JP2002179409A - Method of manufacturing fine spherical inorganic powder - Google Patents

Method of manufacturing fine spherical inorganic powder

Info

Publication number
JP2002179409A
JP2002179409A JP2000376841A JP2000376841A JP2002179409A JP 2002179409 A JP2002179409 A JP 2002179409A JP 2000376841 A JP2000376841 A JP 2000376841A JP 2000376841 A JP2000376841 A JP 2000376841A JP 2002179409 A JP2002179409 A JP 2002179409A
Authority
JP
Japan
Prior art keywords
inorganic powder
fine
powder
slurry
spherical inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376841A
Other languages
Japanese (ja)
Other versions
JP4372336B2 (en
Inventor
Osamu Kunitomo
修 國友
Toshiaki Ishimaru
登志昭 石丸
Toshiyuki Abe
俊之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000376841A priority Critical patent/JP4372336B2/en
Publication of JP2002179409A publication Critical patent/JP2002179409A/en
Application granted granted Critical
Publication of JP4372336B2 publication Critical patent/JP4372336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture fine spherical inorganic powder suitable for a filler for a resin or the like. SOLUTION: In the method of manufacturing the fine spherical inorganic powder by forming a fine inorganic powder into a water based slurry and supplying the slurry to flame of a high temperature, a polycarboxylic acid and/or the salt existing in the slurry. The average particle diameter of the fine inorganic powder is particularly preferable 0.1-5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、微細球状無機質粉
末の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a fine spherical inorganic powder.

【0002】[0002]

【従来の技術】近年、半導体産業においては、半導体の
高集積化が進むにつれ、チップの封止材の高性能化が求
められ、特に電気絶縁性、低膨張率、熱伝導性などの機
能が要求されている。この要求を満たすため、合成樹
脂、特にエポキシ樹脂に、溶融シリカやアルミナといっ
た無機質粒子を充填し対応しているが、、封止する時の
高流動性や低金型摩耗性などの性能を発現すべく1〜1
00ミクロンの球状無機質粉末、及び平均粒径0.1〜
5ミクロンの微細球状無機質粉末とが併用されている。
2. Description of the Related Art In recent years, in the semiconductor industry, as the degree of integration of semiconductors has increased, the performance of chip sealing materials has been required to be higher. Has been requested. To meet this requirement, synthetic resins, especially epoxy resins, are filled with inorganic particles such as fused silica and alumina, but they exhibit high fluidity and low mold wear when sealing. 1 to 1
00 micron spherical inorganic powder, average particle size 0.1 ~
5 micron fine spherical inorganic powder is used in combination.

【0003】こういった平均粒径0.1〜5ミクロンの
微細球状無機質粉末の製造方法として、主として金属粉
末を火炎中に投じて酸化反応させながら球状化する製法
があるが、瞬間的な反応であるため、未反応成分が残り
やすく、粒径もコントロールしにくい等、品質的に安定
した超微粉が得られにくいうえに、金属粉末を扱う安全
管理が難しいという問題があった。
[0003] As a method for producing such fine spherical inorganic powder having an average particle diameter of 0.1 to 5 microns, there is a production method in which a metal powder is mainly thrown into a flame and subjected to an oxidation reaction to form a spherical shape. Therefore, there is a problem that it is difficult to obtain ultrafine powder having a stable quality, and it is difficult to manage metal powder safely, for example, unreacted components tend to remain and the particle size is difficult to control.

【0004】また、特開平9−278463号公報に
は、無機質粉末のスラリーを準備し、液滴状にし加熱溶
融し微細球状無機質粉末を得る製法があるが、一般的に
微細な無機質粉末スラリーはある濃度を超えると溶液中
で凝集体を形成するため、このまま加熱溶融しても、凝
集体のまま球状化され目的粒度の微細球状無機質粉末は
得られない。したがって、高濃度のスラリーでは製造で
きず、用いられる熱量のほとんどは溶媒を気化させるの
に使用されるので非効率であり、量産技術としてはほど
遠い方法であった。
Japanese Patent Application Laid-Open No. 9-278463 discloses a method of preparing a slurry of an inorganic powder, forming the slurry into droplets, and heat-fusing the slurry to obtain a fine spherical inorganic powder. If the concentration exceeds a certain concentration, an aggregate is formed in the solution. Therefore, even if the mixture is heated and melted as it is, the aggregate is formed into a sphere and a fine spherical inorganic powder having a desired particle size cannot be obtained. Therefore, high-concentration slurries cannot be produced, and most of the heat used is inefficient because it is used to evaporate the solvent, which is far from a mass production technique.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる課題
を解決したものであり、その目的は、半導体封止材とし
て用いられる微細球状無機質粉末を効率よく、品質的に
安定して製造できる方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a fine spherical inorganic powder used as a semiconductor encapsulating material efficiently and stably in quality. Is provided.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、微
細無機質粉末を高温下火炎中に水系スラリーで供給し、
微細球状無機質粉末を製造する方法において、上記スラ
リーにポリカルボン酸及び/又はその塩を存在させるこ
とを特徴とする微細球状無機質粉末の製造方法である。
この場合において、微細無機質粉末の平均粒径が0.1
〜5ミクロンであることが好ましい。
That is, according to the present invention, a fine inorganic powder is supplied as an aqueous slurry into a flame under a high temperature,
A method for producing a fine spherical inorganic powder, wherein a polycarboxylic acid and / or a salt thereof is present in the slurry.
In this case, the average particle size of the fine inorganic powder is 0.1
Preferably it is ~ 5 microns.

【0007】[0007]

【発明実施の形態】以下、更に詳しく本発明について説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0008】本発明が目的としている微細球状無機質粉
末は平均粒径が0.1〜5ミクロンの粉末である。これ
は、1〜100ミクロンの球状無機質粉末に添加した際
に半導体封止材用途としての高流動性を最も実現できる
範囲である。この微細球状無機粉末は頻度粒度分布にお
いて1つ又は2つ以上の極大値を持つものであることが
好ましい。
[0008] The fine spherical inorganic powder targeted by the present invention is a powder having an average particle size of 0.1 to 5 microns. This is the range in which high fluidity as a semiconductor encapsulant application can be most realized when added to a spherical inorganic powder of 1 to 100 microns. The fine spherical inorganic powder preferably has one or two or more maximum values in the frequency particle size distribution.

【0009】本発明が対象としている微細球状無機質粉
末の材質としては、シリカ、アルミナ、ムライト等、火
炎によって軟化、球状化できるものである。中でも、半
導体封止材用としては、溶融シリカ又はアルミナが好ま
しい。この原料としては、上記材質が高温下で得られる
ものであれば何でもよく、例えば溶融シリカであれば、
溶融シリカ粉末または結晶シリカ粉末等であり、アルミ
ナであればアルミナ粉末または水酸化アルミニウム粉末
等が挙げられる。
The material of the fine spherical inorganic powder to which the present invention is directed is silica, alumina, mullite or the like which can be softened and spheroidized by a flame. Above all, fused silica or alumina is preferred for semiconductor encapsulants. As this raw material, any material can be used as long as the material is obtained at a high temperature.
It is a fused silica powder, a crystalline silica powder, or the like. In the case of alumina, an alumina powder, an aluminum hydroxide powder, or the like is used.

【0010】本発明においては、高濃度スラリー供給を
実現すべくポリカルボン酸及び/又はその塩を用いる。
とくに、側鎖にアルキレングリコール鎖を有するポリカ
ルボン酸及び/又はその塩が好ましい。市販品には、花
王株式会社製「ポイズ532A」、日本油脂株式会社製
「AKM−0531」、「HKM−50A」、「AKM
−3011−60」などがある。
In the present invention, a polycarboxylic acid and / or a salt thereof is used in order to realize a high-concentration slurry supply.
In particular, a polycarboxylic acid having an alkylene glycol chain in a side chain and / or a salt thereof is preferable. Commercially available products include "Poise 532A" manufactured by Kao Corporation, "AKM-0531", "HKM-50A", and "AKM" manufactured by NOF Corporation.
-3011-60 ".

【0011】ポリカルボン酸及び/又はその塩は、無機
質粉末表面に存在する水酸基に溶液中の水を介し吸着
し、粒子同士の電気的反発を起こさせるとともに、側鎖
による立体障害によってスラリー中の粉末を分散させ
る。この作用は、ポリカルボン酸のカルボキシル基量、
分子量、分子の立体配置によって決定される。
The polycarboxylic acid and / or its salt is adsorbed to the hydroxyl groups present on the surface of the inorganic powder via the water in the solution, causing electric repulsion between the particles, and steric hindrance by the side chain to cause the particles in the slurry. Disperse the powder. This effect is due to the amount of carboxyl groups in the polycarboxylic acid,
The molecular weight is determined by the configuration of the molecule.

【0012】ポリカルボン酸は、一般的にはナトリウム
塩等の金属イオン塩、又はアンモニウム塩の形態で中和
されているが、これらは火炎投入後にナトリウムイオン
や硝酸イオンとなって無機質粉末表面に吸着し半導体封
止材としては耐湿信頼性を低下させる。したがって、使
用するポリカルボン酸は未中和であることが好ましい。
The polycarboxylic acid is generally neutralized in the form of a metal ion salt such as a sodium salt or an ammonium salt, and these are converted into sodium ions or nitrate ions after the introduction of the flame to form a surface on the inorganic powder. It adsorbs and reduces the moisture resistance reliability as a semiconductor encapsulant. Therefore, the polycarboxylic acid used is preferably not neutralized.

【0013】ポリカルボン酸又はその塩の添加量は、ス
ラリー中の無機粉末に対して0.1〜15%、特に1〜
10%であることが好ましい。0.1%未満では、粉末
の分散効果が乏しくなって火炎供給時に肥大化してしま
い、目的粒度の微細球状粉末が得られず、また15%超
にしても分散効果は高まらない。
The amount of the polycarboxylic acid or salt added is 0.1 to 15%, preferably 1 to 15%, based on the inorganic powder in the slurry.
It is preferably 10%. If it is less than 0.1%, the dispersing effect of the powder is poor and the powder is enlarged at the time of supplying the flame, so that a fine spherical powder having a target particle size cannot be obtained, and even if it exceeds 15%, the dispersing effect does not increase.

【0014】無機質粉末の水系スラリーを構成する媒体
は、工業用水でもよいが、イオン交換水、純水等の上質
水が好ましい。
The medium constituting the aqueous slurry of the inorganic powder may be industrial water, but preferably high-quality water such as ion-exchanged water and pure water.

【0015】水系スラリーの無機質粉末濃度は、特に制
限はなく、本発明のポリカルボン酸及び/又はその塩を
存在させることによって、70%程度までに高めても目
的粒度の微細球状無機質粉末を製造することができる。
しかしながら、あまりの高濃度スラリーであると、火炎
供給時に分散剤の添加でも防げない粉末同士の接触が起
こって肥大化するため、30〜50%が最適である。
The concentration of the inorganic powder in the aqueous slurry is not particularly limited, and the presence of the polycarboxylic acid and / or a salt thereof of the present invention makes it possible to produce a fine spherical inorganic powder having a desired particle size even if it is increased to about 70%. can do.
However, if the slurry is too high in concentration, powders that cannot be prevented by the addition of a dispersant during the supply of the flame will come into contact with each other, resulting in enlargement. Therefore, 30 to 50% is optimal.

【0016】無機質粉末の水系スラリーの高温火炎処理
は、例えば高圧の酸素、空気によってスラリーを液滴状
にし、溶融炉に、可燃性ガス−助燃ガスによって形成さ
れた温度約1900℃以上の高温火炎中に噴霧すること
によって行われる。可燃性ガスとしては、プロパン、ブ
タン、アセチレン、水素等が用いられ、助燃ガスには酸
素、空気が用いられる。噴霧の方法としては、二流体ノ
ズルなどのスプレー噴霧方式や、超音波噴霧器等が用い
られる。
In the high-temperature flame treatment of the aqueous slurry of the inorganic powder, the slurry is formed into droplets by, for example, high-pressure oxygen and air, and the high-temperature flame having a temperature of about 1900 ° C. or more formed by the combustible gas and the auxiliary gas is supplied to the melting furnace. This is done by spraying inside. As the combustible gas, propane, butane, acetylene, hydrogen, or the like is used, and as the auxiliary gas, oxygen or air is used. As a method of spraying, a spray spray method such as a two-fluid nozzle or an ultrasonic sprayer is used.

【0017】熱処理された無機質粉末は、溶融炉に接続
された捕集装置で回収される。捕集装置は、重力沈降
室、サイクロン等の一次捕集機で10μm以上の粗粉が
除去された後、目的とする微細球状無機質粉末をバグフ
ィルター等の集塵機で回収できるように構成されている
ことが好ましい。しかし、熱処理された無機質粉末を一
旦補集した後、回転翼を有した分級機等の捕集機で回収
することもできるし、更には無機質粉末のスラリー濃
度、ポリカルボン酸の量を調整し、一次捕集機を経由さ
せることなく全量をバグフィルター等で回収することも
可能である。
The heat-treated inorganic powder is collected by a collector connected to a melting furnace. The collecting device is configured such that after the coarse powder of 10 μm or more is removed by a primary collecting device such as a gravity sedimentation chamber and a cyclone, the intended fine spherical inorganic powder can be collected by a dust collector such as a bag filter. Is preferred. However, after the heat-treated inorganic powder is once collected, it can be collected by a collector such as a classifier having a rotating blade, or the slurry concentration of the inorganic powder and the amount of polycarboxylic acid can be adjusted. It is also possible to collect the entire amount with a bag filter or the like without passing through the primary collector.

【0018】また、微細無機質粉末における球状の程度
に関しては、平均球形度が0.90以上、特に0.95
以上が好ましい。0.9より低くなると、金型摩耗性と
流動性が低下する。球形度は、走査型電子顕微鏡(日本
電子社「JSM−T200型」)と画像解析装置(日本
アビオニクス社製)を用い、以下のようにして測定する
ことができる。
Regarding the degree of sphere in the fine inorganic powder, the average sphericity is 0.90 or more, especially 0.95
The above is preferred. If it is lower than 0.9, mold wear and fluidity are reduced. The sphericity can be measured using a scanning electron microscope (JSM-T200, JEOL Ltd.) and an image analyzer (manufactured by Nippon Avionics Co., Ltd.) as follows.

【0019】先ず、粉末のSEM写真から粒子の投影面
積(A)と周囲長(PM)を測定する。周囲長(PM)
に対応する真円の面積を(B)とすると、その粒子の球
形度はA/Bとして表示できる。そこで、試料粒子の周
囲長(PM)と同一の周囲長を持つ真円を想定すると、
PM=2πr、B=πr2であるから、B=π×(Pm
/2π)2となり、個々の粒子の粒径度は、球形度=A
/B=A×4π/(PM)2として算出することができ
るので、任意の粒子200個の平均値を粉末の平均球形
度として求めた。
First, the projected area (A) and perimeter (PM) of a particle are measured from an SEM photograph of the powder. Perimeter (PM)
Assuming that the area of a perfect circle corresponding to (B) is (B), the sphericity of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same perimeter as the perimeter (PM) of the sample particles,
Since PM = 2πr and B = πr2, B = π × (Pm
/ 2π) 2, and the particle size of each particle is sphericity = A
/ B = A × 4π / (PM) 2, so the average value of 200 arbitrary particles was determined as the average sphericity of the powder.

【0020】本発明における粒度特性は、レーザー散乱
光法による粒度測定法に基づく値であり、コールター粒
度測定器(モデルLS−230;コールター社製)にて
測定した。
The particle size characteristics in the present invention are values based on a particle size measuring method by a laser scattering light method, and were measured by a Coulter particle size measuring device (model LS-230; manufactured by Coulter Corporation).

【0021】[0021]

【実施例】以下、実施例、比較例を挙げて更に具体的に
本発明を説明する。
The present invention will be described below more specifically with reference to examples and comparative examples.

【0022】実施例1〜7 比較例1 溶融炉の頂部に燃料ガス供給管、助燃ガス供給管、原料
粉末供給管を接続したバーナー(3本)を設置した溶融
炉を用い、球状微細無機質粉末を製造した。各バーナー
の中心から表1に示される水系スラリーを噴出させて球
状化を行った。使用したポリカルボン酸は、メトキシポ
リエチレングリコールアリルエーテル−マレイン酸共重
合体(試薬A)、ポリアクリル酸アンモニウム塩(試薬
B)である。また、水系スラリーの噴霧量は90リット
ル/時と一定にした。
Examples 1 to 7 Comparative Example 1 Using a melting furnace equipped with three burners connected to a top of the melting furnace, a fuel gas supply pipe, an auxiliary combustion gas supply pipe, and a raw material powder supply pipe, spherical fine inorganic powder was used. Was manufactured. Water-based slurries shown in Table 1 were ejected from the center of each burner to perform spheroidization. The polycarboxylic acids used are methoxypolyethylene glycol allyl ether-maleic acid copolymer (reagent A) and ammonium polyacrylate (reagent B). The spray rate of the aqueous slurry was kept constant at 90 liters / hour.

【0023】溶融炉から排出された粉末はブロワーで吸
引し、サイクロンにて10ミクロン以上の粗粒分級した
後、バグフィルターで球状微細無機質粉末を捕集した。
目的とする球状微細無機質粉末の収率を表2に示した。
The powder discharged from the melting furnace was sucked by a blower, classified into coarse particles of 10 μm or more by a cyclone, and then the spherical fine inorganic powder was collected by a bag filter.
Table 2 shows the yield of the desired spherical fine inorganic powder.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】実施例1〜5では、高収率であったが、比
較例1のようにポリカルボン酸を添加しないと低収率で
あり、粒度も大きい結果となった。また、実施例6、7
に示すように、シリカ以外の原料を用いてもバグフィル
ターには目的粒度の球状無機質粉末が高収率で得られ
た。なお、実施例6において水酸化アルミニウムを用い
た場合の収率についてはAl換算での値を示
In Examples 1 to 5, the yield was high, but as in Comparative Example 1, the yield was low and the particle size was large unless polycarboxylic acid was added. Examples 6 and 7
As shown in Table 2, even when a raw material other than silica was used, a spherical inorganic powder having a target particle size was obtained in a high yield in the bag filter. The yield in the case of using aluminum hydroxide in Example 6 is shown in terms of Al.

【0027】[0027]

【発明の効果】本発明によれば、樹脂等の充填材に好適
な球状微細無機質粉末を高収率で製造することができ
る。
According to the present invention, a spherical fine inorganic powder suitable for a filler such as a resin can be produced at a high yield.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G042 DA01 DB09 DB15 DB19 DC03 DD03 DE03 DE05 DE12 4G072 AA25 BB07 DD04 DD05 GG03 JJ11 KK17 MM36 RR13 TT01 UU07 4G076 AA02 AB06 BA38 BA39 BB08 CA03 CA26 DA02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G042 DA01 DB09 DB15 DB19 DC03 DD03 DE03 DE05 DE12 4G072 AA25 BB07 DD04 DD05 GG03 JJ11 KK17 MM36 RR13 TT01 UU07 4G076 AA02 AB06 BA38 BA39 BB08 CA03 CA26 DA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微細無機質粉末を高温下火炎中に水系ス
ラリーで供給し、微細球状無機質粉末を製造する方法に
おいて、上記スラリーにポリカルボン酸及び/又はその
塩を存在させることを特徴とする微細球状無機質粉末の
製造方法。
1. A method for producing a fine spherical inorganic powder by supplying a fine inorganic powder in a flame at a high temperature under a high-temperature flame, wherein a polycarboxylic acid and / or a salt thereof is present in the slurry. A method for producing a spherical inorganic powder.
【請求項2】 微細無機質粉末の平均粒径が0.1〜5
ミクロンであることを特徴とする請求項1記載の微細球
状無機質粉末の製造方法。
2. The fine inorganic powder has an average particle size of 0.1-5.
The method for producing a fine spherical inorganic powder according to claim 1, wherein the particle diameter is micron.
JP2000376841A 2000-12-12 2000-12-12 Method for producing fine spherical inorganic powder Expired - Fee Related JP4372336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376841A JP4372336B2 (en) 2000-12-12 2000-12-12 Method for producing fine spherical inorganic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376841A JP4372336B2 (en) 2000-12-12 2000-12-12 Method for producing fine spherical inorganic powder

Publications (2)

Publication Number Publication Date
JP2002179409A true JP2002179409A (en) 2002-06-26
JP4372336B2 JP4372336B2 (en) 2009-11-25

Family

ID=18845650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376841A Expired - Fee Related JP4372336B2 (en) 2000-12-12 2000-12-12 Method for producing fine spherical inorganic powder

Country Status (1)

Country Link
JP (1) JP4372336B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
JP2007126357A (en) * 2007-01-22 2007-05-24 Denki Kagaku Kogyo Kk Manufacturing method of spherical inorganic ultra-fine powder
WO2008111611A1 (en) * 2007-03-13 2008-09-18 Ube Material Industries, Ltd. Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
JP2008222496A (en) * 2007-03-13 2008-09-25 Ube Material Industries Ltd Highly dispersible strontium carbonate fine powder
JP2008266134A (en) * 2007-03-28 2008-11-06 Ube Material Industries Ltd Particulate barium carbonate composition powder
WO2008136139A1 (en) * 2007-04-26 2008-11-13 Denki Kagaku Kogyo Kabushiki Kaisha Process for production of spherical metal oxide powder
WO2009017058A1 (en) * 2007-08-01 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, method for production of the same, and composition using the same
JP4806399B2 (en) * 2004-04-26 2011-11-02 サソル・ノース・アメリカ・インコーポレーテツド High pH dispersible nano alumina

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806399B2 (en) * 2004-04-26 2011-11-02 サソル・ノース・アメリカ・インコーポレーテツド High pH dispersible nano alumina
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
JP2007126357A (en) * 2007-01-22 2007-05-24 Denki Kagaku Kogyo Kk Manufacturing method of spherical inorganic ultra-fine powder
JP4567700B2 (en) * 2007-01-22 2010-10-20 電気化学工業株式会社 Method for producing spherical inorganic ultrafine powder
KR101474041B1 (en) * 2007-03-13 2014-12-17 우베 마테리알즈 가부시키가이샤 Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
WO2008111611A1 (en) * 2007-03-13 2008-09-18 Ube Material Industries, Ltd. Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
JP2008222496A (en) * 2007-03-13 2008-09-25 Ube Material Industries Ltd Highly dispersible strontium carbonate fine powder
JP2008266134A (en) * 2007-03-28 2008-11-06 Ube Material Industries Ltd Particulate barium carbonate composition powder
WO2008136139A1 (en) * 2007-04-26 2008-11-13 Denki Kagaku Kogyo Kabushiki Kaisha Process for production of spherical metal oxide powder
WO2009017058A1 (en) * 2007-08-01 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, method for production of the same, and composition using the same
US8480990B2 (en) 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
JP5380290B2 (en) * 2007-08-01 2014-01-08 電気化学工業株式会社 Method for producing silica powder
CN101743198B (en) * 2007-08-01 2012-12-12 电气化学工业株式会社 Silica powder, method for production of the same, and composition using the same

Also Published As

Publication number Publication date
JP4372336B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP3633091B2 (en) Method for producing minute inorganic spherical solid body
TW201202144A (en) Method for producing spherical alumina powder
JP2007051019A (en) Method for producing spheroidized inorganic powder
JP2002179409A (en) Method of manufacturing fine spherical inorganic powder
US8117867B2 (en) Process for producing spherical inorganic particle
JPH11147711A (en) Alumina fine sphere and its production
JP3690245B2 (en) Manufacturing method of glass powder
JP2001199719A (en) Method for producing spherical alumina powder
JP3957581B2 (en) Method for producing spherical silica powder
JP4313924B2 (en) Spherical silica powder and method for producing the same
JP4330298B2 (en) Method for producing spherical inorganic powder
JPH02286B2 (en)
JP3891740B2 (en) Method for producing fine spherical siliceous powder
JP4230554B2 (en) Method for producing spherical particles
JP2010254574A (en) Spherical multicomponent glass fine particle
JP3853137B2 (en) Method for producing fine spherical silica
JP4822550B2 (en) Spherical multi-component glass particles
JP4416936B2 (en) Method for producing fine silica powder
JPH0470257B2 (en)
JP4145855B2 (en) Method for producing spherical fused silica powder
JP4313943B2 (en) Method for producing fine spherical silica powder
JP2006131442A (en) Method for manufacturing spherical fused silica powder
JP3765769B2 (en) Method for producing fine spherical silica powder
JP4392097B2 (en) Method for producing ultrafine spherical silica
JP3868141B2 (en) Method for producing spherical silica powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees