a size of m and a thickness of 4 mm was obtained.

【0029】このようにして得られた成形ゲッタのZr合
金粉末の成分、粒度、Ti粉末の粒度、混合比、金型成形
したときの圧力(冷間金型成形圧)については、表1に
示す通りである。なお、表1において、本発明の範囲内
にある成形ゲッタについては実施例、範囲外にある成形
ゲッタについては比較例、と記した。また、比較例1、
10については、冷間で金型成形した後、さらに焼結工
程を加えたたため、表1に焼結温度を示した。
The composition and particle size of the Zr alloy powder, the particle size of the Ti powder, the mixing ratio, and the pressure at the time of die molding (cold die molding pressure) of the molded getter thus obtained are shown in Table 1. As shown. In Table 1, molded getters within the scope of the present invention are described as examples, and molded getters outside the range are described as comparative examples. Comparative Example 1,
As for No. 10, the sintering temperature is shown in Table 1 because a sintering step was further added after cold molding.

【0030】[0030]

【表1】 得られた成形ゲッタについては、諸物性を調べるため、
気孔率、ラトラ値およびゲッタ能力を測定した。
[Table 1] About the obtained molded getter, in order to examine various physical properties,
The porosity, rattra value and getter ability were measured.

【0031】気孔率は、多孔質体の総体積に対する全気
孔の体積の割合[JISZ2500]を意味し、JPMA(日本粉末冶
金工業界団体)規格に従って測定した。また、ラトラ値
も、JPMA規格に従って測定した。
The porosity means the ratio of the volume of all pores to the total volume of the porous body [JISZ2500], and was measured according to JPMA (Japan Powder Metallurgy Industry Association) standard. The rattra value was also measured according to the JPMA standard.

【0032】ゲッタ能力は、図1に模式的に示す純化試
験装置で調べた。ガス供給源であるボンベ1より流され
る気体は、バルブ2、4、流量調整器3の取り付けられ
た内面を電解研磨した管(SUS316製)を経て、反応器5
に送られる。反応器5は、加熱炉内に設けられた直径4m
mの筒状の管で、成形ゲッタ7を配置できるようになっ
ており、成形ゲッタ7の活性化を促進することを目的と
し、昇温できるようにヒータ8により覆われている。さ
らに、反応器5には、フィルタ6が設けられ、不要なパ
ーティクルを除去できる。フィルタ6を通した気体はガ
スクロマトグラフィー質量分析器9に導入され、不純物
の質量分析ができる。
The getter ability was examined using a purification test apparatus schematically shown in FIG. The gas flowing from the cylinder 1 serving as a gas supply source passes through a pipe (made of SUS316) of which the inner surface to which the valves 2 and 4 and the flow rate regulator 3 are attached is electropolished, and is supplied to the reactor 5.
Sent to The reactor 5 has a diameter of 4 m provided in the heating furnace.
The molded getter 7 can be disposed by a cylindrical tube of m, and is covered by a heater 8 so as to raise the temperature for the purpose of promoting the activation of the molded getter 7. Further, the reactor 5 is provided with a filter 6 to remove unnecessary particles. The gas that has passed through the filter 6 is introduced into a gas chromatography / mass spectrometer 9, and mass analysis of impurities can be performed.

【0033】実際のゲッタ能力の測定では、反応器5に
は約1gの成形ゲッタ7を挿入し、反応器5をヒータ8で3
50℃まで昇温し、質量分析を行った。ボンベ1からは、
表2に示す工業用Heガスをバルブ2、3でガスの流量を
0.5l/minに調節し、反応器5に導いた。なお、表2には
工業用Heガスに含まれるガス成分のガスクロマトグラフ
ィー質量分析器による検出限界も合わせて示す。表2に
おいて、NDはNo Detection(検出なし)を表す。
In the actual measurement of the getter ability, about 1 g of a molded getter 7 was inserted into the reactor 5 and the reactor 5 was heated by the heater 8.
The temperature was raised to 50 ° C., and mass analysis was performed. From cylinder 1
The flow rate of the industrial He gas shown in Table 2 was adjusted using valves 2 and 3.
It was adjusted to 0.5 l / min and led to the reactor 5. Table 2 also shows detection limits of gas components contained in the industrial He gas by a gas chromatography / mass spectrometer. In Table 2, ND represents No Detection (no detection).

【0034】[0034]

【表2】 作製した各成形ゲッタについての測定結果をまとめたも
のを表3に示す。なお、表3においても、表2と同様
に、NDはNo Detection(検出なし)を表す。また、表3
中のメタン検出までの総吸収量は、(総吸収量=(純化
前ガス中メタン濃度−検出限界メタン濃度)×流量(L
/分)×検出限界メタン濃度を超える時間(分))で計
算し、こうして得られた総吸収量を反応に供したゲッタ
量(g)で割り、単位重量当たりの吸収量に換算した値
である。すなわち、メタン検出までの総吸収量のg-C
/kgは、1kgのゲッタが検出限界メタン濃度を超え
る時間までに吸収したCHのグラム量を表す。
[Table 2] Table 3 summarizes the measurement results for each of the formed molded getters. In Table 3, as in Table 2, ND indicates No Detection (no detection). Table 3
The total absorption up to the detection of methane in the gas is (total absorption = (methane concentration in gas before purification-methane concentration in detection limit) x flow rate (L
/ Min) x time (min) exceeding the detection limit methane concentration), and the total absorption thus obtained is divided by the amount of getter (g) subjected to the reaction, and converted to the amount of absorption per unit weight. is there. In other words, g-C
H 4 / kg represents the amount of gram of CH 4 absorbed by the 1 kg getter by the time above the detection limit methane concentration.

【0035】[0035]

【表3】 本発明の範囲内の成形ゲッタ(表3中の実施例)では、
純化試験後の不純物はいずれも検出されなかった。ま
た、いずれの成形ゲッタもラトラ値が低く、割れやカケ
によるパーティクルの発生も少ない。したがって、任意
の割合で調合した、Zr合金粉末とこの合金粉末の平均粒
径以上の平均粒径を有するTi粉末からなる混合粉末を、
プレスを用いて冷間金型成形し、その成形品のZrを主成
分とする合金粉末の平均粒径を60μm以下にさえすれ
ば、ゲッタ能力の高い成形ゲッタが得られる。しかも、
Tiがバインダ的役割を果たすことから、プレスを用いた
冷間金型成形で、比較的簡単にペレット化でき、ラトラ
値も低くすることができるので、焼結工程も省略でき、
製造コストの削減も可能である。
[Table 3] Molded getters within the scope of the present invention (Examples in Table 3)
No impurities were detected after the purification test. In addition, each of the molded getters has a low rattra value, and the generation of particles due to cracks and chips is small. Therefore, a mixed powder composed of a Zr alloy powder and a Ti powder having an average particle diameter equal to or larger than the average particle diameter of the alloy powder, prepared at an arbitrary ratio,
If a cold die is formed using a press and the average particle size of the alloy powder containing Zr as a main component of the formed product is 60 μm or less, a molded getter having a high getter ability can be obtained. Moreover,
Since Ti plays the role of a binder, it can be relatively easily pelletized by cold die molding using a press and the rattle value can be lowered, so the sintering step can be omitted,
Manufacturing costs can also be reduced.

【0036】また、混合粉末のTi粉末の割合が30%以下
のものでは、メタンが検出されるまでの吸収量が極めて
高くなる。
If the proportion of the Ti powder in the mixed powder is 30% or less, the amount of absorption until methane is detected becomes extremely high.

【0037】比較例1、10は、冷間で金型成形した後
に焼結によりペレット化した成形ゲッタである。比較例
1、10では、メタンが検出された。比較例1と同じZr
合金粉末を用い冷間金型で粉末圧縮成形した成形ゲッタ
(実施例1)、および比較例10と同じZr合金粉末を用
い冷間金型で粉末圧縮成形した成形ゲッタ(実施例1
0)に不純物が検出されなかったことから、比較例1、
10では、焼結により成形ゲッタが活性化され、焼結中
に不純物を吸着するために、ゲッタ能力が低下したと考
えられる。
Comparative Examples 1 and 10 are molding getters which were formed into a mold by cold molding and then pelletized by sintering. In Comparative Examples 1 and 10, methane was detected. Same Zr as Comparative Example 1
Forming getter formed by powder compression molding with a cold mold using an alloy powder (Example 1), and forming getter formed by powder compression molding with a cold mold using the same Zr alloy powder as in Comparative Example 10 (Example 1)
0), no impurities were detected.
In No. 10, the molded getter was activated by sintering, and impurities were adsorbed during sintering, so that the getter ability was considered to be reduced.

