JP2002151711A - Rear surface sealing method of thin-film solar cell - Google Patents

Rear surface sealing method of thin-film solar cell

Info

Publication number
JP2002151711A
JP2002151711A JP2000347918A JP2000347918A JP2002151711A JP 2002151711 A JP2002151711 A JP 2002151711A JP 2000347918 A JP2000347918 A JP 2000347918A JP 2000347918 A JP2000347918 A JP 2000347918A JP 2002151711 A JP2002151711 A JP 2002151711A
Authority
JP
Japan
Prior art keywords
solar cell
thin
sealing
film solar
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000347918A
Other languages
Japanese (ja)
Other versions
JP4459424B2 (en
Inventor
Masashi Hiraishi
将史 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2000347918A priority Critical patent/JP4459424B2/en
Publication of JP2002151711A publication Critical patent/JP2002151711A/en
Application granted granted Critical
Publication of JP4459424B2 publication Critical patent/JP4459424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable rear-surface sealing method of a thin-film solar cell. SOLUTION: The rear-surface sealing method of the thin-film solar cell is provided which comprises an internal electric wiring part 3 arranged on a thin-film photoelectric conversion unit layer 2 formed on a glass substrate 1. A laminated body is prepared in which a junction resin sheet 4 covering the entire rear surface of the photoelectric conversion unit layer 2 and a sealing glass plate 5b are sequentially stacked. The laminated body is placed on hot plate 14 of the vacuum laminator 100, and a spacer 6 of a prescribed thickness is provided at the end part of the laminated body. The vacuum laminator 100 is vacuum-exhausted, and the sealing glass plate 5b is pressurized by a diaphragm 12b in the laminator 100 after the junction resin sheet 4 is melted. Under that condition, the junction resin 4 is cured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体薄膜太陽電池
に関し、特に、薄膜太陽電池の裏面封止方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin film solar cell, and more particularly to a method for sealing the back surface of a thin film solar cell.

【0002】[0002]

【従来の技術】図3は真空ラミネータを利用して薄膜太
陽電池の裏面を封止する従来の方法を図解する模式的な
断面図であり、図4はその方法によって裏面封止された
薄膜太陽電池の一例を示す模式的な断面部分図である。
なお本願の各図において、厚さ、長さ、および幅などは
図面の明瞭化と簡略化のために適宜に変更されており、
実際の寸法関係を表わしてはいない。また、各図におけ
る同一の参照符号は、同一部分または相当部分を表わし
ている。
2. Description of the Related Art FIG. 3 is a schematic sectional view illustrating a conventional method of sealing the back surface of a thin-film solar cell using a vacuum laminator, and FIG. It is a typical sectional partial view showing an example of a battery.
In each drawing of the present application, the thickness, length, width, etc. are appropriately changed for clarity and simplification of the drawing,
It does not represent the actual dimensional relationship. Further, the same reference numerals in the respective drawings indicate the same or corresponding parts.

【0003】図4に示されているように、薄膜太陽電池
においては、一般に厚さ4mm程度の透明なガラス基板
1上に光電変換ユニット層2が形成される。光電変換ユ
ニット層2は一般に数μm程度の非常に薄い厚さを有
し、基板1上に順次積層された透明導電性酸化物の前面
電極層、半導体光電変換層、および裏面金属電極層を含
んでいる。光電変換ユニット層2の周辺部は、その端面
を保護するために、ガラス基板1の周辺から5mm程度
後退させられている。1つの基板1上に複数のサブモジ
ュールを含む薄膜太陽電池では(特開2000−493
69参照)、光電変換ユニット層2上に配置された内部
電気配線部3を含んでいる。この内部配線部3は、局所
的な絶縁シート3aとその上の金属箔3bを含んでい
る。ここで、絶縁シート3aと金属箔3bは、たとえば
それぞれ0.2mmの厚さを有し、内部配線部3全体と
して0.4mm程度の厚さを有する。また、内部配線部
3は電流取出用端子ボックス(図示せず)の位置などと
の関係から、通常は基板1の1辺から40mm程度離れ
た位置に配置される。
As shown in FIG. 4, in a thin-film solar cell, a photoelectric conversion unit layer 2 is generally formed on a transparent glass substrate 1 having a thickness of about 4 mm. The photoelectric conversion unit layer 2 generally has a very thin thickness of about several μm, and includes a front electrode layer, a semiconductor photoelectric conversion layer, and a back metal electrode layer of a transparent conductive oxide sequentially laminated on the substrate 1. In. The periphery of the photoelectric conversion unit layer 2 is set back from the periphery of the glass substrate 1 by about 5 mm in order to protect the end face. In a thin-film solar cell including a plurality of submodules on one substrate 1 (Japanese Patent Laid-Open No. 2000-493)
69), and includes the internal electric wiring section 3 disposed on the photoelectric conversion unit layer 2. The internal wiring section 3 includes a local insulating sheet 3a and a metal foil 3b thereon. Here, the insulating sheet 3a and the metal foil 3b each have a thickness of, for example, 0.2 mm, and the internal wiring portion 3 as a whole has a thickness of about 0.4 mm. The internal wiring section 3 is usually arranged at a position about 40 mm away from one side of the substrate 1 due to the position of a current extraction terminal box (not shown).

【0004】光電変換ユニット層2と内部配線部3は、
接合樹脂4とそれによって接合される保護フィルム5a
とを含む封止保護手段によって保護される。この封止保
護手段は、薄膜太陽電池の裏面側が外界からの物理的ま
たは化学的影響を受けることによって光電変換特性が劣
化することを防止するためのものであり、真空加熱圧着
装置を用いて付与され得る。
The photoelectric conversion unit layer 2 and the internal wiring section 3
Bonding resin 4 and protective film 5a bonded thereby
And protected by sealing protection means including: This sealing protection means is for preventing the back surface side of the thin-film solar cell from being deteriorated by the physical or chemical influence from the outside to deteriorate the photoelectric conversion characteristics. Can be done.

【0005】図3においては、真空加熱圧着装置の一例
としての真空ラミネータが模式的な断面図で示されてい
る。この真空ラミネータ100は下側容器11と上側容
器12とを含んでおり、これらは気密シール13を介し
て互いに着脱可能である。下側容器11と上側容器12
とはそれぞれ吸排気ポート11aと12aを含むととも
に、上側容器12は合成ゴム製のダイヤフラム部12b
をも含んでいる。
FIG. 3 is a schematic cross-sectional view showing a vacuum laminator as an example of a vacuum heating and pressure bonding apparatus. The vacuum laminator 100 includes a lower container 11 and an upper container 12, which are detachable from each other via a hermetic seal 13. Lower container 11 and upper container 12
Includes intake and exhaust ports 11a and 12a, respectively, and the upper container 12 has a diaphragm portion 12b made of synthetic rubber.
It also contains

【0006】下側容器11内には、ヒータを内蔵する載
置台14が設けられており、これは加熱板として作用す
る。予め所定温度に加熱された載置台14上には、基板
1が配置される。基板1上には既に光電変換ユニット層
2と内部配線部3が形成されており、その上に接合樹脂
シート(硬化剤を含む)4と保護材料の層5(図4の場
合には保護フィルム5a)が重ねられる。この状態で、
気密シール13を介して下側容器11と上側容器12と
が結合させられ、これらの両容器の内部が吸排気ポート
11aと12bを介してロータリーポンプ(図示せず)
によって排気される。
[0006] A mounting table 14 having a built-in heater is provided in the lower container 11 and functions as a heating plate. The substrate 1 is placed on the mounting table 14 which has been heated to a predetermined temperature in advance. A photoelectric conversion unit layer 2 and an internal wiring section 3 are already formed on a substrate 1, and a bonding resin sheet (including a curing agent) 4 and a protective material layer 5 (a protective film in FIG. 5a) are overlaid. In this state,
The lower container 11 and the upper container 12 are connected via a hermetic seal 13, and the insides of these two containers are connected via rotary pumps (not shown) via intake and exhaust ports 11a and 12b.
Exhausted by

【0007】内蔵されたヒータで予め所定温度に昇温さ
れた載置台14によって接合樹脂シート4が加熱され、
そのシート4は軟化して溶融する。この時点で吸排気ポ
ート12aを介して上側容器12内に大気圧が導入さ
れ、ダイヤフラム12bは保護材料層5上にその大気圧
で押圧させられる。この状態で、溶融した接合樹脂4の
硬化は、真空ラミネータ100内で行なわしめることが
できる。
[0007] The mounting resin sheet 4 is heated by the mounting table 14 which has been previously heated to a predetermined temperature by a built-in heater,
The sheet 4 softens and melts. At this time, the atmospheric pressure is introduced into the upper container 12 through the intake / exhaust port 12a, and the diaphragm 12b is pressed on the protective material layer 5 at the atmospheric pressure. In this state, the molten bonding resin 4 can be cured in the vacuum laminator 100.

【0008】なお、封止保護手段の形成のために真空ラ
ミネータが利用される理由は、溶融させられた後に硬化
させられる封止樹脂層4の境界や内部に気泡が混入する
ことを防止するためである。
The reason why the vacuum laminator is used for forming the sealing protection means is to prevent air bubbles from entering the boundary and inside of the sealing resin layer 4 which is cured after being melted. It is.

【0009】[0009]

【発明が解決しようとする課題】図4に示されているよ
うな従来の封止法による薄膜太陽電池において、保護フ
ィルム5aとしては、一般にアルミ箔をPVF(ポリフ
ッ化ビニル)膜でサンドイッチした複合フィルムが用い
られる。ここで、アルミ箔がサンドイッチされているの
は、水分の透過を効果的に阻止するためである。ところ
が、このアルミ箔をサンドイッチしているPVF膜は薄
いので、場合によってピンホールや傷が発生し、太陽電
池の裏面においてアルミ箔を介するリーク電流を生じる
ことがある。また、水分の存在下においてこのようなリ
ーク電流が流れれば、アルミ箔の腐蝕が進行することが
ある。
In a conventional thin film solar cell as shown in FIG. 4, as a protective film 5a, a composite in which an aluminum foil is generally sandwiched by a PVF (polyvinyl fluoride) film is used as the protective film 5a. A film is used. Here, the reason why the aluminum foil is sandwiched is to effectively prevent the permeation of moisture. However, since the PVF film sandwiching the aluminum foil is thin, pinholes and scratches may occur in some cases, and a leak current via the aluminum foil may occur on the back surface of the solar cell. Further, if such a leak current flows in the presence of moisture, corrosion of the aluminum foil may progress.

【0010】このような従来技術における課題に鑑み、
本発明は、より信頼性が高い薄膜太陽電池の裏面封止方
法を提供することを目的としている。
In view of such problems in the prior art,
An object of the present invention is to provide a more reliable method of sealing the back surface of a thin-film solar cell.

【0011】[0011]

【課題を解決するための手段】本発明によれば、ガラス
基板上に形成された薄膜光電変換ユニット層上に配置さ
れた内部電気配線部を含む薄膜太陽電池の裏面封止方法
において、その光電変換ユニット層の裏面全域を覆う接
合樹脂シートと封止ガラス板を順に重ねた積層体を用意
し、真空ラミネータの熱板上に積層体を載置するととも
にその積層体の端部に所定厚さのスペーサを配置し、真
空ラミネータを排気して接合樹脂シートの溶融後におい
てそのラミネータ内のダイヤフラムによって封止ガラス
板を押圧し、その状態で接合樹脂を硬化させることを特
徴としている。
According to the present invention, there is provided a method of sealing a back surface of a thin film solar cell including an internal electric wiring portion disposed on a thin film photoelectric conversion unit layer formed on a glass substrate. Prepare a laminate in which a bonding resin sheet and a sealing glass plate covering the entire rear surface of the conversion unit layer are sequentially stacked, place the laminate on a hot plate of a vacuum laminator, and place a predetermined thickness on an end of the laminate. After the vacuum laminator is evacuated and the bonding resin sheet is melted, the sealing glass plate is pressed by the diaphragm in the laminator, and the bonding resin is cured in that state.

【0012】スペーサは、接合樹脂の硬化後の内部配線
部における基板の下面から封止ガラス板の上面までの厚
さより0〜1mmの範囲内だけ増大させられた厚さを有
していることが好ましい。
[0012] The spacer may have a thickness increased by a range of 0 to 1 mm from the thickness from the lower surface of the substrate to the upper surface of the sealing glass plate in the internal wiring portion after the curing of the bonding resin. preferable.

【0013】真空ラミネータのダイヤフラムは、封止ガ
ラス板を0.02MPaから大気圧の範囲内の圧力で押
圧することが好ましい。
It is preferable that the diaphragm of the vacuum laminator presses the sealing glass plate with a pressure within a range from 0.02 MPa to the atmospheric pressure.

【0014】[0014]

【発明の実施の形態】アルミ箔をPVF膜でサンドイッ
チした複合フィルム5aを利用して薄膜太陽電池の裏面
を封止する従来の方法における前述の問題に鑑み、本発
明者は、その複合保護フィルム5aの代わりに厚さ3〜
4mm程度の保護ガラス板を利用する封止方法を検討し
た。なぜならば、ガラス板は複合保護フィルム5aに比
べてはるかに丈夫であり、水分の透過に対しても優れた
阻止能力を有しているからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In view of the above-mentioned problems in the conventional method of sealing the back surface of a thin-film solar cell using a composite film 5a in which an aluminum foil is sandwiched by a PVF film, the present inventor has proposed a composite protective film. 3 ~ instead of 5a
A sealing method using a protective glass plate of about 4 mm was studied. This is because the glass plate is far more durable than the composite protective film 5a, and has an excellent ability to block moisture permeation.

【0015】図2は、保護ガラス板を利用して裏面封止
された薄膜太陽電池の一例を模式的な断面部分図で示し
ている。図2の薄膜太陽電池においても、図4に類似し
て、ガラス基板1上に光電変換ユニット層2が形成され
る。光電変換ユニット層2上には、内部配線部3が配置
される。そして、これらの光電変換ユニット層2と内部
配線部3は、接合樹脂4とそれによって接合される保護
ガラス板5bとを含む封止保護手段によって保護され
る。
FIG. 2 is a schematic sectional partial view showing an example of a thin-film solar cell whose back surface is sealed using a protective glass plate. In the thin-film solar cell of FIG. 2 as well, the photoelectric conversion unit layer 2 is formed on the glass substrate 1 similarly to FIG. On the photoelectric conversion unit layer 2, the internal wiring section 3 is arranged. Then, the photoelectric conversion unit layer 2 and the internal wiring portion 3 are protected by a sealing protection means including the bonding resin 4 and the protective glass plate 5b bonded thereby.

【0016】ところで、薄膜太陽電池の裏面封止のため
に保護フィルム5aの代わりに保護ガラス板5bを利用
した場合には、別の付随的な問題が生じることが判明し
た。これは、保護フィルム5aと異なって、保護ガラス
板5bが小さな弾性を有するとともに、脆性材料である
ことから生じる問題である。
By the way, when the protective glass plate 5b is used instead of the protective film 5a for sealing the back surface of the thin-film solar cell, it has been found that another incidental problem occurs. This is a problem arising from the fact that, unlike the protective film 5a, the protective glass plate 5b has a small elasticity and is a brittle material.

【0017】すなわち、図3の場合と同様に光電変換ユ
ニット層2と内部配線部3が形成されたガラス基板1上
に接合樹脂シート4と保護材料の層(ただし図2の薄膜
太陽電池の場合は保護ガラス板5b)を重ねて、真空ラ
ミネータ100内においてダイヤフラム12bでプレス
した状態で接合樹脂層4を溶融から硬化させた後に薄膜
太陽電池を取出した場合、その保護ガラス板5bがプレ
ス中に弾性変形しているので、図2に示されているよう
に、内部配線部3のような凸部Bからそれに近い基板1
の端部Aにかけて保護ガラス板5bが少し湾曲した状態
で固定されることになる。そして、この湾曲の度合が大
きい場合には、封止後の何日か経過した後に保護ガラス
板5bが割れるという遅れ破壊の現象が生じることがわ
かった。
That is, as in the case of FIG. 3, a bonding resin sheet 4 and a protective material layer (in the case of the thin-film solar cell of FIG. 2) are formed on the glass substrate 1 on which the photoelectric conversion unit layer 2 and the internal wiring portion 3 are formed. When the protective glass plate 5b) is stacked and the thin film solar cell is taken out after the joining resin layer 4 is cured from the melt in a state of being pressed by the diaphragm 12b in the vacuum laminator 100, the protective glass plate 5b is pressed during the pressing. Since it is elastically deformed, as shown in FIG.
The protective glass plate 5b is fixed in a slightly curved state toward the end portion A of FIG. When the degree of this curvature was large, it was found that a phenomenon of delayed destruction in which the protective glass plate 5b cracked several days after sealing occurred.

【0018】具体的には、図2を参照して、厚さ4mm
のガラス基板1上に厚さ数μmの薄膜光電変換ユニット
層2が形成された。光電変換ユニット層2上には、ガラ
ス繊維不織布からなる厚さ0.2mmの局所的絶縁シー
ト3aとその上の厚さ0.2mmの銅箔3bが配置され
た。そして、光電変換ユニット層2と内部配線部3とを
覆うように、硬化剤を含むEVA(エチレン酢酸ビニル
共重合体)接合樹脂シート4と厚さ3mmの保護ガラス
板5bが重ねられた。この積層体が図3の真空ラミネー
タ内において165℃に加熱された載置台14上に置か
れた。そして、真空ラミネータ100を真空排気して、
EVA接合樹脂シート4が溶融した後に、上側容器12
の吸排気孔12aを介して大気圧が導入され、ダイヤフ
ラム12bによって保護ガラス板5aが押圧された。こ
のダイヤフラムの押圧を20分間維持して接合樹脂層4
を硬化させた後に、裏面封止された薄膜太陽電池がラミ
ネート100から取出された。
More specifically, referring to FIG.
The thin film photoelectric conversion unit layer 2 having a thickness of several μm was formed on the glass substrate 1 of FIG. On the photoelectric conversion unit layer 2, a local insulating sheet 3a made of a glass fiber nonwoven fabric and having a thickness of 0.2 mm and a copper foil 3b having a thickness of 0.2 mm thereon were disposed. Then, an EVA (ethylene-vinyl acetate copolymer) bonding resin sheet 4 containing a curing agent and a 3 mm-thick protective glass plate 5b were overlaid so as to cover the photoelectric conversion unit layer 2 and the internal wiring portion 3. This laminate was placed on the mounting table 14 heated to 165 ° C. in the vacuum laminator of FIG. Then, the vacuum laminator 100 is evacuated,
After the EVA bonding resin sheet 4 is melted, the upper container 12
Atmospheric pressure was introduced through the suction / exhaust hole 12a, and the protective glass plate 5a was pressed by the diaphragm 12b. By maintaining the pressure of the diaphragm for 20 minutes, the bonding resin layer 4
After curing, the thin-film solar cell with the back sealing was removed from the laminate 100.

【0019】この場合に、基板端部Aと内部配線部Bと
の距離は40mmであり、ガラス基板1の下面と保護ガ
ラス板5bの上面までの厚さに関して、内部配線部Bと
基板端部Aとの間で0.37mmの差があった。保護ガ
ラス板5bを用いてこのような状態に裏面封止された薄
膜太陽電池において、その封止後5日経過したときに保
護ガラス板5bに割れが発生した。
In this case, the distance between the substrate end portion A and the internal wiring portion B is 40 mm, and the thickness from the lower surface of the glass substrate 1 to the upper surface of the protective glass plate 5b is different from the internal wiring portion B and the substrate end portion. There was a difference of 0.37 mm from A. In the thin-film solar cell in which the back surface was sealed in such a state using the protective glass plate 5b, cracks occurred in the protective glass plate 5b five days after the sealing.

【0020】本発明者が見出した上述のような付随的な
問題に鑑みて、本発明者はさらに種々の検討を行なっ
た。
In view of the above-mentioned additional problems found by the present inventor, the present inventor has further conducted various studies.

【0021】その結果、図1に示されているように、真
空ラミネータ100内で基板1の端部において所定厚さ
のスペーサ6を配置した状態で薄膜太陽電池の裏面封止
を行なえば、保護ガラス板5bの遅れ破壊を防止し得る
ことがわかった。その場合に、スペーサ6の厚さは、接
合樹脂層4の硬化後における内部配線部Bの厚さより0
〜1.0mmだけ大きいことが望まれ、0.2〜1.0
mmだけ大きいことがより好ましく、0.5〜1.0m
mだけ大きいことがさらに好ましい。
As a result, as shown in FIG. 1, if the back surface of the thin-film solar cell is sealed in the vacuum laminator 100 with the spacer 6 having a predetermined thickness disposed at the end of the substrate 1, protection can be achieved. It was found that delayed destruction of the glass plate 5b could be prevented. In this case, the thickness of the spacer 6 is smaller than the thickness of the internal wiring portion B after the curing of the bonding resin layer 4 by 0.
It is desired to be larger by ~ 1.0 mm,
mm, more preferably 0.5 to 1.0 m
More preferably, it is larger by m.

【0022】より具体的には、前述の図2を参照して説
明された薄膜太陽電池と同様の条件の下において、8m
mの厚さを有するスペーサ6を用いて図1に示されてい
るような裏面封止を行なったところ、B部とA部との厚
さの差は0.18mmに低減し、封止後6ヶ月経過の後
おいても保護ガラス板5bに遅れ破壊が生じることはな
かった。
More specifically, under the same conditions as those of the thin-film solar cell described with reference to FIG.
When the back surface sealing as shown in FIG. 1 was performed using the spacer 6 having a thickness of m, the difference in thickness between the portion B and the portion A was reduced to 0.18 mm. Even after the lapse of six months, the protective glass plate 5b did not suffer any delayed breakage.

【0023】さらに検討したところでは、裏面封止の際
にスペーサ6を配置するのみならず、ダイヤフラム12
bのプレス圧を低減させることが好ましい。ダイヤフラ
ム12bのプレス圧は、上側容器12の吸排気ポート1
2aに連結されている圧力調節弁(図示せず)によって
調整することができる。具体的には、ダイヤフラム12
bのプレス圧を大気圧より小さな0.05MPaに減少
させた場合、B部とA部との厚さの差はさらに0.12
mmに減少し、保護ガラス板5bの歪みがさらに緩和さ
れた。ただし、ダイヤフラム12bのプレス圧が0.0
2MPa未満になれば、内部配線部3の凸部近傍におい
て接合樹脂層4中に気泡が残留し始めるので好ましくな
い。
Further studies have shown that not only are the spacers 6 arranged at the time of sealing the back surface, but also that the diaphragm 12 is not sealed.
It is preferable to reduce the pressing pressure of b. The press pressure of the diaphragm 12b is set to the intake / exhaust port 1 of the upper container 12.
The pressure can be adjusted by a pressure control valve (not shown) connected to 2a. Specifically, the diaphragm 12
When the pressing pressure of b is reduced to 0.05 MPa, which is lower than the atmospheric pressure, the difference in thickness between the portion B and the portion A is further 0.12.
mm, and the distortion of the protective glass plate 5b was further reduced. However, the pressing pressure of the diaphragm 12b is 0.0
If the pressure is less than 2 MPa, air bubbles begin to remain in the bonding resin layer 4 in the vicinity of the convex portion of the internal wiring portion 3, which is not preferable.

【0024】他方、上述と同様の条件の薄膜太陽電池に
おいて、スペーサ6を用いることなくダイヤフラム12
bのプレス圧のみを0.05MPaに減少させた場合に
は、B部とA部との厚さの差は0.23mmになった
が、封止後2日後において保護ガラス板5bに割れが発
生した。ここで、前述のB部とA部との厚さの差が0.
37mmの場合に封止後5日経過後に保護ガラス板5b
に割れが発生したのに比べて、より短い封止後2日で割
れが発生したのは、脆性材料である保護ガラス板5bに
おける不均一性に基づくと考えられる。
On the other hand, in the thin-film solar cell under the same conditions as described above, the diaphragm 12 is used without using the spacer 6.
When only the pressing pressure of b was reduced to 0.05 MPa, the difference in thickness between the part B and the part A became 0.23 mm, but two days after the sealing, the protective glass plate 5b was cracked. Occurred. Here, the difference between the thicknesses of the above-mentioned portions B and A is 0.
Protective glass plate 5b 5 days after sealing in case of 37mm
It is considered that the reason why the crack occurred two days after the sealing was shorter than that when the crack occurred in the protective glass plate 5b which is a brittle material is non-uniform.

【0025】なお、以上の具体例においては載置台14
の温度が165℃に設定されたが、その温度は160〜
180℃の範囲内で好ましく設定され得る。この設定温
度が高ければ接合樹脂4が早く溶融するとともに硬化も
早く進行し、逆に低ければ接合樹脂4の溶融と硬化を遅
らせることができる。
In the above specific example, the mounting table 14
Was set to 165 ° C, but the temperature was
It can be set preferably within the range of 180 ° C. If the set temperature is high, the bonding resin 4 is melted quickly and the curing proceeds quickly, and if it is low, the melting and curing of the bonding resin 4 can be delayed.

【0026】また、以上の具体例では接合樹脂シートと
してEVAシートを用いた例が説明されたが、たとえば
硬化剤を含むPVB(ポリビニルブチラール)シートの
ように他の適当な接合樹脂シートをも用いることができ
る。
In the above specific examples, an example using an EVA sheet as the bonding resin sheet has been described. However, another suitable bonding resin sheet such as a PVB (polyvinyl butyral) sheet containing a curing agent is also used. be able to.

【0027】[0027]

【発明の効果】以上のように、本発明によれば、従来に
比べて信頼性の高い薄膜太陽電池の裏面封止方法を提供
することができる。
As described above, according to the present invention, it is possible to provide a method of sealing the back surface of a thin-film solar cell with higher reliability than the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態による真空ラミネータを
用いた薄膜太陽電池の裏面封止方法を図解する模式的な
断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a method for sealing a back surface of a thin-film solar cell using a vacuum laminator according to an embodiment of the present invention.

【図2】 保護ガラス板を用いて薄膜太陽電池の裏面封
止した状態を示す模式的な断面部分図である。
FIG. 2 is a schematic cross-sectional partial view showing a state in which a back surface of a thin-film solar cell is sealed using a protective glass plate.

【図3】 真空ラミネータを用いた従来の薄膜太陽電池
の裏面封止方法を図解する模式的な断面図である。
FIG. 3 is a schematic cross-sectional view illustrating a conventional method of sealing the back surface of a thin-film solar cell using a vacuum laminator.

【図4】 従来の方法によって裏面封止された薄膜太陽
電池を示す模式的な断面部分図である。
FIG. 4 is a schematic sectional partial view showing a thin-film solar cell whose back surface is sealed by a conventional method.

【符号の説明】[Explanation of symbols]

1 ガラス基板、2 光電変換ユニット層、3 内部配
線部、3a 局所的絶縁シート、3b 金属箔、4 接
合樹脂層、5 保護材料の層、5a 複合保護フィル
ム、5b 封止ガラス板、11 下側容器、11a 吸
排気ポート、12上側容器、12a 吸排気ポート、1
2b ダイヤフラム、13 気密シール、14 載置
台、100 真空ラミネータ。
Reference Signs List 1 glass substrate, 2 photoelectric conversion unit layer, 3 internal wiring section, 3a local insulating sheet, 3b metal foil, 4 bonding resin layer, 5 protective material layer, 5a composite protective film, 5b sealing glass plate, 11 lower side Vessel, 11a intake / exhaust port, 12 upper vessel, 12a intake / exhaust port, 1
2b diaphragm, 13 hermetic seal, 14 mounting table, 100 vacuum laminator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に形成された薄膜光電変換
ユニット層上に配置された内部電気配線部を含む薄膜太
陽電池の裏面封止方法において、前記光電変換ユニット
層の裏面全域を覆う接合樹脂シートと封止ガラス板を順
に重ねた積層体を用意し、 真空ラミネータの熱板上に前記積層体を載置するととも
にその積層体の端部に所定厚さのスペーサを配置し、 前記真空ラミネータを真空排気して、前記接合樹脂シー
トの溶融後において、そのラミネータ内のダイヤフラム
によって前記封止ガラス板を押圧し、 その状態で前記接合樹脂を硬化させることを特徴とする
薄膜太陽電池の裏面封止方法。
1. A method of sealing a back surface of a thin film solar cell including an internal electric wiring portion disposed on a thin film photoelectric conversion unit layer formed on a glass substrate, wherein a bonding resin covering the entire back surface of the photoelectric conversion unit layer is provided. A laminate is prepared by sequentially stacking a sheet and a sealing glass plate. The laminate is placed on a hot plate of a vacuum laminator, and a spacer having a predetermined thickness is arranged at an end of the laminate. After the bonding resin sheet is melted, the sealing glass plate is pressed by a diaphragm in the laminator, and the bonding resin is cured in that state, thereby sealing the back surface of the thin film solar cell. Stop method.
【請求項2】 前記スペーサは、前記接合樹脂の硬化後
の前記内部配線部における前記基板の下面から前記封止
ガラス板の上面までの厚さより0〜1mmの範囲内だけ
増大された厚さを有していることを特徴とする請求項1
に記載の薄膜太陽電池の裏面封止方法。
2. The spacer according to claim 1, wherein the thickness of the internal wiring portion after curing of the bonding resin is increased by a range of 0 to 1 mm from a thickness from a lower surface of the substrate to an upper surface of the sealing glass plate. 2. The device according to claim 1, wherein
3. The method for sealing a back surface of a thin-film solar cell according to 1.
【請求項3】 前記ダイヤフラムは前記封止ガラス板を
0.02MPaから大気圧の範囲内の圧力で押圧するこ
とを特徴とする請求項1または2に記載の薄膜太陽電池
の裏面封止方法。
3. The method for sealing a back surface of a thin-film solar cell according to claim 1, wherein the diaphragm presses the sealing glass plate with a pressure in a range from 0.02 MPa to the atmospheric pressure.
JP2000347918A 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell Expired - Lifetime JP4459424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347918A JP4459424B2 (en) 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347918A JP4459424B2 (en) 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002151711A true JP2002151711A (en) 2002-05-24
JP4459424B2 JP4459424B2 (en) 2010-04-28

Family

ID=18821576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347918A Expired - Lifetime JP4459424B2 (en) 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell

Country Status (1)

Country Link
JP (1) JP4459424B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008112180A2 (en) * 2007-03-11 2008-09-18 Soliant Energy, Inc. Heat transfer and wiring considerations for a photo voltaic receiver for solar concentrator applications
US7688525B2 (en) 2006-01-17 2010-03-30 Soliant Energy, Inc. Hybrid primary optical component for optical concentrators
JP2010245391A (en) * 2009-04-08 2010-10-28 Bridgestone Corp Method of manufacturing solar cell module
JP2011040182A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Manufacturing device of organic light-emitting panel and method for manufacturing organic light-emitting panel
WO2012002422A1 (en) * 2010-06-30 2012-01-05 シャープ株式会社 Method for manufacturing solar cell module, and solar cell module manufactured by the method
JP2012502499A (en) * 2008-09-12 2012-01-26 ソルティア・インコーポレーテッド Thin film photovoltaic module having a substrate with a shaped outer shape
WO2012017661A1 (en) * 2010-08-05 2012-02-09 三洋電機株式会社 Method for producing photovoltaic device
US8242350B2 (en) 2008-05-16 2012-08-14 Cashion Steven A Concentrating photovoltaic solar panel
JP2014003170A (en) * 2012-06-19 2014-01-09 Honda Motor Co Ltd Sealing method of solar cell module and vacuum lamination device
JP2014184717A (en) * 2013-02-25 2014-10-02 Panasonic Corp Laminate device
KR20230020676A (en) * 2021-08-04 2023-02-13 한국에너지기술연구원 Laminating method and device for g2g solar module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688525B2 (en) 2006-01-17 2010-03-30 Soliant Energy, Inc. Hybrid primary optical component for optical concentrators
WO2008112180A2 (en) * 2007-03-11 2008-09-18 Soliant Energy, Inc. Heat transfer and wiring considerations for a photo voltaic receiver for solar concentrator applications
WO2008112180A3 (en) * 2007-03-11 2009-08-06 Soliant Energy Inc Heat transfer and wiring considerations for a photo voltaic receiver for solar concentrator applications
US8697983B2 (en) 2008-05-16 2014-04-15 Suncore Photovoltaics, Inc. Concentrating photovoltaic solar panel
US8242350B2 (en) 2008-05-16 2012-08-14 Cashion Steven A Concentrating photovoltaic solar panel
JP2012502499A (en) * 2008-09-12 2012-01-26 ソルティア・インコーポレーテッド Thin film photovoltaic module having a substrate with a shaped outer shape
JP2010245391A (en) * 2009-04-08 2010-10-28 Bridgestone Corp Method of manufacturing solar cell module
JP2011040182A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Manufacturing device of organic light-emitting panel and method for manufacturing organic light-emitting panel
WO2012002422A1 (en) * 2010-06-30 2012-01-05 シャープ株式会社 Method for manufacturing solar cell module, and solar cell module manufactured by the method
CN102959729A (en) * 2010-06-30 2013-03-06 夏普株式会社 Method for manufacturing solar cell module, and solar cell module manufactured by the method
JPWO2012002422A1 (en) * 2010-06-30 2013-08-29 シャープ株式会社 Manufacturing method of solar cell module and solar cell module manufactured by the manufacturing method
WO2012017661A1 (en) * 2010-08-05 2012-02-09 三洋電機株式会社 Method for producing photovoltaic device
JP2014003170A (en) * 2012-06-19 2014-01-09 Honda Motor Co Ltd Sealing method of solar cell module and vacuum lamination device
JP2014184717A (en) * 2013-02-25 2014-10-02 Panasonic Corp Laminate device
KR20230020676A (en) * 2021-08-04 2023-02-13 한국에너지기술연구원 Laminating method and device for g2g solar module
KR102626360B1 (en) * 2021-08-04 2024-01-17 한국에너지기술연구원 Laminating method and device for g2g solar module

Also Published As

Publication number Publication date
JP4459424B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US4067764A (en) Method of manufacture of solar cell panel
JP4401649B2 (en) Manufacturing method of solar cell module
JPH0936405A (en) Solar cell module and production thereof
TW201228011A (en) Photovoltaic module and method for the production thereof
US8408263B2 (en) Vacuum lamination device
JP5452773B2 (en) Solar cell module and manufacturing method thereof
JP4459424B2 (en) Method for manufacturing thin film solar cell
JPH0992867A (en) Solar cell module manufacturing method
US8877540B2 (en) Solar cell module and manufacturing method of solar cell module
US20120118360A1 (en) Solar cell module, solar cell panel, process for producing solar cell module, and process for producing solar cell panel
KR20120029396A (en) Hermetic electrical package
CN111409330A (en) Sandwich light modulation glass
JP2002039631A (en) Photothermal hybrid panel, hybrid panel main body using it, and method of manufacturing it
KR101382495B1 (en) Photovoltaic module and its manufacturing method
JP2002151710A (en) Rear surface sealing method of thin-film solar cell
JP2001077387A (en) Solar battery module
JP2004311571A (en) Method of manufacturing solar cell module
JP3649912B2 (en) Method for manufacturing solar cell module
JP2001060706A (en) Method for manufacture of solar cell module
JP2001244486A (en) Solar battery module
JP2012094608A (en) Solar cell module
CN111987178A (en) Vacuum photovoltaic module and preparation method thereof
JPS6246077B2 (en)
JP2004179397A (en) Method for manufacturing solar cell module
CN220390620U (en) Pressure buffer device and lamination equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term