JP2002187734A - Kovar seal glass for fluorescent lamp - Google Patents

Kovar seal glass for fluorescent lamp

Info

Publication number
JP2002187734A
JP2002187734A JP2000382680A JP2000382680A JP2002187734A JP 2002187734 A JP2002187734 A JP 2002187734A JP 2000382680 A JP2000382680 A JP 2000382680A JP 2000382680 A JP2000382680 A JP 2000382680A JP 2002187734 A JP2002187734 A JP 2002187734A
Authority
JP
Japan
Prior art keywords
glass
fluorescent lamp
kovar
ultraviolet
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000382680A
Other languages
Japanese (ja)
Other versions
JP4743650B2 (en
Inventor
Hajime Hikata
元 日方
Koichi Hashimoto
幸市 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2000382680A priority Critical patent/JP4743650B2/en
Publication of JP2002187734A publication Critical patent/JP2002187734A/en
Application granted granted Critical
Publication of JP4743650B2 publication Critical patent/JP4743650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Abstract

PROBLEM TO BE SOLVED: To provide a Kovar seal glass excellent in resistance against UV solarization, barrier property against UV rays, devitrification property and electric insulating property and suitable as a glass tube for a fluorescent lamp of a back light or a front light. SOLUTION: The glass has the composition of, by mass%, 55 to 73% SiO2 6.5 to 25% B2O3, 0 to 10% Al2O3, 4 to 20% Li2O+Na2O+K2O, 0 to 10% Li2O, 0 to 10% Na2O, 0 to 15% K2O, 0.01 to 4% CeO2 and 0 to 10% TiO2 and contains by each <=0.1% of Sb2O3, As2O3 and Fe2O3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子等の
照明装置の光源となる蛍光ランプのガラス管に使用され
るコバールシールガラスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Kovar seal glass used for a glass tube of a fluorescent lamp as a light source of a lighting device such as a liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示素子は、光源の利用法によって
自然光や室内照明の光を利用する反射型液晶表示素子
と、専用の照明装置、例えば、バックライトの光を用い
る透過型液晶表示素子とに大別される。ノート型パソコ
ン、TVモニター、車載用計器等の高品位な表示が要求
される用途には、バックライトを用いた透過型液晶表示
素子が主として使用されている。腕時計や、小型の電子
卓上計算機等の特に低消費電力タイプのものには、反射
型液晶表示素子が用いられる。しかし、最近ではこれら
の低消費電力タイプのものについても、フロントライト
を設けておき、必要に応じて点灯させて使用するものも
ある。
2. Description of the Related Art There are two types of liquid crystal display devices: a reflection type liquid crystal display device which uses natural light or light of indoor lighting depending on a method of using a light source, and a dedicated lighting device, for example, a transmission type liquid crystal display device which uses light of a backlight. Are roughly divided into For applications requiring high-quality display, such as notebook computers, TV monitors, and in-vehicle instruments, transmission-type liquid crystal display devices using a backlight are mainly used. A reflection type liquid crystal display element is used for a wristwatch, a small electronic desk calculator, and the like, particularly those of a low power consumption type. However, recently, some of these low power consumption types are provided with a front light, and are used by being turned on as needed.

【0003】バックライトやフロントライトの光源とな
る蛍光ランプの発光原理は、一般の照明用蛍光ランプと
同様である。即ち、電極間の放電によって封入された水
銀ガス、キセノンガス等が励起し、励起したガスから放
射される紫外線によってガラス管の内壁面に塗られた蛍
光体が可視光線を発光するというものである。しかし、
バックライトやフロントライトの光源となる蛍光ランプ
が一般用の蛍光ランプと大きく違う点は、ガラス管の径
が細く、肉厚が薄いところにある。
[0003] The principle of light emission of a fluorescent lamp serving as a light source for a backlight or a front light is the same as that of a general fluorescent lamp for illumination. That is, the enclosed mercury gas, xenon gas, and the like are excited by the discharge between the electrodes, and the phosphor coated on the inner wall surface of the glass tube emits visible light by ultraviolet rays emitted from the excited gas. . But,
The major difference between fluorescent lamps used as light sources for backlights and front lights is that the diameter of the glass tube is small and the wall thickness is small.

【0004】従来、この種の蛍光ランプのガラス管に
は、加工の容易さや照明用ガラスとしてのこれまでの実
績から鉛ソーダ系の軟質ガラスが使用され、導入金属と
しては安価なジュメットが使われていた。
Conventionally, lead-soda-based soft glass has been used for the glass tube of this type of fluorescent lamp because of its ease of processing and the track record of lighting glass, and inexpensive dumet is used as the metal to be introduced. I was

【0005】液晶表示素子の薄型化、軽量化、及び低消
費電力化に伴い、蛍光ランプにもより一層の細径化、薄
肉化が要求されている。しかしながら、蛍光ランプの細
径化は構造的に機械的強度の低下やランプの発熱の増加
を伴うため、ガラス管にはより高強度、且つ低膨張であ
ることが必要となる。また、発光効率の向上のために点
灯回路の高周波化が進められ、これに伴って絶縁体であ
るガラス管には、高い体積抵抗率や、低誘電損失化や低
誘電率化も求められている。このため、従来の鉛ソーダ
系の軟質ガラス材質ではこれらの要求を満足させること
ができなくなってきている。
[0005] As the thickness, weight, and power consumption of liquid crystal display elements are reduced, fluorescent lamps are required to be further reduced in diameter and thickness. However, reducing the diameter of a fluorescent lamp structurally involves a decrease in mechanical strength and an increase in heat generated by the lamp. Therefore, a glass tube needs to have higher strength and lower expansion. In addition, the frequency of lighting circuits has been increased to improve luminous efficiency, and accordingly, glass tubes, which are insulators, are required to have high volume resistivity, low dielectric loss and low dielectric constant. I have. For this reason, it is becoming impossible for conventional lead soda-based soft glass materials to satisfy these requirements.

【0006】そこで、鉛ソーダ系の軟質ガラスよりも熱
的、機械的に強度が高く、電気絶縁性や誘電率、誘電損
失の点でも有利なホウケイ酸系の硬質ガラスを用いて蛍
光ランプを作製することが検討された。その結果、気密
封止可能な硬質ガラスと金属の組合せとして、従来より
知られているコバールガラスとコバール金属を用いた蛍
光ランプが開発され、商品化されている。
Therefore, a fluorescent lamp is manufactured using a borosilicate-based hard glass which has higher thermal and mechanical strength than a lead soda-based soft glass and is advantageous in terms of electric insulation, dielectric constant and dielectric loss. To be considered. As a result, a conventionally known fluorescent lamp using Kovar glass and Kovar metal as a combination of hard glass and metal that can be hermetically sealed has been developed and commercialized.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たバックライト用蛍光ランプのガラス管は以下のような
問題がある。
However, the glass tube of the above-described backlight fluorescent lamp has the following problems.

【0008】(1)励起された水銀ガス等から放出され
る紫外線によってガラスが変色(いわゆる、紫外線ソラ
リゼーション)することによって、輝度の低下や発光色
のずれが起こり、液晶表示素子の品質劣化につながる。
(1) Discoloration (so-called ultraviolet solarization) of glass due to ultraviolet rays emitted from excited mercury gas or the like causes a decrease in luminance and a shift in emission color, leading to a deterioration in quality of a liquid crystal display device. .

【0009】(2)ガラスを透過した紫外線がバックラ
イトやフロントライトを構成する他の部材、例えば樹脂
製の導光板や反射板等を変色、劣化させる。
(2) The ultraviolet light transmitted through the glass discolors and deteriorates other members constituting the backlight and the front light, for example, a light guide plate and a reflection plate made of resin.

【0010】(3)ガラス管に成形し難く、高い寸法精
度を有するガラス管を作製することが難しい。寸法精度
の悪いガラス管を使用すると、蛍光体の均一な塗布がで
きず、輝度ムラが発生する。また蛍光ランプ、導光板、
反射板で構成される光学系において、設計寸法通りにア
ッセンブリすることができず、バックライトユニットや
フロントライトユニット自体の輝度低下や輝度ムラの原
因となる。
(3) It is difficult to form a glass tube, and it is difficult to produce a glass tube having high dimensional accuracy. When a glass tube having poor dimensional accuracy is used, uniform application of the phosphor cannot be performed, and luminance unevenness occurs. Also, fluorescent lamps, light guide plates,
In an optical system composed of a reflector, it is not possible to assemble according to the design dimensions, which causes a decrease in luminance or luminance unevenness of the backlight unit or the front light unit itself.

【0011】(4)250℃におけるガラスの体積抵抗
率が108.5Ω・cm程度であり、電気絶縁性が不十分
である。細径、長尺、高輝度の蛍光ランプでは、点灯の
ために印加する電圧が高く、数百ボルトに達している。
ところが電気絶縁性が高くない従来のガラスでは、リー
クが起こって発熱し、最悪の場合はガラスが溶解してラ
ンプ機能が完全に失われてしまうことがある。
(4) The volume resistivity of the glass at 250 ° C. is about 10 8.5 Ω · cm, and the electrical insulation is insufficient. In a small-diameter, long, and high-luminance fluorescent lamp, a voltage applied for lighting is high, reaching several hundred volts.
However, in the case of conventional glass having low electrical insulation, heat is generated due to leakage, and in the worst case, the glass may be melted and the lamp function may be completely lost.

【0012】そこで、本発明の目的は、耐紫外線ソラリ
ゼーション性、紫外線遮蔽性、失透性、及び電気絶縁性
に優れ、バックライトやフロントライトの蛍光ランプ用
ガラス管として好適なコバールシールガラスを提供する
ことにある。
Accordingly, an object of the present invention is to provide a Kovar sealed glass which is excellent in ultraviolet solarization resistance, ultraviolet shielding properties, devitrification properties, and electrical insulation properties and is suitable as a glass tube for a fluorescent lamp of a backlight or a front light. Is to do.

【0013】[0013]

【課題を解決するための手段】本発明の蛍光ランプ用コ
バールシールガラスは、質量百分率で、SiO2 55
〜73%、B23 6.5〜25%、Al23 0〜1
0%、Li2O+Na2O+K2O 4〜20%、Li2
0〜10% Na2O 0〜10% K2O 0〜15
% CeO2 0.01〜4%、TiO20〜10%の組
成を有し、Sb23、As23、Fe23の含有量が各
々0.1%以下であることを特徴とする。
The Kovar seal glass for a fluorescent lamp according to the present invention is composed of SiO 2 55 in terms of mass percentage.
~73%, B 2 O 3 6.5~25 %, Al 2 O 3 0~1
0%, Li 2 O + Na 2 O + K 2 O 4~20%, Li 2 O
0~10% Na 2 O 0~10% K 2 O 0~15
% CeO 2 0.01-4%, TiO 2 0-10%, and the contents of Sb 2 O 3 , As 2 O 3 and Fe 2 O 3 are each 0.1% or less. Features.

【0014】[0014]

【発明の実施の形態】本発明の蛍光ランプ用コバールシ
ールガラスにおいて、各成分の含有量を上記のように限
定した理由は以下の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the Kovar seal glass for a fluorescent lamp according to the present invention, the contents of the respective components are limited as described above for the following reasons.

【0015】SiO2は、ガラスの骨格を構成するため
に必要な主成分であり、その含有量は55〜73%、好
ましくは63〜72%である。SiO2 が73%より多
いと失透性が急激に悪化する。またシリカ原料の溶融に
時間がかかり、大量生産に適さなくなる。さらに、ガラ
スの熱膨張係数が小さくなりすぎてコバールのそれと適
合せず、シールが困難になる。一方、SiO2 が55%
より少ないと化学的耐久性が悪化するために、ガラス表
面にヤケ等が生じて透過率が低下し、蛍光ランプの輝度
低下を招く。またガラスの熱膨張係数が大きくなりすぎ
てコバールのそれと適合せず、シールが困難になる。
[0015] SiO 2 is a main component necessary for constituting the glass skeleton, and its content is 55 to 73%, preferably 63 to 72%. If the content of SiO 2 is more than 73%, the devitrification deteriorates rapidly. In addition, it takes a long time to melt the silica raw material, and it is not suitable for mass production. In addition, the coefficient of thermal expansion of the glass is too low to match that of Kovar, making sealing difficult. On the other hand, 55% of SiO 2
If the amount is less than the above, the chemical durability deteriorates, so that the surface of the glass is burnt and the transmittance is reduced, and the luminance of the fluorescent lamp is reduced. Also, the thermal expansion coefficient of the glass becomes too large to match that of Kovar, making sealing difficult.

【0016】B23は、溶融性の向上、粘度の調整、及
び化学的耐久性の向上のために必要な成分であり、その
含有量は6.5〜25%、好ましくは10.5〜22%
でありなお好ましくは15〜20%である。B23が2
5%より多いとガラス融液からの蒸発が多くなって均質
なガラスが得られなくなったり、ランプ製造工程中の熱
加工時に蒸発して部材を汚染するといった問題が生じ
る。また、ガラスの化学的耐久性が悪化する。一方、B
23が6.5%より少ないと粘度が高くなりすぎて溶
融、加工が困難になる。
B 2 O 3 is a component necessary for improving the melting property, adjusting the viscosity and improving the chemical durability, and its content is 6.5 to 25%, preferably 10.5%. ~ 22%
And still more preferably 15 to 20%. B 2 O 3 is 2
If it is more than 5%, evaporation from the glass melt will increase and it will not be possible to obtain homogeneous glass, or there will be problems such as evaporation during thermal processing during the lamp manufacturing process and contamination of the member. Further, the chemical durability of the glass deteriorates. On the other hand, B
If the content of 2 O 3 is less than 6.5%, the viscosity becomes so high that melting and processing become difficult.

【0017】Al23は、ガラスの失透性を大きく改善
する成分であり、その含有量は0〜10%、好ましくは
2.5〜4.4%である。Al23が10%より多いと
ガラス融液の粘度が高くなりすぎて、泡や脈理のないガ
ラスが得られなくなる。一方、Al23が2.5%より
少ないと上記した効果が小さくなり、均質なガラスの製
造や安定した成形が困難になる傾向にある。
Al 2 O 3 is a component that greatly improves the devitrification of glass, and its content is 0 to 10%, preferably 2.5 to 4.4%. If the content of Al 2 O 3 is more than 10%, the viscosity of the glass melt becomes too high, so that glass without bubbles or stria cannot be obtained. On the other hand, if the content of Al 2 O 3 is less than 2.5%, the above-mentioned effect is reduced, and it tends to be difficult to produce a homogeneous glass and to stably form the glass.

【0018】アルカリ金属酸化物であるLi2O、Na2
O、及びK2Oはガラスの溶融を容易にし、熱膨張係数
や粘度を調節するために添加する成分であり、その含有
量は合量で4〜20%、好ましくは4〜16%である。
これら成分の合量が20%より多いと熱膨張係数が高く
なりすぎるためコバールシールには適さず、且つ化学的
耐久性の大幅な低下を招く。また体積抵抗が悪化する。
一方、これらの合量が4%未満ではガラス化が困難にな
り、また熱膨張係数が小さくなり過ぎる。
Li 2 O, Na 2 which is an alkali metal oxide
O and K 2 O are components added for facilitating melting of the glass and for adjusting the coefficient of thermal expansion and the viscosity, and the total content thereof is 4 to 20%, preferably 4 to 16%. .
If the total amount of these components is more than 20%, the coefficient of thermal expansion becomes too high, which is not suitable for Kovar seals, and causes a significant decrease in chemical durability. In addition, the volume resistance deteriorates.
On the other hand, if the total amount is less than 4%, vitrification becomes difficult, and the coefficient of thermal expansion becomes too small.

【0019】Li2O、Na2O、及びK2Oの含有量
は、Li2O 0〜10%(特に0〜2%)、Na2
0〜10%(特に0〜4.3%)、K2O 0〜15%
(特に1〜11%)であることが好ましい。なお、Li
2Oが2%を超えると分相が発生しやすくなり10%を
越えると成形性が損なわれる。Na2Oが4.3%を超
えると熱膨張係数が大きくなりすぎる傾向があり、10
%を越えるとコバールと熱膨張係数が合致しない。また
耐候性が悪化する。K2Oが11%を超えると熱膨張係
数が大きくなりやすく、15%を超えるとコバールと熱
膨張係数が合致しない。1%未満では熱膨張係数が小さ
く、またガラス化し難くなる傾向が認められる。
[0019] Li 2 O, Na 2 O, and K 2 O content is, Li 2 O 0~10% (particularly 0~2%), Na 2 O
0-10% (especially 0~4.3%), K 2 O 0~15 %
(Especially 1 to 11%). Note that Li
If 2 O exceeds 2%, phase separation is likely to occur, and if it exceeds 10%, moldability is impaired. If the content of Na 2 O exceeds 4.3%, the coefficient of thermal expansion tends to be too large.
%, The Kovar does not match the coefficient of thermal expansion. Also, the weather resistance is deteriorated. If K 2 O exceeds 11%, the coefficient of thermal expansion tends to increase, and if it exceeds 15%, Kovar does not match the coefficient of thermal expansion. If it is less than 1%, a coefficient of thermal expansion is small and a tendency to vitrify hardly is recognized.

【0020】TiO2はソラリゼーションを防止する目
的で導入され、その範囲は0〜10%、好ましくは6%
以下である。6%を超えると可視光の吸収が大きくな
り、蛍光ランプとして必要な輝度や色調が得られなくな
る。また、10%を越えると結晶が発生しやすくなる。
TiO 2 is introduced for the purpose of preventing solarization, and its range is from 0 to 10%, preferably 6%.
It is as follows. If it exceeds 6%, the absorption of visible light increases, and the luminance and color tone required for a fluorescent lamp cannot be obtained. On the other hand, if it exceeds 10%, crystals are likely to be generated.

【0021】CeO2は高い紫外線遮蔽性を持ち、紫外
線によるソラリゼーションを防止できる。その含有量は
0.01〜4%である。0.01%よりも少なければそ
の効果が認められず、4%を越えると可視光の吸収が大
きくなり、蛍光ランプとして必要な輝度や色調が得られ
なくなる。ただしCeO2の効果を得るためには、不純
物の管理をする必要がある。つまり本発明のガラス組成
系においては、特定の不純物により着色が加速されるた
めである。
CeO 2 has a high ultraviolet shielding property and can prevent solarization due to ultraviolet rays. Its content is 0.01-4%. If it is less than 0.01%, the effect is not recognized. If it exceeds 4%, the absorption of visible light increases, and the luminance and color tone required for a fluorescent lamp cannot be obtained. However, in order to obtain the effect of CeO 2 , it is necessary to manage impurities. That is, in the glass composition system of the present invention, coloring is accelerated by specific impurities.

【0022】特定の不純物とはSb23、As23、F
23であり、各々0.1%以下、好ましくは各々0.
03%以下、さらに好ましくは各々0.02%以下に制
限する必要がある。これらの不純物の含有量が上記範囲
を超えると、CeO2の価数が4価にずれ、可視光の吸
収が大きくなり、蛍光ランプとして必要な輝度や色調が
得られなくなる。同様の理由で、SO3も0.2%以下
にすることが望まれる。
The specific impurities are Sb 2 O 3 , As 2 O 3 , F
e 2 O 3 , each 0.1% or less, preferably each 0.1%.
It is necessary to limit it to not more than 03%, more preferably not more than 0.02%. When the content of these impurities exceeds the above range, the valence of CeO 2 shifts to tetravalent, the absorption of visible light increases, and the luminance and color tone required for a fluorescent lamp cannot be obtained. For the same reason, it is desired that SO 3 be 0.2% or less.

【0023】さらにガラスの耐候性を上げる目的でMg
O、CaO、ZnOを、またガラスの融点を下げる目的
でSrO、BaOを適宜含有させることができる。なお
これらの含有量は、各々6%以下であることが好まし
い。
In order to further improve the weather resistance of the glass, Mg
O, CaO, ZnO and SrO, BaO can be appropriately contained for the purpose of lowering the melting point of glass. The content of each of these is preferably 6% or less.

【0024】また清澄剤として、AlN等の窒化物、N
aCl等の塩化物、NaF等のフッ化物、NaNO3
の硝酸塩等を含有させることができる。
As a fining agent, nitride such as AlN, N
Chloride such as aCl, fluoride such as NaF, nitrate such as NaNO 3 can be contained.

【0025】上記組成を有する本発明のコバールシール
ガラスは、30〜380℃の温度範囲における熱膨張係
数が43〜55×10-7/℃、液相線粘度が105dP
a・s以上、250℃における体積抵抗率が108.7Ω
・cm以上であり、しかも耐紫外線ソラリゼーション性
や紫外線遮蔽性が高いという性質を有している。
The Kovar seal glass of the present invention having the above composition has a thermal expansion coefficient of 43 to 55 × 10 −7 / ° C. in a temperature range of 30 to 380 ° C. and a liquidus viscosity of 10 5 dP.
a · s or more, volume resistivity at 250 ° C. is 10 8.7 Ω
Cm or more, and has a property of high ultraviolet solarization resistance and ultraviolet shielding property.

【0026】[0026]

【実施例】以下、本発明のコバールシールガラスを実施
例に基づいて説明する。
The Kovar seal glass of the present invention will be described below with reference to examples.

【0027】下記表1〜2は本発明の実施例(試料N
o.1〜10)、下記表3は比較例(試料No.11〜
15)を各示している。なお、試料No.14は、従来
の蛍光ランプで使用されているコバールシールガラスで
ある。本来は、レンズ用として開発されたものである。
No.15は従来からのジュメットを使用する蛍光用ガ
ラス組成で熱膨張係数は95×10-7/℃である。
Tables 1 and 2 below show examples of the present invention (sample N
o. 1 to 10), and Table 3 below shows comparative examples (Sample Nos. 11 to 11).
15) are shown. The sample No. Reference numeral 14 denotes Kovar seal glass used in a conventional fluorescent lamp. Originally, it was developed for lenses.
No. Reference numeral 15 denotes a conventional fluorescent glass composition using Dumet, which has a coefficient of thermal expansion of 95 × 10 −7 / ° C.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】まず、上記表に示す組成となるようにガラ
ス原料を調合した後、白金坩堝を用いて1550℃で8
時間溶融した。溶融後、融液を所定の形状に成形、加工
して各ガラス試料を作製した。
First, a glass raw material was prepared so as to have the composition shown in the above table, and then was heated at 1550 ° C. for 8 hours using a platinum crucible.
Melted for hours. After melting, the melt was shaped and processed into a predetermined shape to produce each glass sample.

【0032】実施例及びに比較例の組成は調合組成より
計算で求めた。Fe23、Sb23、As23は化学分
析で求めた。
The compositions of the examples and comparative examples were calculated from the prepared compositions. Fe 2 O 3 , Sb 2 O 3 , and As 2 O 3 were determined by chemical analysis.

【0033】次に、各試料について、線膨張係数、紫外
線照射前後の可視域における分光透過率差、紫外域にお
ける分光透過率、液相線の温度とその粘度、及び体積抵
抗率を測定した。結果を表1〜3に示す。なお液相粘度
及び体積抵抗率は、対数値で示した。
Next, for each sample, the linear expansion coefficient, the difference in spectral transmittance in the visible region before and after irradiation with ultraviolet light, the spectral transmittance in the ultraviolet region, the temperature and viscosity of the liquidus line, and the volume resistivity were measured. The results are shown in Tables 1 to 3. The liquidus viscosity and the volume resistivity are shown in logarithmic values.

【0034】上記表から明らかなように、本発明の実施
例であるNo.1〜10の試料は、線膨張係数が43.
0〜53.2×10-7/℃、紫外線照射による可視光透
過率の低下が1.9%以下、紫外線透過率が1.8%以
下、液相線粘度が105.5dPa・s以上、体積抵抗率
が1010.1Ω・cm以上であった。
As is clear from the above table, No. 1 which is an embodiment of the present invention. Samples 1 to 10 have a coefficient of linear expansion of 43.
0-53.2 × 10 −7 / ° C., decrease in visible light transmittance by ultraviolet irradiation is 1.9% or less, ultraviolet transmittance is 1.8% or less, liquidus viscosity is 10 5.5 dPa · s or more, The volume resistivity was 10 10.1 Ω · cm or more.

【0035】それに対して、比較例であるNo.11〜
13の試料は、Fe23、Sb23、As23を多量に
含有するために可視光における透過率が90%以下と低
い。比較例であるNo.14の試料は、紫外線照射によ
る可視光透過率の低下が8.6%と大きく、紫外線透過
率が5.2%と高かった。No.15の試料は、紫外線
照射による可視光透過率の低下が7.3%と大きく、紫
外線透過率も6.3%と高かった。しかも体積抵抗率が
108.4Ω・cmと低かった。
On the other hand, the comparative example No. 11-
The sample No. 13 contains a large amount of Fe 2 O 3 , Sb 2 O 3 , and As 2 O 3, and thus has a low visible light transmittance of 90% or less. No. of Comparative Example. For sample No. 14, the decrease in visible light transmittance due to ultraviolet irradiation was as large as 8.6%, and the ultraviolet transmittance was as high as 5.2%. No. For the 15 samples, the decrease in visible light transmittance due to ultraviolet irradiation was as large as 7.3%, and the ultraviolet light transmittance was as high as 6.3%. Moreover, the volume resistivity was as low as 108.4 Ω · cm.

【0036】なお、表中の線膨張係数は、ガラスを直径
約3mm、長さ約50mmの円柱に加工した後に、自記
示差熱膨張計で、30〜380℃の温度範囲における平
均線膨張係数を測定したものである。
The coefficient of linear expansion in the table is obtained by processing a glass into a cylinder having a diameter of about 3 mm and a length of about 50 mm, and then measuring the average coefficient of linear expansion in a temperature range of 30 to 380 ° C. Measured.

【0037】可視光における透過率は次のようにして評
価した。まず厚さ1mmの板状ガラスの両面を鏡面研磨
して試料を得た。次いで400nm光の波長での透過率
を測定した。
The transmittance in the visible light was evaluated as follows. First, both surfaces of a 1 mm-thick plate glass were mirror-polished to obtain a sample. Next, the transmittance at a wavelength of 400 nm light was measured.

【0038】耐紫外線ソラリゼーション性は次のように
して評価した。まず、厚さ1mmの板状ガラスの両面を
鏡面研磨して試料を得た。次いで紫外線照射前の試料の
透過率が80%を示す光の波長を測定した。さらにその
試料に40Wの低圧水銀ランプによって主波長253.
7nmの紫外線を60分間照射した後、照射前に透過率
80%を示した波長における透過率を改めて測定するこ
とによって、紫外線照射による透過率の低下を求めた。
この時、耐紫外線ソラリゼーション性の劣るガラスほど
この透過率低下が大きくなるが、液晶バックライト等の
蛍光ランプ用ガラス管としては、この低下が殆どないこ
とが重要である。
The ultraviolet solarization resistance was evaluated as follows. First, both surfaces of a 1 mm-thick plate glass were mirror-polished to obtain a sample. Next, the wavelength of light at which the sample had a transmittance of 80% before ultraviolet irradiation was measured. The sample was further subjected to a dominant wavelength of 253.
After irradiating with a 7 nm ultraviolet ray for 60 minutes, the transmittance at a wavelength showing a transmittance of 80% was measured again before the irradiation to determine a decrease in the transmittance due to the ultraviolet ray irradiation.
At this time, the lower the transmittance of the glass is, the lower the resistance to ultraviolet solarization is. However, it is important that the glass tube for a fluorescent lamp such as a liquid crystal backlight has almost no such reduction.

【0039】紫外域における分光透過率は、両面を鏡面
研磨した厚さ0.3mmの板ガラス試料を作製し、波長
253.7nmの分光透過率を測定した。なお253.
7nmの波長は水銀の輝線である。本発明の用途では、
この波長の透過率が低いほどよい。
The spectral transmittance in the ultraviolet region was determined by measuring a spectral transmittance at a wavelength of 253.7 nm by preparing a 0.3 mm-thick plate glass sample whose both surfaces were mirror-polished. Note that 253.
The wavelength of 7 nm is a mercury emission line. In the application of the present invention,
The lower the transmittance of this wavelength, the better.

【0040】液相線の温度及び粘度は次のようにして求
めた。まず、粒径0.1mm程度に粉砕したガラスをボ
ート状の白金容器に入れ、温度勾配炉に24時間保持し
た後、取り出した。この試料を顕微鏡で観察して結晶の
初相が出る温度(液相線温度)を測定し、次いで予め測
定しておいた当該ガラスの温度と粘度の関係から、初相
の温度に対応する粘度(液相線粘度)を求めた。
The temperature and viscosity of the liquidus were determined as follows. First, glass pulverized to a particle size of about 0.1 mm was put in a boat-shaped platinum container, kept in a temperature gradient furnace for 24 hours, and then taken out. This sample is observed with a microscope to measure the temperature at which the initial phase of the crystal comes out (liquidus temperature). Then, from the relationship between the temperature and the viscosity of the glass measured in advance, the viscosity corresponding to the temperature of the initial phase is determined. (Liquidus viscosity) was determined.

【0041】体積抵抗率は、ASTM C−657に準
拠する方法により、250℃における値を測定した。例
えば数百ボルトの比較的高電圧で連続点灯されるφ2.
6管の冷陰極蛍光ランプの場合、電極付近の温度は20
0℃を超えることもあり、絶縁破壊を起こさないために
は、体積抵抗率は250℃で108.7Ω・cm以上が必
要である。
The volume resistivity was measured at a temperature of 250 ° C. by a method based on ASTM C-657. For example, φ2. Is continuously lit at a relatively high voltage of several hundred volts.
In the case of a 6-tube cold-cathode fluorescent lamp, the temperature near the electrodes is 20
The volume resistivity may exceed 0 ° C., and the volume resistivity at 250 ° C. must be 10 8.7 Ω · cm or more in order to prevent dielectric breakdown.

【0042】[0042]

【発明の効果】以上のように本発明の蛍光ランプ用コバ
ールシールガラスは、コバール金属との封着に適した4
3〜55×10-7/℃の熱膨張係数を有し、しかも優れ
た耐紫外線ソラリゼーション性、紫外線遮蔽性、失透
性、及び電気絶縁性を有するため、蛍光ランプ用ガラス
管、特に高品位が要求される液晶表示素子用蛍光ランプ
のガラス管材質として好適である。
As described above, the Kovar seal glass for a fluorescent lamp of the present invention is suitable for sealing with Kovar metal.
Glass tubes for fluorescent lamps, especially high quality, having a thermal expansion coefficient of 3 to 55 × 10 −7 / ° C. and excellent ultraviolet solarization resistance, ultraviolet shielding properties, devitrification properties, and electrical insulation properties. It is suitable as a glass tube material for a fluorescent lamp for a liquid crystal display element requiring the following.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G062 AA08 AA09 DA06 DA07 DB01 DB02 DB03 DC03 DC04 DD01 DE01 DF01 EA01 EA02 EA03 EA10 EB01 EB02 EB03 EC01 EC02 EC03 EC04 ED01 EE01 EF01 EG01 FA01 FB01 FB02 FB03 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL02 FL03 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM09 MM26 NN29 NN35  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G062 AA08 AA09 DA06 DA07 DB01 DB02 DB03 DC03 DC04 DD01 DE01 DF01 EA01 EA02 EA03 EA10 EB01 EB02 EB03 EC01 EC02 EC03 EC04 ED01 EE01 EF01 EG01 FA01 FB01 FF01 FF01 FC01 FJ01 FK01 FL02 FL03 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM09 MM26 NN26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量百分率で、SiO2 55〜73
%、B23 6.5〜25%、Al23 0〜10%、
Li2O+Na2O+K2O 4〜20%、Li2O 0〜
10% Na2O 0〜10% K2O 0〜15% C
eO2 0.01〜4%、TiO20〜10%の組成を有
し、Sb23、As23、Fe23の含有量が各々0.
1%以下であることを特徴とする蛍光ランプ用コバール
シールガラス。
1. The composition according to claim 1, wherein the mass percentage is SiO 2 55-73.
%, B 2 O 3 6.5~25% , Al 2 O 3 0~10%,
Li 2 O + Na 2 O + K 2 O 4 to 20%, Li 2 O 0 to 0
10% Na 2 O 0~10% K 2 O 0~15% C
eO 2 0.01 to 4%, has a composition of TiO 2 0~10%, Sb 2 O 3, As 2 O 3, Fe 2 O 0 content each of the three.
Kovar seal glass for fluorescent lamps, wherein the content is 1% or less.
【請求項2】 肉厚0.3mmにおいて、254.7n
mでの透過率が2%以下であり、肉厚1mmでの400
nmでの透過率が90%以上であることを特徴とする請
求項1の蛍光ランプ用コバールシールガラス。
2. When the thickness is 0.3 mm, 254.7 n
m is 2% or less, and 400 at 1 mm wall thickness.
2. The Kovar seal glass for a fluorescent lamp according to claim 1, wherein the transmittance in nm is 90% or more.
【請求項3】 熱膨張係数が43〜55×10-7/℃で
あることを特徴とする請求項1の蛍光ランプ用コバール
シールガラス。
3. The Kovar seal glass for a fluorescent lamp according to claim 1, wherein the coefficient of thermal expansion is 43 to 55 × 10 −7 / ° C.
JP2000382680A 2000-12-15 2000-12-15 Kovar seal glass for fluorescent lamps Expired - Fee Related JP4743650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382680A JP4743650B2 (en) 2000-12-15 2000-12-15 Kovar seal glass for fluorescent lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382680A JP4743650B2 (en) 2000-12-15 2000-12-15 Kovar seal glass for fluorescent lamps

Publications (2)

Publication Number Publication Date
JP2002187734A true JP2002187734A (en) 2002-07-05
JP4743650B2 JP4743650B2 (en) 2011-08-10

Family

ID=18850467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382680A Expired - Fee Related JP4743650B2 (en) 2000-12-15 2000-12-15 Kovar seal glass for fluorescent lamps

Country Status (1)

Country Link
JP (1) JP4743650B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525208A (en) * 2003-05-02 2006-11-09 デグサ アクチエンゲゼルシャフト Multicomponent glass
WO2007119705A1 (en) * 2006-04-14 2007-10-25 Nippon Electric Glass Co., Ltd. Glass for illumination
US7667791B2 (en) 2005-03-25 2010-02-23 Asahi Techno Glass Corporation Ultraviolet absorbing glass, glass tube for fluorescent lamp using same, and method for producing ultraviolet absorbing glass for fluorescent lamp
US20130090227A1 (en) * 2010-07-01 2013-04-11 Nippon Electric Glass Co., Ltd. Lead-free glass for semiconductor encapsulation
JP2015205814A (en) * 2008-09-30 2015-11-19 株式会社オハラ Optical glass and method for inhibiting degradation of spectral transmittance
KR20190101428A (en) * 2016-12-29 2019-08-30 코닝 인코포레이티드 Solarization Resistant Rare Earth Doped Glasses
WO2019181207A1 (en) * 2018-03-22 2019-09-26 日本電気硝子株式会社 Precision glass tube and method for producing same
CN110950538A (en) * 2018-09-27 2020-04-03 湖南嘉业达电子有限公司 Preparation method of low-expansion high-temperature-resistant environment-friendly medium-low-temperature transparent glass glaze
CN111777327A (en) * 2020-07-20 2020-10-16 成都光明光电股份有限公司 Glass composition, glass article and method for producing same
CN111777326A (en) * 2020-07-20 2020-10-16 成都光明光电股份有限公司 Environment-friendly glass material, environment-friendly glass product and manufacturing method thereof
CN114195397A (en) * 2021-12-20 2022-03-18 西安赛尔电子材料科技有限公司 Glass-metal sealing material for conductor assembly of pressurized water reactor electrical penetration assembly and preparation method
CN116768483A (en) * 2023-08-17 2023-09-19 赣州中傲新瓷科技有限公司 Composite glass granulating powder for sealing kovar alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068776A (en) * 2000-06-16 2002-03-08 Asahi Techno Glass Corp GLASS SUITABLE FOR SEALING Fe-Ni-Co BASED ALLOY

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203737A (en) * 1983-05-02 1984-11-17 Nippon Denki Shinku Glass Kk Glass for sealing metal
JP2532045B2 (en) * 1992-02-05 1996-09-11 東芝硝子株式会社 Lighting glass composition
JPH08333132A (en) * 1995-06-05 1996-12-17 Nippon Electric Glass Co Ltd Glass for sealing kovar
JP3575114B2 (en) * 1995-06-05 2004-10-13 日本電気硝子株式会社 Kovar sealing glass
JP3903489B2 (en) * 1995-09-14 2007-04-11 日本電気硝子株式会社 Tungsten sealing glass
JP3903490B2 (en) * 1995-10-09 2007-04-11 日本電気硝子株式会社 Kovar sealing glass
JPH11292565A (en) * 1998-04-13 1999-10-26 Nippon Sheet Glass Co Ltd Ultraviolet ray and infrared ray absorbing low transmission glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068776A (en) * 2000-06-16 2002-03-08 Asahi Techno Glass Corp GLASS SUITABLE FOR SEALING Fe-Ni-Co BASED ALLOY

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525208A (en) * 2003-05-02 2006-11-09 デグサ アクチエンゲゼルシャフト Multicomponent glass
US7667791B2 (en) 2005-03-25 2010-02-23 Asahi Techno Glass Corporation Ultraviolet absorbing glass, glass tube for fluorescent lamp using same, and method for producing ultraviolet absorbing glass for fluorescent lamp
WO2007119705A1 (en) * 2006-04-14 2007-10-25 Nippon Electric Glass Co., Ltd. Glass for illumination
JP2007302551A (en) * 2006-04-14 2007-11-22 Nippon Electric Glass Co Ltd Glass for illumination
JP2015205814A (en) * 2008-09-30 2015-11-19 株式会社オハラ Optical glass and method for inhibiting degradation of spectral transmittance
US20130090227A1 (en) * 2010-07-01 2013-04-11 Nippon Electric Glass Co., Ltd. Lead-free glass for semiconductor encapsulation
US9230872B2 (en) * 2010-07-01 2016-01-05 Nippon Electric Glass Co., Ltd. Lead-free glass for semiconductor encapsulation
KR102526728B1 (en) 2016-12-29 2023-04-27 코닝 인코포레이티드 Solarization Resistant Rare Earth Doped Glasses
KR20190101428A (en) * 2016-12-29 2019-08-30 코닝 인코포레이티드 Solarization Resistant Rare Earth Doped Glasses
WO2019181207A1 (en) * 2018-03-22 2019-09-26 日本電気硝子株式会社 Precision glass tube and method for producing same
JPWO2019181207A1 (en) * 2018-03-22 2021-03-11 日本電気硝子株式会社 Precision glass tube and its manufacturing method
JP7202534B2 (en) 2018-03-22 2023-01-12 日本電気硝子株式会社 Precision glass tube and its manufacturing method
CN110950538B (en) * 2018-09-27 2022-05-03 湖南嘉业达电子有限公司 Preparation method of low-expansion high-temperature-resistant environment-friendly medium-low-temperature transparent glass glaze
CN110950538A (en) * 2018-09-27 2020-04-03 湖南嘉业达电子有限公司 Preparation method of low-expansion high-temperature-resistant environment-friendly medium-low-temperature transparent glass glaze
CN111777327A (en) * 2020-07-20 2020-10-16 成都光明光电股份有限公司 Glass composition, glass article and method for producing same
CN111777326A (en) * 2020-07-20 2020-10-16 成都光明光电股份有限公司 Environment-friendly glass material, environment-friendly glass product and manufacturing method thereof
CN114195397A (en) * 2021-12-20 2022-03-18 西安赛尔电子材料科技有限公司 Glass-metal sealing material for conductor assembly of pressurized water reactor electrical penetration assembly and preparation method
CN116768483A (en) * 2023-08-17 2023-09-19 赣州中傲新瓷科技有限公司 Composite glass granulating powder for sealing kovar alloy and preparation method thereof
CN116768483B (en) * 2023-08-17 2023-11-17 赣州中傲新瓷科技有限公司 Composite glass granulating powder for sealing kovar alloy and preparation method thereof

Also Published As

Publication number Publication date
JP4743650B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
TWI224584B (en) The tungsten glass used for fluorescent lamp
US5854153A (en) Glasses for display panels
JP2002293571A (en) Glass for illumination
US5747399A (en) Glass for a fluorescent lamp
JP2004091308A (en) Glass for lighting
JP4743650B2 (en) Kovar seal glass for fluorescent lamps
JP2004315279A (en) Glass for fluorescent lamp
JP2006089342A (en) Glass for fluorescent lamp
JP3771429B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP3903490B2 (en) Kovar sealing glass
JP3818571B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP4686849B2 (en) Tungsten seal glass for fluorescent lamps
JP3575114B2 (en) Kovar sealing glass
JP4919399B2 (en) Ultraviolet absorbing glass for fluorescent lamp, glass tube for fluorescent lamp using the same, and method for producing ultraviolet absorbing glass for fluorescent lamp
WO2008029518A1 (en) Ultraviolet-absorbing glass tube for fluorescent lamp and glass tube comprising the same for fluorescent lamp
JP3903489B2 (en) Tungsten sealing glass
KR100945864B1 (en) Glass for a backlighting lamp
JP3899538B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp
JP2004315280A (en) Glass for fluorescent lamp
JP3520626B2 (en) Enclosure for small diameter fluorescent lamp and small diameter fluorescent lamp
JP2002060241A (en) Glass for sealing tungsten
JP3786397B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2002060240A (en) Glass for sealing tungsten
JP2004099439A (en) Method for using kovar sealing glass
JP4187002B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110501

LAPS Cancellation because of no payment of annual fees