JP2002164551A - Photoelectric conversion apparatus and its fabricating method - Google Patents

Photoelectric conversion apparatus and its fabricating method

Info

Publication number
JP2002164551A
JP2002164551A JP2000362019A JP2000362019A JP2002164551A JP 2002164551 A JP2002164551 A JP 2002164551A JP 2000362019 A JP2000362019 A JP 2000362019A JP 2000362019 A JP2000362019 A JP 2000362019A JP 2002164551 A JP2002164551 A JP 2002164551A
Authority
JP
Japan
Prior art keywords
substrate
particles
semiconductor
granular crystal
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000362019A
Other languages
Japanese (ja)
Inventor
Takeshi Kyoda
豪 京田
Makoto Sugawara
信 菅原
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000362019A priority Critical patent/JP2002164551A/en
Priority to US10/046,017 priority patent/US6620997B2/en
Publication of JP2002164551A publication Critical patent/JP2002164551A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To overcome the problem of a photoelectric conversion apparatus employing crystalline semiconductor particles that the characteristics are low and the cost is high. SOLUTION: The photoelectric conversion apparatus comprises multiple granular crystalline semiconductors 2 arranged on a substrate 1 having one electrode layer 1, and an insulator 3 filling the gaps of the granular crystalline semiconductors 2 wherein the granular crystalline semiconductors 2 and the substrate 1 are bonded through a complex 20 produced by diffusing particles 22 composed of the material of the granular crystalline semiconductor 2 into an alloy 21 of the granular crystalline semiconductor 2 and the substrate 1. The substrate 1 is composed of aluminum and the granular crystalline semiconductor 2 is composed of silicon and the granular crystalline semiconductor 2 can be bonded well to the substrate 1 by heating them at 577 deg.C or above while touching each other thereby bonding them through the complex 20 produced by diffusing particles 22 composed of the material of the granular crystalline semiconductor 2 into the alloy 21 of the granular crystalline semiconductor 2 and the substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換装置及びそ
の製造方法に関し、特に太陽光発電に使用される結晶半
導体粒子を用いた光電変換装置及びその製造方法に関す
る。
The present invention relates to a photoelectric conversion device and a method for manufacturing the same, and more particularly, to a photoelectric conversion device using crystalline semiconductor particles used for photovoltaic power generation and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の結晶半導体粒子を用いた光電変換
装置を図5、図6、図7に示す。例えば図5に示すよう
に、第1のアルミニウム箔10に開口を形成し、その開
口にp形の上にn形表皮部9を持つシリコン球2を結合
し、球2の裏側のn形表皮部9を除去し、第1のアルミ
ニウム箔10の裏面側に酸化物層3を形成し、シリコン
球2の裏側の酸化物層3を除去して第2のアルミニウム
箔8と接合する光電変換装置が開示されている(例えば
特開昭61−124179号公報参照)。
2. Description of the Related Art FIGS. 5, 6, and 7 show a conventional photoelectric conversion device using crystalline semiconductor particles. For example, as shown in FIG. 5, an opening is formed in a first aluminum foil 10 and a silicon ball 2 having an n-type skin portion 9 on a p-type is connected to the opening, and an n-type skin on the back side of the ball 2 is formed. The photoelectric conversion device in which the portion 9 is removed, the oxide layer 3 is formed on the back side of the first aluminum foil 10, and the oxide layer 3 on the back side of the silicon ball 2 is removed and joined to the second aluminum foil 8. (See, for example, JP-A-61-124179).

【0003】また、図6に示すように、基板1上に低融
点金属層11を形成し、この低融点金属層11上に第一
導電形の半導体粒子2を配設し、該結晶半導体粒子2上
に第2導電形のアモルファス半導体層7を上記低融点金
属層11との間に絶縁層3を介して形成する光電変換装
置が開示されている(例えば特許2641800号公報
参照)。
As shown in FIG. 6, a low-melting metal layer 11 is formed on a substrate 1, and semiconductor particles 2 of the first conductivity type are provided on the low-melting metal layer 11. 2 discloses a photoelectric conversion device in which an amorphous semiconductor layer 7 of the second conductivity type is formed between the semiconductor layer 7 and the low melting point metal layer 11 via an insulating layer 3 (see, for example, Japanese Patent No. 2641800).

【0004】また、図7に示すように、基板1上に高融
点金属層12と低融点金属層11と半導体微小結晶粒1
3を堆積させ、半導体の微小結晶粒13を融解させて飽
和させた上で徐々に冷却させて半導体を液相エピタキシ
ャル成長させることによって多結晶薄膜13を形成する
方法が開示されている(例えば特公平8−34177号
公報参照)。
[0004] As shown in FIG. 7, a high melting point metal layer 12, a low melting point metal layer 11, and semiconductor fine crystal grains 1 are formed on a substrate 1.
3, a method of forming a polycrystalline thin film 13 by melting and saturating the fine crystal grains 13 of the semiconductor and then gradually cooling the semiconductor to cause liquid-phase epitaxial growth of the semiconductor (for example, Japanese Patent Publication No. HEI-Hei). 8-34177).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図5に
示すような光電変換装置においては、第1のアルミニウ
ム箔10に開口を形成し、その開口にシリコン球2を押
し込んで接合させる必要があるため、シリコン球2の球
径に均一性が要求され、高コストになるという問題点が
あった。
However, in the photoelectric conversion device as shown in FIG. 5, it is necessary to form an opening in the first aluminum foil 10 and press the silicon sphere 2 into the opening to join them. In addition, there is a problem that uniformity is required for the diameter of the silicon sphere 2 and the cost is high.

【0006】また、図6に示すような光電変換装置によ
れば、低融点金属膜11に粒子2を固定した後に絶縁体
3を設けるため、絶縁体3が低融点金属膜11上だけで
なく、粒子2上にまで形成されてしまい、アモルファス
半導体層7を設ける前に粒子2上の絶縁体3を除去する
必要があり、そのために工程数が増加し、洗浄工程や製
造環境の管理を厳しくする必要がある。その結果、高コ
ストになるという問題点があった。
In addition, according to the photoelectric conversion device as shown in FIG. 6, since the insulator 3 is provided after the particles 2 are fixed to the low melting point metal film 11, the insulator 3 is not only formed on the low melting point metal film 11, , The insulator 3 on the particles 2 needs to be removed before the amorphous semiconductor layer 7 is provided. Therefore, the number of steps increases, and the cleaning process and the management of the manufacturing environment are strictly controlled. There is a need to. As a result, there has been a problem that the cost is high.

【0007】また、図7示すような光電変換装置によれ
ば、低融点金属11が第一導電形の液相エピタキシャル
多結晶層13中に混入するために性能が落ち、絶縁体が
無いために下部電極12との間にリークが発生するとい
う問題点があった。
Further, according to the photoelectric conversion device as shown in FIG. 7, the low melting point metal 11 is mixed into the liquid phase epitaxial polycrystalline layer 13 of the first conductivity type, so that the performance is lowered. There is a problem that leakage occurs between the lower electrode 12 and the lower electrode 12.

【0008】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は、低コストの光電
変換装置を提供することにある。
[0008] The present invention has been made in view of the above-mentioned problems in the prior art, and an object thereof is to provide a low-cost photoelectric conversion device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る光電変換装置は、一方の電極層を有
する基板上に少なくとも多数の粒状結晶半導体を配設
し、この粒状結晶半導体間に絶縁体を充填した光電変換
装置において、前記粒状結晶半導体と基板とを、前記粒
状結晶半導体と基板の合金中に前記粒状結晶半導体の材
料からなる粒子が分散された複合体で接合したことを特
徴とする。
According to a first aspect of the present invention, there is provided a photoelectric conversion device, wherein at least a large number of granular crystal semiconductors are disposed on a substrate having one electrode layer. In a photoelectric conversion device in which an insulator is filled between semiconductors, the granular crystal semiconductor and the substrate are joined by a composite in which particles of the material of the granular crystal semiconductor are dispersed in an alloy of the granular crystal semiconductor and the substrate. It is characterized by the following.

【0010】また、請求項3に係る光電変換装置の製造
方法は、一方の電極層を有する基板上に少なくとも多数
の粒状結晶半導体を配設し、この粒状結晶半導体間に絶
縁体を充填した光電変換装置の製造方法において、前記
基板がアルミニウムから成り、前記粒状結晶半導体がシ
リコンから成り、前記粒状結晶半導体と基板とを接触さ
せた状態で577℃以上の温度で加熱することによって
前記粒状結晶半導体と基板とを、前記粒状結晶半導体と
基板の合金中に前記粒状結晶半導体の材料からなる粒子
が分散された複合体で接合することを特徴とする。
According to a third aspect of the present invention, there is provided a method for manufacturing a photoelectric conversion device, wherein at least a large number of granular crystal semiconductors are disposed on a substrate having one electrode layer, and an insulator is filled between the granular crystal semiconductors. In the method of manufacturing a converter, the substrate is made of aluminum, the granular crystal semiconductor is made of silicon, and the granular crystal semiconductor is heated at a temperature of 577 ° C. or more in a state where the granular crystal semiconductor and the substrate are in contact with each other. And the substrate are joined by a composite in which particles made of the material of the granular crystal semiconductor are dispersed in an alloy of the granular crystal semiconductor and the substrate.

【0011】本発明の光電変換装置によれば、一方の電
極層を有する基板上に少なくとも多数の粒状結晶半導体
を配設し、前記粒状結晶半導体と基板とを、前記粒状結
晶半導体と基板の合金中に前記粒状結晶半導体の材料か
らなる粒子が分散された複合体を介して接合することに
より、従来の特開昭61−124179号公報、特許2
641800号公報、特公平8−34177号公報で開
示されている光電変換装置と比較して製造マージンが大
きく、低コストの製造が可能となる。つまり、単一導電
形を持つ粒子を低い粒径精度で製造すればよく、絶縁体
によって粒子上を覆うことなく正極と負極の分離が確実
にされることにより、低コストの製造が可能となる。
According to the photoelectric conversion device of the present invention, at least a number of granular crystal semiconductors are provided on a substrate having one electrode layer, and the granular crystal semiconductor and the substrate are combined with each other. By joining through a composite in which particles made of the above-mentioned granular crystal semiconductor material are dispersed, a conventional Japanese Patent Application Laid-Open No. 61-124179 and Patent
As compared with the photoelectric conversion device disclosed in Japanese Patent Application Laid-Open No. 641800 and Japanese Patent Publication No. 8-34177, the manufacturing margin is large, and low-cost manufacturing is possible. In other words, particles having a single conductivity type may be manufactured with low particle size accuracy, and the separation of the positive electrode and the negative electrode is ensured without covering the particles with an insulator, thereby enabling low-cost manufacturing. .

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて本発明を詳
細に説明する。図1及び図2において、1は基板、2は
半導体粒子、3は絶縁体、4は導電層、5は保護膜、2
0は複合体である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. 1 and 2, 1 is a substrate, 2 is semiconductor particles, 3 is an insulator, 4 is a conductive layer, 5 is a protective film, 2
0 is a complex.

【0013】基板1はアルミニウムから成り、下部電極
を兼ね、しかも後述の半導体粒子2と接合させるためで
ある。また、基板1の構成はアルミニウムから成る単
層、又は他の金属、セラミックや樹脂などとの複層に
し、その表面に図2に示すアルミニウムから成る導電層
1‘を形成する。
The substrate 1 is made of aluminum, serves also as a lower electrode, and is to be bonded to semiconductor particles 2 described later. The structure of the substrate 1 is a single layer made of aluminum or a multi-layer made of another metal, ceramic, resin, or the like, and a conductive layer 1 'made of aluminum shown in FIG. 2 is formed on the surface thereof.

【0014】半導体粒子2は、Si、Geにp形を呈す
るB、Al、Ga等、又はn形を呈するP、As等が微
量含まれているものである。半導体粒子2の形状として
は多角形を持つもの、曲面を持つもの等があるが、例え
ば後述する絶縁体層3上から半導体粒子2を押し込んで
基板1に接触させる際に、絶縁体層3を効率よく押しの
けるために、曲面を持つもの特に球状であるものがよ
い。粒径分布としては均一、不均一を問わないが、均一
の場合は粒径を揃えるための工程が必要になるため、よ
り安価に製造するためには不均一な方が有利である。な
お、絶縁体層3上から半導体粒子2を押し込んで基板1
に接触させる際に、不均一の場合でも半導体粒子2を押
し込む治具に柔軟性のある材料を使用することで、充分
に基板1に接触させることが可能となる。更に凸曲面を
持つことによって光の光線角度の依存性も小さい。更
に、半導体粒子2は上記のような単一型の半導体粒子だ
けでなく、半導体粒子2がp形の時には、その表層にS
i、Geにn形を呈するP、As等、又は半導体粒子2
がn型の時には、その表層にSi、Geにp形を呈する
B、Al、Ga等が含まれている2層型の半導体粒子2
を使用してもよい。
The semiconductor particles 2 contain a small amount of Si, Ge, such as B, Al, Ga, or the like exhibiting a p-type, or P, As, or the like exhibiting an n-type. The shape of the semiconductor particles 2 includes a polygonal shape, a curved shape, and the like. For example, when the semiconductor particles 2 are pressed from above on the insulating layer 3 and brought into contact with the substrate 1, the insulating layer 3 In order to efficiently push away, those having a curved surface, particularly those having a spherical shape are preferable. The particle size distribution may be uniform or non-uniform, but if uniform, a process for adjusting the particle size is required. For uniform production, non-uniform size is more advantageous. The semiconductor particles 2 are pushed from above the insulator layer 3 so that the substrate 1
When using a flexible material for the jig for pushing the semiconductor particles 2 even when the semiconductor particles 2 are not uniform, it is possible to make sufficient contact with the substrate 1. Further, by having a convex curved surface, the dependence on the light ray angle of light is small. Further, when the semiconductor particles 2 are not only the single type semiconductor particles as described above, but also when the semiconductor particles 2 are p-type, S
i, Ge, n-type P, As, etc., or semiconductor particles 2
Is n-type, a two-layer type semiconductor particle 2 whose surface layer contains B, Al, Ga or the like exhibiting p-type in Si and Ge.
May be used.

【0015】絶縁体3は、正極と負極の分離を行うため
の絶縁材料からなる。例えばSiO 2、B23、Al2
3、CaO、MgO、P25、Li2O、SnO、Pb
O、ZnO等を任意な成分とする主材料のガラス粒子3
1のペーストを用いた絶縁体等がある。絶縁体3は例え
ば基板1上に塗布形成したときに、ある程度の固さ又は
粘性が必要であり、押し込まれた半導体粒子2を一時的
に保持する必要がある。そして、後述の基板1と半導体
粒子2の間でオーミック接合を取る際の加熱温度で焼成
することによって融解して絶縁体の層を形成すると同時
に、半導体粒子2を部分的に覆う特性を持つものであ
る。
The insulator 3 is used to separate the positive electrode and the negative electrode.
Made of insulating material. For example, SiO Two, BTwoOThree, AlTwoO
Three, CaO, MgO, PTwoOFive, LiTwoO, SnO, Pb
Glass particles 3 of main material containing O, ZnO, etc. as optional components
There is an insulator using the paste of No. 1. For example, insulator 3
For example, when coated and formed on the substrate 1,
Viscosity is required and the pushed semiconductor particles 2 are temporarily
Need to be kept. Then, a substrate 1 and a semiconductor described later
Baking at the heating temperature at which an ohmic junction is made between particles 2
Simultaneously melts to form an insulator layer
Having a characteristic of partially covering the semiconductor particles 2.
You.

【0016】導電層4は、Si、Geから成る第二導電
形の導電層及び/又は透明導電層である。第二導電形の
導電層は、気相成長法等で例えばシラン化合物の気相に
n形を呈するリン系化合物の気相、又はp形を呈するホ
ウ素系化合物の気相を微量導入して形成する。膜質とし
ては結晶質、非晶質、結晶質と非晶質とが混在するのい
ずれでもよい。また、透明導電層は、スパッタ法や気相
成長法等の成膜方法あるいは塗布焼成等により形成し、
SnO2、In23、ITO、ZnO、TiO2等から選
ばれる1種又は複数の酸化物系膜、又はTi、Pt、A
u等から選ばれる1種又は複数の金属系膜を形成する。
透明導電層は膜厚を選べば反射防止膜としての効果も期
待できる。また、粒状結晶半導体2表面に直接形成する
導電層4としては第二導電形の導電層がより望ましい。
導電性の兼ね合いから層中の微量元素の濃度は高くても
よく、例えば1×1016〜1×1021atm/cm3
度である。更に、導電層4は半導体粒子2の表面に沿っ
て形成し、pn接合を光の入射表面の近傍且つ半導体粒
子2の凸曲面形状に沿って形成することが望ましい。半
導体粒子2の凸曲面状の表面に沿って形成することによ
ってpn接合の面積を広くとることができ、半導体粒子
2の内部で生成したキャリアを効率よく収集することが
可能となる。なお、半導体粒子2が2層型の半導体粒子
であれば、導電層4としては第二導電形の導電層は無く
てもよいが、この時は透明導電膜が必要となる。
The conductive layer 4 is a second conductive type conductive layer made of Si or Ge and / or a transparent conductive layer. The conductive layer of the second conductivity type is formed, for example, by introducing a small amount of a vapor phase of a phosphorus-based compound exhibiting n-type or a vapor phase of a boron-based compound exhibiting p-type into a vapor phase of a silane compound by a vapor phase growth method or the like. I do. The film may be crystalline, amorphous, or a mixture of crystalline and amorphous. Further, the transparent conductive layer is formed by a film forming method such as a sputtering method or a vapor phase growth method, or by coating and firing,
One or more oxide-based films selected from SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2, etc., or Ti, Pt, A
One or more metal-based films selected from u and the like are formed.
If the thickness of the transparent conductive layer is selected, the effect as an antireflection film can be expected. As the conductive layer 4 directly formed on the surface of the granular crystal semiconductor 2, a conductive layer of the second conductivity type is more preferable.
The concentration of the trace element in the layer may be high, for example, from about 1 × 10 16 to 1 × 10 21 atm / cm 3 in consideration of conductivity. Further, it is desirable that the conductive layer 4 be formed along the surface of the semiconductor particle 2 and that the pn junction be formed near the light incident surface and along the convex curved shape of the semiconductor particle 2. By forming the pn junction along the convex curved surface of the semiconductor particles 2, the area of the pn junction can be widened, and the carriers generated inside the semiconductor particles 2 can be efficiently collected. Note that if the semiconductor particles 2 are two-layer type semiconductor particles, the conductive layer 4 may not include the conductive layer of the second conductivity type, but in this case, a transparent conductive film is required.

【0017】保護膜5は透明誘電体の特性を持つものが
よく、CVD法やPVD法等で例えば酸化珪素、酸化セ
シウム、酸化アルミニウム、窒化珪素、酸化チタン、S
iO 2−TiO2、酸化タンタル、酸化イットリウム等を
単一組成又は複数組成で単層又は組み合わせて結晶質と
非晶質とが混在する半導体層4上に形成する。保護膜5
が透明誘電体である必要性は、光の入射面に接している
ために、透明性が必要であることと、結晶質と非晶質と
が混在する半導体層4の欠陥部の下部に位置する半導体
粒子2と保護膜5及びその上部との間のリークを防止す
るためである。なお、保護膜5の膜厚を最適化すれば反
射防止膜としての機能も期待できる。
The protective film 5 has the property of a transparent dielectric.
For example, silicon oxide, silicon oxide,
Cium, aluminum oxide, silicon nitride, titanium oxide, S
iO Two-TiOTwo, Tantalum oxide, yttrium oxide, etc.
Crystalline in single layer or in combination with single layer or multiple composition
It is formed on the semiconductor layer 4 where amorphous and amorphous are mixed. Protective film 5
Need to be a transparent dielectric is in contact with the light incident surface
Therefore, transparency is required, and crystalline and amorphous
Semiconductor located under the defective portion of the semiconductor layer 4 in which
Prevents leakage between particles 2 and protective film 5 and its upper part
That's because. If the thickness of the protective film 5 is optimized,
It can also be expected to function as an anti-irradiation film.

【0018】複合体20は、図3に示すように半導体粒
子2と基板1を構成する材料の合金21中に半導体粒子
2の材料からなる粒子22が分散された複合体20であ
り、複合体20で半導体粒子2と基板1が接合してい
る。複合体20は上記の半導体粒子2の材料からなる粒
子22が分散された構造をとるために熱膨張係数が半導
体粒子2と基板1の中間の値を取るために、接合時の温
度から室温に下げた際の各材料の熱膨張係数差によるク
ラックが発生せず、半導体粒子2と基板1の良好な接合
を与える。複合体20を形成するには、例えば半導体粒
子2がシリコンから成り、基板1あるいは導電層1‘が
アルミニウムから成る場合は、半導体粒子2と基板1を
接触させた状態でシリコンとアルミニウムの共晶温度で
ある577℃以上の温度で加熱処理することによって、
半導体粒子2と基板1あるいは導電層1‘の間に形成さ
れる。半導体粒子2と基板1を単に接合するだけであれ
ば、半導体粒子2と基板1あるいは導電層1‘を接触さ
せた状態で共晶温度である577℃以下、例えば400
℃等の温度で保持することによって半導体粒子2と基板
1あるいは導電層1‘の相互拡散で接合するものの、シ
リコン(熱膨張係数28×10-7/℃)とアルミニウム
(熱膨張係数236×10-7/℃)の熱膨張係数差が大
きいために、室温に下げた時に半導体粒子2と基板1あ
るいは導電層1‘との界面でクラックが発生してしま
う。また、半導体粒子2と基板1あるいは導電層1‘の
間にシルミン(AlSi12、熱膨張係数204×10-7
/℃)を介在させて接合しても、シルミンと半導体粒子
2との熱膨張係数差が大きいために、室温に下げた時に
シルミンとアルミニウムとの界面でクラックが発生して
しまう。
As shown in FIG. 3, the composite 20 is a composite 20 in which particles 22 made of the material of the semiconductor particles 2 are dispersed in an alloy 21 of the material forming the semiconductor particles 2 and the substrate 1. At 20, the semiconductor particles 2 and the substrate 1 are joined. Since the composite 20 has a structure in which the particles 22 made of the material of the semiconductor particles 2 are dispersed, the coefficient of thermal expansion takes an intermediate value between the semiconductor particles 2 and the substrate 1. Cracks do not occur due to the difference in thermal expansion coefficient of each material when lowered, and good bonding between the semiconductor particles 2 and the substrate 1 is provided. In order to form the composite 20, for example, when the semiconductor particles 2 are made of silicon and the substrate 1 or the conductive layer 1 'is made of aluminum, the eutectic of silicon and aluminum is kept in contact with the semiconductor particles 2 and the substrate 1. By performing heat treatment at a temperature of 577 ° C. or higher,
It is formed between the semiconductor particles 2 and the substrate 1 or the conductive layer 1 '. If the semiconductor particles 2 and the substrate 1 are simply joined, the semiconductor particles 2 and the substrate 1 or the conductive layer 1 ′ are in contact with each other at a eutectic temperature of 577 ° C. or less, for example, 400 ° C.
Although the semiconductor particles 2 and the substrate 1 or the conductive layer 1 'are joined by interdiffusion by holding at a temperature of, for example, ° C, silicon (thermal expansion coefficient: 28 × 10 -7 / ° C) and aluminum (thermal expansion coefficient: 236 × 10 (−7 / ° C.), a crack occurs at the interface between the semiconductor particles 2 and the substrate 1 or the conductive layer 1 ′ when the temperature is lowered to room temperature. Further, between the semiconductor particles 2 and the substrate 1 or the conductive layer 1 ′, silmin (AlSi 12 , thermal expansion coefficient: 204 × 10 −7)
/ ° C.), cracks are generated at the interface between silmin and aluminum when the temperature is lowered to room temperature because the difference in thermal expansion coefficient between silmine and the semiconductor particles 2 is large.

【0019】なお、直列抵抗値を低くするために、結晶
質と非晶質とが混在する半導体層4又は保護層5の上に
一定間隔のフィンガーやバスバーといったパターン電極
を設け、変換効率を向上させることも可能である。
In order to reduce the series resistance, a pattern electrode such as a finger or a bus bar is provided at regular intervals on the semiconductor layer 4 or the protective layer 5 in which crystalline and amorphous are mixed to improve the conversion efficiency. It is also possible to make it.

【0020】[0020]

【実施例】次に、本発明の光電変換装置の実施例を説明
する。 〔例1〕実施例1の断面図を図1に示す。鉄を含む基板
1上にアルミニウム層19を50μmの厚みに形成し、
その上に絶縁体3を焼成後の厚みがシリコン粒子2の粒
径の半分近くになるように塗布形成した。絶縁体として
は表1の各最低粒径のSiO2・B23・PbO系の各
ガラス粒子にバインダーと溶剤を混合したものを用い
た。その上にp形シリコン粒子2を密に配置して絶縁体
3中に押し込んでアルミニウム層19に接触させた。次
に、加圧しながら絶縁体3の融解とシリコン粒子2をア
ルミニウム層19に接合させるために577℃以上の温
度で焼成し、その後500℃までおよそ0.5〜50℃
/minの温度勾配で徐冷した。
Next, an embodiment of the photoelectric conversion device of the present invention will be described. Example 1 FIG. 1 is a sectional view of Example 1. Forming an aluminum layer 19 to a thickness of 50 μm on the substrate 1 containing iron,
An insulator 3 was formed thereon by application so that the thickness after firing was close to half the particle size of the silicon particles 2. As the insulator, a mixture of a binder and a solvent mixed with each of SiO 2 , B 2 O 3, and PbO-based glass particles having the minimum particle size shown in Table 1 was used. The p-type silicon particles 2 were densely arranged thereon and pushed into the insulator 3 to make contact with the aluminum layer 19. Next, it is baked at a temperature of 577 ° C. or more to melt the insulator 3 and to bond the silicon particles 2 to the aluminum layer 19 while applying pressure.
The mixture was gradually cooled at a temperature gradient of / min.

【0021】比較例1は、実施例1と同様にしてp形シ
リコン粒子2を密に配置して絶縁体3中に押し込んでア
ルミニウム層19に接触させた。次に、絶縁体3の融解
とシリコン粒子2をアルミニウム層19に相互拡散で接
合させるために400℃の温度で焼成し、その後実施例
1と同様に徐冷した。
In Comparative Example 1, as in Example 1, p-type silicon particles 2 were densely arranged, pressed into insulator 3 and brought into contact with aluminum layer 19. Next, in order to melt the insulator 3 and bond the silicon particles 2 to the aluminum layer 19 by interdiffusion, baking was performed at a temperature of 400 ° C.

【0022】比較例2は、鉄を含む基板1上にアルミニ
ウム層19を50μm、その上にシルミン層20を50
μmの厚みに形成した基板を用いた以外は実施例と同様
に形成して焼成し、その後500℃まで100℃/mi
n以上の温度勾配で急冷した。以上の試料のシリコン粒
子2とアルミニウム層19の接合状況を確認した結果を
表1に示す。
In Comparative Example 2, an aluminum layer 19 was formed on a substrate 1 containing iron by 50 μm, and a
Except for using a substrate formed to a thickness of μm, it was formed and baked in the same manner as in the example, and then 100 ° C./mi up to 500 ° C.
It was rapidly cooled with a temperature gradient of n or more. Table 1 shows the results of checking the bonding state between the silicon particles 2 and the aluminum layer 19 of the above sample.

【0023】比較例1では、p形シリコン粒子2と基板
との間にクラックが発生して良好な接合が得られなかっ
た。接合部を確認した結果、p形シリコン粒子2と基板
との間にシリコンとアルミニウムの合金が形成されてお
らず、p形シリコン粒子2と基板との間にクラックが発
生していた。クラックの原因は、p形シリコン粒子2と
基板との間の熱膨張係数差によるものと考えられる。
In Comparative Example 1, cracks occurred between the p-type silicon particles 2 and the substrate, and good bonding could not be obtained. As a result of checking the joint, no alloy of silicon and aluminum was formed between the p-type silicon particles 2 and the substrate, and cracks occurred between the p-type silicon particles 2 and the substrate. The cause of the crack is considered to be due to a difference in thermal expansion coefficient between the p-type silicon particles 2 and the substrate.

【0024】また、比較例2でも、p形シリコン粒子2
と基板との間にクラックが発生して良好な接合が得られ
なかった。接合部を確認した結果、p形シリコン粒子2
と基板との間にシリコンとアルミニウムとの合金が溶融
しているものの、p形シリコン粒子2とシリコンとアル
ミニウムの合金との接合部にクラックが発生しており、
上記合金中にはシリコンの粒子は見られなかった。クラ
ックの原因は、p形シリコン粒子2と合金との間の熱膨
張係数差による応力と考えられる。
In Comparative Example 2, p-type silicon particles 2
Cracks occurred between the substrate and the substrate, and good joining was not obtained. As a result of confirming the joint, p-type silicon particles 2
Although the alloy of silicon and aluminum is molten between the substrate and the substrate, cracks are generated at the joint between the p-type silicon particles 2 and the alloy of silicon and aluminum,
No silicon particles were found in the alloy. The cause of the crack is considered to be a stress due to a difference in thermal expansion coefficient between the p-type silicon particles 2 and the alloy.

【0025】一方、実施例1はp形シリコン粒子2と基
板との間にクラックは発生せず、良好な接合が得られ
た。接合部を図3に示す通り、p形シリコン粒子2と基
板との間にシリコンとアルミニウムの合金21が形成さ
れ、合金中にシリコンがウィスカー状の粒子22となっ
て分散している複合体20が確認された。良好な接合が
得られた原因は、複合体20がシリコンとアルミニウム
の合金21中にシリコンがウィスカー状の粒子22とな
って分散しているために、シリコンとアルミニウムの合
金のみの時よりもシリコンがウィスカー状の粒子となっ
て分散している分だけ熱膨張係数が小さくなったために
熱膨張係数差による応力が改善されたものと考えられ
る。
On the other hand, in Example 1, no crack was generated between the p-type silicon particles 2 and the substrate, and good bonding was obtained. As shown in FIG. 3, a composite 20 in which an alloy 21 of silicon and aluminum is formed between the p-type silicon particles 2 and the substrate, and silicon is dispersed as whisker-like particles 22 in the alloy, as shown in FIG. Was confirmed. The reason why a good bonding was obtained is that the silicon is dispersed in the alloy 21 of silicon and aluminum in the form of whisker-like particles 22 in the composite 20. It is considered that the stress due to the difference in the coefficient of thermal expansion was improved because the coefficient of thermal expansion was reduced as much as the particles were dispersed as whisker-like particles.

【0026】なお、基板はアルミニウムの単一基板(図
2)でも同様の効果であった。
The same effect was obtained with a single aluminum substrate (FIG. 2).

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上のように、請求項1に係る光電変換
装置によれば、一方の電極層を有する基板上に少なくと
も多数の粒状結晶半導体を配設し、この粒状結晶半導体
間に絶縁体を充填した光電変換装置において、前記粒状
結晶半導体と基板とを、前記粒状結晶半導体と基板の合
金中に前記粒状結晶半導体の材料からなる粒子が分散さ
れた複合体で接合することから、複合体の熱膨張係数が
粒状結晶半導体と基板の間の値を取ることによって、各
接合部に熱膨張係数差で発生する応力によるクラックの
発生を防止でき、よって基板と粒状結晶半導体の良好な
接合を行うことができる。
As described above, according to the photoelectric conversion device of the first aspect, at least a large number of granular crystal semiconductors are provided on a substrate having one electrode layer, and an insulator is provided between the granular crystal semiconductors. In the photoelectric conversion device filled with, the granular crystal semiconductor and the substrate are joined with a composite in which particles made of the material of the granular crystal semiconductor are dispersed in an alloy of the granular crystal semiconductor and the substrate. By taking the value of the thermal expansion coefficient between the granular crystal semiconductor and the substrate, it is possible to prevent the occurrence of cracks due to the stress generated due to the difference in the thermal expansion coefficient at each joint, and thus to achieve a good bonding between the substrate and the granular crystal semiconductor. It can be carried out.

【0029】また、請求項3に係る光電変換装置の製造
方法によれば、一方の電極層を有する基板上に多数の粒
状結晶半導体を配設し、この粒状結晶半導体間に絶縁体
を充填して、この粒状結晶半導体の上部側に他方の電極
層を形成する光電変換装置の製造方法において、前記基
板がアルミニウムから成り、前記粒状結晶半導体がシリ
コンから成り、前記粒状結晶半導体と基板とを接触させ
た状態で577℃以上の温度で加熱することによって前
記粒状結晶半導体と基板とを、前記粒状結晶半導体と基
板の合金中に前記粒状結晶半導体の材料からなる粒子が
分散された複合体で接合することから、複合体の熱膨張
係数が粒状結晶半導体と基板の間の値を取ることによっ
て、各接合部に熱膨張係数差で発生する応力によるクラ
ックの発生を防止でき、よって基板と粒状結晶半導体の
良好な接合を行うことができる。
According to a third aspect of the invention, there is provided a method for manufacturing a photoelectric conversion device, wherein a number of granular crystal semiconductors are provided on a substrate having one electrode layer, and an insulator is filled between the granular crystal semiconductors. In the method for manufacturing a photoelectric conversion device in which the other electrode layer is formed on the upper side of the granular crystal semiconductor, the substrate is made of aluminum, the granular crystal semiconductor is made of silicon, and the granular crystal semiconductor is brought into contact with the substrate. The granular crystal semiconductor and the substrate are joined by heating at a temperature of 577 ° C. or more in a state in which the particles made of the material of the granular crystal semiconductor are dispersed in an alloy of the granular crystal semiconductor and the substrate. Therefore, by taking the value of the thermal expansion coefficient of the composite between the granular crystal semiconductor and the substrate, it is possible to prevent the occurrence of cracks due to the stress generated by the difference in the thermal expansion coefficient at each joint. Can, therefore it is possible to perform good bonding of the substrates and the particulate crystal semiconductor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換装置の実施の形態の一例を示
す断面概略図である。
FIG. 1 is a schematic sectional view showing an example of an embodiment of a photoelectric conversion device of the present invention.

【図2】本発明の光電変換装置の他の実施の形態を示す
断面概略図である。
FIG. 2 is a schematic sectional view showing another embodiment of the photoelectric conversion device of the present invention.

【図3】本発明の光電変換装置の実施例1の接合部を示
す断面概略図である。
FIG. 3 is a schematic cross-sectional view illustrating a junction of the photoelectric conversion device according to the first embodiment of the present invention.

【図4】本発明の光電変換装置の比較例の接合部を示す
断面概略図であり、(a)は比較例1、(b)は比較例
2である。
4A and 4B are schematic cross-sectional views illustrating a junction of a comparative example of the photoelectric conversion device of the present invention. FIG. 4A is a comparative example 1 and FIG.

【図5】従来例1の光電変換装置を示す断面概略図であ
る。
FIG. 5 is a schematic sectional view showing a photoelectric conversion device of Conventional Example 1.

【図6】従来例2の光電変換装置を示す断面概略図であ
る。
FIG. 6 is a schematic sectional view showing a photoelectric conversion device of Conventional Example 2.

【図7】従来例3の光電変換装置を示す断面概略図であ
る。
FIG. 7 is a schematic sectional view showing a photoelectric conversion device of Conventional Example 3.

【符号の説明】[Explanation of symbols]

1・・・・基板、1'・・・・導電膜、2・・・・結晶半導体粒子、
3・・・・絶縁体、4・・・・導電層、5・・・・保護層、6・・・・透
明導電膜、7・・・・第二導電形のアモルファス半導体層、
8・・・・下部アルミニウム箔、9・・・・第二導電形のドーピ
ング層、10・・上部アルミニウム箔、11・・低融点金属
膜、12・・高融点金属膜、13・・第一導電形の液相エピ
タキシャル多結晶層、14・・第二導電形の多結晶あるい
はアモルファス層、20・・複合体、21・・基板と結晶半
導体粒子の合金層、シルミン層、22・・結晶半導体粒子
の材料から成る粒子
1 ... substrate, 1 '... conductive film, 2 ... crystalline semiconductor particles,
3 ··· insulator, 4 ··· conductive layer, 5 ··· protective layer, 6 ··· transparent conductive film, 7 ··· amorphous semiconductor layer of second conductivity type
8 ... lower aluminum foil, 9 ... doping layer of second conductivity type, 10 ... upper aluminum foil, 11 ... low melting point metal film, 12 ... high melting point metal film, 13 ... first Conductive liquid-phase epitaxial polycrystalline layer, 14 polycrystalline or amorphous layer of second conductive type, 20 composite, 21 alloy layer of substrate and crystalline semiconductor particles, sirmine layer, 22 crystalline semiconductor Particles made of particle material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有宗 久雄 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場八日市ブロック 内 Fターム(参考) 5F051 AA03 DA20 FA06 FA11 FA13 FA15 FA16 FA17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisao Arimune 1166, Haseno, Snake-cho, Yokaichi, Shiga Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極層を有する基板上に多数の粒
状結晶半導体を配設し、この粒状結晶半導体間に絶縁体
を充填して、この粒状結晶半導体の上部側に他方の電極
層を設けた光電変換装置において、前記粒状結晶半導体
と基板とを、前記粒状結晶半導体と基板の合金中に前記
粒状結晶半導体の材料からなる粒子が分散された複合体
で接合したことを特徴とする光電変換装置。
A large number of granular crystal semiconductors are provided on a substrate having one electrode layer, an insulator is filled between the granular crystal semiconductors, and the other electrode layer is formed on the upper side of the granular crystal semiconductor. In the photoelectric conversion device provided, the granular crystal semiconductor and the substrate are joined by a composite in which particles made of the material of the granular crystal semiconductor are dispersed in an alloy of the granular crystal semiconductor and the substrate. Conversion device.
【請求項2】 前記電極層がアルミニウムから成り、前
記粒状結晶半導体がシリコンから成ることを特徴とする
請求項1に記載の光電変換装置。
2. The photoelectric conversion device according to claim 1, wherein said electrode layer is made of aluminum, and said granular crystal semiconductor is made of silicon.
【請求項3】 一方の電極層を有する基板上に多数の粒
状結晶半導体を配設し、この粒状結晶半導体間に絶縁体
を充填して、この粒状結晶半導体の上部側に他方の電極
層を形成する光電変換装置の製造方法において、前記基
板がアルミニウムから成り、前記粒状結晶半導体がシリ
コンから成り、前記粒状結晶半導体と基板とを接触させ
た状態で577℃以上の温度で加熱することによって前
記粒状結晶半導体と基板とを、前記粒状結晶半導体と基
板の合金中に前記粒状結晶半導体の材料からなる粒子が
分散された複合体で接合することを特徴とする光電変換
装置の製造方法。
3. A large number of granular crystal semiconductors are provided on a substrate having one electrode layer, an insulator is filled between the granular crystal semiconductors, and the other electrode layer is provided on the upper side of the granular crystal semiconductor. In the method for manufacturing a photoelectric conversion device to be formed, the substrate is made of aluminum, the granular crystal semiconductor is made of silicon, and the granular crystal semiconductor is heated at a temperature of 577 ° C. or more in a state where the substrate is in contact with the granular crystal semiconductor. A method for manufacturing a photoelectric conversion device, comprising joining a granular crystal semiconductor and a substrate with a complex in which particles made of the material of the granular crystal semiconductor are dispersed in an alloy of the granular crystal semiconductor and the substrate.
JP2000362019A 2000-10-30 2000-11-29 Photoelectric conversion apparatus and its fabricating method Withdrawn JP2002164551A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000362019A JP2002164551A (en) 2000-11-29 2000-11-29 Photoelectric conversion apparatus and its fabricating method
US10/046,017 US6620997B2 (en) 2000-10-30 2001-10-29 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362019A JP2002164551A (en) 2000-11-29 2000-11-29 Photoelectric conversion apparatus and its fabricating method

Publications (1)

Publication Number Publication Date
JP2002164551A true JP2002164551A (en) 2002-06-07

Family

ID=18833361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362019A Withdrawn JP2002164551A (en) 2000-10-30 2000-11-29 Photoelectric conversion apparatus and its fabricating method

Country Status (1)

Country Link
JP (1) JP2002164551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177592A (en) * 2008-07-03 2011-09-07 晶体太阳有限公司 Method for the production of a monograin membrane for a solar cell, monograin membrane, and solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177592A (en) * 2008-07-03 2011-09-07 晶体太阳有限公司 Method for the production of a monograin membrane for a solar cell, monograin membrane, and solar cell
JP2011528491A (en) * 2008-07-03 2011-11-17 クリスタルソル ゲゼルシャフト ミット ベシュレンクター ハフトゥング Method for producing single particle film for solar cell, single particle film, and solar cell
US8802480B2 (en) 2008-07-03 2014-08-12 Crystalsol Gmbh Method for the prodcution of a monograin membrane for a solar cell, monograin membrane, and solar cell

Similar Documents

Publication Publication Date Title
US6552405B2 (en) Photoelectric conversion device and manufacturing method thereof
US20020036009A1 (en) Photoelectric conversion device and manufacturing method thereof
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2002164551A (en) Photoelectric conversion apparatus and its fabricating method
JP2001313401A (en) Photoelectric conversion device
JP4206264B2 (en) Method for manufacturing photoelectric conversion device
JP2002016272A (en) Photoelectric conversion device
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4153814B2 (en) Method for manufacturing photoelectric conversion device
JP2002198550A (en) Photoelectric conversion device
JPH04196364A (en) Manufacture of photovoltage device
JP2002076395A (en) Photoelectric conversion device
JP2002141521A (en) Photoelectric conversion device and manufacturing method thereof
JP2002076386A (en) Manufacturing method of photoelectric conversion device
JP4780951B2 (en) Photoelectric conversion device
JP2002261304A (en) Method for manufacturing photoelectric converter
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JP4666734B2 (en) Photoelectric conversion device
JP4926101B2 (en) Photoelectric conversion device
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP2001339085A (en) Photoelectric conversion device
JP2002043603A (en) Photoelectric converter
JP2006339385A (en) Photoelectric converting device, and optical generator using same
JP2001313399A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909