JP2002151091A - Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell - Google Patents

Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell

Info

Publication number
JP2002151091A
JP2002151091A JP2000344882A JP2000344882A JP2002151091A JP 2002151091 A JP2002151091 A JP 2002151091A JP 2000344882 A JP2000344882 A JP 2000344882A JP 2000344882 A JP2000344882 A JP 2000344882A JP 2002151091 A JP2002151091 A JP 2002151091A
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
solid fuel
electrode material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000344882A
Other languages
Japanese (ja)
Other versions
JP3617814B2 (en
Inventor
Reiichi Chiba
玲一 千葉
Bunichi Yoshimura
文一 吉村
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000344882A priority Critical patent/JP3617814B2/en
Publication of JP2002151091A publication Critical patent/JP2002151091A/en
Application granted granted Critical
Publication of JP3617814B2 publication Critical patent/JP3617814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell, which simultaneously satisfies 2 requirements of electric properties and the matching ability of a coefficient of thermal expansion with an electrolyte that are required of an air electrode for a solid fuel cell operating at a temperature of from 700 deg.C down to 600 deg.C. SOLUTION: For the air electrode material represented by the formula, Ln1-YAYNi1-XFeXO3, (wherein, Ln is an element selected from among La, Pr, Nd and Sm, and A is an element selected from among Sr, Ba and Ca), the compositional range thereof falls within X-0.2<=Y<=X-0.4, and 0.55<=X<=0.90. The material has good electrode activity at about 650 deg.C and is excellent in electron conductivity compared with a conventional material, La0.8Sr0.2MnO3 and has almost the same coefficient of thermal expansion as the conventional material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルカリ土類添加ニッケ
ル−鉄系ペロブスカイト型低温動作固体燃料電池用空気
極材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air electrode material for a low-temperature solid-state fuel cell operated with an alkaline earth-added nickel-iron system perovskite.

【0002】[0002]

【従来の技術および問題点】近年、酸素イオン伝導体を
用いた固体電解質燃料電池に関心が高まりつつある。特
にエネルギーの有効利用という観点から、固体燃料電池
はカルノー効率の制約を受けないため本質的に高いエネ
ルギー変換効率を有し、さらに良好な環境保全が期待さ
れるなどの優れた特徴を持っている。
2. Description of the Related Art In recent years, interest has been growing in solid electrolyte fuel cells using oxygen ion conductors. In particular, from the viewpoint of effective use of energy, solid fuel cells have essentially high energy conversion efficiencies because they are not restricted by the Carnot efficiency, and have excellent features such as better environmental protection. .

【0003】図3に近年最も良く検討されている固体燃
料電池の単セル(チューブ型)の断面を模式的に示す。
このようなチューブ型電池は、中空円筒型の多孔質の空
気極基板1の外壁に固体電解質2を形成するとともに、
この外側に燃料極3を形成した構造を有している。そし
て、円筒形空気極基板1の中空部に酸素を、単セル外側
に水素を通すことによって発電を行う。なお、4は単セ
ルを接続するためのインターコネクタである。
FIG. 3 schematically shows a cross section of a single cell (tube type) of a solid fuel cell which has been studied most recently in recent years.
Such a tube battery forms a solid electrolyte 2 on the outer wall of a hollow cylindrical porous air electrode substrate 1 and
It has a structure in which a fuel electrode 3 is formed on the outside. Then, power is generated by passing oxygen through the hollow portion of the cylindrical air electrode substrate 1 and passing hydrogen outside the single cell. Reference numeral 4 denotes an interconnector for connecting single cells.

【0004】上述のような燃料電池の固体電解質として
はYSZ(イットリウム安定化ジルコニア)が最も有望
視されている。電極材料としてはペロブスカイト型マン
ガン系酸化物であるLa0.8Sr0.2MnO3が最も多く
検討されている。
YSZ (yttrium-stabilized zirconia) is regarded as the most promising solid electrolyte for fuel cells as described above. As the electrode material, La 0.8 Sr 0.2 MnO 3 , which is a perovskite-type manganese-based oxide, has been studied most frequently.

【0005】このチューブ型セルは空気極を多孔質基板
とし、その上に電解質、燃料極そしてインターコネクタ
を配置する方式である。この方式は丈夫なセルを組みや
すく、ガスのシールが容易との利点がある反面、主要な
部分がランタン系の酸化物であるため、材料コストが高
く、複雑な形状のセラミックとなるため製造コストの低
減も難しい。
[0005] This tube type cell uses an air electrode as a porous substrate, on which an electrolyte, a fuel electrode and an interconnector are arranged. This method has the advantage that it is easy to build a durable cell and that gas sealing is easy.On the other hand, the main parts are lanthanum-based oxides, so the material cost is high, and the ceramics have complicated shapes, so the manufacturing cost is high. It is also difficult to reduce.

【0006】以上のセルは1000℃付近の動作を前提
に設計されている。この動作温度を650℃程度まで低
減できれば、耐熱合金などの腐食が起きないため、イン
ターコネクタやセルを収納するマニホールドなどにこれ
らの金属を使用することが可能となる。この場合、イン
ターコネクタ部分の体積が大きい平板型構造のセルが適
している。
The above cells are designed on the assumption that they operate at around 1000.degree. If the operating temperature can be reduced to about 650 ° C., corrosion of heat-resistant alloys and the like does not occur, and thus these metals can be used for interconnectors, manifolds for accommodating cells, and the like. In this case, a flat cell having a large interconnector portion is suitable.

【0007】この模式図を図4a,図4bに示す。これ
は、燃料極であるNi−YSZを支持体(基板)とした
燃料極支持平板型セルである。すなわち、単セルは、燃
料極基板3に固体電解質2を積層するとともに、前記固
体電解質2にさらに空気極1を積層した構造になってい
る(図4a参照)。そして、前記燃料極3、空気極1の
両側よりそれぞれ水素、酸素を供給することによって、
発電を行う。また、前記単セルCの相互の接続には、燃
料供給通路41および/または酸素供給通路42を形成
した金属製のインターコネクタ4を積層して使用する
(図4b参照)。なお、図中、5は集電メッシュ、6は
ガスシールである。
FIG. 4A and FIG. 4B are schematic diagrams of this. This is a fuel electrode supporting flat plate type cell using Ni-YSZ as a fuel electrode as a support (substrate). That is, the single cell has a structure in which the solid electrolyte 2 is stacked on the fuel electrode substrate 3 and the air electrode 1 is further stacked on the solid electrolyte 2 (see FIG. 4A). By supplying hydrogen and oxygen from both sides of the fuel electrode 3 and the air electrode 1, respectively,
Generate electricity. For interconnecting the single cells C, a metal interconnector 4 having a fuel supply passage 41 and / or an oxygen supply passage 42 is laminated and used (see FIG. 4B). In the figure, 5 is a current collecting mesh, and 6 is a gas seal.

【0008】このような構造では、固体電解質を薄く緻
密な膜とすることが比較的容易であり、伝導性が高く、
低コストな燃料極を主要な構造体としている。このた
め、コストの低減及び、動作温度の低減が容易である。
[0008] In such a structure, it is relatively easy to make the solid electrolyte into a thin and dense film, and the conductivity is high.
The main structure is a low-cost fuel electrode. Therefore, it is easy to reduce the cost and the operating temperature.

【0009】しかし、動作温度を低減させると、セルを
構成する電解質の伝導度および電極の活性が低下するた
めセルの出力電圧が低下してしまう。従って動作温度の
低減には、これらの問題を解決する必要がある。
[0009] However, when the operating temperature is reduced, the conductivity of the electrolyte constituting the cell and the activity of the electrodes are reduced, so that the output voltage of the cell is reduced. Therefore, it is necessary to solve these problems to reduce the operating temperature.

【0010】電解質については、薄膜化による抵抗の低
減や、低温でも伝導度の高いSc添加ジルコニア系(例
えば、SASZ(0.89ZrO2−0.104Sc2
3−0.006Al23))、または(La−Sr)
(Ga−Mg)O3系の使用により対応できる。電極に
ついては、電極に微粉末を用いることでも電極性能を向
上させることが可能である。
As for the electrolyte, a zirconia-based Sc-added material having high conductivity even at a low temperature (for example, SASZ (0.89ZrO 2 -0.104Sc 2 O)
3 -0.006Al 2 O 3)), or (La-Sr)
(Ga-Mg) can be accommodated by the use of O 3 system. Regarding the electrode, it is possible to improve the electrode performance by using a fine powder for the electrode.

【0011】しかし、微細化された電極はセルの作製段
階で焼結が進み易いため、限界がある。従って電極活性
の高い材料の開発が不可欠である。特に空気極では、低
温化により電極活性が急激に低下する為、優れた電極特
性を持つ材料の開発が求められている。ここで、高い電
極特性とは、少ない電圧の低下でも大きな電流を流すこ
とができることを意味する。
However, there is a limit to the size of the miniaturized electrode because sintering is likely to proceed during the cell fabrication stage. Therefore, development of a material having high electrode activity is indispensable. Particularly in the case of an air electrode, since the electrode activity is rapidly reduced by lowering the temperature, development of a material having excellent electrode characteristics is required. Here, the high electrode characteristics means that a large current can flow even with a small decrease in voltage.

【0012】この他にも、電極からインターコネクタへ
の集電損失を抑える為に、高い電子伝導度が求められ
る。そして、空気極基板と電解質との熱膨張係数はなる
べく近い値でなければならない。これは、室温と動作温
度の間の温度サイクルを経ることにより電解質と空気極
基板との界面に応力がかかり電解質にクラックが入る恐
れがある為である。
In addition, a high electron conductivity is required in order to suppress the current collection loss from the electrode to the interconnector. The coefficient of thermal expansion between the air electrode substrate and the electrolyte must be as close as possible. This is because stress may be applied to the interface between the electrolyte and the air electrode substrate through a temperature cycle between room temperature and operating temperature, and the electrolyte may be cracked.

【0013】本発明は700℃から600℃で動作する
固体燃料電池用空気極に求められている電気的特性およ
び熱膨張係数における電解質との整合性の二つの要求を
同時に満足させたアルカリ土類添加ニッケル−鉄系ペロ
ブスカイト型低温動作固体燃料電池用空気極材料を提供
することを目的とする。
The present invention provides an alkaline earth which simultaneously satisfies the two requirements of the electrical characteristics and the coexistence with the electrolyte in the coefficient of thermal expansion required for a cathode for a solid fuel cell operating at 700 ° C. to 600 ° C. An object of the present invention is to provide an air electrode material for an added nickel-iron-based perovskite-type low-temperature operating solid fuel cell.

【0014】[0014]

【問題点を解決するための手段】上記課題を解決するた
め、本発明によるアルカリ土類添加ニッケル−鉄系ペロ
ブスカイト型低温動作固体燃料電池用空気極材料は、固
体電解質とそれに隣接して設けられた多孔質な空気極お
よび燃料極からなるセル、それらを電気的に接続するイ
ンターコネクタを有し、燃料ガスと空気または酸素ガス
との化学反応を電気エネルギーに変換する固体燃料電池
の固体燃料電池用空気極材料であって、Ln1-YYNi
1-XFeX3(LnはLa,Pr,Nd,Smの何れか
1つあるいはLa,Pr,Nd,Smの中から選ばれた
2つ以上の元素であり、AはSr,Ba,Caの何れか
1つあるいはSr,Ba,Caの中から選ばれた2つ以
上の元素である)で表され、その組成範囲がX−0.2
≦Y≦X−0.4で、かつ0.55≦X≦0.90であ
ることを特徴とする。
In order to solve the above-mentioned problems, an air electrode material for a low-temperature solid-state fuel cell of the present invention, which is a nickel-iron-based perovskite-type perovskite, is provided with a solid electrolyte and an adjoining electrolyte. Fuel cell having a porous air electrode and a fuel electrode, and an interconnector for electrically connecting them, and converting a chemical reaction between a fuel gas and air or oxygen gas into electric energy Air electrode material, Ln 1-Y A Y Ni
1-X Fe X O 3 (Ln is any one of La, Pr, Nd, Sm or two or more elements selected from La, Pr, Nd, Sm, A is Sr, Ba, Ca, or two or more elements selected from Sr, Ba, and Ca), and the composition range is X-0.2
≦ Y ≦ X−0.4 and 0.55 ≦ X ≦ 0.90.

【0015】本発明によれば、Ln1-YYNi1-XFeX
3(LnはLa,Pr,Nd,Smから選ばれた1つ
以上の元素;AはSr,Ba,Caから選ばれた1つ以
上の元素;X,Yは組成範囲がX−0.2≦Y≦X−
0.4で、かつ0.55≦X≦0.90である。図1に
上述の組成範囲を図示してある)を空気極に用いること
によって、650℃前後で良好な電極活性を有し、かつ
電子伝導性が従来材料のLa0.8Sr0.2MnO3に比べ
優れ、さらに熱膨張係数が従来の材料とほぼ同じ値を持
つという利点を生じる。
According to the present invention, Ln 1-YA Y Ni 1-x Fe x
O 3 (Ln is one or more elements selected from La, Pr, Nd and Sm; A is one or more elements selected from Sr, Ba and Ca; X and Y have a composition range of X-0. 2 ≦ Y ≦ X-
0.4 and 0.55 ≦ X ≦ 0.90. By using the composition range described above in FIG. 1 for the air electrode, it has good electrode activity around 650 ° C. and has excellent electron conductivity as compared with the conventional material La 0.8 Sr 0.2 MnO 3. This has the advantage that the thermal expansion coefficient has substantially the same value as that of the conventional material.

【0016】[0016]

【作用】以下に本発明の作用を説明する。The operation of the present invention will be described below.

【0017】固体燃料電池セル構成材として現在最もよ
く検討されている物質の熱膨張係数を表1に示す。完全
な緻密性が要求される固体電解質とインターコネクタ材
は、ほぼ熱膨張係数が一致している。これに対して燃料
極であるNi−YSZおよび空気極のLa0.8Sr0.2
nO3は、約20−30%程度熱膨張係数が大きいが、
この程度の不整合は許容されると考えられる。これは燃
料極及び空気極は多孔質であるため、熱膨張係数が電解
質と異なっていても熱膨張差はある程度吸収されること
による。
Table 1 shows the coefficients of thermal expansion of the materials currently most frequently studied as constituent materials of solid fuel cells. The solid electrolyte, which requires complete denseness, and the interconnector material have almost the same thermal expansion coefficient. On the other hand, the fuel electrode Ni-YSZ and the air electrode La 0.8 Sr 0.2 M
nO 3 has a large coefficient of thermal expansion of about 20-30%,
This degree of mismatch is considered to be acceptable. This is because the fuel electrode and the air electrode are porous, so that the difference in thermal expansion is absorbed to some extent even if the coefficient of thermal expansion is different from that of the electrolyte.

【0018】今回、空気極であるLn1-YYNi1-X
X3(LnはLa,Pr,Nd,Smから選ばれた1
つ以上の元素;AはSr,Ba,Caから選ばれた1つ
以上の元素;組成範囲はX−0.2≦Y≦X−0.4
で、かつ0.55≦X≦0.90である)について検討
したところ、650℃前後における電気伝導性および電
極活性が従来材料であるLa0.8Sr0.2MnO3に比べ
優れ、熱膨張係数が従来材料とほぼ同等であることが分
かった。なお、XおよびYは、LnまたはAが複数の元
素の場合、前記複数の元素の総量を示す。
In this case, the air electrode, Ln 1-Y A Y Ni 1-X F
e X O 3 (Ln is 1 selected from La, Pr, Nd and Sm)
One or more elements; A is one or more elements selected from Sr, Ba, Ca; composition range is X-0.2 ≦ Y ≦ X-0.4
And 0.55 ≦ X ≦ 0.90), the electrical conductivity and electrode activity at around 650 ° C. are superior to those of the conventional material La 0.8 Sr 0.2 MnO 3 , and the thermal expansion coefficient is It turned out to be almost equivalent to the material. When Ln or A is a plurality of elements, X and Y indicate the total amount of the plurality of elements.

【0019】前記組成範囲は、特にX−0.25≦Y≦
X−0.35で、かつ0.55≦X≦0.85であるの
が好ましい。上記組成範囲の場合、熱膨張係数は従来と
ほぼ同様であり、かつ電気電導性、電極活性が、特に良
好な値を示すからである。
The composition range is, in particular, X−0.25 ≦ Y ≦
It is preferable that X−0.35 and 0.55 ≦ X ≦ 0.85. This is because in the case of the above composition range, the thermal expansion coefficient is almost the same as the conventional one, and the electric conductivity and the electrode activity show particularly good values.

【0020】以上のことから、電気的特性および熱膨張
係数における電解質との整合性の二つの要求を同時に満
足するアルカリ土類添加ニッケル−鉄系ぺロブスカイト
型低温動作固体燃料電池用空気極材料を空気極に用いる
ことにより、650℃前後で動作する固体電解質型燃料
電池を実現できる。
From the above, an alkaline-earth-added nickel-iron-based perovskite-type air electrode material for a low-temperature operating solid fuel cell which simultaneously satisfies the two requirements of the compatibility with the electrolyte in the electrical characteristics and the coefficient of thermal expansion. By using the air electrode, a solid oxide fuel cell operating at around 650 ° C. can be realized.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【実施例】以下に本発明の実施例を説明する。なお、当
然のことであるが本発明は以下の実施例に限定されるも
のではない。
Embodiments of the present invention will be described below. Note that, needless to say, the present invention is not limited to the following embodiments.

【0023】[0023]

【実施例1】本発明の効果を示すために、図2aに示す
構造の単セルで,図2bに示すセル測定径を使用して試
験を行なった。図2a、図2bにおいて、1は空気極、
2は固体電解質、3は燃料極、5は白金製の集電メッシ
ュ、6はガスシール、7は白金端子、8はアルミナ管で
ある。また空気極、燃料極の厚みは0.5mm、直径は
6mm、固体電解質の厚みは0.1mm、大きさは22
mm角である。
EXAMPLE 1 In order to show the effect of the present invention, a test was performed on a single cell having the structure shown in FIG. 2A using the cell measurement diameter shown in FIG. 2B. 2a and 2b, 1 is an air electrode,
2 is a solid electrolyte, 3 is a fuel electrode, 5 is a current collector mesh made of platinum, 6 is a gas seal, 7 is a platinum terminal, and 8 is an alumina tube. The thickness of the air electrode and the fuel electrode is 0.5 mm, the diameter is 6 mm, the thickness of the solid electrolyte is 0.1 mm, and the size is 22 mm.
mm square.

【0024】固体電解質は、SASZ(0.89ZrO
2−0.104Sc23−0.006Al23)を、燃
料極にはNi−YSZ(Ni:60wt%,0.92Z
rO 2−0.08Y23:40wt%)を、そして空気
極にはLa1-YSrYNi1-XFeX3、{(X,Y)=
(0.55,0.15),(0.90,0.50),
(0.90,0.70),(0.80,0.50),
(0.60,0.30),(0.55,0.35)}を
用いた。
The solid electrolyte is SASZ (0.89 ZrO
Two-0.104ScTwoOThree-0.006AlTwoOThree), Fuel
Ni-YSZ (Ni: 60 wt%, 0.92Z)
rO Two-0.08YTwoOThree: 40 wt%) and air
La on the pole1-YSrYNi1-XFeXOThree, {(X, Y) =
(0.55, 0.15), (0.90, 0.50),
(0.90, 0.70), (0.80, 0.50),
(0.60, 0.30), (0.55, 0.35)}
Using.

【0025】これらのセルの番号を本発明の組成範囲を
示す図1と対応づけてセル♯1−1〜セル♯1−6(図
1中の1〜6はセル♯1−1〜セル♯1−6に対応す
る:以下の実施例でも同様である)とした。また、比較
例として従来のLa0.8Sr0.2MnO3を空気極に用い
たセルをセル♯0とした。図中、外側で示した範囲が本
発明の範囲であり、内側の範囲は、本発明における、好
ましい範囲を示す。
The numbers of these cells are associated with FIG. 1 showing the composition range of the present invention, and the cells {1-1 to 1-6 (1 to 6 in FIG. 1-6: the same applies to the following examples). In addition, the cell using the conventional La 0.8 Sr 0.2 MnO 3 as a comparative example to the air electrode and the cell # 0. In the figure, the range shown on the outside is the range of the present invention, and the range on the inside shows the preferred range in the present invention.

【0026】本実施例に使用した単セルの作製方法を以
下に示す。まずドクターブレード法により固体電解質2
のセラミックス薄板のグリーンシートを形成し1600
℃で焼上げる。これに燃料極3としてNi−YSZを塗
布し1300℃で焼き、この後、燃料極3の対面に上記
の空気極1を塗布し750℃で焼き付けた。表2に、こ
の単セルの650℃での試験結果を示す。ここで端子電
圧は電流密度が200mA/cm2時の値で、この端子
電圧が高いほど優れた特性である。
The method of manufacturing the single cell used in the present embodiment will be described below. First, the solid electrolyte 2 was prepared by the doctor blade method.
Green sheet of ceramic thin plate of 1600
Bake at ℃. Then, Ni-YSZ was applied as the fuel electrode 3 and baked at 1300 ° C., and then the air electrode 1 was applied to the opposite surface of the fuel electrode 3 and baked at 750 ° C. Table 2 shows the test results of this single cell at 650 ° C. Here, the terminal voltage is a value at a current density of 200 mA / cm 2 , and the higher the terminal voltage, the better the characteristics.

【0027】熱膨張係数の測定には、空気極材料を12
50℃でペレット状に焼結したものを棒状に切りだし、
熱膨張測定装置により空気中で室温から700℃まで測
定した。表2に空気極の熱膨張係数の組成依存性を示
す。ここで、熱膨張係数は、25−700℃までの平均
値である。
For the measurement of the coefficient of thermal expansion, the material of the air electrode was 12
What was sintered into pellets at 50 ° C was cut into rods,
It measured from room temperature to 700 degreeC in air with a thermal expansion measuring device. Table 2 shows the composition dependence of the coefficient of thermal expansion of the air electrode. Here, the coefficient of thermal expansion is an average value up to 25-700 ° C.

【0028】これら本発明の空気極を用いた時は、いず
れも従来のLa0.8Sr0.2MnO3を空気極に用いたセ
ルに比べ良好な特性を示した。
When these air electrodes of the present invention were used, all exhibited better characteristics than the conventional cell using La 0.8 Sr 0.2 MnO 3 as the air electrode.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【実施例2】実施例1と同様の単セルにおいて、空気極
の材料をLa1-YBaYNi1-XFeX3、{(X,Y)
=(0.55,0.15),(0.90,0.50),
(0.90,0.70),(0.80,0.50),
(0.60,0.30),(0.55,0.35)}に
代えて実施例1と同様の実験を行った。表3にその結果
を示す。これらのセルの番号を組成範囲の図(図1)と
対応づけてセル♯2−1〜セル♯2−7とした。実施例
1とほぼ同様に、従来材料であるLa0.8Sr0.2MnO
3に比べいずれも良好な結果を得た。
Example 2 In the single cell as in Example 1, the material of the air electrode La 1-Y Ba Y Ni 1 -X Fe X O 3, {(X, Y)
= (0.55, 0.15), (0.90, 0.50),
(0.90, 0.70), (0.80, 0.50),
The same experiment as in Example 1 was performed in place of (0.60, 0.30), (0.55, 0.35)}. Table 3 shows the results. The numbers of these cells were set as cells # 2-1 to # 2-7 in association with the composition range diagram (FIG. 1). Almost in the same manner as in Example 1, the conventional material La 0.8 Sr 0.2 MnO
In all cases, better results were obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【実施例3】実施例1と同様の単セルを空気極の材料だ
けをLa1-YCaYNi1-XFeX3、{(X,Y)=
(0.55,0.15),(0.90,0.50),
(0.90,0.70),(0.80,0.50),
(0.60,0.30),(0.55,0.35)}に
代えて実施例1と同様の実験を行った。これらのセルの
番号を組成範囲の図(図1)と対応づけてセル♯3−1
〜セル♯3−7とした。表4に示す様に実施例1とほぼ
同様に、従来材料であるLa0.8Sr0.2MnO3に比べ
いずれも良好な結果を得た。
Embodiment 3 A single cell similar to that of Embodiment 1 was prepared by changing only the material of the air electrode to La 1 -Y Ca Y Ni 1 -X Fe X O 3 , {(X, Y) =
(0.55, 0.15), (0.90, 0.50),
(0.90, 0.70), (0.80, 0.50),
The same experiment as in Example 1 was performed instead of (0.60, 0.30), (0.55, 0.35)}. The numbers of these cells are associated with the composition range diagram (FIG. 1), and the cells # 3-1
~ Cell # 3-7. As shown in Table 4, almost in the same manner as in Example 1, good results were obtained in comparison with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0033】[0033]

【実施例4】実施例1と同様の単セルを空気極の材料だ
けをLa0.5Sr0.3Ca0.1Ba0.1Ni0.2Fe0.83
に代えて実施例1と同様の実験を行った。表4のセル♯
4−1に示す様に実施例1とほぼ同様に、従来材料であ
るLa0.8Sr0.2MnO3に比べいずれも良好な結果を
得た。
Example 4 The unit cells as in Example 1 only material of the air electrode La 0.5 Sr 0.3 Ca 0.1 Ba 0.1 Ni 0.2 Fe 0.8 O 3
An experiment similar to that of Example 1 was performed in place of the above. Cell in Table 4
As shown in 4-1, almost in the same manner as in Example 1, good results were obtained in comparison with the conventional material, La 0.8 Sr 0.2 MnO 3 .

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【実施例5】実施例1と同様の単セルにおいて、空気極
の材料をLn0.5Sr0.5Ni0.2Fe0.83,(Ln=
Pr,Nd,Sm)、またはLa0.2pr0.1Nd0.1
0.1Sr0.5Ni0.2Fe0.83に代えて実施例1と同
様の実験を行った。表5にその結果をセル♯5−1〜セ
ル♯5−4に示す。実施例1とほぼ同様に、従来材料で
あるLa0.8Sr0.2MnO3に比べいずれも良好な結果
を得た。
Fifth Embodiment In a single cell similar to the first embodiment, the material of the air electrode is Ln 0.5 Sr 0.5 Ni 0.2 Fe 0.8 O 3 , (Ln =
Pr, Nd, Sm) or La 0.2 pr 0.1 Nd 0.1 S
The same experiment as in Example 1 was performed instead of m 0.1 Sr 0.5 Ni 0.2 Fe 0.8 O 3 . Table 5 shows the results in cells # 5-1 to # 5-4. In almost the same manner as in Example 1, good results were obtained in comparison with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【発明の効果】以上説明したように、固体電解質燃料電
池の空気極材料をLn1-YYNi1-XFeX3(Lnは
La,Pr,Nd,Smから選ばれた1つ以上の元素;
AはSr,Ba,Caから選ばれた1つ以上の元素;組
成範囲;X−0.2≦Y≦X−0.4で、かつ0.55
≦X≦0.90)とすることで、650℃においても電
気特性が従来の材料であるLa0.8Sr0.2MnO3に比
べ優れ、熱膨張係数は従来とほぼ同等である空気極を得
ることに成功した。本発明は固体燃料電池の低コスト化
に大きな貢献をなすものである。
As described above, according to the present invention, the air electrode material of the solid electrolyte fuel cell Ln 1-Y A Y Ni 1 -X Fe X O 3 (Ln is one selected La, Pr, Nd, from Sm The above elements;
A is one or more elements selected from Sr, Ba and Ca; composition range; X−0.2 ≦ Y ≦ X−0.4 and 0.55
≦ X ≦ 0.90) With, superior to La 0.8 Sr 0.2 MnO 3 electric characteristics is a conventional material even at 650 ° C., thermal expansion coefficient to obtain an air electrode is substantially equal to the conventional Successful. The present invention makes a great contribution to reducing the cost of a solid fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の組成範囲を示す図。FIG. 1 is a view showing a composition range of the present invention.

【図2a】実施例で使用した燃料電池の単セルの平面
図。
FIG. 2a is a plan view of a single cell of a fuel cell used in an example.

【図2b】実施例で使用したセル測定系の構造模式図。FIG. 2B is a schematic structural diagram of a cell measurement system used in the example.

【図3】チューブ型燃料電池セルの構造模式図。FIG. 3 is a schematic structural view of a tubular fuel cell.

【図4a】平板型低温動作燃料電池の単セルの構造模式
図。
FIG. 4a is a schematic structural diagram of a single cell of a flat plate type low temperature operation fuel cell.

【図4b】平板型低温動作燃料電池の構造模式図。FIG. 4b is a schematic structural view of a flat plate type low temperature operation fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料極 2 固体電解質 3 空気極 4 インターコネクタ DESCRIPTION OF SYMBOLS 1 Fuel electrode 2 Solid electrolyte 3 Air electrode 4 Interconnector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 4G030 AA08 AA09 AA10 AA11 AA13 AA27 AA29 BA01 BA02 CA01 CA09 5H018 AA06 AS03 EE13 HH05 5H026 AA06  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoji Sakurai 2-3-1 Otemachi, Chiyoda-ku, Tokyo F-term in Nippon Telegraph and Telephone Corporation (reference) 4G030 AA08 AA09 AA10 AA11 AA13 AA27 AA29 BA01 BA02 CA01 CA09 5H018 AA06 AS03 EE13 HH05 5H026 AA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質とそれに隣接して設けられた
多孔質な空気極および燃料極からなるセル、それらを電
気的に接続するインターコネクタを有し、燃料ガスと空
気または酸素ガスとの化学反応を電気エネルギーに変換
する固体燃料電池の固体燃料電池用空気極材料であっ
て、Ln1-YYNi1-XFeX3(LnはLa,Pr,
Nd,Smの何れか1つあるいはLa,Pr,Nd,S
mの中から選ばれた2つ以上の元素であり、AはSr,
Ba,Caの何れか1つあるいはSr,Ba,Caの中
から選ばれた2つ以上の元素である)で表され、その組
成範囲がX−0.2≦Y≦X−0.4で、かつ0.55
≦X≦0.90であることを特徴とするアルカリ土類添
加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電
池用空気極材料。
A cell comprising a solid electrolyte, a porous air electrode and a fuel electrode provided adjacent to the solid electrolyte, and an interconnector for electrically connecting the cells to each other. the reaction with an air electrode material for solid fuel cell of the solid fuel cell for converting into electric energy, Ln 1-Y a Y Ni 1-X Fe X O 3 (Ln is La, Pr,
Any one of Nd, Sm or La, Pr, Nd, S
m is two or more elements selected from m, A is Sr,
Ba, Ca, or two or more elements selected from Sr, Ba, Ca), and the composition range is X-0.2 ≦ Y ≦ X-0.4. And 0.55
An air electrode material for a low-temperature solid-state fuel cell operating at low temperature, wherein nickel-iron-based perovskite is added, wherein ≦ X ≦ 0.90.
【請求項2】 前記組成範囲がX−0.25≦Y≦X−
0.35で、かつ0.55≦X≦0.85であることを
特徴とする請求項2記載のアルカリ土類添加ニッケル−
鉄系ペロブスカイト型低温動作固体燃料電池用空気極材
料。
2. The composition range of X−0.25 ≦ Y ≦ X−
3. The alkaline earth-added nickel according to claim 2, wherein 0.35 and 0.55 ≦ X ≦ 0.85.
Air electrode material for iron-based perovskite-type low-temperature operating solid fuel cells.
JP2000344882A 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell Expired - Fee Related JP3617814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344882A JP3617814B2 (en) 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344882A JP3617814B2 (en) 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Publications (2)

Publication Number Publication Date
JP2002151091A true JP2002151091A (en) 2002-05-24
JP3617814B2 JP3617814B2 (en) 2005-02-09

Family

ID=18819012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344882A Expired - Fee Related JP3617814B2 (en) 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Country Status (1)

Country Link
JP (1) JP3617814B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174884A (en) * 2003-11-20 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and its interconnector
JP2005314142A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Oxide-ion mixed conductor, composite structure, oxygen separator, and chemical reactor
US7347887B2 (en) 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP2008510288A (en) * 2004-08-18 2008-04-03 スティヒティング エネルギーオンダーゾーク セントラム ネーデルランド SOFC stack concept
JP2009140800A (en) * 2007-12-07 2009-06-25 Toto Ltd Air pole support for solid oxide fuel cell, and solid oxide fuel cell body using the same
JP2009181928A (en) * 2008-02-01 2009-08-13 Toto Ltd Solid oxide fuel cell body and fuel cell using the same
JP2012164672A (en) * 2006-02-10 2012-08-30 Nippon Shokubai Co Ltd Air electrode material for solid oxide fuel cell
JP2013159542A (en) * 2012-02-08 2013-08-19 Kyocera Corp Conductor, solid oxide fuel battery cell, cell stack and fuel battery device
JP2013543835A (en) * 2010-11-12 2013-12-09 ザ ユニバーシティ オブ リバプール Mixed metal oxide
CN104591302A (en) * 2015-01-05 2015-05-06 华北水利水电大学 Perovskite-type nanometer material and preparation method thereof
CN115650312A (en) * 2022-08-22 2023-01-31 南京工业大学 Proton conductor reversible battery air electrode, preparation method and application
US11742495B2 (en) * 2021-11-11 2023-08-29 Bloom Energy Corporation Ni—Fe based cathode functional layers for solid oxide electrochemical cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865368B2 (en) 2010-03-25 2014-10-21 Ngk Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174884A (en) * 2003-11-20 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and its interconnector
JP4573526B2 (en) * 2003-11-20 2010-11-04 日本電信電話株式会社 Solid oxide fuel cell
US7347887B2 (en) 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP4528021B2 (en) * 2004-04-27 2010-08-18 新日本製鐵株式会社 Oxide ion mixed conductor, composite structure, oxygen separation device, and chemical reaction device
JP2005314142A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Oxide-ion mixed conductor, composite structure, oxygen separator, and chemical reactor
JP2008510288A (en) * 2004-08-18 2008-04-03 スティヒティング エネルギーオンダーゾーク セントラム ネーデルランド SOFC stack concept
JP2012164672A (en) * 2006-02-10 2012-08-30 Nippon Shokubai Co Ltd Air electrode material for solid oxide fuel cell
JP2009140800A (en) * 2007-12-07 2009-06-25 Toto Ltd Air pole support for solid oxide fuel cell, and solid oxide fuel cell body using the same
JP2009181928A (en) * 2008-02-01 2009-08-13 Toto Ltd Solid oxide fuel cell body and fuel cell using the same
JP2013543835A (en) * 2010-11-12 2013-12-09 ザ ユニバーシティ オブ リバプール Mixed metal oxide
JP2013159542A (en) * 2012-02-08 2013-08-19 Kyocera Corp Conductor, solid oxide fuel battery cell, cell stack and fuel battery device
CN104591302A (en) * 2015-01-05 2015-05-06 华北水利水电大学 Perovskite-type nanometer material and preparation method thereof
US11742495B2 (en) * 2021-11-11 2023-08-29 Bloom Energy Corporation Ni—Fe based cathode functional layers for solid oxide electrochemical cells
CN115650312A (en) * 2022-08-22 2023-01-31 南京工业大学 Proton conductor reversible battery air electrode, preparation method and application
CN115650312B (en) * 2022-08-22 2024-02-23 南京工业大学 Proton conductor reversible battery air electrode, preparation method and application

Also Published As

Publication number Publication date
JP3617814B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US7816055B2 (en) Compact fuel cell
KR101196658B1 (en) Ceramic interconnect for fuel cell stacks
KR101475392B1 (en) Titanate and metal interconnects for solid oxide fuel cells
JP2002289249A (en) Stack structural body for solid electrolytic fuel cell
Liu et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation
JP2009205933A (en) Electrochemical reactor bundle, stack and electrochemical reaction system constituted of the bundle and the stack
JP2007172846A (en) Tube type electrochemical reactor cell and electrochemical reaction system composed by it
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP5368139B2 (en) Solid oxide fuel cell
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
JP4972468B2 (en) Solid oxide fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP2011119178A (en) Solid oxide fuel cell
JP5126704B2 (en) Electrochemical reactor stack and electrochemical reaction system comprising the same
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP3414657B2 (en) Air electrode materials for nickel-iron based perovskite solid fuel cells
JP4130135B2 (en) Surface treatment method for current collecting member
US6120924A (en) Perovskite-type oxide materials containing nickel and iron for air electrode and solid oxide fuel cell using the same
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP4173029B2 (en) Current collector
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JP2012146671A (en) Solid electrolyte fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP2004165074A (en) Current collector material for solid oxide fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R151 Written notification of patent or utility model registration

Ref document number: 3617814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees