JP2002205113A - Method for bending metal plate by lineal heating - Google Patents

Method for bending metal plate by lineal heating

Info

Publication number
JP2002205113A
JP2002205113A JP2001004009A JP2001004009A JP2002205113A JP 2002205113 A JP2002205113 A JP 2002205113A JP 2001004009 A JP2001004009 A JP 2001004009A JP 2001004009 A JP2001004009 A JP 2001004009A JP 2002205113 A JP2002205113 A JP 2002205113A
Authority
JP
Japan
Prior art keywords
heating
metal plate
bending
meandering
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001004009A
Other languages
Japanese (ja)
Other versions
JP4743972B2 (en
Inventor
Takayasu Ishiyama
隆庸 石山
Jun Kobayashi
順 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001004009A priority Critical patent/JP4743972B2/en
Publication of JP2002205113A publication Critical patent/JP2002205113A/en
Application granted granted Critical
Publication of JP4743972B2 publication Critical patent/JP4743972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfy all strain components required for obtaining a target curved surface by heating a heating line arranged on one surface. SOLUTION: Firstly, the in-plane contraction strain components of the target specific strain are replaced with the isotropic ones, and the surface of a metal plate 1 is divided into a large number of mesh areas along the directions of two major axes orthogonal to each other of the bending strain component of the target specific strain. Next, strip-like heating areas 3 with the heating lines 2 meandering in the right-and-left direction with the required width and at the required meandering pitch are arranged orthogonal to each other along the directions of the major axes in each mesh area 6. Next, a heating source is moved along the heating lines 2 of each strip-like heating area 3 to perform the local heating. During this operation, the ratio of the in-plane contraction deformation to the bending deformation in the direction orthogonal to the axis formed by the heating of one strip-like heating area 3 is changed by controlling the moving speed and the meandering pitch of the heating source, and by adding the in-plane contraction strain component to the bending strain component in the two strip-like heating areas 3 orthogonal to each other, the strain component agreed with the strain component required for bending the metal plate 1 to the target shape is given.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は造船における船殻曲
り外板の加工の如く、金属板の各個所を局所加熱して金
属板を目的曲面形状へ曲げ加工するために用いる線状加
熱による金属板曲げ加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of bending a metal plate into a target curved shape by locally heating each portion of the metal plate, such as processing of a hull bend outer plate in shipbuilding. The present invention relates to a plate bending method.

【0002】[0002]

【従来の技術】近年、船舶等に用いられる金属板の曲げ
加工には、線状加熱による曲げ加工方法が採用されてい
る。
2. Description of the Related Art In recent years, a bending method by linear heating has been adopted for bending a metal plate used for a ship or the like.

【0003】線状加熱は、金属板をガスバーナ等の点熱
源で線状に局所加熱すると周囲から拘束を受けて塑性歪
を発生して変形する性質を利用し、金属板上に加熱個所
を適当に配置することで対象金属板を目的曲面に曲げ加
工する技術である。
[0003] The linear heating utilizes the property that when a metal plate is locally heated linearly by a point heat source such as a gas burner, the material is constrained from the surroundings to generate plastic strain and to be deformed. Is a technique for bending a target metal plate into a target curved surface by arranging the target metal plate on a target curved surface.

【0004】従来、線状加熱による金属板の曲げ加工は
長い経験を経て修得する技能とされていて、熟練者が勘
や技能により加熱位置、方向、加熱条件などを定めて行
われていたが、近年では、線状加熱を機械的に行う方法
として、有限要素法(FEM)を応用して、曲げ加工す
べき金属板表面を多数の領域に分割すると共に、該各分
割領域毎に、目的形状に曲げ加工するために要する目的
固有歪を求め、該目的固有歪の面内収縮歪成分と曲げ歪
成分を与えるべく、たとえば、金属板の一方の面におけ
る上記分割領域に曲線状の加熱線を交差配置して、該加
熱線に沿って加熱源を移動させながら、該加熱源の移動
速度を制御パラメータとして所定の入熱量となるように
局所加熱することにより、各分割領域を目的形状に曲げ
て金属板全体を目的曲面に曲げるようにする手法が採ら
れるようになってきている。
Heretofore, bending of a metal plate by linear heating has been considered to be a skill that can be acquired through a long experience, and a skilled person has determined a heating position, a direction, a heating condition, and the like based on intuition and skill. Recently, as a method of mechanically performing linear heating, a finite element method (FEM) is applied to divide a surface of a metal plate to be bent into a large number of regions. In order to obtain a target intrinsic strain required for bending into a shape, and to provide an in-plane contraction strain component and a bending strain component of the target intrinsic strain, for example, a curved heating wire is applied to the divided region on one surface of a metal plate. Are intersected, and while moving the heating source along the heating line, local heating is performed so that the moving speed of the heating source becomes a predetermined heat input amount as a control parameter, so that each divided region has a desired shape. Bend and look at the entire metal plate Approach to the bend in the curved surface has come to be taken.

【0005】[0005]

【発明が解決しようとする課題】ところが、線状加熱に
よる金属板の曲面加工には複数の歪、すなわち、板の中
性面に沿った面内収縮歪の直交する2つの主軸方向、及
び、板の面外方向に働く曲げ歪の直交する2つの主軸方
向方向の4つの成分が関与しており、目的形状を与える
ためには、これら4つの独立した成分をすべて満足させ
る必要がある。
However, curved surface processing of a metal plate by linear heating involves a plurality of strains, that is, two orthogonal principal axis directions of in-plane contraction strain along a neutral plane of the plate, and Four orthogonal components of bending strain acting in the out-of-plane direction of the plate are involved in four orthogonal main axis directions, and all four independent components need to be satisfied in order to give a desired shape.

【0006】一方、一つの加熱線が作り出す歪には、加
熱線に直交する方向の面内収縮歪、加熱線の接線方向の
面内収縮歪、加熱線に直交する方向の面内曲げ歪、及
び、加熱線の接線方向の面内曲げ歪、の4つの歪成分が
含まれているが、これら4つの歪成分は、たとえば、加
熱源の移動速度等、1つの制御パラメータで制御される
上記加熱線の加熱条件に対して同時に決まってしまう要
素であり、そのため、加熱源の移動速度だけを制御変数
として、金属板の一表面に配置した曲線状の加熱線に沿
って局所加熱する上記従来の線状加熱による金属板曲げ
加工方法では、金属板の目的形状への曲面加工に要求さ
れる4つの独立した成分をすべて同時に満足させること
はできないという問題があり、したがって、加熱線が作
り出す4つの歪成分のうち、比較的構成比率の小さい歪
成分、たとえば、面内収縮歪の接線成分を無視して誤差
を容認することで加熱条件を求めざるを得ないというの
が実情である。
On the other hand, the strain generated by one heating wire includes in-plane shrinkage strain in a direction perpendicular to the heating wire, in-plane shrinkage strain in a tangential direction of the heating wire, in-plane bending strain in a direction orthogonal to the heating wire, And in-plane bending strain in the tangential direction of the heating wire. These four strain components are controlled by one control parameter such as the moving speed of the heating source. This is an element that is simultaneously determined with respect to the heating conditions of the heating wire, so that only the moving speed of the heating source is used as a control variable, and local heating is performed along a curved heating wire arranged on one surface of a metal plate. The method of bending a metal plate by linear heating has a problem in that it is not possible to simultaneously satisfy all four independent components required for curved surface processing of a metal plate into a target shape. Two distortion components Among them, relatively composition ratio small distortion component, for example, because ignoring tangential components of the in-plane shrinkage distortion inevitably determined heating conditions by tolerate errors in actuality.

【0007】なお、上記誤差を避ける手段として、金属
板の両面に加熱線を配置し、該各表面の加熱線上にて、
金属板の両側に配置した加熱源を同期させて移動するこ
とで、制御パラメータを、熱源の移動速度と、表裏入出
力の関係の2つとし、これを直交させることで精度よく
歪を与える方法も提案されているが、この場合は、金属
板の両側で各加熱源を同期して移動させるために、大型
で且つ複雑な装置を要するという問題がある。
As a means for avoiding the above error, heating wires are arranged on both sides of the metal plate,
A method in which the control parameters are set to two of the relationship between the moving speed of the heat source and the front / back input / output by synchronizing and moving the heating sources arranged on both sides of the metal plate. However, in this case, there is a problem that a large-sized and complicated device is required in order to synchronously move each heating source on both sides of the metal plate.

【0008】そこで、本発明は、金属板の一表面からの
加熱により、曲面形成に必要な4つの独立した歪成分を
すべて同時に与えることができる線状加熱による金属板
曲げ加工方法を提供しようとするものである。
Accordingly, the present invention is to provide a metal sheet bending method by linear heating that can simultaneously apply all four independent strain components required for forming a curved surface by heating from one surface of the metal sheet. Is what you do.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、金属板に目的曲面を与えるための面内収
縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源
にて金属板の所要個所に配した加熱線に沿って局所加熱
することにより上記固有歪を付与して金属板を目的形状
に曲げ加工するようにしてある線状加熱による金属板曲
げ加工方法において、加熱線を所要の幅で進行方向に対
して左右に蛇行させてなる帯状の加熱領域を、金属板表
面の所要領域に直交配置し、加熱源の移動速度と蛇行ピ
ッチを制御して上記各帯状加熱領域における加熱線に沿
って局所加熱することにより金属板を曲げ加工する方法
とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention obtains an intrinsic strain composed of an in-plane contraction strain component and a bending strain component for giving a target curved surface to a metal plate, and determines the intrinsic strain as a heating source. In a metal sheet bending method by linear heating, the above-described inherent strain is imparted by locally heating along a heating line arranged at a required portion of the metal sheet to bend the metal sheet into a target shape. A belt-shaped heating area is formed by making the heating wire meander to the left and right with respect to the traveling direction at a required width, and is arranged orthogonally to the required area on the surface of the metal plate. A method in which a metal plate is bent by local heating along a heating line in a heating region.

【0010】加熱線を蛇行させてなる帯状の加熱領域を
加熱すると、該帯状加熱領域に形成される高温域におい
て金属板の収縮が生じるので、帯状加熱領域の中心線方
向と、それに直交する方向に面内収縮歪と曲げ歪が形成
されて金属板は変形させられる。この際、加熱源の移動
速度と蛇行のピッチを制御パラメータとしてそれぞれ制
御すると、金属板の板厚方向に関する高温域の分布を自
在に制御することができ、このため面内収縮量の指標と
なる加熱面側と裏面側の収縮平均値、及び、曲り変形の
指標となる加熱面側と裏面側の収縮差の1/2の値を自
在に制御することができることから、一つの帯状加熱領
域の加熱により中心線方向と、それに直交する方向に形
成される面内収縮変形と、曲げ変形の構成比率は自在に
変化させることができる。
When a strip-shaped heating area formed by meandering a heating wire is heated, a metal plate shrinks in a high-temperature area formed in the strip-shaped heating area. Therefore, the direction of the center line of the strip-shaped heating area and the direction orthogonal thereto. In-plane contraction strain and bending strain are formed in the metal plate, and the metal plate is deformed. At this time, if the moving speed of the heating source and the pitch of the meandering are controlled as control parameters, the distribution of the high-temperature region in the thickness direction of the metal plate can be freely controlled, and therefore, it is an index of the in-plane shrinkage. Since the average value of the shrinkage on the heating surface side and the back surface side and the value of 1/2 of the difference in shrinkage between the heating surface side and the back surface side, which is an index of bending deformation, can be freely controlled, The composition ratio of the in-plane contraction deformation and the bending deformation formed in the center line direction and the direction orthogonal thereto by heating can be freely changed.

【0011】したがって、加熱源移動速度と蛇行ピッチ
をそれぞれ適宜設定した2つの帯状加熱領域を直交させ
て配置することにより、該2つの帯状加熱領域毎にそれ
ぞれ形成される面内収縮変形と曲げ変形を足し合わせ
て、金属板の目的形状への曲面加工に要求される板の中
性面に沿った面内収縮歪の接線方向と、該接線方向に直
交する方向、及び、板の面外方向に働く曲げ歪の接線方
向と、該接線方向に直交する方向の4つの独立した成分
をすべて満足させる変形を与えることができる。
Therefore, by arranging the two belt-shaped heating regions in which the moving speed of the heating source and the meandering pitch are appropriately set to be orthogonal to each other, the in-plane contraction deformation and the bending deformation formed in each of the two belt-shaped heating regions are performed. In addition, the tangential direction of the in-plane contraction strain along the neutral plane of the plate required for the curved surface processing of the metal plate into the target shape, the direction orthogonal to the tangential direction, and the out-of-plane direction of the plate And a deformation that satisfies all four independent components in the tangential direction of the bending strain acting on and the direction perpendicular to the tangential direction.

【0012】又、加熱源の移動速度と蛇行ピッチを制御
して各帯状加熱領域における加熱線に沿って局所加熱す
ることに代えて、加熱源の移動速度と蛇行幅を制御して
各帯状加熱領域における加熱線に沿って局所加熱するよ
うにすることによっても、帯状加熱領域において金属板
の板厚方向に形成される高温域の分布を自在に制御する
ことができて、一つの帯状加熱領域の加熱により中心線
方向と、それに直交する方向に形成される面内収縮変形
と、曲げ変形の構成比率は自在に変化させることができ
ることから、加熱源移動速度と蛇行幅をそれぞれ適宜設
定した2つの帯状加熱領域を直交配置することにより金
属板の目的形状への曲面加工に要求される4つの独立し
た成分をすべて満足させる変形を与えることができる。
Further, instead of controlling the moving speed and the meandering pitch of the heating source to perform local heating along the heating line in each band-shaped heating area, the moving speed and the meandering width of the heating source are controlled to control each band-like heating. By locally heating along the heating line in the region, the distribution of the high-temperature region formed in the thickness direction of the metal plate in the band-shaped heating region can be freely controlled, and one band-shaped heating region Since the composition ratio of the in-plane contraction deformation and the bending deformation formed in the center line direction and the direction perpendicular to the center line direction by heating can be changed freely, the moving speed of the heating source and the meandering width are appropriately set. By orthogonally arranging the two band-shaped heating regions, it is possible to give a deformation satisfying all four independent components required for the curved surface processing into the target shape of the metal plate.

【0013】更に、加熱源の移動速度と蛇行ピッチを制
御して各帯状加熱領域における加熱線に沿って局所加熱
することに代えて、加熱源の移動速度と蛇行ピッチと蛇
行幅を制御して各帯状加熱領域における加熱線に沿って
局所加熱するようにしても、帯状加熱領域において金属
板の板厚方向に形成される高温域の分布を自在に制御す
ることができ、一つの帯状加熱領域の加熱により中心線
方向と、それに直交する方向に形成される面内収縮変形
と、曲げ変形の構成比率は自在に変化させることができ
て、加熱源移動速度と蛇行ピッチと蛇行幅をそれぞれ適
宜設定した2つの帯状加熱領域を直交配置することによ
り金属板の目的形状への曲面加工に要求される4つの独
立した成分をすべて満足させる変形を与えることができ
る。
Further, instead of controlling the moving speed and meandering pitch of the heating source to perform local heating along the heating line in each belt-shaped heating area, the moving speed, meandering pitch and meandering width of the heating source are controlled. Even if local heating is performed along the heating line in each band-shaped heating region, the distribution of the high-temperature region formed in the thickness direction of the metal plate in the band-shaped heating region can be freely controlled, and one band-shaped heating region The composition ratio of the in-plane contraction deformation and the bending deformation formed in the center line direction and the direction perpendicular to the center line direction by heating can be freely changed, and the heating source moving speed, the meandering pitch, and the meandering width are appropriately adjusted. By orthogonally arranging the two set belt-shaped heating regions, a deformation that satisfies all four independent components required for the curved surface processing into the target shape of the metal plate can be given.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1乃至図4(イ)(ロ)は本発明の線状
加熱による金属板曲げ加工方法の実施の一形態を示すも
ので、金属板に目的曲面を与える面内収縮歪成分と曲げ
歪成分とからなる固有歪を求め、加熱源にて金属板の所
要個所に配した加熱線に沿って局所加熱することにより
上記固有歪を付与して金属板を目的形状に曲げ加工する
ようにしてある金属板曲げ加工方法において、たとえ
ば、図2にフローを示す如き加熱方案に従って、金属板
1の表面の所要領域に、図1に示す如く、所定の幅で進
行方向に対して加熱線2を左右方向に蛇行(斜行)させ
てなる帯状の加熱領域3を直交配置し、加熱源の移動速
度と、1回蛇行したときの加熱線2の前後の距離(蛇行
ピッチ)を制御して上記直交する各帯状加熱領域3にお
ける加熱線2をそれぞれ局所加熱することにより金属板
1を曲げ加工するようにする。
FIGS. 1 to 4 (a) and (b) show an embodiment of a method for bending a metal plate by linear heating according to the present invention. Determine the intrinsic strain composed of the bending strain component, apply the above-mentioned intrinsic strain by locally heating the heating source along a heating line arranged at a required portion of the metal plate, and bend the metal plate into a target shape. In the metal plate bending method described above, for example, according to a heating scheme as shown in the flow chart of FIG. 2, a heating wire having a predetermined width as shown in FIG. The belt-shaped heating area 3 formed by meandering (skewing) in the left and right direction is arranged orthogonally, and the moving speed of the heating source and the distance before and after the heating wire 2 when meandering once (meandering pitch) are controlled. The heating wire 2 in each of the orthogonal belt-shaped heating areas 3 Re so that bending a metal plate 1 by local heating.

【0016】ここで、先ず、上記帯状加熱領域3の加熱
線2の加熱により形成される金属板1の変形について図
5乃至図7(イ)(ロ)(ハ)(ニ)を用いて説明す
る。
Here, first, the deformation of the metal plate 1 formed by heating the heating wire 2 in the belt-shaped heating area 3 will be described with reference to FIGS. 5 to 7 (a) (b) (c) (d). I do.

【0017】図5に示す如く、金属板1の表面に、図示
しない加熱源を移動させる方向に対して加熱線2を左右
方向に所要の蛇行幅で蛇行させてなる帯状加熱領域3を
配置して、該帯状加熱領域3の加熱線2に沿って単位時
間当たりの発熱量を一定とした図示しない加熱源を移動
させると、金属板1が加熱されて内部に高温域が形成さ
れる。この際、加熱源の移動速度と蛇行ピッチを制御パ
ラメータとして、加熱源の移動速度と蛇行ピッチを
,Pの如く各々変化させると、発生する変形成分
の構成比率が変る。今、加熱源移動速度が遅くて蛇行ピ
ッチが大きい(P)場合には、図6(イ)に金属板1
断面の概略を示す如く、形成される高温域4は金属板1
の表面(加熱面)側Fから裏面(反加熱面)側Bに達す
るように形成されるが、その裏面側Bにおける分布幅は
表面側Fに比べて狭くなる。又、加熱源移動速度が速く
て蛇行ピッチが大きい(P)場合には、図6(ロ)に
示す如く、高温域4は金属板1の表面側Fのみに形成さ
れるようになる。加熱源移動速度が遅くて蛇行ピッチが
小さい(P)場合には、図6(ハ)に示す如く、高温
域4は金属板3の裏面側Bに達するように形成され、し
かも、該裏面側Bにおける分布幅は表面側Fの幅に近い
分布となる。熱源移動速度が速くて蛇行ピッチが小さい
(P)場合には、図6(ニ)に示す如く、高温域4は
裏面側Bに達するように形成されるが、該裏面側Bにお
ける分布幅は表面側Fに比して狭くなる。
As shown in FIG. 5, a band-shaped heating area 3 is formed on the surface of the metal plate 1 by heating the heating wire 2 in a horizontal direction with a required meandering width in a direction in which a heating source (not shown) is moved. Then, when a heating source (not shown) having a constant heating value per unit time is moved along the heating wire 2 of the belt-shaped heating region 3, the metal plate 1 is heated and a high-temperature region is formed inside. At this time, when the moving speed and the meandering pitch of the heating source are respectively changed as P 1 and P 2 using the moving speed and the meandering pitch of the heating source as control parameters, the composition ratio of the generated deformation component changes. Now, in the case where the moving speed of the heating source is slow and the meandering pitch is large (P 2 ), FIG.
As shown schematically in cross section, the high temperature region 4 to be formed is the metal plate 1
Is formed so as to reach the back (anti-heating surface) side B from the front (heating surface) side F, but the distribution width on the back surface B is narrower than the front side F. When the moving speed of the heating source is high and the meandering pitch is large (P 2 ), the high-temperature region 4 is formed only on the front side F of the metal plate 1 as shown in FIG. When the moving speed of the heating source is slow and the meandering pitch is small (P 1 ), as shown in FIG. 6C, the high temperature region 4 is formed so as to reach the back surface B of the metal plate 3. The distribution width on the side B is close to the width on the front side F. When the moving speed of the heat source is high and the meandering pitch is small (P 1 ), the high-temperature region 4 is formed to reach the back side B as shown in FIG. Becomes narrower than the surface side F.

【0018】このような温度分布の結果、得られる金属
板1の変形は図7(イ)(ロ)(ハ)(ニ)に概念的に
示すとおりである。なお、図7(イ)(ロ)(ハ)
(ニ)は、各図ともに、左端の上面を原点として、右向
き矢印の方向に収縮の大きさを示しており、又、板の上
面から下面への左下がりの斜線5は、収縮量の板厚方向
の分布を概念的に示している。熱源移動速度が遅くて蛇
行ピッチが大きい場合の収縮量の分布は、図7(イ)に
示す如く、図6(イ)に示した板厚方向の高温域4の分
布と対応するように、金属板1の表面側Fから離面側B
まで収縮し、該離面側Bの収縮量は表面側Fの収縮量よ
りも小さいものとなる。熱源移動速度が速くて蛇行ピッ
チが大きい図6(ロ)の場合には、図7(ロ)に示す如
く、金属板1の表面側Fでは大きく収縮するが、裏面側
Bでは逆に伸び変形を示すようになる。熱源移動速度が
遅くて蛇行ピッチが小さい図6(ハ)の場合は、図7
(ハ)に示す如く、金属板1の離面側Bまで収縮し、裏
面側Bの収縮量は表面側Fの収縮量に近いものとなる。
更に、熱源移動速度が速くて蛇行ピッチが小さい図6
(ニ)場合は、図7(ニ)に示す如く、金属板1の裏面
側Bでも収縮は起きるが、その分布幅は表面側Fに比し
て大幅に狭いものとなる。
As a result of such a temperature distribution, the resulting deformation of the metal plate 1 is conceptually shown in FIGS. 7 (a), (b), (c) and (d). FIG. 7 (a) (b) (c)
(D) shows the magnitude of shrinkage in the direction of the rightward arrow, with the upper surface at the left end as the origin, in each of the figures. 4 schematically shows the distribution in the thickness direction. The distribution of the amount of shrinkage when the moving speed of the heat source is slow and the meandering pitch is large, as shown in FIG. 7A, corresponds to the distribution of the high temperature region 4 in the plate thickness direction shown in FIG. Side B away from front side F of metal plate 1
, And the amount of contraction on the separated side B is smaller than the amount of contraction on the front side F. In the case of FIG. 6B in which the moving speed of the heat source is high and the meandering pitch is large, as shown in FIG. 7B, the metal plate 1 largely contracts on the front side F, but conversely expands and deforms on the rear side B. Will be shown. In the case of FIG. 6 (c) in which the moving speed of the heat source is slow and the meandering pitch is small, FIG.
As shown in (c), the metal plate 1 shrinks to the separated side B, and the shrinkage amount on the back side B is close to the shrinkage amount on the front side F.
Furthermore, the moving speed of the heat source is high and the meandering pitch is small.
In the case (d), as shown in FIG. 7 (d), shrinkage also occurs on the back side B of the metal plate 1, but the distribution width is much narrower than the front side F.

【0019】ここで、面内収縮量の指標となる表面の加
熱面と裏面の収縮平均値をδmとし、又、曲り変形の指
標となる加熱面と離面の収縮差の1/2の値をδbとす
ると、図7(イ)(ロ)(ハ)(ニ)より明らかなよう
に、熱源移動速度一定の条件下では、蛇行ピッチを小さ
くすると、面内収縮量は増加するが、曲り変形はあまり
増加しない。よって、熱源移動速度に加えて蛇行ピッチ
を制御変数として導入することにより、帯状加熱領域3
の加熱により形成される面内収縮変形と曲げ変形の構成
比率を自在に変化させることができるようになる。
Here, the average shrinkage value of the heated surface on the front surface and the back surface as an index of the in-plane shrinkage is δm, and the value of の of the difference in shrinkage between the heated surface and the separated surface as an index of the bending deformation. As shown in FIGS. 7 (a), (b), (c), and (d), when the meandering pitch is reduced under the condition where the moving speed of the heat source is constant, the in-plane shrinkage increases, but Deformation does not increase much. Therefore, by introducing the meandering pitch as a control variable in addition to the heat source moving speed, the band-shaped heating region 3
Thus, the composition ratio of in-plane contraction deformation and bending deformation formed by heating can be freely changed.

【0020】したがって、図2に示す如く、先ず、ステ
ップS1として、目的曲面を与える固有歪に対して、該
目的固有歪の面内収縮歪成分を、伸びを含まず且つどの
方向にも等しい大きさを持つ方向性のない等方性の歪に
置きかえて、面内歪成分の主軸(主歪)の方向(図3
(イ)参照)を、曲げ歪成分の主軸(主歪)の方向に揃
える(図3(ロ)を参照)ようにして、剪断歪の影響を
受けずに曲げ歪成分と面内収縮歪成分とを同時に与える
ことができるようにし、次に、ステップS2として、通
常のFEMメッシュ(図4(イ)参照)を、図4(ロ)
に示す曲げ歪成分の接線方向と、該接線に直角な方向と
なる主軸の方向に沿って沢山の小さなメッシュ領域に分
割する。
Therefore, as shown in FIG. 2, first, in step S1, the in-plane contraction strain component of the target eigenstrain is set to be equal to the eigenstrain giving the target curved surface in any direction without elongation. The direction of the principal axis (principal strain) of the in-plane strain component is replaced with the isotropic strain having no direction (see FIG. 3).
(See FIG. 3 (b)) in the direction of the principal axis (principal strain) of the bending strain component (see FIG. 3 (b)), so that the bending strain component and the in-plane contraction strain component are not affected by the shear strain. Then, as a step S2, a normal FEM mesh (see FIG. 4A) is replaced with a normal FEM mesh as shown in FIG.
Are divided into many small mesh areas along the tangent direction of the bending strain component shown in (1) and the direction of the main axis perpendicular to the tangent.

【0021】上記分割された1つ1つのメッシュ領域
で、それぞれ一定の変形が得られれば、その集合として
金属板全体は目的の曲面形状に曲ると考えられる。すな
わち、金属板全体の変形は、目的固有歪を分割したメッ
シュ領域内の変形を積分した値に相当することから、上
記ステップS3では、目的固有歪の面内収縮歪成分と曲
げ歪成分を各メッシュ領域毎に分割することにより、各
メッシュ領域の目的とする変形を求めるようにする。し
たがって、該各メッシュ領域の目的とする変形は、直交
する2つの主軸方向にそれぞれ面内収縮成分と曲げ成分
を有し、合計4つの独立した成分を要求するものとな
る。なお、面内成分に対する前処理と併せ、曲げ主軸方
向に分割しているため、ここには剪断成分は存在しな
い。
If a certain deformation is obtained in each of the divided mesh regions, it is considered that the whole metal plate is bent into a target curved shape as a set. That is, since the deformation of the entire metal plate corresponds to a value obtained by integrating the deformation in the mesh region obtained by dividing the target eigenstrain, in step S3, the in-plane contraction strain component and the bending strain component of the target eigenstrain are respectively determined. By dividing each mesh area, a desired deformation of each mesh area is obtained. Therefore, the desired deformation of each mesh region has an in-plane contraction component and a bending component in two orthogonal principal axis directions, respectively, and requires a total of four independent components. In addition to the pre-processing for the in-plane component, since it is divided in the bending principal axis direction, there is no shear component here.

【0022】しかる後、ステップS4として、上記ステ
ップS3にて分割された各分割領域のうち一つの曲げ加
工を行うべきメッシュ領域に着目し、このメッシュ領域
の目的形状への変形のために要求される4つの歪成分に
合致するよう、2つの直交する帯状加熱領域の加熱源移
動速度と蛇行ピッチを計算し、該メッシュ領域6に、図
1に示す如く、加熱源移動速度と蛇行ピッチをそれぞれ
上記計算に基いて設定した2つの帯状加熱領域3を直交
させて配置して加熱を実施することにより、該2つの帯
状加熱領域3毎に形成される面内収縮変形と曲げ変形を
足し合わせ、これにより、目的の変形を与えるために要
求される4つの成分に合致するような変形を作り出すよ
うにし、同様に、ステップS2にて分割したすべてのメ
ッシュ領域6に対して、それぞれ直交する2つの帯状加
熱領域3を配置して加熱することにより目的形状を与え
るために要求される4つの成分をすべて満たすような変
形を与えることができるようにして、金属板1全体の曲
げ加工を行うようにする。
Thereafter, in step S4, attention is paid to a mesh region to be bent in one of the divided regions divided in step S3, and the mesh region is required to be deformed into a target shape. The heating source moving speed and the meandering pitch of two orthogonal belt-like heating regions are calculated so as to match the four distortion components, and the heating source moving speed and the meandering pitch are respectively set in the mesh region 6 as shown in FIG. By arranging the two belt-shaped heating regions 3 set based on the above calculation orthogonally and performing heating, the in-plane contraction deformation and bending deformation formed for each of the two belt-shaped heating regions 3 are added, As a result, a deformation that matches the four components required to give the desired deformation is created. Similarly, all the mesh regions 6 divided in step S2 By arranging and heating two orthogonal band-shaped heating regions 3 so as to provide a deformation that satisfies all four components required to give a target shape, the entire metal plate 1 is formed. To be bent.

【0023】上記において各メッシュ領域6に変形を与
えるための2つの帯状加熱領域3の加熱源移動速度と蛇
行ピッチを計算する場合は、目的の変形のために要求さ
れる4つの成分、すなわち、直交する2つの主軸方向に
それぞれ存在する面内収縮成分と曲げ成分毎に、これを
目的変数とし、2つの帯状加熱領域3の該当する面内収
縮変形と曲げ変形成分の和がこの目的変数に等しいと置
いた関係式を4本たて、この連立式の解である2つの帯
状加熱領域3の面内収縮と曲げの各変形成分を介して、
それぞれの帯状加熱領域3における加熱源の移動速度と
蛇行ピッチからなる4つの制御変数を未知数としてこの
関係式を解くことでことで得られる。この際、上記各帯
状加熱領域3の変形成分を実現するような加熱源移動速
度と蛇行ピッチとの組み合わせを求めるためには、多次
元のニュートン法のような計算手法を利用すればよい。
In the above description, when calculating the moving speed of the heating source and the meandering pitch of the two belt-shaped heating regions 3 for giving a deformation to each mesh region 6, the four components required for the desired deformation, that is, four components, For each of the in-plane contraction component and the bending component existing in the two orthogonal principal axis directions, this is set as an objective variable, and the sum of the corresponding in-plane contraction deformation and the bending deformation component of the two belt-shaped heating regions 3 is used as the objective variable. By setting four relational expressions that are set to be equal to each other, through the respective in-plane contraction and bending deformation components of the two belt-shaped heating regions 3 which are the solutions of this simultaneous expression,
It can be obtained by solving this relational expression with the four control variables including the moving speed of the heating source and the meandering pitch in each belt-shaped heating region 3 as unknowns. At this time, in order to obtain a combination of the moving speed of the heating source and the meandering pitch to realize the deformation component of each of the belt-shaped heating regions 3, a calculation method such as a multidimensional Newton method may be used.

【0024】このように、金属板1を目的形状に変形さ
せるために要求される4つの独立した歪成分を、直交配
置した2つの帯状加熱領域3のそれぞれ構成比率を自在
に変化させることが可能な面内収縮変形と曲げ変形の足
し合わせにより正確に再現することができることから、
1度の曲げ加工により正確な目的形状を得ることができ
る。
As described above, the four independent distortion components required for deforming the metal plate 1 into the desired shape can be freely changed in the composition ratio of each of the two orthogonally arranged band-shaped heating regions 3. It can be accurately reproduced by adding the in-plane contraction deformation and bending deformation,
An accurate target shape can be obtained by one bending process.

【0025】又、加熱源の移動速度及び蛇行ピッチは連
続的に変化させることができるので、滑らかに制御する
ことができ、残留応力の発生による誤差も少なくするこ
とができる。更に、金属板1の加熱は一方の表面から行
えばよいので、従来の加熱装置をそのまま使用できて、
金属板1の両面に配置した加熱線を同期して加熱する場
合に要する如き大型で且つ複雑な装置を要することはな
い。
Further, since the moving speed and the meandering pitch of the heating source can be continuously changed, the control can be smoothly performed, and errors due to the generation of residual stress can be reduced. Furthermore, since the heating of the metal plate 1 may be performed from one surface, a conventional heating device can be used as it is,
There is no need for a large and complicated device as required when heating the heating wires arranged on both surfaces of the metal plate 1 synchronously.

【0026】次に、図8及び図9は本発明の実施の他の
形態を示すもので、図1乃至図4(イ)(ロ)に示した
ものと同様の線状加熱による金属板曲げ加工方法におい
て、金属板1の表面の所要領域に、所定の幅で進行方向
に対して加熱線2を左右方向に蛇行させてなる帯状の加
熱領域3を直交配置して、加熱源の移動速度と蛇行ピッ
チを制御して上記直交する各帯状加熱領域3における加
熱線2をそれぞれ局所加熱することに代えて、金属板1
の表面の所要領域に、所定のピッチで進行方向に対して
加熱線2を左右方向に蛇行させてなる帯状の加熱領域3
を直交配置し、加熱源の移動速度と蛇行幅を制御して上
記直交する各帯状加熱領域3における加熱線2をそれぞ
れ局所加熱することにより金属板1を曲げ加工するよう
にする。
FIGS. 8 and 9 show another embodiment of the present invention, in which a metal plate is bent by linear heating similar to that shown in FIGS. 1 to 4 (a) and (b). In the processing method, a belt-shaped heating area 3 formed by meandering a heating wire 2 in a horizontal direction in a traveling direction with a predetermined width in a predetermined area on the surface of a metal plate 1 is orthogonally arranged, and the moving speed of a heating source is changed. Instead of locally heating the heating wires 2 in each of the orthogonal belt-shaped heating regions 3 by controlling the meandering pitch, the metal plate 1
In a required area on the surface of the belt, a strip-shaped heating area 3 formed by meandering the heating wire 2 in the traveling direction at a predetermined pitch in the traveling direction.
Are arranged orthogonally, and the moving speed and the meandering width of the heating source are controlled to locally heat the heating wires 2 in the respective orthogonal belt-shaped heating regions 3 so that the metal plate 1 is bent.

【0027】ここで、上記帯状加熱領域3の加熱線2の
加熱により形成される金属板1の変形について図10乃
至図12(イ)(ロ)(ハ)を用いて説明する。
Here, the deformation of the metal plate 1 formed by heating the heating wire 2 in the belt-shaped heating area 3 will be described with reference to FIGS. 10 to 12 (A), (B) and (C).

【0028】図10に示す如く、図示しない加熱源を移
動させる方向に対して加熱源の移動速度及び蛇行ピッチ
を一定にしたまま蛇行幅をW,W,W(Wは蛇
行幅が0、すなわち、加熱線が直進する場合を示す)の
如く各々変化させると、発生する変形成分の構成比率が
変わる。
As shown in FIG. 10, the meandering widths W 1 , W 2 , W 3 (W 3 is the meandering width) while keeping the moving speed and meandering pitch of the heating source constant with respect to the direction in which the heating source (not shown) is moved. Is 0, that is, when the heating line goes straight), the composition ratio of the generated deformation component changes.

【0029】すなわち、加熱線2を蛇行させたときの蛇
行幅の中に投入される平均熱量は、おおよそ面積あたり
の加熱線の長さに対応するので、一回の蛇行(1サイク
ル)当たりに投入される平均熱量は、式(1)で表され
る。
That is, since the average amount of heat input into the meandering width when the heating wire 2 is meandering roughly corresponds to the length of the heating wire per area, one meandering (one cycle) The average heat input is represented by equation (1).

【0030】 したがって、加熱速度と蛇行ピッチが一定の下では、蛇
行幅が増えると、蛇行幅範囲内に含まれる加熱線の長さ
が増えるが、同時に蛇行幅の占める面積も大きくなる。
したがって、加熱進行方向の単位長さ当たりの入熱量は
増加するが、単位面積当たりの平均入熱量は小さくな
る。このため、今、加熱源移動速度一定の下で、蛇行幅
が狭い場合(W1)と、蛇行幅が広い場合(W2)とを
比較すると、図11(イ)と、図11(ロ)にそれぞれ
金属板1断面の概略を示す如く、金属板1の表面側Fに
形成される高温域の分布幅は、蛇行幅が広い場合(W
2)の方が広くなるが、この場合(W2)の方が平均入
熱量が小さいため、裏面側Bに向かって高温域4の分布
幅の減少が急になり、一方、蛇行幅が狭い場合(W1)
は、金属板1の表面側Fにおける高温域4の分布幅は狭
いものの、裏面側Bに向かっての高温域4の分布幅の減
少は緩やかになり、蛇行幅が0の場合(W3)には、図
11(ハ)に示す如く、その傾向がより顕著となる。
[0030] Therefore, when the heating speed and the meandering pitch are constant, as the meandering width increases, the length of the heating wire included in the meandering width range increases, but the area occupied by the meandering width also increases.
Therefore, the amount of heat input per unit length in the heating progress direction increases, but the average amount of heat input per unit area decreases. For this reason, comparing the case where the meandering width is narrow (W1) and the case where the meandering width is wide (W2) under the constant heating source moving speed, FIG. 11A and FIG. As shown schematically in the cross section of the metal plate 1, the distribution width of the high-temperature region formed on the front side F of the metal plate 1 is large when the meandering width is wide (W
In the case of (2), the distribution width of the high-temperature region 4 decreases sharply toward the back surface side B because the average heat input is smaller in the case of (W2), while the meandering width is narrow. (W1)
In the case where the distribution width of the high-temperature region 4 on the front surface side F of the metal plate 1 is narrow, the distribution width of the high-temperature region 4 toward the rear surface side B decreases gradually and the meandering width is 0 (W3). The tendency becomes more remarkable as shown in FIG.

【0031】このような温度分布の結果、得られる金属
板1の変形は図12(イ)(ロ)(ハ)に概念的に示す
とおりである。なお、図12(イ)(ロ)(ハ)は、図
7(イ)(ロ)(ハ)(ニ)と同様に、板の上面から下
面への左下がりの斜線5により収縮量の板厚方向の分布
を概念的に示している。この際、面内収縮量の指標とな
る表面の加熱面と裏面の収縮平均値δmと、又、曲り変
形の指標となる加熱面と離面の収縮差の1/2の値δb
は、図12(イ)に示す如き蛇行幅が狭い図11(イ)
の場合と、図12(ロ)に示す如き蛇行幅が広い図11
(ロ)の場合と、図12(ハ)に示す如き蛇行幅が0の
図11(ハ)の場合の比較により明らかなように、蛇行
幅が広くなるにつれて、入熱の絶対量が大きくなるので
δm、δb共に大きくなるが、面積当たりの入熱量は蛇
行幅が狭いほうが大きく且つ蛇行幅が広くなると高温域
4の分布は金属板1の表面側Fに偏るため、収縮量は表
面側Fでは大きく変化するが、裏面側Bではそれほど変
化しないので、曲り変形は大きく増加するが、面内収縮
量はあまり増加しない。
As a result of such a temperature distribution, the deformation of the metal plate 1 obtained is as conceptually shown in FIGS. 12 (a), (b) and (c). 12 (a), (b), and (c) show the contraction amount of the plate by the diagonal line 5 descending to the left from the upper surface to the lower surface of the plate, similarly to FIGS. 7 (a), (b), (c), and (d). 4 schematically shows the distribution in the thickness direction. At this time, the average shrinkage value δm of the heated surface on the front surface and the back surface as an index of the in-plane shrinkage amount, and a value δb of 収縮 of the shrinkage difference between the heated surface and the separated surface as an index of the bending deformation
FIG. 11A shows a narrow meandering width as shown in FIG.
And FIG. 11 having a wide meandering width as shown in FIG.
As is clear from a comparison between the case (b) and the case of FIG. 11 (c) where the meandering width is 0 as shown in FIG. 12 (c), the absolute amount of heat input increases as the meandering width increases. Thus, both δm and δb are large, but the heat input per area is large when the meandering width is small, and when the meandering width is wide, the distribution of the high-temperature region 4 is biased toward the front side F of the metal plate 1. However, since it does not change so much on the back side B, the bending deformation greatly increases, but the in-plane shrinkage does not increase much.

【0032】よって、熱源移動速度に加えて蛇行幅を制
御変数として導入することにより、帯状加熱領域3の加
熱により形成される面内収縮変形と曲げ変形の構成比率
を自在に変化させることができるようになる。
Therefore, by introducing the meandering width as a control variable in addition to the heat source moving speed, the composition ratio of in-plane contraction deformation and bending deformation formed by heating the belt-shaped heating region 3 can be freely changed. Become like

【0033】したがって、図9に加熱方案のフローを示
す如く、図2に示した手順と同様にして、目的固有歪の
面内収縮歪成分を等方性の歪に置きかえた(ステップS
1)後、曲げ歪成分の主軸の方向に沿って金属板1の表
面を多数の小さなメッシュ領域に分割し(ステップS
2)、各メッシュ領域毎に要求される面内収縮歪成分と
曲げ歪成分を求め(ステップS3)、しかる後、ステッ
プS5として、上記ステップS3にて分割されたメッシ
ュ領域の一つに着目して、目的形状への変形のために要
求される4つの歪成分に合致するように2つの直交する
帯状加熱領域の加熱源移動速度と蛇行幅を計算し、該メ
ッシュ領域6に、図8に示す如く、加熱源移動速度と蛇
行幅をそれぞれ上記計算に基いて設定した2つの帯状加
熱領域3を直交させて配置して加熱を実施することによ
り、該2つの帯状加熱領域3毎に形成される面内収縮変
形と曲げ変形を足し合わせ、これにより、目的の変形を
与えるために要求される4つの成分に合致するような変
形を作り出すようにし、同様に、ステップS2にて分割
したすべてのメッシュ領域6に対して、それぞれ直交す
る2つの帯状加熱領域3を配置して加熱することにより
目的形状を与えるために要求される4つの成分をすべて
満たすような変形を与えることができるようにして、金
属板1全体の曲げ加工を行うようにする。
Therefore, as shown in the flow of the heating scheme in FIG. 9, the in-plane contraction strain component of the target intrinsic strain is replaced with isotropic strain in the same manner as in the procedure shown in FIG. 2 (step S).
1) After that, the surface of the metal plate 1 is divided into many small mesh areas along the direction of the principal axis of the bending strain component (step S).
2) An in-plane contraction strain component and a bending strain component required for each mesh region are obtained (step S3), and thereafter, as step S5, one of the mesh regions divided in step S3 is focused on. Then, the heating source moving speed and the meandering width of the two orthogonal belt-like heating regions are calculated so as to match the four strain components required for the deformation to the target shape, and the mesh region 6 and FIG. As shown in the figure, the heating is performed by arranging the two belt-shaped heating regions 3 in which the moving speed of the heating source and the meandering width are respectively set based on the above calculation so as to be orthogonal to each other, thereby forming each of the two belt-shaped heating regions 3. The in-plane contraction deformation and the bending deformation are added together, thereby creating a deformation that matches the four components required to give the desired deformation. Me By disposing and heating two belt-like heating regions 3 orthogonal to each other, the heating region 6 can be deformed so as to satisfy all four components required to give a target shape. The entire metal plate 1 is bent.

【0034】上記において各メッシュ領域6に変形を与
えるための2つの帯状加熱領域3の加熱源移動速度と蛇
行幅を計算する場合は、図2におけるステップS4の場
合と同様に、目的の変形のために要求される4つの成分
を目的変数として、2つの帯状加熱領域3の該当する面
内収縮変形と曲げ変形成分の和がこの目的変数に等しい
と置いた関係式を4本たて、この連立式の解である2つ
の帯状加熱領域3の面内収縮と曲げの各変形成分を、そ
れぞれの帯状加熱領域3における加熱源の移動速度と蛇
行幅からなる4つの制御変数を未知数としてこの関係式
を解くようにすればよい。
In the above case, when calculating the moving speed of the heating source and the meandering width of the two belt-shaped heating regions 3 for giving a deformation to each mesh region 6, as in the case of step S 4 in FIG. The four components required for this purpose are defined as objective variables, and four relational expressions are set in which the sum of the corresponding in-plane contraction deformation and bending deformation components of the two belt-shaped heating regions 3 is equal to the objective variable. The in-plane contraction and bending deformation components of the two strip-shaped heating regions 3 which are the solutions of the simultaneous equations are expressed by the four control variables consisting of the moving speed of the heating source and the meandering width in each strip-shaped heating region 3 as unknowns. What is necessary is just to solve an equation.

【0035】本実施の形態によっても上記実施の形態と
同様な効果を得ることができる。
According to this embodiment, the same effect as in the above embodiment can be obtained.

【0036】なお、本発明は上記実施の形態のみに限定
されるものではなく、帯状加熱領域3に対する加熱の制
御パラメータとしては、加熱源の移動速度と、加熱線2
の蛇行ピッチ及び蛇行幅を共に制御するようにしてもよ
いこと、加熱方案のステップS2において曲げ歪の主軸
の方向に沿って金属板1を多数のメッシュ領域に分割す
る場合は、対象となる金属板1の目的形状の複雑さや寸
法に応じて分割数を増減させて自在に決定してよいこ
と、その他、本発明の要旨を逸脱しない範囲内において
種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to only the above embodiment, and the control parameters for heating the belt-shaped heating region 3 include the moving speed of the heating source and the heating wire 2.
The meandering pitch and meandering width may be controlled together. If the metal plate 1 is divided into a number of mesh regions along the direction of the principal axis of bending strain in step S2 of the heating scheme, the target metal The number of divisions may be freely determined by increasing or decreasing the number of divisions according to the complexity and size of the target shape of the plate 1, and, of course, various changes may be made without departing from the gist of the present invention.

【0037】[0037]

【発明の効果】以上述べた如く、本発明の線状加熱によ
る金属板曲げ加工方法によれば、金属板に目的曲面を与
えるための面内収縮歪成分と曲げ歪成分とからなる固有
歪を求め、加熱源にて金属板の所要個所に配した加熱線
に沿って局所加熱することにより上記固有歪を付与して
金属板を目的形状に曲げ加工するようにしてある線状加
熱による金属板曲げ加工方法において、加熱線を所要の
幅で進行方向に対して左右に蛇行させてなる帯状の加熱
領域を、金属板表面の所要領域に直交配置し、加熱源の
移動速度と蛇行ピッチを制御して上記各帯状加熱領域に
おける加熱線に沿って局所加熱することにより金属板を
曲げ加工するようにしてあるので、加熱線を左右に蛇行
させて前進させてなる帯状の加熱領域の加熱する際、加
熱源の移動速度と蛇行のピッチを制御パラメータとして
それぞれ制御することにより、金属板の板厚方向に関す
る高温域の分布を自在に制御して、帯状加熱領域の加熱
により中心線方向と、それに直交する方向に形成される
面内収縮変形と、曲げ変形の構成比率は自在に変化させ
ることができ、したがって、2つの帯状加熱領域を直交
させて配置することにより、それぞれ形成される面内収
縮変形と曲げ変形を足し合わせて、金属板の目的形状へ
の曲面加工に要求される板の中性面に沿った面内収縮歪
の直交する2つの主軸方向、及び、板の面外方向に働く
曲げ歪の直交する2つの主軸方向の4つの独立した成分
をすべて満足させる変形を与えることができることか
ら、1度の曲げ加工により正確な目的形状を得ることが
でき、又、加熱源の移動速度及び蛇行ピッチは連続的に
変化させることができるので、滑らかに制御することが
でき、残留応力の発生による誤差も少なくすることがで
き、更に、金属板の加熱は一表面から行えばよいので、
従来の加熱装置をそのまま使用できて、金属板の両面に
配置した加熱線を同期して加熱する場合に要する如き大
型で且つ複雑な装置を要することはないという優れた効
果を発揮する。又、加熱源の移動速度と蛇行ピッチを制
御して各帯状加熱領域における加熱線に沿って局所加熱
することに代えて、加熱源の移動速度と蛇行幅を制御し
たり、加熱源の移動速度と蛇行ピッチと蛇行幅を制御し
て各帯状加熱領域における加熱線に沿って局所加熱する
ようにしても、帯状加熱領域において金属板の板厚方向
に形成される高温域の分布を自在に制御することがで
き、金属板の目的形状への曲面加工に要求される4つの
独立した成分をすべて満足させる変形を与えることがで
きるという優れた効果を発揮する。
As described above, according to the method for bending a metal plate by linear heating according to the present invention, the intrinsic strain composed of the in-plane contraction strain component and the bending strain component for giving the target curved surface to the metal plate is reduced. The metal plate is heated by a local heating along a heating line arranged at a required portion of the metal plate at a heating source to impart the above-described intrinsic strain and bend the metal plate into a target shape. In the bending method, the belt-shaped heating area, which is formed by meandering the heating wire to the left and right with the required width in the traveling direction, is arranged orthogonally to the required area on the surface of the metal plate to control the moving speed and meandering pitch of the heating source. Since the metal plate is bent by locally heating along the heating line in each of the band-shaped heating regions, when heating the band-shaped heating region, the heating line is meandered to the left and right and advanced. , The moving speed of the heating source and By controlling the row pitch as a control parameter, the distribution of the high-temperature region in the thickness direction of the metal plate is freely controlled, and the belt-shaped heating region is formed in the center line direction and the direction perpendicular to the center line direction by heating. The composition ratio of the in-plane contraction deformation and the bending deformation can be freely changed. Therefore, by arranging the two belt-shaped heating regions at right angles, the in-plane contraction deformation and the bending deformation respectively formed are added. Therefore, two orthogonal principal axis directions of in-plane contraction strain along the neutral plane of the plate required for curved surface processing of the metal plate into a target shape, and two orthogonal directions of bending strain acting in the out-of-plane direction of the plate. Since a deformation that satisfies all four independent components in the directions of the four main axes can be given, an accurate target shape can be obtained by one bending, and the moving speed and meandering of the heating source can be obtained. Since pitch can be varied continuously, smoothly can be controlled, an error due to generation of residual stress can be reduced, further, the heating of the metal plate may be performed from one surface,
The conventional heating device can be used as it is, and it has an excellent effect that a large and complicated device is not required as required when heating the heating wires arranged on both sides of the metal plate in synchronization. Also, instead of controlling the moving speed and meandering pitch of the heating source to perform local heating along the heating line in each belt-shaped heating area, the moving speed and meandering width of the heating source can be controlled, or the moving speed of the heating source can be controlled. Even if local heating is performed along the heating line in each band-shaped heating area by controlling the meandering pitch and meandering width, the distribution of the high-temperature area formed in the thickness direction of the metal plate in the band-shaped heating area can be freely controlled Thus, there is an excellent effect that a deformation that satisfies all four independent components required for curved surface processing of a metal plate into a target shape can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の線状加熱による金属板曲げ加工方法の
実施の一形態を示す概略平面図である。
FIG. 1 is a schematic plan view showing an embodiment of a metal sheet bending method by linear heating according to the present invention.

【図2】図1の方法に用いる加熱方案のフローを示す図
である。
FIG. 2 is a diagram showing a flow of a heating scheme used in the method of FIG.

【図3】図2に示すフローのステップS1の内容を示す
もので、(イ)は面内収縮歪分布を示す概略図、(ロ)
は曲げ歪分布を示す概略図である。
FIG. 3 shows the contents of step S1 of the flow shown in FIG. 2, (a) is a schematic diagram showing an in-plane contraction strain distribution, and (b)
FIG. 2 is a schematic diagram showing a bending strain distribution.

【図4】図2に示すフローのステップS2の内容を示す
もので、(イ)は割り直し前のFEMメッシュ分割図、
(ロ)は割り直し後のメッシュ分割図である。
FIG. 4 shows the contents of step S2 of the flow shown in FIG. 2, wherein (a) is an FEM mesh division diagram before re-division,
(B) is a mesh division diagram after re-division.

【図5】帯状加熱領域により形成される変形を説明する
ためのもので、金属板表面に配置した帯状加熱領域を示
す図である。
FIG. 5 is a view for explaining the deformation formed by the band-shaped heating region, and is a diagram showing the band-shaped heating region arranged on the surface of the metal plate.

【図6】帯状加熱領域の加熱により金属板内に形成され
る高温域の分布の概略を示すもので、(イ)(ロ)
(ハ)(ニ)は加熱源の移動速度と蛇行ピッチを制御パ
ラメータとしてそれぞれ変化させた場合を示すものであ
る。
FIG. 6 schematically shows a distribution of a high-temperature region formed in a metal plate by heating a band-shaped heating region.
(C) and (d) show the case where the moving speed of the heating source and the meandering pitch are changed as control parameters.

【図7】帯状加熱領域の加熱により生じる金属板内にお
けるの収縮量の分布の概略を示すもので、(イ)(ロ)
(ハ)(ニ)は加熱源の移動速度と蛇行ピッチを制御パ
ラメータとしてそれぞれ変化させた場合を示すものであ
る。
FIG. 7 schematically shows the distribution of the amount of shrinkage in a metal plate caused by heating of a belt-shaped heating region.
(C) and (d) show the case where the moving speed of the heating source and the meandering pitch are changed as control parameters.

【図8】本発明の実施の他の形態を示す概略平面図であ
る。
FIG. 8 is a schematic plan view showing another embodiment of the present invention.

【図9】図8の方法に用いる加熱方案のフローを示す図
である。
9 is a diagram showing a flow of a heating scheme used in the method of FIG.

【図10】帯状加熱領域により形成される変形を説明す
るためのもので、金属板表面に配置した帯状加熱領域を
示す図である。
FIG. 10 is a view for explaining the deformation formed by the band-shaped heating region, and is a diagram showing the band-shaped heating region arranged on the surface of the metal plate.

【図11】帯状加熱領域の加熱により金属板内に形成さ
れる高温域の分布の概略を示すもので、(イ)(ロ)
(ハ)は蛇行幅を制御パラメータとしてそれぞれ変化さ
せた場合を示すものである。
FIG. 11 schematically shows distribution of a high-temperature region formed in a metal plate by heating a belt-shaped heating region.
(C) shows a case where the meandering width is changed as a control parameter.

【図12】帯状加熱領域の加熱により生じる金属板内に
おけるの収縮量の分布の概略を示すもので、(イ)
(ロ)(ハ)は蛇行幅を制御パラメータとしてそれぞれ
変化させた場合を示すものである。
FIG. 12 schematically shows the distribution of the amount of shrinkage in a metal plate caused by heating of a belt-shaped heating region.
(B) and (c) show the case where the meandering width is changed as a control parameter.

【符号の説明】[Explanation of symbols]

1 金属板 2 加熱線 3 帯状加熱領域 DESCRIPTION OF SYMBOLS 1 Metal plate 2 Heating wire 3 Strip heating area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属板に目的曲面を与えるための面内収
縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源
にて金属板の所要個所に配した加熱線に沿って局所加熱
することにより上記固有歪を付与して金属板を目的形状
に曲げ加工するようにしてある線状加熱による金属板曲
げ加工方法において、加熱線を所要の幅で進行方向に対
して左右に蛇行させてなる帯状の加熱領域を、金属板表
面の所要領域に直交配置し、加熱源の移動速度と蛇行ピ
ッチを制御して上記各帯状加熱領域における加熱線に沿
って局所加熱することにより金属板を曲げ加工すること
を特徴とする線状加熱による金属板曲げ加工方法。
1. A method according to claim 1, wherein an intrinsic strain composed of an in-plane contraction strain component and a bending strain component for giving a target curved surface to the metal plate is determined, and local heating is performed by a heating source along a heating line arranged at a required portion of the metal plate. In the metal plate bending method by linear heating in which the above-described intrinsic strain is imparted to bend the metal plate into a target shape, the heating wire is meandered right and left in a traveling direction at a required width. The belt-shaped heating region is arranged orthogonally to a required region on the surface of the metal plate, and the moving speed and the meandering pitch of the heating source are controlled to locally heat the metal plate along the heating line in each of the band-shaped heating regions. A method for bending a metal plate by linear heating, comprising bending.
【請求項2】 加熱源の移動速度と蛇行ピッチを制御し
て各帯状加熱領域における加熱線に沿って局所加熱する
ことに代えて、加熱源の移動速度と蛇行幅を制御して各
帯状加熱領域における加熱線に沿って局所加熱するよう
にした請求項1記載の線状加熱による金属板曲げ加工方
法。
2. Instead of controlling the moving speed and meandering pitch of the heating source to perform local heating along the heating line in each band-shaped heating area, controlling the moving speed and meandering width of the heating source to control each band-like heating. 2. The metal sheet bending method by linear heating according to claim 1, wherein local heating is performed along a heating line in the region.
【請求項3】 加熱源の移動速度と蛇行ピッチを制御し
て各帯状加熱領域における加熱線に沿って局所加熱する
ことに代えて、加熱源の移動速度と蛇行ピッチと蛇行幅
を制御して各帯状加熱領域における加熱線に沿って局所
加熱するようにした請求項1記載の線状加熱による金属
板曲げ加工方法。
3. The moving speed, meandering pitch and meandering width of the heating source are controlled instead of controlling the moving speed and meandering pitch of the heating source to perform local heating along the heating line in each belt-shaped heating region. 2. The metal sheet bending method by linear heating according to claim 1, wherein local heating is performed along a heating line in each band-shaped heating area.
JP2001004009A 2001-01-11 2001-01-11 Metal plate bending method by linear heating Expired - Fee Related JP4743972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004009A JP4743972B2 (en) 2001-01-11 2001-01-11 Metal plate bending method by linear heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004009A JP4743972B2 (en) 2001-01-11 2001-01-11 Metal plate bending method by linear heating

Publications (2)

Publication Number Publication Date
JP2002205113A true JP2002205113A (en) 2002-07-23
JP4743972B2 JP4743972B2 (en) 2011-08-10

Family

ID=18872257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004009A Expired - Fee Related JP4743972B2 (en) 2001-01-11 2001-01-11 Metal plate bending method by linear heating

Country Status (1)

Country Link
JP (1) JP4743972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000879A (en) * 2004-06-16 2006-01-05 Kawasaki Heavy Ind Ltd Deformation estimating method, program, and recording medium
CN100434203C (en) * 2006-02-28 2008-11-19 江南造船(集团)有限责任公司 Fire-water correcting technology of aluminum-magnesium alloy ship

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576947A (en) * 1991-09-18 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Working method for bending steel sheet by strip heating
JPH09155459A (en) * 1995-12-01 1997-06-17 Nkk Corp Method for automatic heating bend-working of hull shell
JPH1197165A (en) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd High frequency heating coil device
JP2000094044A (en) * 1998-09-17 2000-04-04 Nkk Corp Method for bending plate by linear heating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576947A (en) * 1991-09-18 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Working method for bending steel sheet by strip heating
JPH09155459A (en) * 1995-12-01 1997-06-17 Nkk Corp Method for automatic heating bend-working of hull shell
JPH1197165A (en) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd High frequency heating coil device
JP2000094044A (en) * 1998-09-17 2000-04-04 Nkk Corp Method for bending plate by linear heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000879A (en) * 2004-06-16 2006-01-05 Kawasaki Heavy Ind Ltd Deformation estimating method, program, and recording medium
CN100434203C (en) * 2006-02-28 2008-11-19 江南造船(集团)有限责任公司 Fire-water correcting technology of aluminum-magnesium alloy ship

Also Published As

Publication number Publication date
JP4743972B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
Hennige Development of irradiation strategies for 3D-laser forming
Zhang et al. Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process
CN111093865B (en) Method and apparatus for analyzing layered structure, method and apparatus for manufacturing layered structure
JP7165395B2 (en) A processing method that linearly heats and bends a metal plate
WO2008084920A1 (en) Curved surface forming method of a metal plate
KR100783417B1 (en) Curved surface forming method of a steel plate for a ship using a multi-point press
JP2004074200A (en) Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface
CN109918785A (en) A kind of large-scale complex thin-wall titanium alloy member hot forming corrugation prediction and control method
JP2008273796A (en) Method, apparatus and program for press-forming simulation of optical element
CN111625969B (en) Additive manufacturing deformation compensation manufacturing method
JP2002205113A (en) Method for bending metal plate by lineal heating
KR20200135711A (en) A Hot Forming Method for plate
JP7238817B2 (en) Wiring material and its manufacturing method
JP2666674B2 (en) Method of bending metal plate by linear heating
CN107944177A (en) A kind of trapezoidal straight ripple plate producing process
JP2003211230A (en) Method for calculating heating procedure of linear heating
JP2666685B2 (en) Method of bending metal plate by linear heating
JP2626496B2 (en) Method of bending metal plate by linear heating
KR101042056B1 (en) Curved surface forming method of a steel plate using a variable type of metal mold
JP2924354B2 (en) Method of bending steel sheet by linear heating
JP5150230B2 (en) Bending method and bending support device
Zhang et al. An optimal flattening algorithm for ship hull plate fabricated by thermal forming
JP4688288B2 (en) Heating plan formulation method for linear heating
JPH10230326A (en) Method for calculating arrangement of heating wire for line shaped heating
JP3587061B2 (en) How to determine the unfolding line of press working

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4743972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees