JP2002151638A - Cooler for electronic equipment - Google Patents

Cooler for electronic equipment

Info

Publication number
JP2002151638A
JP2002151638A JP2000345470A JP2000345470A JP2002151638A JP 2002151638 A JP2002151638 A JP 2002151638A JP 2000345470 A JP2000345470 A JP 2000345470A JP 2000345470 A JP2000345470 A JP 2000345470A JP 2002151638 A JP2002151638 A JP 2002151638A
Authority
JP
Japan
Prior art keywords
pump
heat sink
liquid
cooling
liquid cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000345470A
Other languages
Japanese (ja)
Other versions
JP2002151638A5 (en
Inventor
Takayuki Shin
隆之 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000345470A priority Critical patent/JP2002151638A/en
Publication of JP2002151638A publication Critical patent/JP2002151638A/en
Publication of JP2002151638A5 publication Critical patent/JP2002151638A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Abstract

PROBLEM TO BE SOLVED: To provide a cooling structure for mounting in compact manner a liquid-cooled heat sink and a pump in a housing. SOLUTION: The pump 5 is mounted on the upper part of the liquid-cooled heat sink 4. The structure in which the pump 5 is integrated with the heat sink 4, to be handled as an integral structure. A liquid cooling system can be mounted compactly in an electronic equipment housing. Thus, the liquid cooling system having a high cooling performance, low noise and high reliability can be realized, without greatly changing the present air-cooled type electronic equipment housing structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配線基板上に搭載
されたLSI等の発熱電子回路部品を、液体冷却するた
めの冷却構造に係り、特に液体冷却ヒートシンクとポン
プとをコンパクトに実装するための冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for liquid cooling a heat-generating electronic circuit component such as an LSI mounted on a wiring board, and more particularly to a liquid cooling heat sink and a pump that are compactly mounted. Cooling structure.

【0002】[0002]

【従来の技術】近年、コンピュータや通信機器、マルチ
メディア機器等に代表される電子機器の発熱量は著しく
増加する傾向にあり、特に演算処理を集中して行うCP
Uや、画像処理用LSI、パワーアンプ等の冷却は非常
に重要な課題となってきた。
2. Description of the Related Art In recent years, the amount of heat generated by electronic devices such as computers, communication devices, and multimedia devices has tended to increase significantly.
Cooling of the U, the image processing LSI, the power amplifier, and the like has become a very important issue.

【0003】また、冷却方式としては、従来から、空冷
フィンとファンを組合せた空冷方式が数多く用いられて
きた。しかしながら、空冷方式は、液冷方式に比較して
冷却限界が低いため、最近、CPU等の高発熱LSIの
みを水等の液体冷媒により液冷する方式が検討されてい
る。
[0003] As a cooling system, many air cooling systems using a combination of an air cooling fin and a fan have been conventionally used. However, since the cooling limit of the air cooling method is lower than that of the liquid cooling method, a method of liquid cooling only a high heat generation LSI such as a CPU with a liquid refrigerant such as water has recently been studied.

【0004】例えば、特開平8−32262号公報には、図4
に示すような液冷方式が開示されている。発熱量の大き
くない空冷可能なLSI51と、発熱量が大きいため水
冷ヒートシンク40で冷却されるLSIとが、同じ配線
基板50上に搭載されている。空冷可能なLSI51は
2つのファン47により空冷される。冷却空気は48に
示すように外部から供給され、49に示すように排気さ
れる。発熱量の大きいLSIに搭載された水冷ヒートシ
ンク40はホース41でを介して出口配管42に連結さ
れ、40で温められた冷却水は熱交換器43においてフ
ァン47の空気により冷却される。冷却された冷却水は
冷媒配管44を経由してポンプ45に流れ、加圧された
後に入口配管46を通って再び水冷ヒートシンク40に
供給される。
[0004] For example, Japanese Patent Application Laid-Open No. 8-32262 discloses FIG.
A liquid cooling system as shown in FIG. An air-coolable LSI 51 that does not generate a large amount of heat and an LSI that has a large amount of heat and is cooled by the water-cooled heat sink 40 are mounted on the same wiring board 50. The air-coolable LSI 51 is air-cooled by two fans 47. The cooling air is supplied from outside as shown at 48 and exhausted as shown at 49. A water-cooled heat sink 40 mounted on an LSI that generates a large amount of heat is connected to an outlet pipe 42 via a hose 41, and the cooling water heated at 40 is cooled by the air of a fan 47 in a heat exchanger 43. The cooled cooling water flows to the pump 45 via the refrigerant pipe 44, and after being pressurized, is supplied again to the water-cooled heat sink 40 through the inlet pipe 46.

【0005】[0005]

【発明が解決しようとする課題】特開平8−32262号公報
に開示された冷却構造では、ポンプ45が配線基板50
や水冷ヒートシンク40と離れて設置されているため、
ポンプ45を実装するスペースとポンプ45に接続する
配管スペースが筐体内に別途必要となり、電子機器筐体
をコンパクトにすることができないという問題点があっ
た。
In the cooling structure disclosed in Japanese Patent Application Laid-Open No. 8-32262, the pump 45 is
And water-cooled heat sink 40,
A space for mounting the pump 45 and a piping space for connecting to the pump 45 are separately required in the housing, and there has been a problem that the electronic device housing cannot be made compact.

【0006】本発明の目的は、コンパクトで、低騒音
で、冷却性能に優れ、かつ信頼性の高い電子機器の冷却
構造を提供することである。
An object of the present invention is to provide a cooling structure for electronic equipment which is compact, has low noise, has excellent cooling performance, and has high reliability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、配線基板と、配線基板上に搭載された
LSI等の電子回路部品を含む発熱体と、発熱体上に熱
的に接触して搭載された液体冷却ヒートシンクと、液体
冷媒を加圧して循環させるポンプとからなる電子機器の
冷却装置を前提とし、ポンプが液体冷却ヒートシンクの
上部に搭載される構造とした。
In order to achieve the above object, according to the present invention, there is provided a wiring board, a heating element including an electronic circuit component such as an LSI mounted on the wiring board, and a heating element on the heating element. Assuming a cooling device for an electronic device including a liquid cooling heat sink mounted in contact and a pump for pressurizing and circulating a liquid refrigerant, the pump is mounted on the liquid cooling heat sink.

【0008】また、ポンプが液体冷却ヒートシンクの上
部に固定され、さらにポンプと液体冷却ヒートシンクと
を一体構造として取扱える構造とした。
Further, the pump is fixed to the upper part of the liquid cooling heat sink, and the pump and the liquid cooling heat sink can be handled as an integral structure.

【0009】また、ポンプの液体冷媒吐出し部が液体冷
却ヒートシンクに配管等で直接連結された構造とした。
[0009] Further, the liquid refrigerant discharge part of the pump is directly connected to the liquid cooling heat sink by piping or the like.

【0010】さらに、ポンプが直流電源で動作する構成
とした。
Further, the pump is operated by a DC power supply.

【0011】さらに、ポンプが振動吸収部材等を介して
液体冷却ヒートシンクに固定される構造とした。
Further, the pump is fixed to the liquid cooling heat sink via a vibration absorbing member or the like.

【0012】[0012]

【発明の実施の形態】本発明の第一の実施例について図
1を用いて説明する。LSI等の電子回路部品を含む発
熱体1は、配線基板2上に配線用ピン3や半田ボール等
を介して電気的に接続されて搭載されている。発熱体1
は、例えばコンピュータ用のCPUや、画像処理用LS
I、FETパワーアンプ等である。発熱体1上には、発
熱体1を液冷するための液体冷却ヒートシンク4が、熱
伝導コンパウンド21や熱伝導グリース、または熱伝導
シート等を介して熱的に接続されて搭載されている。さ
らに、液体冷却ヒートシンク4の上部には、液体冷媒を
加圧して循環させるポンプ5が搭載されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. A heating element 1 including an electronic circuit component such as an LSI is mounted on a wiring board 2 by being electrically connected via wiring pins 3 and solder balls. Heating element 1
Is, for example, a CPU for a computer or an LS for image processing.
I, FET power amplifier and the like. A liquid cooling heat sink 4 for liquid cooling the heating element 1 is thermally mounted on the heating element 1 via a heat conductive compound 21, a heat conductive grease, a heat conductive sheet, or the like. Further, a pump 5 for pressurizing and circulating the liquid refrigerant is mounted on the upper part of the liquid cooling heat sink 4.

【0013】本実施例では、ポンプ5が振動吸収部材1
9を介して液体冷却ヒートシンク4に固定される構造を
採っている。そのためポンプ5の振動が直接CPU等の
電子部品に影響を及ぼし難い構造となっている。ポンプ
5はフレキシブルなホース6により液体冷却ヒートシン
ク4と接続されている。ホース6は一端がポンプ5の冷
媒吐出し部カプラ7に接続され、他端が液体冷却ヒート
シンク4の給水カプラ9に接続されており、加圧された
液体冷媒は8のように流れた後に10のように直接液体
冷却ヒートシンク4に流入する。液体冷媒は、液体冷却
ヒートシンク4内に流入した後に、ヒートシンク内に構
成された複数の流路に別れて蛇行状に流れ、発熱体1の
熱を吸収する。加熱された液体冷媒は排水カプラ17、
ホース16を経て、液体冷媒を冷却する熱交換部(図示
せず)に18に示すように流れる。熱交換部で冷却され
た液体冷媒は、15のように戻ってきて、ホース13、
冷媒吸込み部カプラ14を介してポンプ5に吸込まれ、
再び加圧されて液体冷却ヒートシンク4に供給される。
In this embodiment, the pump 5 is connected to the vibration absorbing member 1.
A structure is adopted in which it is fixed to the liquid cooling heat sink 4 via the heat sink 9. Therefore, the structure is such that the vibration of the pump 5 does not directly affect the electronic components such as the CPU. The pump 5 is connected to the liquid cooling heat sink 4 by a flexible hose 6. One end of the hose 6 is connected to the refrigerant discharge coupler 7 of the pump 5, and the other end is connected to the water supply coupler 9 of the liquid cooling heat sink 4. Directly flows into the liquid cooling heat sink 4 as shown in FIG. After flowing into the liquid cooling heat sink 4, the liquid refrigerant flows into a plurality of flow paths formed in the heat sink, flows in a meandering manner, and absorbs heat of the heating element 1. The heated liquid refrigerant is supplied to the drain coupler 17,
Through a hose 16, the refrigerant flows into a heat exchanger (not shown) for cooling the liquid refrigerant, as shown at 18. The liquid refrigerant cooled in the heat exchange section returns as indicated by 15, and the hose 13,
Sucked into the pump 5 via the refrigerant suction coupler 14,
It is pressurized again and supplied to the liquid cooling heat sink 4.

【0014】なお、前述したカプラ7,9,14,17
によってホース6,13,16は脱着が容易になってい
るため、組立て性やメンテナンス性が良い構造を実現し
ている。
The above-mentioned couplers 7, 9, 14, 17
As a result, the hoses 6, 13, and 16 are easily attached and detached, so that a structure with good assemblability and maintainability is realized.

【0015】上記のように、ポンプ5が液体冷却ヒート
シンク4の上部に搭載される構造とすることにより、ポ
ンプ5を別途設置するスペースを電子機器筐体内に用意
する必要が無くなり、またポンプから液体冷却ヒートシ
ンク4までのホースを短くできるので、液体冷却システ
ムを電子機器筐体内にコンパクトに搭載できる。そのた
め、現状の空冷方式の電子機器筐体構造を大きく変える
ことなく、冷却性能が高く、かつ低騒音の液体冷却シス
テムを搭載することが可能となる。
As described above, the structure in which the pump 5 is mounted on the upper part of the liquid cooling heat sink 4 eliminates the necessity of preparing a space for separately installing the pump 5 in the housing of the electronic device. Since the hose up to the cooling heat sink 4 can be shortened, the liquid cooling system can be compactly mounted in the electronic device housing. Therefore, it is possible to mount a liquid cooling system having high cooling performance and low noise without largely changing the current air-cooled electronic device housing structure.

【0016】また、ポンプ5が液体冷却ヒートシンク4
の上部に固定され、ポンプと液冷ヒートシンクとを一体
構造として取扱えるようにすると、組立て時の部品点数
が低減し、さらに、現状パソコン等で多用されているフ
ァン付き空冷ヒートシンクの代わりに、このポンプと液
冷ヒートシンクの一体部品キットを組付けることができ
るため、液体冷却システムを無理なく電子機器に導入可
能である。
The pump 5 is connected to the liquid cooling heat sink 4.
When the pump and liquid-cooled heat sink can be handled as an integral structure, the number of parts during assembly is reduced, and this air-cooled heat sink with a fan, which is currently frequently used in personal computers etc., is replaced with this one. Since the integrated component kit of the pump and the liquid cooling heat sink can be assembled, the liquid cooling system can be easily introduced into the electronic device.

【0017】また、ポンプ5の冷媒吐出し部7が液体冷
却ヒートシンク4の給水カプラ9に配管等で直接連結さ
れた構造とした。そのため、ポンプ5から液体冷却ヒー
トシンク4までのホースを非常に短くできるので、ホー
スでの液体冷媒の流動損失を小さくでき、その結果ポン
プ5の揚程能力を小さくでき、最終的にモータの能力を
より小さくし、ポンプを小型化することができる。
Further, the refrigerant discharge portion 7 of the pump 5 is directly connected to the water supply coupler 9 of the liquid cooling heat sink 4 by a pipe or the like. Therefore, the length of the hose from the pump 5 to the liquid cooling heat sink 4 can be extremely short, so that the flow loss of the liquid refrigerant in the hose can be reduced, and as a result, the pumping capacity of the pump 5 can be reduced, and finally the capacity of the motor can be improved. It is possible to reduce the size and the size of the pump.

【0018】ポンプ5は羽根車ケース11とモータ12
から構成される。本実施例において、ポンプ5は羽根車
ケース11内に設置された羽根車を回転させて液体冷媒
を加圧する遠心型の例を示したが、ダイヤフラムなどを
用いて機械的容積変化により液体冷媒を加圧する容積型
ポンプであっても良い。また、本実施例においては、モ
ータと羽根車の軸が液体冷却ヒートシンク4の上面にほ
ぼ垂直になるように搭載されており、よって、モータの
底面が液体冷却ヒートシンク4の上面に振動吸収部材1
9を介して面同士で接合されるため、モータの座りが良
い構造を実現できる。
The pump 5 comprises an impeller case 11 and a motor 12
Consists of In this embodiment, the pump 5 is an example of a centrifugal type in which the impeller provided in the impeller case 11 is rotated to pressurize the liquid refrigerant, but the liquid refrigerant is changed by mechanical volume change using a diaphragm or the like. It may be a positive displacement pump for pressurizing. In this embodiment, the motor and the impeller are mounted so that the axes of the motor and the impeller are substantially perpendicular to the upper surface of the liquid cooling heat sink 4, so that the bottom surface of the motor is mounted on the upper surface of the liquid cooling heat sink 4.
Since the surfaces are joined to each other via the intermediate member 9, it is possible to realize a structure in which the motor is well seated.

【0019】モータ12は直流電源で駆動するDCモー
タである。DCモータとすることにより、DC電圧を変
化させて容易にモータの回転数を変えられるので、冷却
能力の制御も可能になる。さらに、モータをDCブラシ
レスモータとすることにより、低騒音でかつ高寿命のポ
ンプを実現することができる。
The motor 12 is a DC motor driven by a DC power supply. By using a DC motor, the number of rotations of the motor can be easily changed by changing the DC voltage, so that the cooling capacity can be controlled. Further, by using a DC brushless motor as the motor, a low-noise and long-life pump can be realized.

【0020】液体冷媒の流量が 0.1(リットル/分)
のオーダーのように比較的小さい場合には、駆動電圧を
例えば 1〜1.5(V)程度の乾電池でも駆動可能なも
のとすれば、ポンプのバッテリー駆動が可能となり、信
頼性の高い液体冷却システムを構築できる。また、液体
冷媒の流量が1(リットル/分)のオーダーのように比
較的大きい場合には、駆動電圧を例えば2〜12(V)
程度の電子機器のDC電源で供給可能な電圧とすると、
ポンプ用の専用電源を用意する必要がないためコンパク
トで安価に液体冷却システムを構築できる。だだし、本
発明は、モータ12を必ずしもDCモータに限定するも
のではなく、例えば100(V)や 200(V)の交流電
源で駆動するACモータであっても構わない。
The flow rate of the liquid refrigerant is 0.1 (liter / minute)
If the driving voltage can be driven by a dry battery of, for example, about 1 to 1.5 (V), the pump can be driven by a battery, and the liquid cooling can be performed with high reliability. Can build a system. When the flow rate of the liquid refrigerant is relatively large, such as on the order of 1 (liter / minute), the driving voltage is set to, for example, 2 to 12 (V).
Assuming that the voltage can be supplied by the DC power supply of
Since there is no need to prepare a dedicated power supply for the pump, a liquid cooling system that is compact and inexpensive can be constructed. However, in the present invention, the motor 12 is not necessarily limited to a DC motor, but may be an AC motor driven by an AC power supply of, for example, 100 (V) or 200 (V).

【0021】液体冷媒は入手が容易な水が良く、特に純
水であると熱容量が大きいので冷却性能を高くでき、さ
らに腐食に強く、不純物が流路内に堆積し難いので信頼
性の高い液体冷却システムを実現することができる。ま
た、液体冷媒として、水にエチレングリコール等を添加
した不凍液を使えば、寒冷時の液体冷媒凍結による流路
部破損を防止できる。また、液体冷媒にパーフルオロカ
ーボン等の非電導性冷媒を使えば、万一の液漏れ時にも
電子回路のショート等の事故を防ぐことができる。
The liquid refrigerant is preferably water, which is easily available. In particular, pure water has a large heat capacity, so that the cooling performance can be enhanced. Further, the liquid refrigerant is resistant to corrosion, and it is difficult to deposit impurities in the flow path. A cooling system can be realized. In addition, if an antifreeze liquid obtained by adding ethylene glycol or the like to water is used as the liquid refrigerant, breakage of the flow path due to freezing of the liquid refrigerant during cold can be prevented. If a non-conductive refrigerant such as perfluorocarbon is used as the liquid refrigerant, an accident such as a short circuit of an electronic circuit can be prevented even in the event of a liquid leak.

【0022】本発明の第二の実施例について図2を用い
て説明する。本実施例においては、モータ5と羽根車の
軸が液体冷却ヒートシンク4の上面にほぼ平行になるよ
うに搭載されている。それにより、モータ出力が高く、
そのためモータの軸方向長さが長い高出力ポンプでも、
液体冷却ヒートシンク4上にコンパクトに搭載できる。
本実施例では、ポンプ5は液体冷却ヒートシンク4上に
ブラケット20で固定されている。ブラケット20は、
材質が振動吸収部材であるか、その一部に振動吸収部材
を用いることにより、ポンプ5の振動が直接CPU等の
電子部品に影響を及ぼし難い構造とすることができる。
第二の実施例は、上記以外は第一の実施例と同様であ
る。
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, the motor 5 and the impeller are mounted so that their axes are substantially parallel to the upper surface of the liquid cooling heat sink 4. As a result, the motor output is high,
Therefore, even with a high-power pump with a long motor axial length,
It can be mounted compactly on the liquid cooling heat sink 4.
In this embodiment, the pump 5 is fixed on the liquid cooling heat sink 4 by a bracket 20. The bracket 20 is
If the material is a vibration absorbing member or a part of the vibration absorbing member is used, a structure in which the vibration of the pump 5 does not directly affect the electronic components such as the CPU can be obtained.
The second embodiment is the same as the first embodiment except for the above.

【0023】本発明の第三の実施例について図3を用い
て説明する。本実施例は、第一の実施例で示したポンプ
と液冷ヒートシンク一体型の液体冷却システムを、実際
の電子機器筐体内に搭載した例を示している。
A third embodiment of the present invention will be described with reference to FIG. This embodiment shows an example in which the liquid cooling system integrated with the pump and the liquid cooling heat sink shown in the first embodiment is mounted in an actual electronic device housing.

【0024】LSI等の発熱体1は、マザーボードであ
る配線基板2上に搭載されている。発熱体1上には、発
熱体1を液冷するための液体冷却ヒートシンク4が搭載
されている。さらに、液体冷却ヒートシンク4の上部に
は、ポンプ5が搭載されている。配線基板2上には、発
熱体1以外に、メモリLSIやドライバLSIなどの空
冷で冷却可能な発熱体22a,22b,22cや、IO
カード、メモリカード、ハードディスク等のカード実装
基板23等が搭載されている。配線基板2は、電子機器
筐体のケース24内に収められている。ケース24には
空冷用のファン34が取付けられており、前記多数の空
冷部品を冷却風25で空冷している。
A heating element 1 such as an LSI is mounted on a wiring board 2 which is a mother board. A liquid cooling heat sink 4 for liquid cooling the heating element 1 is mounted on the heating element 1. Further, a pump 5 is mounted on the liquid cooling heat sink 4. On the wiring board 2, in addition to the heating element 1, heating elements 22 a, 22 b, 22 c that can be cooled by air, such as a memory LSI and a driver LSI, and IOs
A card mounting board 23 such as a card, a memory card, and a hard disk is mounted. The wiring board 2 is housed in a case 24 of an electronic device housing. A fan 34 for air cooling is attached to the case 24, and the large number of air-cooled components are air-cooled by cooling air 25.

【0025】液体冷却ヒートシンク4で加熱された液体
冷媒は、ホース16で18に示すように流れ、筐体ケー
スの側板32に取付けられた熱交換器27に接続カプラ
26を介して接続される。本実施例では、熱交換器27
の配管が側板32に熱的に接触して取付けられており、
液体冷媒は熱交換器内で28や29のように蛇行しなが
ら上方へ流れる。液体冷媒の熱は側板32全体に熱伝導
により広げられた後に、電子機器筐体周囲の自然対流に
よる空気流33やファン34による冷却風25により放
熱される。
The liquid refrigerant heated by the liquid cooling heat sink 4 flows through the hose 16 as shown at 18 and is connected via a connection coupler 26 to a heat exchanger 27 attached to a side plate 32 of the housing case. In the present embodiment, the heat exchanger 27
Pipes are attached in thermal contact with the side plate 32,
The liquid refrigerant flows upward while meandering like 28 and 29 in the heat exchanger. After the heat of the liquid refrigerant is spread to the entire side plate 32 by heat conduction, the heat is radiated by the air flow 33 due to natural convection around the electronic device housing and the cooling air 25 by the fan 34.

【0026】冷却された液体冷媒は、30のように流
れ、接続カプラ31を介して戻り側のホース13に接続
され、15のようにポンプ5に戻り、再び加圧されて液
体冷却ヒートシンク4に供給される。
The cooled liquid refrigerant flows as shown at 30 and is connected to the hose 13 on the return side via the connecting coupler 31, returns to the pump 5 as at 15, is pressurized again, and is sent to the liquid cooling heat sink 4. Supplied.

【0027】側板32と熱交換器27の構成方法の一例
として、側板32をアルミニウムやマグネシウムや銅等
の金属材料で構成し、さらに熱交換器の配管を金属材料
で構成し、両者をろう付けや半田付け等の金属接合や熱
伝導性接着剤等で接続する方法がある。この場合、熱伝
導を良好にできるので、液体冷却システムの冷却性能を
向上させることができる。また、2枚の金属板を熱交換
器の蛇行流路を空けた状態で接合させて、側板と熱交換
器を一体成形するロールボンド等の製法を用いれば、よ
り安価に熱交換器を製造できる。ただし、側板32が樹
脂製等の非金属材料であったり、熱交換器27の配管が
非金属材料であっても、本発明の効果は実現できるもの
である。
As an example of a method of forming the side plate 32 and the heat exchanger 27, the side plate 32 is formed of a metal material such as aluminum, magnesium, or copper, and the piping of the heat exchanger is formed of a metal material. There is a method of connecting with a metal joint such as soldering or the like, a heat conductive adhesive or the like. In this case, since the heat conduction can be improved, the cooling performance of the liquid cooling system can be improved. In addition, if the two metal plates are joined with the meandering flow path of the heat exchanger opened, and a method such as roll bonding is used to integrally mold the side plate and the heat exchanger, the heat exchanger can be manufactured at lower cost. it can. However, the effects of the present invention can be realized even if the side plate 32 is made of a nonmetallic material such as a resin or the piping of the heat exchanger 27 is made of a nonmetallic material.

【0028】以上から、本実施例の構成とすることによ
り、ポンプ5を別途設置するスペースを電子機器筐体内
に用意する必要が無くなり、またポンプから液体冷却ヒ
ートシンク4までのホースを短くできるので、液体冷却
システムを電子機器筐体内にコンパクトに搭載できる。
As described above, with the configuration of the present embodiment, it is not necessary to provide a space for separately installing the pump 5 in the housing of the electronic device, and the hose from the pump to the liquid cooling heat sink 4 can be shortened. The liquid cooling system can be compactly mounted in the electronic device housing.

【0029】さらに、現状の空冷方式の電子機器筐体構
造を大きく変えることなく、熱交換器27を備えた側板
32と、ポンプ一体型液冷ヒートシンクと、2本の接続
ホース13,16を追加するだけで、冷却性能が高く、
かつ低騒音の液体冷却システムを実現することが可能と
なる。
Further, a side plate 32 provided with a heat exchanger 27, a pump-integrated liquid-cooled heat sink, and two connection hoses 13 and 16 are added without largely changing the current air-cooled electronic device housing structure. Just by doing, the cooling performance is high,
In addition, a liquid cooling system with low noise can be realized.

【0030】また、現状パソコン等で多用されているフ
ァン付き空冷ヒートシンクの代わりに、このポンプと液
冷ヒートシンクの一体部品キットを組付けることができ
るため、液体冷却システムを無理なく電子機器に導入可
能である。ポンプの電源がファン付き空冷ヒートシンク
のファン用電源と互換性があれば、さらに導入が容易と
なることは言うまでもない。
Also, instead of an air-cooled heat sink with a fan, which is currently frequently used in personal computers, etc., an integrated kit of this pump and a liquid-cooled heat sink can be assembled, so that a liquid cooling system can be easily introduced into electronic equipment. It is. Needless to say, if the power supply of the pump is compatible with the power supply for the fan of the air-cooled heat sink with a fan, the introduction becomes easier.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
第一に、液体冷却システムを電子機器筐体内にコンパク
トに搭載できる。
As described above, according to the present invention,
First, the liquid cooling system can be compactly mounted in the electronic device housing.

【0032】第二に、現状の空冷方式の電子機器筐体構
造を大きく変えることなく、冷却性能が高く、かつ低騒
音で、信頼性の高い液体冷却システムを搭載することが
できる。
Second, a liquid cooling system having high cooling performance, low noise, and high reliability can be mounted without largely changing the current air-cooled electronic device housing structure.

【0033】第三に、組立て時の部品点数が低減し、か
つ、ファン付き空冷ヒートシンクの代わりに、ポンプと
液冷ヒートシンクの一体部品キットを組付けることがで
きるため、液体冷却システムを無理なく電子機器に導入
できる。
Third, since the number of parts during assembly is reduced and an integrated kit of a pump and a liquid-cooled heat sink can be assembled instead of an air-cooled heat sink with a fan, the liquid cooling system can be easily electronically mounted. Can be introduced into equipment.

【0034】第四に、ポンプの揚程能力を小さくでき、
モータの能力をより小さくし、小型化できる。
Fourth, the pump head capacity can be reduced,
The capacity of the motor can be made smaller and downsized.

【0035】第五に、ポンプの回転数を変化させて冷却
能力を制御可能な液体冷却システムとすることができ
る。
Fifth, a liquid cooling system capable of controlling the cooling capacity by changing the rotation speed of the pump can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例である電子機器の冷却装
置の斜視図。
FIG. 1 is a perspective view of a cooling device for electronic equipment according to a first embodiment of the present invention.

【図2】本発明の第二の実施例である電子機器の冷却装
置の斜視図。
FIG. 2 is a perspective view of a cooling device for electronic equipment according to a second embodiment of the present invention.

【図3】本発明の第三の実施例である電子機器の冷却装
置の斜視図。
FIG. 3 is a perspective view of a cooling device for electronic equipment according to a third embodiment of the present invention.

【図4】従来例の電子機器の冷却装置を示す斜視図。FIG. 4 is a perspective view showing a cooling device for a conventional electronic device.

【符号の説明】[Explanation of symbols]

1…発熱体、2…配線基板、3…配線用ピン、4…液体
冷却ヒートシンク、5…ポンプ、6…ホース、7…冷媒
吐出し部カプラ、8…液体冷媒の流れ、9…給水カプ
ラ、10…液体冷媒の流れ、11…羽根車ケース、12
…モータ、13…ホース、14…冷媒吸込み部カプラ、
15…液体冷媒の流れ、16…ホース、17…排水カプ
ラ、18…液体冷媒の流れ、19…振動吸収部材、20
…ブラケット、21…熱伝導性コンパウンド、22a…
空冷で冷却可能な発熱体、22b…空冷で冷却可能な発
熱体、22c…空冷で冷却可能な発熱体、23…カード
実装基板、24…電子機器筐体のケース、25…冷却
風、26…接続カプラ、27…熱交換器、28…蛇行す
る液体冷媒の流れ、29…蛇行する液体冷媒の流れ、3
0…液体冷媒の流れ、31…接続カプラ、32…側板、
33…空気流、34…ファン、40…水冷ヒートシン
ク、41…ホース、42…出口配管、43…熱交換器、
44…冷媒配管、45…ポンプ、46…入口配管、47
…ファン、48…冷却空気、49…冷却空気、50…配
線基板、51…空冷可能なLSI。
DESCRIPTION OF SYMBOLS 1 ... Heating element, 2 ... Wiring board, 3 ... Wiring pin, 4 ... Liquid cooling heat sink, 5 ... Pump, 6 ... Hose, 7 ... Refrigerant discharge part coupler, 8 ... Liquid refrigerant flow, 9 ... Water supply coupler, 10: Flow of liquid refrigerant, 11: Impeller case, 12
... Motor, 13 ... Hose, 14 ... Cooler suction part coupler,
15: Flow of liquid refrigerant, 16: Hose, 17: Drain coupler, 18: Flow of liquid refrigerant, 19: Vibration absorbing member, 20
... bracket, 21 ... heat conductive compound, 22a ...
Air-cooled and heatable element, 22b: Air-cooled and heatable element, 22c: Air-cooled and heatable element, 23 ... Card mounting board, 24 ... Electronic device case, 25 ... Cooling air, 26 ... Connecting coupler, 27 heat exchanger, 28 meandering liquid refrigerant flow, 29 meandering liquid refrigerant flow, 3
0: liquid refrigerant flow, 31: connecting coupler, 32: side plate,
33 ... air flow, 34 ... fan, 40 ... water-cooled heat sink, 41 ... hose, 42 ... outlet pipe, 43 ... heat exchanger,
44 ... refrigerant pipe, 45 ... pump, 46 ... inlet pipe, 47
... Fan, 48 ... Cooling air, 49 ... Cooling air, 50 ... Wiring board, 51 ... Air-coolable LSI.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】配線基板と、該配線基板上に搭載されたL
SI等の電子回路部品を含む発熱体と、該発熱体上に熱
的に接触して搭載された液体冷却ヒートシンクと、液体
冷媒を加圧して循環させるポンプとからなる電子機器の
冷却装置であって、該ポンプが該液体冷却ヒートシンク
の上部に搭載されることを特徴とする電子機器の冷却装
置。
1. A wiring board and an L mounted on the wiring board.
A cooling device for an electronic device, comprising: a heating element including electronic circuit components such as SI; a liquid cooling heat sink mounted in thermal contact with the heating element; and a pump for pressurizing and circulating a liquid refrigerant. Wherein the pump is mounted on the liquid cooling heat sink.
JP2000345470A 2000-11-08 2000-11-08 Cooler for electronic equipment Withdrawn JP2002151638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345470A JP2002151638A (en) 2000-11-08 2000-11-08 Cooler for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345470A JP2002151638A (en) 2000-11-08 2000-11-08 Cooler for electronic equipment

Publications (2)

Publication Number Publication Date
JP2002151638A true JP2002151638A (en) 2002-05-24
JP2002151638A5 JP2002151638A5 (en) 2005-05-26

Family

ID=18819499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345470A Withdrawn JP2002151638A (en) 2000-11-08 2000-11-08 Cooler for electronic equipment

Country Status (1)

Country Link
JP (1) JP2002151638A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109831A1 (en) * 2003-06-05 2004-12-16 Sony Corporation Fuel cell system, power generation method of fuel cell system, and electric device
US6845011B2 (en) 2002-10-15 2005-01-18 Kabushiki Kaisha Toshiba Electronic apparatus having a circulation path of liquid coolant to cool a heat-generating component
JP2005100091A (en) * 2003-09-25 2005-04-14 Hitachi Ltd Cooling module
US7016195B2 (en) * 2002-11-28 2006-03-21 Kabushiki Kaisha Toshiba Cooling fluid pump and electric apparatus, such as personal computer, provided with the pump
JPWO2004107837A1 (en) * 2003-05-30 2006-07-20 松下電器産業株式会社 Cooling system
JP2007046810A (en) * 2005-08-08 2007-02-22 Sanden Corp Brine type cooling system
US7215546B2 (en) * 2004-04-28 2007-05-08 Kabushiki Kaisha Toshiba Pump, electronic apparatus, and cooling system
JP2007242822A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Cooling device for electronic apparatus
US7273089B2 (en) 2003-05-26 2007-09-25 Kabushiki Kaisha Toshiba Electronic apparatus having a heat-radiating unit for radiating heat of heat-generating components
US7301771B2 (en) 2004-04-28 2007-11-27 Kabushiki Kaisha Toshiba Heat-receiving apparatus and electronic equipment
CN100367493C (en) * 2003-10-27 2008-02-06 株式会社日立制作所 Liquid cooling system
CN100377633C (en) * 2004-04-30 2008-03-26 株式会社东芝 Electronic apparatus incorporating a cooling unit
US7420807B2 (en) 2002-08-16 2008-09-02 Nec Corporation Cooling device for electronic apparatus
JP2008306203A (en) * 2008-07-24 2008-12-18 Hitachi Ltd Electronic apparatus cooling device and pump-integrated cooling module of same
JP2009060122A (en) * 2008-10-16 2009-03-19 Panasonic Corp Cooling device
US7934539B2 (en) 2005-10-24 2011-05-03 Fujitsu Limited Electronic apparatus and cooling module
JP2012235146A (en) * 2012-07-09 2012-11-29 Hitachi Ltd Pump integrated type cooling module of electronic apparatus cooling device
US8746330B2 (en) 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
JP2015082565A (en) * 2013-10-22 2015-04-27 富士通株式会社 Electronic apparatus
US9057567B2 (en) 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
US9496200B2 (en) 2011-07-27 2016-11-15 Coolit Systems, Inc. Modular heat-transfer systems
US9715260B2 (en) 2003-11-07 2017-07-25 Asetek Danmark A/S Cooling system for a computer system
US9733681B2 (en) 2005-05-06 2017-08-15 Asetek Danmark A/S Cooling system for a computer system
US9943014B2 (en) 2013-03-15 2018-04-10 Coolit Systems, Inc. Manifolded heat exchangers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
TWI714437B (en) * 2020-01-17 2020-12-21 建準電機工業股份有限公司 Liquid-cooling heat dissipation system and pump
CN113404698A (en) * 2020-03-16 2021-09-17 建准电机工业股份有限公司 Liquid cooling type heat dissipation system and pump thereof
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems
EP4350760A1 (en) * 2022-10-05 2024-04-10 IMEC vzw A device and system for cooling an electronic component

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420807B2 (en) 2002-08-16 2008-09-02 Nec Corporation Cooling device for electronic apparatus
US6845011B2 (en) 2002-10-15 2005-01-18 Kabushiki Kaisha Toshiba Electronic apparatus having a circulation path of liquid coolant to cool a heat-generating component
US7016195B2 (en) * 2002-11-28 2006-03-21 Kabushiki Kaisha Toshiba Cooling fluid pump and electric apparatus, such as personal computer, provided with the pump
US7273089B2 (en) 2003-05-26 2007-09-25 Kabushiki Kaisha Toshiba Electronic apparatus having a heat-radiating unit for radiating heat of heat-generating components
JP4559361B2 (en) * 2003-05-30 2010-10-06 パナソニック株式会社 Projection display
JPWO2004107837A1 (en) * 2003-05-30 2006-07-20 松下電器産業株式会社 Cooling system
WO2004109831A1 (en) * 2003-06-05 2004-12-16 Sony Corporation Fuel cell system, power generation method of fuel cell system, and electric device
JP2004362972A (en) * 2003-06-05 2004-12-24 Sony Corp Fuel cell system, power generating method of fuel cell system, and electric apparatus
JP2005100091A (en) * 2003-09-25 2005-04-14 Hitachi Ltd Cooling module
CN100367493C (en) * 2003-10-27 2008-02-06 株式会社日立制作所 Liquid cooling system
US10078354B2 (en) 2003-11-07 2018-09-18 Asetek Danmark A/S Cooling system for a computer system
US9715260B2 (en) 2003-11-07 2017-07-25 Asetek Danmark A/S Cooling system for a computer system
US10613601B2 (en) 2003-11-07 2020-04-07 Asetek Danmark A/S Cooling system for a computer system
US11287861B2 (en) 2003-11-07 2022-03-29 Asetek Danmark A/S Cooling system for a computer system
US7215546B2 (en) * 2004-04-28 2007-05-08 Kabushiki Kaisha Toshiba Pump, electronic apparatus, and cooling system
US7301771B2 (en) 2004-04-28 2007-11-27 Kabushiki Kaisha Toshiba Heat-receiving apparatus and electronic equipment
CN100377633C (en) * 2004-04-30 2008-03-26 株式会社东芝 Electronic apparatus incorporating a cooling unit
US11287862B2 (en) 2005-05-06 2022-03-29 Asetek Danmark A/S Cooling system for a computer system
US10599196B2 (en) 2005-05-06 2020-03-24 Asetek Danmark A/S Cooling system for a computer system
US10078355B2 (en) 2005-05-06 2018-09-18 Asetek Danmark A/S Cooling system for a computer system
US9733681B2 (en) 2005-05-06 2017-08-15 Asetek Danmark A/S Cooling system for a computer system
JP2007046810A (en) * 2005-08-08 2007-02-22 Sanden Corp Brine type cooling system
US7934539B2 (en) 2005-10-24 2011-05-03 Fujitsu Limited Electronic apparatus and cooling module
JP2007242822A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Cooling device for electronic apparatus
US9603284B2 (en) 2007-08-09 2017-03-21 Coolit Systems, Inc. Fluid heat exchanger configured to provide a split flow
US8746330B2 (en) 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
US9453691B2 (en) 2007-08-09 2016-09-27 Coolit Systems, Inc. Fluid heat exchange systems
US10274266B2 (en) 2007-08-09 2019-04-30 CoolIT Systems, Inc Fluid heat exchange sytems
US9057567B2 (en) 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
JP2008306203A (en) * 2008-07-24 2008-12-18 Hitachi Ltd Electronic apparatus cooling device and pump-integrated cooling module of same
JP2009060122A (en) * 2008-10-16 2009-03-19 Panasonic Corp Cooling device
US9496200B2 (en) 2011-07-27 2016-11-15 Coolit Systems, Inc. Modular heat-transfer systems
US10820450B2 (en) 2011-07-27 2020-10-27 Coolit Systems, Inc. Modular heat-transfer systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US11714432B2 (en) 2011-08-11 2023-08-01 Coolit Systems, Inc. Flow-path controllers and related systems
JP2012235146A (en) * 2012-07-09 2012-11-29 Hitachi Ltd Pump integrated type cooling module of electronic apparatus cooling device
US9943014B2 (en) 2013-03-15 2018-04-10 Coolit Systems, Inc. Manifolded heat exchangers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US11661936B2 (en) 2013-03-15 2023-05-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
JP2015082565A (en) * 2013-10-22 2015-04-27 富士通株式会社 Electronic apparatus
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11725890B2 (en) 2019-04-25 2023-08-15 Coolit Systems, Inc. Cooling module with leak detector and related systems
TWI714437B (en) * 2020-01-17 2020-12-21 建準電機工業股份有限公司 Liquid-cooling heat dissipation system and pump
CN113404698A (en) * 2020-03-16 2021-09-17 建准电机工业股份有限公司 Liquid cooling type heat dissipation system and pump thereof
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems
EP4350760A1 (en) * 2022-10-05 2024-04-10 IMEC vzw A device and system for cooling an electronic component

Similar Documents

Publication Publication Date Title
JP2002151638A (en) Cooler for electronic equipment
KR100677624B1 (en) Liquid cooling system and electric appliances adopting the same
US7249625B2 (en) Water-cooling heat dissipation device
JP5002522B2 (en) Cooling device for electronic equipment and electronic equipment provided with the same
JP3594900B2 (en) Display integrated computer
US20060021737A1 (en) Liquid cooling device
US7218523B2 (en) Liquid cooling system
JP4132680B2 (en) Electronic equipment cooling device
WO2003043397A1 (en) Electronic apparatus
JP3979143B2 (en) Cooling device for information processing equipment
US20050248922A1 (en) Cooling assembly for electronics drawer using passive fluid loop and air-cooled cover
JP2006207881A (en) Cooling device and electronic apparatus comprising the same
KR20050040681A (en) Liquid cooled system
WO2006095436A1 (en) Heat absorption member, cooling device, and electronic apparatus
KR20050081815A (en) Electronic device equipped with liquid cooling system, and radiator and manufacturing method thereof
TW201731371A (en) Liquid-cooling type cooling apparatus accomplishes high cooling performances and miniaturization
WO2006117962A1 (en) Cooler, heat sink and electronic apparatus
TWM609012U (en) Liquid cooling system
JPH05264139A (en) Refrigerant supplying system
CN210247348U (en) Integrated radiator
JPH09283958A (en) Highly efficient cooling structure for integrated circuit
JP4012773B2 (en) Electronics
JPH08213526A (en) Circuit pack
JP3827594B2 (en) CPU cooling device
CN219105445U (en) High-efficient water-cooling radiator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070307