【0038】比較例2〜9、11は、冷間金型成形によ
りペレット化した成形ゲッタである。比較例2〜4はZr
合金粉末の平均粒径が60μmより大きいため、メタンあ
るいは窒素が検出された。比較例5、7では、Ti粉末の
平均粒径がZr合金粉末の平均粒径より小さい。このた
め、Zr合金粉末間に延性の高いTiが隙間なく入り込み、
成形体中に含まれる気孔が小さくなり、ゲッタ能力が低
下したと考えられる。また、比較例6はTi粉末の平均粒
径がZr合金粉末の平均粒径より小さく、Zr合金粉末間に
延性の高いTiが隙間なく入り込み、成形体中に含まれる
気孔が少なくなるのを抑えるため、成形圧を半分にして
成形体中に含まれる気孔を多くした。その結果、ゲッタ
能力は良好であったが、ラトラ値が大きくなった。
Comparative Examples 2 to 9 and 11 are formed getters pelletized by cold die forming. Comparative Examples 2 to 4 are Zr
Since the average particle size of the alloy powder was larger than 60 μm, methane or nitrogen was detected. In Comparative Examples 5 and 7, the average particle size of the Ti powder is smaller than the average particle size of the Zr alloy powder. For this reason, highly ductile Ti enters between the Zr alloy powder without gaps,
It is considered that the pores contained in the molded article became small, and the getter ability was reduced. In Comparative Example 6, the average particle size of the Ti powder was smaller than the average particle size of the Zr alloy powder, and the highly ductile Ti was prevented from entering between the Zr alloy powder without any gaps, and the number of pores contained in the compact was reduced. Therefore, the molding pressure was reduced to half and the number of pores contained in the molded body was increased. As a result, the getter ability was good, but the rattra value was large.

【0039】比較例8は、Ti粉末の混合率がゼロである
ため、バインダ効果がない。このため、成形ゲッタは崩
れやすい。よって、ラトラ値は大きくなった。比較例9
はTi粉末の混合率が55%であるため、Zr合金粉末のガス
吸収効果が小さくなり、メタンが検出された。比較例1
1はTi粉末の代わりにZr粉末を用いたものである。この
時、メタンに加え、窒素も検出された。
Comparative Example 8 has no binder effect because the mixing ratio of Ti powder is zero. For this reason, the molded getter is easily broken. Therefore, the rattra value increased. Comparative Example 9
Since the mixing ratio of Ti powder was 55%, the gas absorption effect of the Zr alloy powder was reduced, and methane was detected. Comparative Example 1
No. 1 uses Zr powder instead of Ti powder. At this time, nitrogen was detected in addition to methane.

【0040】[0040]

【発明の効果】本発明に係る成形ゲッタを用いれば、Zr
合金粉末とTi粉末からなるゲッタ能力の高い成形ゲッタ
が得られるだけでなく、成形ゲッタの機械的な強度も大
きくなる。焼結することなく、冷間金型成形のみによ
り、ペレット状の成形ゲッタが得られるので、焼結時
間、エネルギーコストもかからず、安価に成形ゲッタの
提供ができる。
As described above, the use of the molded getter according to the present invention allows Zr
Not only is it possible to obtain a molded getter having a high getter ability composed of an alloy powder and a Ti powder, but also to increase the mechanical strength of the molded getter. A pellet-shaped getter can be obtained only by cold die molding without sintering, so that the sintering time and energy cost are not required, and the molded getter can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、ゲッタ能力を調べるために使用した純
化試験装置の模式図である。
FIG. 1 is a schematic diagram of a purification test apparatus used for checking getter capability.

【符号の説明】[Explanation of symbols]

1…ボンベ 2、4…バルブ 3…流量調整器 5…反応器 6…フィルタ 7…成形ゲッタ 8…ヒータ 9…ガスクロマトグラフィー質量分析器 DESCRIPTION OF SYMBOLS 1 ... Cylinder 2, 4 ... Valve 3 ... Flow regulator 5 ... Reactor 6 ... Filter 7 ... Molding getter 8 ... Heater 9 ... Gas chromatography mass spectrometer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G004 MA03 4G066 AA02B BA20 BA25 CA35 CA38 CA51 DA02 FA20 FA26 FA37 4K018 AA06 BB04 BC12 CA11 KA70 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G004 MA03 4G066 AA02B BA20 BA25 CA35 CA38 CA51 DA02 FA20 FA26 FA37 4K018 AA06 BB04 BC12 CA11 KA70

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が60μm以下のZrを主成分とする
合金粉末と、この合金粉末の平均粒径以上の平均粒径を
有するTi粉末からなる混合粉末を、Ti粉末が10〜50mass
%となる割合で調合し、プレスを用いて冷間金型成形し
た非焼成成形ゲッタ。
1. A mixed powder comprising an alloy powder containing Zr as a main component having an average particle diameter of 60 μm or less and a Ti powder having an average particle diameter of not less than the average particle diameter of the alloy powder is mixed with a Ti powder having an average particle diameter of 10 to 50 mass%.
%, And cold-molded using a press to form a non-fired molded getter.
【請求項2】気孔率が20%以上であることを特徴とする
請求項1に記載の非焼成成形ゲッタ。
2. The non-fired molded getter according to claim 1, wherein the porosity is 20% or more.
【請求項3】Zrを主成分とする合金粉末がJIS標準の呼
び寸法が106μmの網ふるいを通過する粉末であること
を特徴とする請求項1または2に記載の非焼成成形ゲッ
タ。
3. The non-fired molded getter according to claim 1, wherein the alloy powder containing Zr as a main component is a powder that passes through a mesh sieve having a nominal size of 106 μm according to JIS standard.
JP2001010137A 2001-01-18 2001-01-18 Non-fired molded getter Expired - Fee Related JP3416654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010137A JP3416654B2 (en) 2001-01-18 2001-01-18 Non-fired molded getter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010137A JP3416654B2 (en) 2001-01-18 2001-01-18 Non-fired molded getter

Publications (2)

Publication Number Publication Date
JP2002212605A true JP2002212605A (en) 2002-07-31
JP3416654B2 JP3416654B2 (en) 2003-06-16

Family

ID=18877508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010137A Expired - Fee Related JP3416654B2 (en) 2001-01-18 2001-01-18 Non-fired molded getter

Country Status (1)

Country Link
JP (1) JP3416654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721229B1 (en) 2006-03-31 2007-05-23 한국지질자원연구원 Fabrication of getter
JP2008292410A (en) * 2007-05-28 2008-12-04 Hitachi Metals Ltd Pressure-sensitive body, pressure-sensitive element and pressure-detecting method using the same
JP2013534303A (en) * 2010-08-06 2013-09-02 サエス・ゲッターズ・エッセ・ピ・ア Improvements to solar collector collector tubes.
CN113477178A (en) * 2021-05-10 2021-10-08 孙静 Quick preparation equipment of ferment ball for agricultural production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721229B1 (en) 2006-03-31 2007-05-23 한국지질자원연구원 Fabrication of getter
JP2008292410A (en) * 2007-05-28 2008-12-04 Hitachi Metals Ltd Pressure-sensitive body, pressure-sensitive element and pressure-detecting method using the same
JP2013534303A (en) * 2010-08-06 2013-09-02 サエス・ゲッターズ・エッセ・ピ・ア Improvements to solar collector collector tubes.
CN113477178A (en) * 2021-05-10 2021-10-08 孙静 Quick preparation equipment of ferment ball for agricultural production
CN113477178B (en) * 2021-05-10 2024-02-09 湖南本业绿色防控科技股份有限公司 Rapid manufacturing equipment for ferment balls for agricultural production

Also Published As

Publication number Publication date
JP3416654B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP3452940B2 (en) Method for producing non-evaporable getter and getter produced by this method
US5814272A (en) Method for forming dendritic metal particles
Perez et al. Thermal stability of nanocrystalline Fe-10 wt.% Al produced by cryogenic mechanical alloying
CN103966500B (en) A kind of ODS high temperature alloys for adding composite oxides nano particle and preparation method thereof
WO2004102586A1 (en) Aluminum based neutron absorber and method for production thereof
JP2008542541A (en) Method for producing high-strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite material
TW201300559A (en) Fept-c-based sputtering target and process for producing same
TW201219132A (en) Potassium/molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells
US4589919A (en) Metal bound and ballasted hydridable pellets
CN113088899A (en) Preparation method of high-purity low-oxygen tungsten-silicon alloy target material
WO1996022401A1 (en) Copper-tungsten alloys and process for producing the same
Flumerfelt Aluminum powder metallurgy processing
JP3416654B2 (en) Non-fired molded getter
JP2005535785A (en) Reactive grinding method for producing hydrogen storage alloys
JP2016156055A (en) Thermal insulation material
CN114293046B (en) Preparation method of porous titanium/zirconium-based hydrogen storage alloy for powder metallurgy with low oxygen content
CN112453384B (en) Preparation method of diffusion bonding titanium powder
JP4817486B2 (en) Tungsten powder, manufacturing method thereof, sputter target and cutting tool
KR101546037B1 (en) Magnesium based hydrogen storage material and the fabrication method thereof
JP3266909B2 (en) Manufacturing method of aluminum nitride
JP7072664B2 (en) Sputtering target and manufacturing method of sputtering target
JP2019523819A (en) Non-evaporable getter alloys particularly suitable for hydrogen and carbon monoxide adsorption
JP2006176802A (en) Method for manufacturing high-strength magnesium alloy using solid-state reaction by hydrogenation and dehydrogenation
JP2006274399A (en) Method for manufacturing fine powder of alloy, and fine powder of alloy
JP2006218443A (en) Method for producing titanium or titanium-based alloy filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030325

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees