JP2002180356A - Three-dimensional fiber structure - Google Patents

Three-dimensional fiber structure

Info

Publication number
JP2002180356A
JP2002180356A JP2000375732A JP2000375732A JP2002180356A JP 2002180356 A JP2002180356 A JP 2002180356A JP 2000375732 A JP2000375732 A JP 2000375732A JP 2000375732 A JP2000375732 A JP 2000375732A JP 2002180356 A JP2002180356 A JP 2002180356A
Authority
JP
Japan
Prior art keywords
yarn
dimensional
thickness direction
yarns
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000375732A
Other languages
Japanese (ja)
Other versions
JP4062879B2 (en
Inventor
Yoshiharu Yasui
義治 安居
Fujio Hori
藤夫 堀
Ryuta Kamiya
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2000375732A priority Critical patent/JP4062879B2/en
Publication of JP2002180356A publication Critical patent/JP2002180356A/en
Application granted granted Critical
Publication of JP4062879B2 publication Critical patent/JP4062879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a three-dimensional fiber structure which is relatively simply produced, has a high density and a heat conductivity required when made into a reinforcing material of a composite material to be used as a heat radiation member. SOLUTION: This three-dimensional fiber structure 1 is constituted of rods 2 inserted into a three-dimensional wove fabric F. The three-dimensional woven fabric F comprises a laminated yarn group 5 in which a plurality of (x) yarn layers 3 and a plurality of (y) yarn layers 4 of yarns arranged mutually in parallel are laminated so as to form an in-plane biaxial orientation and yarns (z) in the thickness direction arranged in the direction intersecting at right angles with the (x) yarn layers 3 and the (y) yarn layers 4 of the laminated yarn group 5, and has a constitution of the yarns arranged in the triaxial directions. The rods 2 are inserted in parallel with the yarns Z in the thickness direction. The rods 2 are composed of a fiber-reinforced composite material using carbon fiber as a reinforcing fiber and formed in the same length as the thickness of the three-dimensional fabric F. The arranged (x) yarns and (y) yarns and the yarns (z) in the thickness direction are obtained by using carbon fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は三次元繊維構造体に
関するものである。
TECHNICAL FIELD The present invention relates to a three-dimensional fiber structure.

【0002】[0002]

【従来の技術】繊維強化複合材は軽量の構造材料として
広く使用されている。複合材用補強基材として三次元織
物(三次元繊維構造体)がある。この三次元織物を骨格
材として、樹脂あるいは無機物をマトリックスとした複
合材はロケット、航空機、自動車、船舶及び建築物の構
造材として幅広い用途が期待されている。
BACKGROUND OF THE INVENTION Fiber reinforced composites are widely used as lightweight structural materials. There is a three-dimensional woven fabric (three-dimensional fiber structure) as a reinforcing base material for a composite material. A composite material using this three-dimensional fabric as a skeleton material and a resin or an inorganic material as a matrix is expected to be widely used as a structural material for rockets, aircraft, automobiles, ships, and buildings.

【0003】実公平3−24356号公報には、補強繊
維からなる複数枚の織物が、それら各織物の織目が互い
に一致するように積層され、かつその積層体には、繊維
強化樹脂又は繊維強化金属からなる棒体が前記織目に挿
通された複合材料用三次元繊維組織体が開示されてい
る。
[0003] Japanese Utility Model Publication No. 3-24356 discloses that a plurality of woven fabrics composed of reinforcing fibers are laminated so that the textures of the respective woven fabrics coincide with each other, and the laminated body includes a fiber-reinforced resin or fiber. A three-dimensional fibrous structure for a composite material in which a rod made of reinforced metal is inserted into the weave is disclosed.

【0004】また、特開平11−49578号公報に
は、半導体装置用放熱部材として、黒鉛化カーボンのマ
トリックスに、黒鉛化カーボン長繊維を電子部品搭載面
と平行に2次元面内で直交又は所定の角度に疑似等方で
配列し、さらに電子部品搭載面に垂直な方向に配向した
繊維群を有する黒鉛化カーボン繊維/黒鉛化カーボンの
複合体が提案されている。
Japanese Patent Application Laid-Open No. H11-49578 discloses that as a heat dissipation member for a semiconductor device, a graphitized carbon long fiber is interspersed with a matrix of graphitized carbon in a two-dimensional plane in parallel with a mounting surface of an electronic component. A graphitized carbon fiber / graphitized carbon composite having fibers arranged in a pseudo-isotropic manner at an angle and oriented in a direction perpendicular to the electronic component mounting surface has been proposed.

【0005】[0005]

【発明が解決しようとする課題】複合材は一般にマトリ
ックスの量が少ない方が強度は強くなる。従って、三次
元繊維構造体を使用して複合材を構成する場合、三次元
繊維構造体の密度が高い方が複合材の強度が強くなる。
ところが、実公平3−24356号公報に開示された三
次元繊維組織体のように、二次元の織物を積層した状態
で棒体を織目に挿通して三次元化したものでは、層間を
締め付ける力が弱く、形態保持が難しく、取り扱いが難
しい。特に熱伝導率を高める目的で高温焼成処理してグ
ラファイト化を進行させた場合、繊維構造体としての一
体性が損なわれ易い。
The strength of a composite material generally increases as the amount of matrix decreases. Therefore, when a composite material is formed using a three-dimensional fiber structure, the strength of the composite material increases as the density of the three-dimensional fiber structure increases.
However, in a three-dimensional fiber structure body disclosed in Japanese Utility Model Publication No. 3-24356, a rod body is inserted into a weave in a state where two-dimensional woven fabrics are laminated to form a three-dimensional structure, and the layers are tightened. Poor power, difficult to maintain shape, and difficult to handle. In particular, when the graphite is formed by high-temperature baking for the purpose of increasing the thermal conductivity, the integrity of the fibrous structure is easily lost.

【0006】また、三次元繊維組織体の厚さのコントロ
ールが難しい。なぜならば、棒体挿通後に織物層を圧縮
する場合、棒体の長さを圧縮後の織物層の厚さにする
と、圧縮時に棒体が曲がる虞がある。また、棒体の長さ
を圧縮後の織物層の厚さより長くすると、プレス型とし
て棒体の侵入を許容する孔を有する特殊な型が必要とな
るとともに、圧縮後に棒体を切断する必要がある。
Further, it is difficult to control the thickness of the three-dimensional fiber tissue. This is because when the woven fabric layer is compressed after the insertion of the rod, if the length of the rod is set to the thickness of the woven fabric layer after compression, the rod may be bent at the time of compression. Further, if the length of the rod is longer than the thickness of the woven fabric layer after compression, a special mold having a hole that allows the penetration of the rod is required as a press die, and it is necessary to cut the rod after compression. is there.

【0007】また、熱伝導率が高くて強度が優れた複合
材の強化材として、炭素繊維のみで三次元繊維構造体を
構成する場合、炭素繊維は比較的曲げに弱く、三次元織
物を製造する場合に糸(繊維)同士の擦れにより切断し
易く、特に繊維層を結合するための糸が切断し易い。挿
入密度を高くするとこの現象が発生し易い。
Further, when a three-dimensional fiber structure is composed of only carbon fibers as a reinforcing material for a composite material having high thermal conductivity and excellent strength, carbon fibers are relatively weak in bending, and a three-dimensional fabric is manufactured. In this case, the yarns (fibers) are liable to be cut due to rubbing, and particularly the yarns for bonding the fiber layers are easily cut. This phenomenon is likely to occur when the insertion density is increased.

【0008】本発明は前記の従来の問題点に鑑みてなさ
れたものであって、その第1の目的は、製造が比較的簡
単で密度の高い三次元繊維構造体を提供することにあ
る。また、第2の目的は例えば半導体装置の放熱部材や
電子部品搭載基材として使用する複合材を製造する際の
強化材とした場合に必要な熱伝導率を有する三次元繊維
構造体を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and a first object of the present invention is to provide a high-density three-dimensional fiber structure which is relatively easy to manufacture. A second object of the present invention is to provide a three-dimensional fiber structure having a necessary thermal conductivity when used as a reinforcing material when manufacturing a composite material used as a heat dissipation member of a semiconductor device or an electronic component mounting base material. It is in.

【0009】[0009]

【課題を解決するための手段】前記第1の目的を達成す
るため請求項1に記載の発明では、少なくとも面内2軸
配向となる糸層を複数積層して形成された積層糸群と、
前記積層糸群の各糸層と直交する方向に配列された厚さ
方向糸とを含む少なくとも3軸で構成された三次元織物
に、繊維強化複合材製または金属製のロッドを挿入し
た。
According to the first aspect of the present invention, there is provided a laminated yarn group formed by laminating a plurality of yarn layers having at least in-plane biaxial orientation.
A rod made of a fiber-reinforced composite material or a metal was inserted into a three-dimensional fabric composed of at least three axes including a thickness direction yarn arranged in a direction orthogonal to each yarn layer of the laminated yarn group.

【0010】従って、この発明では、三次元織物に、繊
維強化複合材製または金属製のロッドが挿入されている
ため、ロッドの挿入本数を増やすことで、密度の高い三
次元繊維構造体を比較的簡単に製造できる。また、繊維
強化複合材製のロッドを使用した場合は、三次元織物F
の繊維体積含有率(Vf)を高くできる。
Therefore, according to the present invention, since a rod made of a fiber-reinforced composite material or a metal is inserted into the three-dimensional woven fabric, the number of inserted rods is increased to compare a three-dimensional fiber structure with a high density. Can be easily manufactured. When a rod made of a fiber-reinforced composite material is used, the three-dimensional fabric F
Can increase the fiber volume content (Vf).

【0011】請求項2に記載の発明では、請求項1に記
載の発明において、前記ロッドは前記厚さ方向糸と平行
に挿入されている。厚さ方向糸の密度を高めようとする
と、積層糸群の密度が高い所に挿入する必要があり、挿
入時の抵抗が大きくなる。その結果、厚さ方向糸として
炭素繊維等の脆い糸を使用した場合、挿入の際に糸(繊
維)同士の擦れによって糸が切断し易くなる。しかし、
ロッド挿入時の抵抗は厚さ方向糸の挿入時の抵抗に比較
して大幅に低下するため、厚さ方向糸に代えてロッドを
使用して厚さ方向の配向成分を増加させるのが簡単にな
る。
According to a second aspect of the present invention, in the first aspect, the rod is inserted in parallel with the thickness direction thread. In order to increase the density of the thickness direction yarn, it is necessary to insert the yarn at a place where the density of the laminated yarn group is high, and the resistance at the time of insertion increases. As a result, when a brittle yarn such as carbon fiber is used as the thickness direction yarn, the yarn (fiber) is liable to be cut by the rubbing between the yarns at the time of insertion. But,
Since the resistance at the time of rod insertion is significantly lower than the resistance at the time of insertion of the thickness direction yarn, it is easy to increase the orientation component in the thickness direction by using a rod instead of the thickness direction yarn. Become.

【0012】前記第2の目的を達成するため請求項3に
記載の発明では、請求項1又は請求項2に記載の発明に
おいて、前記積層糸群及び前記厚さ方向糸には炭素繊維
が使用されている。ロッドを挿入するための三次元織物
を炭素繊維で構成した場合、炭素繊維は合成樹脂繊維や
他の無機繊維に比較して熱伝導率が高いため、マトリッ
クスとともに複合材を構成した際に複合材の熱伝導率が
高くなる。その結果、半導体装置の放熱部材や電子部品
搭載基材として使用する複合材を製造する際の強化材と
して必要な熱伝導率を確保できる。
According to a third aspect of the present invention, in order to achieve the second object, in the first or second aspect of the present invention, carbon fibers are used for the laminated yarn group and the thickness direction yarn. ing. When the three-dimensional woven fabric for inserting the rod is made of carbon fiber, the carbon fiber has a higher thermal conductivity than synthetic resin fiber and other inorganic fibers. Has a high thermal conductivity. As a result, the thermal conductivity required as a reinforcing material when manufacturing a composite material used as a heat dissipation member of a semiconductor device or an electronic component mounting base material can be secured.

【0013】請求項4に記載の発明では、請求項3に記
載の発明において、前記厚さ方向糸は太さが前記積層糸
群を構成する糸の1/2以下である。炭素繊維は曲げに
弱く、糸(繊維)同士の擦れにより切断し易いため、厚
さ方向糸に太い糸を使用すると、積層糸群に挿入される
際や積層糸群を締め付ける際に、糸が切断し易くなる。
また、厚さ方向糸は針を使用して積層糸群に挿入される
ため、糸が太いと針も太くなり、積層糸群が毛羽立ち易
くなる。しかし、この発明では厚さ方向糸に細い糸を使
用することで、生産性が向上する。
According to a fourth aspect of the present invention, in the third aspect of the invention, the thickness direction yarn has a thickness equal to or less than の of the thickness of the yarn constituting the laminated yarn group. Since carbon fibers are weak to bending and easy to cut due to rubbing between yarns (fibers), if a thick yarn is used for the thickness direction yarn, the yarn will break when inserted into the laminated yarn group or when tightening the laminated yarn group. It will be easier.
Further, since the thickness direction yarn is inserted into the laminated yarn group using a needle, the thicker the yarn, the thicker the needle, and the more easily the laminated yarn group becomes fluffy. However, in the present invention, productivity is improved by using a thin yarn for the thickness direction yarn.

【0014】請求項5に記載の発明では、請求項3又は
請求項4に記載の発明において、前記ロッドはアルミニ
ウムと同等以上の熱伝導率を有する金属製のロッドであ
る。この場合、半導体装置の放熱部材や電子部品搭載基
材として使用する複合材を製造する際の強化材として使
用した場合、炭素繊維として黒鉛化の進行した特殊な炭
素繊維を使用しなくても、複合材の熱伝導率を高くでき
る。
According to a fifth aspect of the present invention, in the third or fourth aspect, the rod is a metal rod having a thermal conductivity equal to or higher than that of aluminum. In this case, when used as a reinforcing material when manufacturing a composite material used as a heat dissipating member of a semiconductor device or a base material for mounting electronic components, even if a graphitized special carbon fiber is not used as a carbon fiber, The thermal conductivity of the composite material can be increased.

【0015】[0015]

【発明の実施の形態】以下、本発明を具体化した一実施
の形態を図1〜図3に従って説明する。図1は三次元繊
維構造体1の一部破断模式斜視図である。三次元繊維構
造体1は、三次元織物Fにロッド2が挿入されて構成さ
れている。三次元織物Fは、繊維が相互に平行に配列さ
れた糸層としてのx糸層3及びy糸層4を複数積層して
面内2軸配向となるように形成された積層糸群5と、積
層糸群5の各x糸層3及びy糸層4と直交する方向に配
列された厚さ方向糸zとを含み、3軸方向に糸が配列さ
れた構成となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a partially cutaway perspective view of a three-dimensional fiber structure 1. The three-dimensional fiber structure 1 is configured by inserting a rod 2 into a three-dimensional fabric F. The three-dimensional woven fabric F has a laminated yarn group 5 formed by laminating a plurality of x yarn layers 3 and y yarn layers 4 as yarn layers in which fibers are arranged in parallel with each other so as to have an in-plane biaxial orientation, It has a thickness direction yarn z arranged in a direction orthogonal to each of the x yarn layer 3 and the y yarn layer 4 of the laminated yarn group 5, and the yarns are arranged in three axial directions.

【0016】x糸層3は三次元繊維構造体1の厚さ方向
(図1の上下方向)と直交する面内において、X方向
(この実施の形態では長さ方向)に沿って配列された第
1の面内配列糸xからなり、1本の糸が折り返し状に配
列されて形成されている。y糸層4はx糸層3と平行な
面内で第1の面内配列糸xと直交する方向(Y方向)に
配列され、1本の糸が折り返し状に配列された第2の面
内配列糸yからなっている。各面内配列糸x,yは所定
のピッチ(例えば3mmのピッチ)で配列されている。
The x yarn layers 3 are arranged along the X direction (the length direction in this embodiment) in a plane orthogonal to the thickness direction (the vertical direction in FIG. 1) of the three-dimensional fiber structure 1. It is composed of a first in-plane arrangement thread x, and one thread is arranged in a folded manner. The y yarn layer 4 is arranged in a direction (Y direction) orthogonal to the first in-plane arrangement yarn x in a plane parallel to the x yarn layer 3, and the second surface on which one yarn is arranged in a folded shape. It is composed of an inner array yarn y. The in-plane arrangement yarns x and y are arranged at a predetermined pitch (for example, a pitch of 3 mm).

【0017】厚さ方向糸zは積層糸群5の一方の面(図
1の下面側)で折り返すように上面側から挿入されると
ともに、図2に示すように、下面側において幅方向、即
ち第2の面内配列糸yと平行に配列された抜け止め糸6
により抜け止めされている。厚さ方向糸zが抜け止め糸
6と共同でx糸層3及びy糸層4を締め付けることによ
り、各糸層が結合されている。厚さ方向糸zも所定のピ
ッチで配列されている。この実施の形態では、厚さ方向
糸zは第1の面内配列糸xの延びる方向には、各面内配
列糸x,yの配列ピッチの2倍のピッチで配列され、第
2の面内配列糸yの延びる方向には、各面内配列糸x,
yの配列ピッチと同じピッチで配列されている。厚さ方
向糸zには太さが各面内配列糸x,yの1/2以下、こ
の実施の形態では1/10程度のものが使用されてい
る。
The thickness direction yarn z is inserted from the upper surface side so as to be folded on one surface (the lower surface side in FIG. 1) of the laminated yarn group 5, and as shown in FIG. Retaining yarns 6 arranged in parallel with the in-plane arrangement yarns y
Has been prevented by. When the thickness direction yarn z tightens the x yarn layer 3 and the y yarn layer 4 in cooperation with the retaining yarn 6, the respective yarn layers are joined. The thickness direction yarns z are also arranged at a predetermined pitch. In this embodiment, the thickness direction yarns z are arranged in the direction in which the first in-plane arrangement yarn x extends at a pitch twice as large as the arrangement pitch of the in-plane arrangement yarns x and y. The in-plane arrangement yarns x, x,
They are arranged at the same pitch as the arrangement pitch of y. The thickness direction yarn z has a thickness of 1/2 or less of the in-plane arrangement yarns x and y, and about 1/10 in this embodiment.

【0018】ロッド2は厚さ方向糸zと平行に挿入され
ている。ロッド2は厚さ方向糸zが挿入されていない位
置に所定ピッチ、この実施の形態では各面内配列糸x,
yの配列ピッチの2倍のピッチで配列されている。ロッ
ド2は炭素繊維を強化繊維として使用した繊維強化複合
材で、三次元織物Fの厚さとほぼ同じ長さに形成されて
いる。繊維強化複合材のマトリックス樹脂にはフェノー
ル樹脂又はエポキシ樹脂が使用されている。
The rod 2 is inserted in parallel with the thickness direction thread z. The rod 2 has a predetermined pitch at a position where the thickness direction thread z is not inserted, and in this embodiment, each in-plane arrangement thread x,
They are arranged at a pitch that is twice the arrangement pitch of y. The rod 2 is a fiber-reinforced composite material using carbon fibers as reinforcing fibers, and is formed to have a length substantially equal to the thickness of the three-dimensional fabric F. A phenol resin or an epoxy resin is used as a matrix resin of the fiber-reinforced composite material.

【0019】第1の面内配列糸xにはピッチ系炭素繊維
が使用されている。ピッチ系炭素繊維の中でもメソフェ
ーズピッチ系炭素繊維が熱伝導率の点で好ましい。第2
の面内配列糸y及び厚さ方向糸zにはPAN系炭素繊維
が使用されている。各炭素繊維はロービング(トウ)の
状態で使用されている。ロービング(トウ)とは細い単
繊維のフィラメントを多数本束ねた実質無撚りの繊維束
を意味する。
Pitch-based carbon fibers are used for the first in-plane arrangement yarn x. Among pitch-based carbon fibers, mesophase pitch-based carbon fibers are preferred in terms of thermal conductivity. Second
PAN-based carbon fiber is used for the in-plane arrangement yarn y and the thickness direction yarn z. Each carbon fiber is used in a roving (tow) state. Roving (tow) means a substantially non-twisted fiber bundle obtained by bundling a number of thin filaments of a single fiber.

【0020】次に前記のように構成された三次元繊維構
造体1の製造方法を説明する。三次元繊維構造体1は、
2段階に分けて製造される。第1段階では、三次元織物
Fが、例えば、特開平5−106139号公報や特開平
8−218249号公報に開示された方法のように、四
角形状の基板又は枠体に多数のピンが装着されたものを
使用する方法で製造される。即ち、基板又は枠体上にx
糸層3及びy糸層4を所定数積層して形成した積層糸群
5を、厚さ方向糸zと抜け止め糸6とで結合することに
よって形成される。
Next, a method of manufacturing the three-dimensional fiber structure 1 configured as described above will be described. The three-dimensional fiber structure 1
It is manufactured in two stages. In the first stage, the three-dimensional fabric F is mounted with a large number of pins on a square substrate or frame, for example, as disclosed in JP-A-5-106139 and JP-A-8-218249. Manufactured by the method of using what has been done. That is, x on the substrate or frame
A layered yarn group 5 formed by laminating a predetermined number of yarn layers 3 and y yarn layers 4 is formed by joining a thickness direction yarn z and a retaining yarn 6.

【0021】次に第2段階として、前記三次元織物Fに
対してロッド2が挿入される。図3(a),(b)に示
すように、ロッド2は三次元織物Fの一端から、複数本
ずつ第1の面内配列糸xの配列方向に沿って1列に並ん
だ状態で順に挿入される。
Next, as a second step, the rod 2 is inserted into the three-dimensional fabric F. As shown in FIGS. 3A and 3B, the rods 2 are sequentially arranged in a row from one end of the three-dimensional fabric F in a line along the arrangement direction of the first in-plane arrangement yarns x. Inserted.

【0022】前記のように構成された三次元繊維構造体
1は、マトリックスとしてアルミニウムと同等以上の熱
伝導率の大きな金属を含浸することにより、複合材を製
造し、例えば半導体装置用放熱部材として使用される。
金属としてはCuやアルミニウムが使用される。複合材
は所望の大きさ及び厚さの板状に加工され、一方の面に
おいて銀ペーストを介して半導体チップに接合され、半
導体チップとの接合面と反対側にサーマルシートを介し
てヒートシンクが接合された状態で使用される。
The three-dimensional fiber structure 1 constructed as described above is impregnated with a metal having high thermal conductivity equal to or higher than aluminum as a matrix to produce a composite material, for example, as a heat dissipation member for a semiconductor device. used.
Cu or aluminum is used as the metal. The composite material is processed into a plate having a desired size and thickness, and is bonded to a semiconductor chip via a silver paste on one surface, and a heat sink is bonded via a thermal sheet to a side opposite to a bonding surface with the semiconductor chip. Used in the state that was done.

【0023】三次元繊維構造体1にマトリックスとして
金属を含浸させて複合材を製造すると、金属は三次元繊
維構造体1を構成している、各糸x,y,z及びロッド
2の隙間を埋めるように充填される。複合材を放熱材用
に使用する場合、三次元織物Fを構成する繊維の熱伝導
率は、一般にマトリックス金属として使用されるCuや
アルミニウムより低い。従って、単純に考えると、三次
元繊維構造体1の密度を高めると、即ち各糸x,y,z
及びロッド2の占める体積を高めると、その分金属の割
合が減り、複合材の熱伝導率が低下するように思える。
しかし、ロッド2を挿入した場合、ロッド2に沿って真
っ直ぐに延びる含浸金属の経路ができるため、厚さ方向
の熱伝導率が高くなる。
When a composite material is manufactured by impregnating the three-dimensional fiber structure 1 with a metal as a matrix, the metal forms gaps between the yarns x, y, z and the rods 2 that constitute the three-dimensional fiber structure 1. Filled to fill. When the composite material is used for a heat radiating material, the thermal conductivity of the fibers constituting the three-dimensional fabric F is lower than that of Cu or aluminum generally used as a matrix metal. Therefore, when simply considered, if the density of the three-dimensional fiber structure 1 is increased, that is, each yarn x, y, z
When the volume occupied by the rod 2 is increased, the ratio of the metal is reduced by that amount, and the thermal conductivity of the composite material seems to be reduced.
However, when the rod 2 is inserted, a path of the impregnated metal extending straight along the rod 2 is formed, so that the thermal conductivity in the thickness direction increases.

【0024】この実施の形態では以下の効果を有する。 (1) 面内2軸配向となる糸層3,4を複数積層して
形成された積層糸群5と、積層糸群5の各糸層3,4と
直交する方向に配列された厚さ方向糸zとを含む三次元
織物Fに、繊維強化複合材製のロッド2を挿入して三次
元繊維構造体1を構成した。従って、三次元織物Fを製
造する段階では厚さ方向糸zの挿入密度を高める必要が
なく、ロッド2の挿入本数を増やすことで、密度の高い
三次元繊維構造体1を比較的簡単に製造でき、複合材を
形成した際に強度が高くなる。また、繊維強化複合材製
のロッド2を使用しているため、三次元織物Fの繊維体
積含有率(Vf)を高くできる。
This embodiment has the following effects. (1) A laminated yarn group 5 formed by laminating a plurality of yarn layers 3 and 4 having in-plane biaxial orientation, and a thickness direction yarn arranged in a direction orthogonal to each of the yarn layers 3 and 4 of the laminated yarn group 5. The rod 2 made of the fiber-reinforced composite material was inserted into the three-dimensional fabric F containing z and the three-dimensional fiber structure 1. Therefore, at the stage of manufacturing the three-dimensional fabric F, it is not necessary to increase the insertion density of the thickness direction thread z, and by increasing the number of rods 2 to be inserted, it is possible to relatively easily manufacture the high-density three-dimensional fiber structure 1. The strength can be increased when the composite material is formed. Further, since the rod 2 made of the fiber-reinforced composite material is used, the fiber volume content (Vf) of the three-dimensional fabric F can be increased.

【0025】(2) 各糸層3,4を構成する面内配列
糸x,yがそれぞれ、互いに平行な平面上に配列されて
積層糸群5が構成されているため、積層糸群5を二次元
織物で構成する場合に比較して各面内配列糸x,yが真
っ直ぐに延び、補強効果が高くなる。
(2) Since the in-plane arranged yarns x and y constituting each of the yarn layers 3 and 4 are arranged on planes parallel to each other to form the laminated yarn group 5, the laminated yarn group 5 is two-dimensionally arranged. The in-plane arrangement yarns x and y extend straight as compared with the case where they are made of woven fabric, and the reinforcing effect is enhanced.

【0026】(3) 三次元織物Fにロッド2が挿入さ
れているため、二次元織物を単に積層したものにロッド
を挿入した三次元繊維構造体に比較して、複合材を製造
した際に、複合材の剛性が高くなるとともに、厚さ方向
への膨張抑制効果が向上する。その結果、複合材を半導
体装置の放熱部材として使用した場合に半導体装置に過
大な応力が作用するのが防止される。また、金属との複
合材を製造する際、マトリックス金属を含浸させる工程
で繊維組織が乱れ難く、形状安定性が良くなる。
(3) Since the rods 2 are inserted into the three-dimensional woven fabric F, compared to a three-dimensional fiber structure in which the rods are inserted into a two-dimensional woven fabric simply laminated, a composite material is produced. In addition, the rigidity of the composite material is increased, and the effect of suppressing expansion in the thickness direction is improved. As a result, when the composite material is used as a heat dissipating member of the semiconductor device, an excessive stress is prevented from acting on the semiconductor device. Further, when producing a composite material with a metal, the fiber structure is not easily disturbed in the step of impregnating the matrix metal, and the shape stability is improved.

【0027】(4) ロッド2が厚さ方向糸zと平行に
挿入されているため、厚さ方向の配向成分を増加させる
のが簡単になり、マトリックスを含浸させて複合材を製
造した場合、板厚方向に高強度、高弾性率及び低熱膨張
率の材料が得られる。
(4) Since the rod 2 is inserted in parallel with the thickness direction thread z, it is easy to increase the orientation component in the thickness direction, and when a matrix is impregnated to produce a composite material, A material having high strength, high elastic modulus and low thermal expansion coefficient in the thickness direction can be obtained.

【0028】(5) ロッド2の挿入本数を変えること
で、厚さ方向の配向成分の割合を調整できるため、三次
元織物Fの製造条件を変えること無く、種々の特性の三
次元繊維構造体1を得ることができ、三次元繊維構造体
1の製造コストを低減できる。
(5) The ratio of the orientation component in the thickness direction can be adjusted by changing the number of inserted rods 2, so that the three-dimensional fiber structure having various characteristics can be obtained without changing the manufacturing conditions of the three-dimensional fabric F. 1 can be obtained, and the manufacturing cost of the three-dimensional fiber structure 1 can be reduced.

【0029】(6) 積層糸群5及び厚さ方向糸zに炭
素繊維が使用されているため、合成樹脂繊維や他の無機
繊維を使用して三次元織物Fを形成した場合に比較し
て、マトリックスとともに複合材を製造した際に複合材
の熱伝導率が高くなる。また、合成樹脂繊維に比較して
板厚方向の力学的特性(強度、弾性率)が向上する。
(6) Since carbon fibers are used for the laminated yarn group 5 and the thickness direction yarn z, compared with the case where the three-dimensional fabric F is formed using synthetic resin fibers or other inorganic fibers, When the composite is manufactured together with the matrix, the thermal conductivity of the composite increases. Further, the mechanical properties (strength and elastic modulus) in the thickness direction are improved as compared with synthetic resin fibers.

【0030】(7) 厚さ方向糸zは太さが積層糸群5
を構成する糸(両面内配列糸x,y)の1/2以下で、
この実施の形態ではほぼ1/10程度である。従って、
曲げに弱く、糸(繊維)同士の擦れにより切断し易い炭
素繊維を厚さ方向糸zに使用しても、積層糸群5を締め
付ける際等に、厚さ方向糸zが切断し難くなるととも
に、毛羽立ち難くなる。また、厚さ方向糸挿入針の太さ
を細くできるため、挿入抵抗が小さくなり、挿入速度を
高めることにより生産性が向上する。また、図2に示す
厚さ方向糸zの折り返しループ7が三次元織物Fから飛
び出す量を少なくできる。
(7) The thickness direction yarn z has a thickness of the laminated yarn group 5
Less than の of the yarn (the yarns x and y arranged in both sides)
In this embodiment, it is about 1/10. Therefore,
Even if a carbon fiber which is weak to bending and is easily cut by rubbing between yarns (fibers) is used for the thickness direction yarn z, the thickness direction yarn z becomes difficult to cut when the laminated yarn group 5 is tightened, and the like. It becomes less fuzzy. Further, since the thickness of the thickness direction thread insertion needle can be reduced, the insertion resistance is reduced, and the productivity is improved by increasing the insertion speed. Further, the amount of the return loop 7 of the thickness direction thread z shown in FIG.

【0031】(8) マトリックスとしてアルミニウム
を使用して複合材を製造した場合、アルミニウムは熱伝
導率がCuの6割程度であるが、密度がほぼ1/3のた
め、軽量化に寄与する。また、アルミニウムの融点は6
60℃とCuの融点より400℃以上低いため、含浸時
の温度を低くでき、溶融に必要なエネルギーが少なくな
る。従って、熱伝導率がさほど要求されない放熱部材と
して使用する複合材では、マトリックスとしてアルミニ
ウムを使用するのが好ましい。
(8) When a composite material is manufactured using aluminum as a matrix, aluminum has a thermal conductivity of about 60% of Cu, but has a density of approximately 1/3, which contributes to weight reduction. The melting point of aluminum is 6
Since the temperature is 60 ° C., which is lower than the melting point of Cu by 400 ° C. or more, the temperature at the time of impregnation can be lowered, and the energy required for melting is reduced. Therefore, in a composite material used as a heat dissipating member that does not require much thermal conductivity, it is preferable to use aluminum as the matrix.

【0032】実施の形態は前記に限定されるものではな
く、例えば、次のように具体化してもよい。 ○ 三次元繊維構造体1を焼成して、炭素繊維の黒鉛化
を進行させるとともに、ロッド2を炭化させてもよい。
この場合、マトリックス金属を含浸させて複合材を製造
した際に、熱伝導率のより高い複合材が得られる。
The embodiment is not limited to the above, and may be embodied as follows, for example. The three-dimensional fiber structure 1 may be fired to progress the graphitization of the carbon fiber and the rod 2 may be carbonized.
In this case, when a composite material is manufactured by impregnation with a matrix metal, a composite material having higher thermal conductivity can be obtained.

【0033】○ ロッド2に使用する炭素繊維として石
炭ピッチ系炭素繊維を使用すると、複合材を製造した際
に、板厚方向の熱伝導率がより高められた複合材が得ら
れる。
When a coal pitch-based carbon fiber is used as the carbon fiber used for the rod 2, a composite material having a higher thermal conductivity in the thickness direction can be obtained when the composite material is manufactured.

【0034】○ 三次元織物Fを製造可能な柔軟性を有
するピッチ系の炭素繊維を使用して炭素繊維織物を製造
し、ロッド2を挿入後、3000℃程度の焼成温度で焼
成して炭素繊維の黒鉛化を進行させる。この場合、炭素
繊維の熱伝導率がより向上する。この三次元繊維構造体
焼成物を使用した場合、マトリックスとして金属に代え
て樹脂を使用しても、熱伝導率がさほど要求されない放
熱部材として使用する複合材に使用可能となる。
A carbon fiber fabric is manufactured using a pitch-based carbon fiber having flexibility capable of manufacturing a three-dimensional fabric F, and after inserting the rod 2, firing at a firing temperature of about 3000 ° C. The graphitization of the material proceeds. In this case, the thermal conductivity of the carbon fiber is further improved. When this three-dimensional fibrous structure fired product is used, even if a resin is used instead of metal as the matrix, it can be used for a composite material used as a heat dissipating member that does not require much thermal conductivity.

【0035】○ 三次元繊維構造体1を熱伝導率の高い
複合材を製造するために使用する場合、ロッド2をアル
ミニウムと同等以上の熱伝導率を有する金属製のロッド
(例えば、Cuやアルミニウム)としてもよい。この場
合、炭素繊維として黒鉛化の進行した特殊な炭素繊維を
使用しなくても、複合材の熱伝導率を高くできる。
When the three-dimensional fiber structure 1 is used for manufacturing a composite material having a high thermal conductivity, the rod 2 is made of a metal rod having a thermal conductivity equal to or higher than that of aluminum (for example, Cu or aluminum). ). In this case, the thermal conductivity of the composite material can be increased without using a special carbon fiber having advanced graphitization as the carbon fiber.

【0036】○ 三次元繊維構造体1を熱伝導率の高い
複合材を製造するために使用するのではなく、複合材の
強度の向上を目的とする場合は、三次元織物の構成繊維
として炭素繊維に代えて、ガラス繊維、アラミド繊維、
セラミック繊維(例えば、炭化ケイ素繊維、アルミナ繊
維)等の高強度、高弾性繊維を使用してもよい。
In the case where the three-dimensional fiber structure 1 is not used for producing a composite material having a high thermal conductivity, but is intended to improve the strength of the composite material, carbon fibers may be used as constituent fibers of the three-dimensional fabric. Instead of fiber, glass fiber, aramid fiber,
High-strength, high-elastic fibers such as ceramic fibers (for example, silicon carbide fibers and alumina fibers) may be used.

【0037】○ 三次元繊維構造体1を強度及び耐熱性
に優れた複合材を製造するために使用する場合は、三次
元織物Fを炭素繊維やセラミック繊維で製造するのが好
ましい。そして、マトリックスをカーボンやセラミック
スとすると、より耐熱性に優れた複合材を製造できる。
When the three-dimensional fiber structure 1 is used for producing a composite material having excellent strength and heat resistance, it is preferable that the three-dimensional fabric F is produced from carbon fibers or ceramic fibers. When the matrix is made of carbon or ceramics, a composite material having more excellent heat resistance can be manufactured.

【0038】○ 三次元織物Fを構成する積層糸群5
は、少なくとも面内2軸配向となる糸層を複数積層して
形成されていればよい。例えば、第1の面内配列糸xに
対して所定の角度(例えば±45°)で傾斜するように
配列された2層一組のバイアス糸からなるバイアス糸層
を有する面内4軸、合計5軸の三次元織物としてもよ
い。この場合、三次元織物Fの形状安定性がより向上す
る。また、積層糸群5を、互いに60°の角度で交差す
るように延びる3種類の糸で面内3軸に構成してもよ
い。
The laminated yarn group 5 constituting the three-dimensional woven fabric F
May be formed by laminating a plurality of yarn layers having at least in-plane biaxial orientation. For example, four in-plane axes having a bias yarn layer including a pair of bias yarns arranged so as to be inclined at a predetermined angle (for example, ± 45 °) with respect to the first in-plane arrangement yarn x, total It may be a five-axis three-dimensional fabric. In this case, the shape stability of the three-dimensional fabric F is further improved. Further, the laminated yarn group 5 may be constituted by three types of yarns extending so as to intersect with each other at an angle of 60 ° so as to have three in-plane axes.

【0039】○ 二次元織物を積層することにより積層
糸群5を構成し、二次元織物をステッチ糸で縫い合わせ
て三次元織物Fを形成してもよい。二次元織物は平織物
に限らず任意の織物を使用できる。
The laminated yarn group 5 may be formed by laminating two-dimensional fabrics, and the two-dimensional fabrics may be sewn with stitch threads to form the three-dimensional fabric F. The two-dimensional fabric is not limited to a plain fabric, and any fabric can be used.

【0040】○ ロッド2の断面形状は円形に限らず、
四角形、楕円形等の他の形状としてもよい。積層糸群5
がX,Y2軸配向の場合、ロッド2の断面形状を四角形
にすると円形断面のロッド2を使用した場合に比較して
三次元繊維構造体1の密度を高くすることができる。
The sectional shape of the rod 2 is not limited to a circle,
Other shapes such as a quadrangle and an ellipse may be used. Laminated yarn group 5
When the rods 2 are oriented in the X- and Y-axes, the cross-sectional shape of the rod 2 can be made quadrangular, so that the density of the three-dimensional fiber structure 1 can be increased as compared with the case where the rod 2 having a circular cross-section is used.

【0041】○ 抜け止め糸6を使用せずに、厚さ方向
糸zが積層糸群5を一方の側から貫通した後、貫通位置
を所定ピッチずらして他方の側から積層糸群5を貫通す
るように配列してもよい。この場合、抜け止め糸6を使
用する構成に比較して厚さ方向糸zを太くでき、三次元
織物Fの繊維体積含有率(Vf)を大きくするために厚
さ方向糸zの締め付け力を強くできる。
After the thickness direction yarn z penetrates the laminated yarn group 5 from one side without using the retaining yarn 6, the penetration position is shifted by a predetermined pitch to penetrate the laminated yarn group 5 from the other side. May be arranged. In this case, the thickness direction yarn z can be made thicker than the configuration using the retaining yarn 6, and the tightening force of the thickness direction yarn z is increased in order to increase the fiber volume content (Vf) of the three-dimensional fabric F. Can be strong.

【0042】○ ロッド2を厚さ方向ではなくX軸方向
あるいはY軸方向に挿入してもよい。 ○ 三次元織物Fを炭素繊維で形成し、ロッド2を炭素
繊維強化複合材製とした三次元繊維構造体1の使用方法
としては、放熱部材用の複合材に限らず、ブレーキディ
スク用のカーボン・カーボン複合材としてもよい。
The rod 2 may be inserted not in the thickness direction but in the X-axis direction or the Y-axis direction. The method of using the three-dimensional fiber structure 1 in which the three-dimensional fabric F is formed of carbon fiber and the rod 2 is made of carbon fiber reinforced composite material is not limited to the composite material for the heat radiation member, but may be the carbon material for the brake disk. -It may be a carbon composite material.

【0043】前記実施の形態から把握できる発明(技術
的思想)について、以下に記載する。 (1) 請求項1〜請求項5のいずれかに記載の発明に
おいて、前記三次元織物は5軸の三次元織物である。
The invention (technical idea) that can be grasped from the above embodiment will be described below. (1) In the invention according to any one of claims 1 to 5, the three-dimensional fabric is a five-axis three-dimensional fabric.

【0044】(2) 請求項3又は請求項4に記載の発
明の三次元繊維構造体を焼成して炭素繊維を黒鉛化した
三次元繊維構造体。 (3) 請求項3〜請求項5及び(2)のいずれかに記
載の発明の三次元繊維構造体を強化材に使用して、マト
リックスをアルミニウムと同等以上の金属とした複合
材。
(2) A three-dimensional fiber structure obtained by firing the three-dimensional fiber structure according to claim 3 or 4 to graphitize carbon fibers. (3) A composite material in which the three-dimensional fiber structure according to any one of claims 3 to 5 and (2) is used as a reinforcing material, and a matrix is made of a metal equivalent to or more than aluminum.

【0045】[0045]

【発明の効果】以上詳述したように、請求項1〜請求項
5に記載の発明によれば、製造が比較的簡単で密度の高
い三次元繊維構造体を得ることができる。また、請求項
3〜請求項5に記載の発明によれば、例えば半導体装置
の放熱部材や電子部品搭載基材として使用する複合材を
製造する際の強化材とした場合に必要な熱伝導率を有す
る三次元繊維構造体を得ることができる。
As described in detail above, according to the first to fifth aspects of the present invention, it is possible to obtain a three-dimensional fiber structure having a relatively simple production and a high density. According to the third to fifth aspects of the present invention, for example, the thermal conductivity required when a reinforcing material is used when manufacturing a composite material used as a heat dissipation member of a semiconductor device or a base material for mounting electronic components. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施の形態の三次元繊維構造体の一部破断
模式斜視図。
FIG. 1 is a partially broken schematic perspective view of a three-dimensional fiber structure according to an embodiment.

【図2】 厚さ方向糸の配列状態を示す模式断面図。FIG. 2 is a schematic cross-sectional view showing an arrangement state of thickness direction yarns.

【図3】 ロッドの挿入状態を示す一部破断模式斜視図FIG. 3 is a partially cutaway perspective view showing an inserted state of a rod.

【符号の説明】[Explanation of symbols]

1…三次元繊維構造体、2…ロッド、3…x糸層、4…
y糸層、5…積層糸群、z…厚さ方向糸、F…三次元織
物。
DESCRIPTION OF SYMBOLS 1 ... Three-dimensional fiber structure, 2 ... Rod, 3 ... x thread layer, 4 ...
Y yarn layer, 5: laminated yarn group, z: thickness direction yarn, F: three-dimensional fabric.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 隆太 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 4L048 AA05 AA48 AA52 AC09 AC13 BA22 CA01 CA05 DA41  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Ryuta Kamiya 2-1-1 Toyota-cho, Kariya-shi, Aichi F-term in Toyota Industries Corporation (reference) 4L048 AA05 AA48 AA52 AC09 AC13 BA22 CA01 CA05 DA41

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも面内2軸配向となる糸層を複
数積層して形成された積層糸群と、前記積層糸群の各糸
層と直交する方向に配列された厚さ方向糸とを含む少な
くとも3軸で構成された三次元織物に、繊維強化複合材
製または金属製のロッドを挿入した三次元繊維構造体。
1. A laminated yarn group formed by laminating a plurality of yarn layers having at least in-plane biaxial orientation, and a thickness direction yarn arranged in a direction orthogonal to each yarn layer of the laminated yarn group. A three-dimensional fiber structure in which a rod made of a fiber-reinforced composite material or a metal is inserted into a three-dimensional fabric composed of three axes.
【請求項2】 前記ロッドは前記厚さ方向糸と平行に挿
入されている請求項1に記載の三次元繊維構造体。
2. The three-dimensional fiber structure according to claim 1, wherein the rod is inserted in parallel with the thickness direction yarn.
【請求項3】 前記積層糸群及び前記厚さ方向糸には炭
素繊維が使用されている請求項請求項1又は請求項2に
記載の三次元繊維構造体。
3. The three-dimensional fiber structure according to claim 1, wherein carbon fibers are used for the laminated yarn group and the thickness direction yarn.
【請求項4】 前記厚さ方向糸は太さが前記積層糸群を
構成する糸の1/2以下である請求項3に記載の三次元
繊維構造体。
4. The three-dimensional fiber structure according to claim 3, wherein the thickness direction yarn has a thickness equal to or less than の of a yarn constituting the laminated yarn group.
【請求項5】 前記ロッドはアルミニウムと同等以上の
熱伝導率を有する金属製のロッドである請求項3又は請
求項4に記載の三次元繊維構造体。
5. The three-dimensional fiber structure according to claim 3, wherein the rod is a metal rod having a thermal conductivity equal to or higher than that of aluminum.
JP2000375732A 2000-12-11 2000-12-11 Three-dimensional fiber structure Expired - Fee Related JP4062879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000375732A JP4062879B2 (en) 2000-12-11 2000-12-11 Three-dimensional fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375732A JP4062879B2 (en) 2000-12-11 2000-12-11 Three-dimensional fiber structure

Publications (2)

Publication Number Publication Date
JP2002180356A true JP2002180356A (en) 2002-06-26
JP4062879B2 JP4062879B2 (en) 2008-03-19

Family

ID=18844703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375732A Expired - Fee Related JP4062879B2 (en) 2000-12-11 2000-12-11 Three-dimensional fiber structure

Country Status (1)

Country Link
JP (1) JP4062879B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301838A (en) * 2006-05-11 2007-11-22 Fuji Heavy Ind Ltd Three-dimensional fiber-reinforced resin composite
US7504153B2 (en) 2003-05-13 2009-03-17 Showa Denko K.K. Porous body, production method thereof and composite material using the porous body
JP2011000921A (en) * 2009-06-17 2011-01-06 Ihi Aerospace Co Ltd Entry capsule and method of manufacturing head top part thereof
CN103088546A (en) * 2012-12-29 2013-05-08 中材科技股份有限公司 New-structure three-dimensional fabric and its knitting method
KR101281185B1 (en) 2010-05-26 2013-07-02 한국기계연구원 A method for manufacturing preform for composites having discontinuous reinforcements
CN104831449A (en) * 2015-03-26 2015-08-12 苏州威尔德工贸有限公司 Three-dimensional oil suction fabric
CN105128366A (en) * 2015-10-15 2015-12-09 南京航空航天大学 Structure and method of reinforcing heat-conducting property of resin matrix composite with carbon fiber poles
CN105835258A (en) * 2016-05-24 2016-08-10 颜本善 Carbon fiber bar framework of seven-dimensional carbon fiber bar structure composite material
JP2016533437A (en) * 2013-10-01 2016-10-27 サフラン エアークラフト エンジンズ Fiber structure with float assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504153B2 (en) 2003-05-13 2009-03-17 Showa Denko K.K. Porous body, production method thereof and composite material using the porous body
EP2264088A2 (en) 2003-05-13 2010-12-22 Showa Denko K.K. Porous body, production method thereof and composite material using the porous body
JP2007301838A (en) * 2006-05-11 2007-11-22 Fuji Heavy Ind Ltd Three-dimensional fiber-reinforced resin composite
JP2011000921A (en) * 2009-06-17 2011-01-06 Ihi Aerospace Co Ltd Entry capsule and method of manufacturing head top part thereof
KR101281185B1 (en) 2010-05-26 2013-07-02 한국기계연구원 A method for manufacturing preform for composites having discontinuous reinforcements
CN103088546A (en) * 2012-12-29 2013-05-08 中材科技股份有限公司 New-structure three-dimensional fabric and its knitting method
JP2016533437A (en) * 2013-10-01 2016-10-27 サフラン エアークラフト エンジンズ Fiber structure with float assembly
CN104831449A (en) * 2015-03-26 2015-08-12 苏州威尔德工贸有限公司 Three-dimensional oil suction fabric
CN105128366A (en) * 2015-10-15 2015-12-09 南京航空航天大学 Structure and method of reinforcing heat-conducting property of resin matrix composite with carbon fiber poles
CN105835258A (en) * 2016-05-24 2016-08-10 颜本善 Carbon fiber bar framework of seven-dimensional carbon fiber bar structure composite material

Also Published As

Publication number Publication date
JP4062879B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
CN101310053B (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
JP5159617B2 (en) Reinforcing fiber structure for composite material and member including the structure
US3769142A (en) Non-woven locked ply composite structure
US5288537A (en) High thermal conductivity non-metallic honeycomb
JPS5841950A (en) Reinforcing base material for fiber reinforced resin
US5527584A (en) High thermal conductivity triaxial non-metallic honeycomb
KR20100096117A (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
US5503893A (en) Ultra-high performance carbon composites
JPH0819594B2 (en) Three-dimensional fabric for composite materials
JPH10219545A (en) Knotted multilayered textile for structural composite material
JP4062879B2 (en) Three-dimensional fiber structure
KR102189113B1 (en) A fiber reinforced composite structure comprising stitch-member and the method for producing the same
JPH10168699A (en) Composite fiber material and its production
US8808847B2 (en) Layered composite component
JP2002254429A (en) Composite material and method for manufacturing it
JP2001168248A (en) Composite material
JP3855583B2 (en) Composite
JP2001336034A (en) Method for producing carbon yarn woven fabric
JP3446025B2 (en) Bolt substrate made of fiber reinforced composite material
JP7320578B2 (en) Screw part made of two-dimensional carbon/carbon composite material laminated with anisotropic nonwoven fabric
JP4063175B2 (en) Three-dimensional fiber conjugates and composites
JP2834473B2 (en) Deformed reinforced substrates for composites
JP2005313346A (en) Manufacturing method of fiber reinforced resin composite material and multiple fabric
JPH1149578A (en) Radiating member for semiconductor device and its production
EP0806285B1 (en) Fiber structure for fiber reinforced composite material and method of making fiber reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees