JP2002151067A - Negative electrode alloy material for lithium secondary battery, and its manufacturing method - Google Patents

Negative electrode alloy material for lithium secondary battery, and its manufacturing method

Info

Publication number
JP2002151067A
JP2002151067A JP2000348256A JP2000348256A JP2002151067A JP 2002151067 A JP2002151067 A JP 2002151067A JP 2000348256 A JP2000348256 A JP 2000348256A JP 2000348256 A JP2000348256 A JP 2000348256A JP 2002151067 A JP2002151067 A JP 2002151067A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
alloy
secondary battery
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000348256A
Other languages
Japanese (ja)
Inventor
Hideo Yoshinaga
英雄 吉永
Hajime Mizutani
肇 水谷
Tetsuo Sakai
哲男 境
Eiyo Ka
永姚 夏
Takuya Fujieda
卓也 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
TAIYO KOKO CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical TAIYO KOKO CO Ltd
Priority to JP2000348256A priority Critical patent/JP2002151067A/en
Publication of JP2002151067A publication Critical patent/JP2002151067A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for lithium secondary batteries, which can demonstrate high electric discharge capacity and excellent cycle characteristic. SOLUTION: The alloy composition of the negative electrode alloy material for lithium secondary battery using V-Sn based alloy is V1-XSnaMx (however, M shows at least one kind of AL, Fe, Mn, Cu, Co, Cr, NS, and C, 0<=x<=0.5, and 1<=a<=2), and the oxygen content in the alloy composition is 0.1 wt.% or more. In its manufacturing method, material powder containing V and Sn is press-formed, and it is produced by baking or thermit reaction in an inert gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用負極合金材料及びその製造方法に関する。
The present invention relates to a negative electrode alloy material for a lithium secondary battery and a method for producing the same.

【0002】[0002]

【従来技術】リチウム二次電池は、携帯電話、ノート型
パソコン等のバッテリーとして幅広く利用されている。
近年、これら製品の小型化に伴ってリチウム二次電池の
小型化も進んでいる。このリチウム二次電池の負極材料
としては、炭素系材料のほか、Al、Si、Sn等が使
用されている。
2. Description of the Related Art Lithium secondary batteries are widely used as batteries for mobile phones, notebook computers and the like.
In recent years, with the miniaturization of these products, the miniaturization of lithium secondary batteries has been progressing. As a negative electrode material of this lithium secondary battery, Al, Si, Sn, or the like is used in addition to a carbon-based material.

【0003】しかしながら、従来のリチウム二次電池に
使用されている炭素系負極は軽量で嵩高いことから、電
池自体を小型化するには限界がある。炭素系材料はLi
6の組成までしかLiを吸蔵できないため、Li吸蔵
放出の体積容量(単位体積当たりの容量)は理論的に8
37Ah/リットルが最大であり、体積容量については
さらなる改善が必要である。
However, since the carbon-based negative electrode used in the conventional lithium secondary battery is lightweight and bulky, there is a limit in reducing the size of the battery itself. The carbon-based material is Li
Since Li can be stored only up to the composition of C 6 , the volume capacity (capacity per unit volume) of Li storage and release is theoretically 8
The maximum is 37 Ah / liter, and the volume capacity needs further improvement.

【0004】一方、Sn負極では7200Ah/リット
ルの最大理論容量を有し、炭素系負極のそれよりもはる
かに大きな値を示すものの、Li吸蔵時の体積膨張が大
きい。このため、負極材料の微粉化が起こり、この場合
にはサイクル寿命が非常に短くなるという問題がある。
On the other hand, the Sn negative electrode has a maximum theoretical capacity of 7200 Ah / liter, and shows a much larger value than that of the carbon-based negative electrode, but has a large volume expansion during Li occlusion. For this reason, the anode material is pulverized, and in this case, there is a problem that the cycle life becomes very short.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の主な
目的は、高い放電容量とともに優れたサイクル特性を発
揮できるリチウム二次電池用負極材料を提供することに
ある。
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a negative electrode material for a lithium secondary battery which can exhibit high cycle capacity and excellent cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者は、かかる従来
技術の問題に鑑みて鋭意研究を重ねた結果、特定組成の
合金をリチウム二次電池用負極材料として用いることに
よって上記目的を達成できることを見出し、本発明を完
成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in view of the problems of the prior art, and as a result, has found that the above object can be achieved by using an alloy having a specific composition as a negative electrode material for a lithium secondary battery. And completed the present invention.

【0007】すなわち、本発明は、下記のリチウム二次
電池用負極合金材料及びその製造方法に係るものであ
る。
That is, the present invention relates to the following negative electrode alloy material for a lithium secondary battery and a method for producing the same.

【0008】1.V−Sn系合金を用いたリチウム二次
電池用負極合金材料。
[0008] 1. A negative electrode alloy material for a lithium secondary battery using a V-Sn-based alloy.

【0009】2.V−Sn系合金が、合金組成(酸素を
除く。)V1-xSnax(但し、MはAl、Fe、M
n、Cu、Co、Cr、Ni及びCの少なくとも1種、
0≦x≦0.5、1≦a≦2を示す。)を有する項1記
載のリチウム二次電池用負極合金材料。
[0009] 2. V-Sn based alloy has an alloy composition (excluding oxygen) V 1-x Sn a M x (where M is Al, Fe, M
at least one of n, Cu, Co, Cr, Ni and C;
0 ≦ x ≦ 0.5 and 1 ≦ a ≦ 2. Item 7. The negative electrode alloy material for a lithium secondary battery according to Item 1, comprising:

【0010】3.酸素含有量が合金材料中0.1重量%
以上である項1又は2に記載のリチウム二次電池用負極
合金材料。
[0010] 3. Oxygen content is 0.1% by weight in alloy material
Item 3. The negative electrode alloy material for a lithium secondary battery according to item 1 or 2 above.

【0011】4.V及びSnを含む原料粉末を加圧成形
した後、得られた成形体を不活性ガス雰囲気下600〜
900℃で焼成することを特徴とするリチウム二次電池
用負極合金材料の製造方法。
4. After pressure-molding the raw material powder containing V and Sn, the obtained molded body is subjected to an inert gas atmosphere at 600 to
A method for producing a negative electrode alloy material for a lithium secondary battery, characterized by firing at 900 ° C.

【0012】5.酸化バナジウム、スズ及びアルミニウ
ムを含む原料粉末をテルミット反応させることを特徴と
するリチウム二次電池用負極合金材料の製造方法。
5. A method for producing a negative electrode alloy material for a lithium secondary battery, comprising subjecting a raw material powder containing vanadium oxide, tin and aluminum to a thermit reaction.

【0013】6.さらに、不活性ガス雰囲気下400〜
1000℃で熱処理する項5記載の製造方法。
6. Further, under an inert gas atmosphere,
Item 6. The production method according to Item 5, wherein the heat treatment is performed at 1000 ° C.

【0014】7.項1〜3のいずれかに記載のリチウム
二次電池用負極合金材料を用いたリチウム二次電池用負
極。
7. Item 7. A negative electrode for a lithium secondary battery using the negative electrode alloy material for a lithium secondary battery according to any one of Items 1 to 3.

【0015】8.項7記載の負極を用いたリチウム二次
電池。
[8] Item 7. A lithium secondary battery using the negative electrode according to Item 7.

【0016】[0016]

【発明の実施の形態】1.リチウム二次電池用負極材料 本発明のリチウム二次電池用負極合金材料は、V−Sn
系合金を用いることに特徴を有する。上記V−Sn系合
金は、V及びSnからなる2成分系合金のほか、第三成
分を含む合金であっても良い。なお、本発明における
「合金」は「金属間化合物」も含む。
BEST MODE FOR CARRYING OUT THE INVENTION Negative electrode material for lithium secondary battery The negative electrode alloy material for a lithium secondary battery of the present invention is V-Sn
It is characterized by using a system alloy. The V-Sn-based alloy may be an alloy containing a third component in addition to a binary alloy composed of V and Sn. In the present invention, “alloy” includes “intermetallic compound”.

【0017】上記合金としては、合金組成(酸素を除
く。)V1-xSnax(但し、M(第三成分)はAl、
Fe、Mn、Cu、Co、Cr、Ni及びCの少なくと
も1種、0≦x≦0.5、1≦a≦2を示す。)を有す
る合金が好ましい。
As the above alloy, alloy composition (excluding oxygen) V 1-x Sn a M x (where M (third component) is Al,
At least one of Fe, Mn, Cu, Co, Cr, Ni and C represents 0 ≦ x ≦ 0.5 and 1 ≦ a ≦ 2. ) Are preferred.

【0018】上記一般式において、第三成分としてのM
はCo、Al及びCuの少なくとも1種が好ましい。ま
た、xの値は0≦x≦0.2が好ましい。aの値は、
1.2≦a≦1.5が好ましい。より具体的には、2成
分系合金であるV2Sn3等を好適に用いることができ
る。
In the above general formula, M as the third component
Is preferably at least one of Co, Al and Cu. The value of x is preferably 0 ≦ x ≦ 0.2. The value of a is
1.2 ≦ a ≦ 1.5 is preferred. More specifically, a two-component alloy such as V 2 Sn 3 can be suitably used.

【0019】また、本発明合金材料の酸素含有量は限定
的ではないが、通常は合金材料中0.1重量%以上、特
に0.3重量%以上とすることが望ましい。なお、酸素
含有量の上限値は、通常は1重量%程度とすれば良い。
上記所定量の酸素を含有することにより、反応性をいっ
そう高めることができる。 2.リチウム二次電池用負極材料の製造方法 本発明の製造方法は、V及びSnを含む原料粉末を加圧
成形した後、得られた成形体を不活性ガス雰囲気下60
0〜900℃で焼成することを特徴とする(第一方
法)。
Although the oxygen content of the alloy material of the present invention is not limited, it is generally desirable that the oxygen content be 0.1% by weight or more, especially 0.3% by weight or more in the alloy material. In addition, the upper limit of the oxygen content may be usually about 1% by weight.
By containing the predetermined amount of oxygen, the reactivity can be further increased. 2. Method for Producing Negative Electrode Material for Lithium Secondary Battery According to the production method of the present invention, after the raw material powder containing V and Sn is subjected to pressure molding,
It is characterized by firing at 0 to 900 ° C (first method).

【0020】また、本発明の製造方法は、酸化バナジウ
ム、スズ及びアルミニウムを含む原料粉末をテルミット
反応させることを特徴とする(第二方法)。 (1)第一方法 第一方法では、まずV及びSnを含む原料粉末を加圧成
形する。原料粉末は、V及びSnを含むものであれば限
定的でない。より具体的には、本発明合金材料の好まし
いV−Sn系合金の組成となるように調合することが望
ましい。例えば、V粉末とSn粉末との割合を調整した
上、両者を公知の方法により混合すれば良い。また、第
三成分を含む合金材料を製造する場合は、前記組成とな
るように第三成分の供給材料(例えば、第三成分の単独
粉末(金属粉末)、第三成分の2種以上を含む合金粉末
等)を添加すれば良い。原料粉末の粒度は限定的ではな
いが、通常は0.1mm以下とすれば良い。
The production method of the present invention is characterized in that a raw material powder containing vanadium oxide, tin and aluminum is subjected to a thermite reaction (second method). (1) First Method In the first method, first, a raw material powder containing V and Sn is subjected to pressure molding. The raw material powder is not limited as long as it contains V and Sn. More specifically, it is desirable to formulate the alloy material of the present invention so as to have a preferable composition of the V-Sn alloy. For example, after adjusting the ratio of the V powder and the Sn powder, both may be mixed by a known method. When an alloy material containing the third component is produced, a supply material of the third component (for example, a single powder of the third component (metal powder) or a mixture of two or more of the third component) so that the above composition is obtained. Alloy powder or the like). The particle size of the raw material powder is not limited, but may be usually 0.1 mm or less.

【0021】加圧成形する方法は特に限定されず、公知
の成形方法に従って実施すれば良い。例えば、プレス成
形法、冷間静水圧成形法(CIP)、熱間静水圧成形法
(HIP)等を採用することができる。成形圧は、原料
粉末の粒度、最終製品の用途等によって適宜設定できる
が、通常は100kgf/cm2以上とすれば良い。ま
た、成形体の形状も限定的でなく、最終製品の使用目的
等に応じて適宜決定すれば良い。
The method of pressure molding is not particularly limited, and may be carried out according to a known molding method. For example, press molding, cold isostatic pressing (CIP), hot isostatic pressing (HIP) and the like can be employed. The molding pressure can be appropriately set depending on the particle size of the raw material powder, the use of the final product, and the like, but is usually 100 kgf / cm 2 or more. In addition, the shape of the molded body is not limited, and may be appropriately determined according to the purpose of use of the final product.

【0022】次いで、得られた成形体を不活性ガス雰囲
気下600〜900℃で焼成する。不活性ガスとして
は、例えばアルゴンガス、ヘリウムガス、窒素ガス等を
採用することができる。雰囲気圧力は限定的ではない
が、通常は0.5MPa以上が好ましく、特に0.7〜
1MPaがより好ましい。焼成温度は通常600〜90
0℃の範囲で良いが、特に700〜900℃とすること
が好ましい。焼成時間は焼成温度等によって適宜設定す
れば良いが、通常は10〜50時間程度である。 (2)第二方法 第二方法で用いる酸化バナジウム、スズ及びアルミニウ
ムを含む原料粉末は、本発明合金材料の好ましいV−S
n系合金の組成となるように調合することが望ましい。
例えば、酸化バナジウム粉末(五酸化バナジウム:V2
5)、スズ粉末及びアルミニウム粉末を用いて原料粉
末を調合すれば良い。原料粉末の一部として合金粉末を
用いても良い。還元剤としてのアルミニウム粉末の使用
量は、酸化バナジウム量等に応じて適宜設定すれば良
い。また、第三成分を含む合金材料を製造する場合は、
前記組成となるように第三成分の供給材料(例えば、第
三成分の単独粉末、第三成分の酸化物粉末等)を添加す
れば良い。原料粉末の粒度は限定的ではないが、通常は
0.5mm以下、好ましくは0.3〜0.5μmとすれ
ば良い。
Next, the obtained molded body is fired at 600 to 900 ° C. in an inert gas atmosphere. As the inert gas, for example, argon gas, helium gas, nitrogen gas, or the like can be used. The atmospheric pressure is not limited, but is usually preferably 0.5 MPa or more, particularly 0.7 to 0.7 MPa.
1 MPa is more preferable. The firing temperature is usually 600 to 90
The temperature may be in the range of 0 ° C., but is particularly preferably 700 to 900 ° C. The firing time may be appropriately set depending on the firing temperature and the like, but is usually about 10 to 50 hours. (2) Second method The raw material powder containing vanadium oxide, tin and aluminum used in the second method is preferably a VS of the alloy material of the present invention.
It is desirable to prepare the composition so as to have the composition of the n-type alloy.
For example, vanadium oxide powder (vanadium pentoxide: V 2
The raw material powder may be prepared using O 5 ), tin powder and aluminum powder. An alloy powder may be used as a part of the raw material powder. The amount of the aluminum powder used as the reducing agent may be appropriately set according to the amount of vanadium oxide and the like. When manufacturing an alloy material containing the third component,
A supply material of the third component (for example, a single powder of the third component, an oxide powder of the third component, etc.) may be added so as to have the above composition. Although the particle size of the raw material powder is not limited, it is usually 0.5 mm or less, preferably 0.3 to 0.5 μm.

【0023】上記原料粉末を用いてテルミット反応させ
る。テルミット反応の方法自体は、公知の方法に従えば
良い。例えば、原料粉末を反応容器中に装填し、必要に
応じてマグネシウム粉、過酸化バリウム等の着火剤を用
い、原料粉末に着火させる。反応容器は公知のものが使
用でき、例えばアルミナ耐火物でライニング加工された
反応容器を好適に使用することができる。
A thermite reaction is carried out using the above raw material powder. The method of thermite reaction itself may be in accordance with a known method. For example, the raw material powder is charged into a reaction vessel, and the raw material powder is ignited using an igniting agent such as magnesium powder or barium peroxide as necessary. A well-known reaction vessel can be used. For example, a reaction vessel lined with an alumina refractory can be suitably used.

【0024】本発明において、テルミット反応は通常数
秒程度で終了し、反応熱によって2000℃以上の温度
に達する。反応終了時には高温のために合金とスラグ
(主にアルミナ)は液体状態となっており、比重の差に
よって合金とスラグは上下に分離する。分離した状態で
そのまま冷却した後、合金とスラグをその界面で分離す
ることによって合金を得ることができる。
In the present invention, the thermite reaction is usually completed within about several seconds, and reaches a temperature of 2000 ° C. or more by the heat of the reaction. At the end of the reaction, the alloy and the slag (mainly alumina) are in a liquid state due to the high temperature, and the alloy and the slag are separated vertically by a difference in specific gravity. After cooling as it is in the separated state, the alloy can be obtained by separating the alloy and the slag at the interface.

【0025】テルミット反応により得られた合金は、必
要に応じて、不活性ガス雰囲気下400〜1000℃で
熱処理しても良い。これによって、合金の均質化をより
促進させることができる。不活性ガスは前記と同様のも
のを挙げることができる。熱処理時間は熱処理温度等に
よって異なるが、通常は10〜40時間程度とすれば良
い。 3.負極及びリチウム二次電池の製造 本発明では、前記(1)(2)の方法で製造された合金
材料を用いるほかは、公知の材料及び方法で負極を製造
することができる。
The alloy obtained by the thermit reaction may be heat-treated at 400 to 1000 ° C. in an inert gas atmosphere, if necessary. Thereby, homogenization of the alloy can be further promoted. The inert gas may be the same as described above. The heat treatment time varies depending on the heat treatment temperature and the like, but is usually set to about 10 to 40 hours. 3. Manufacture of Negative Electrode and Lithium Secondary Battery In the present invention, a negative electrode can be manufactured by known materials and methods other than using the alloy materials manufactured by the methods (1) and (2).

【0026】まず、本発明合金材料を必要に応じて公知
の方法に従って粉砕し、さらに分級する。粉砕方法は限
定的でなく、例えば乳鉢、ボールミル、振動ミル、ロッ
ドミル、ハンマーミル、ジョークラッシャー等の公知の
粉砕装置を使用して行えば良い。また、分級方法も特に
制限されず、例えば篩い、振動機、遠心分離機等を使用
して実施すれば良い。合金粉末の粒度は限定的ではない
が、通常は平均粒径25μm以下、好ましくは1〜10
μmに調整すれば良い。
First, the alloy material of the present invention is pulverized according to a known method, if necessary, and further classified. The crushing method is not limited, and may be performed using a known crusher such as a mortar, a ball mill, a vibration mill, a rod mill, a hammer mill, a jaw crusher, and the like. In addition, the classification method is not particularly limited, and may be performed using, for example, a sieve, a vibrator, a centrifuge, or the like. The particle size of the alloy powder is not limited, but is usually 25 μm or less in average particle size, preferably 1 to 10 μm.
It may be adjusted to μm.

【0027】次いで、上記合金材料(粉末)に対し、導
電助剤、結着剤等の添加剤を適宜配合し、さら有機溶媒
を配合してスラリー化し、このスラリーを銅箔等の電極
支持基板に塗布し、乾燥すれば良い。さらに、必要に応
じて圧延ロール等による圧延又はプレス加工を施しても
良い。前記の導電助剤、結着剤、有機溶媒等は、公知の
もの又は市販品を使用できる。具体的には、導電助剤と
して、例えば黒鉛、ケッチェンブラック等が使用でき
る。結着剤として、例えばポリフッ化ビニリデン等を用
いることができる。有機溶媒として、例えばN−メチル
ピロリドン等を使用できる。
Next, additives such as a conductive auxiliary agent and a binder are appropriately added to the alloy material (powder), and an organic solvent is further added to form a slurry. And dried. Further, rolling or press working with a rolling roll or the like may be performed as necessary. As the conductive aid, the binder, the organic solvent and the like, known or commercially available products can be used. Specifically, for example, graphite, Ketjen black, or the like can be used as the conductive assistant. As the binder, for example, polyvinylidene fluoride can be used. As the organic solvent, for example, N-methylpyrrolidone or the like can be used.

【0028】このようにして得られた負極は、さらに公
知のリチウム二次電池の構成要素を用いてリチウム二次
電池を組み立てることができる。
The negative electrode thus obtained can be used to assemble a lithium secondary battery using known lithium secondary battery components.

【0029】例えば、正極としてはLiを含有する、T
i、Mo、W、Nb、V、Mn、Fe、Cr、Co等の
遷移金属の複合酸化物、複合硫化物等の1種又は2種以
上を含む材料を用いることができる。セパレータとして
は、例えばポリプロピレン、ポリエチレン等のポリオレ
フィン系の多孔性ポリマーフィルムが使用できる。電解
液としては、有機溶媒にリチウム塩を溶解させた非水電
解液、ポリマー電解質、無機固体電解質等が使用でき
る。このうち、上記非水電解液における溶媒としては、
例えばエチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート等の鎖状エステル類、1,2−
ジメトキシエタン、1,2−ジエトキシエタン等の鎖状
エーテル類等が使用できる。また、非水電解液の溶質と
しては、LiAsF6、LiBF6、LiPF6、LiA
lCl4、LiClO4等のリチウム塩又はこれらの混合
物が挙げられる。
For example, as the positive electrode, T containing T
A material containing one or more of composite oxides and composite sulfides of transition metals such as i, Mo, W, Nb, V, Mn, Fe, Cr, and Co can be used. As the separator, for example, a polyolefin-based porous polymer film such as polypropylene and polyethylene can be used. As the electrolyte, a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, or the like can be used. Among them, as the solvent in the non-aqueous electrolyte,
For example, chain esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate;
Chain ethers such as dimethoxyethane and 1,2-diethoxyethane can be used. The solutes of the non-aqueous electrolyte include LiAsF 6 , LiBF 6 , LiPF 6 , LiA
Examples thereof include lithium salts such as lCl 4 and LiClO 4 or a mixture thereof.

【0030】[0030]

【発明の効果】本発明の合金材料はV−Sn系合金を電
極活物質(負極活物質)として用いることから、従来の
炭素系材料を用いた負極よりも高い容量(体積容量)を
発揮することができる。
Since the alloy material of the present invention uses a V-Sn-based alloy as an electrode active material (negative electrode active material), it exhibits a higher capacity (volume capacity) than a conventional negative electrode using a carbon-based material. be able to.

【0031】また、V及びSnの合金化によってLiの
吸蔵・放出に伴う微粉化が起こりにくくなる結果、サイ
クル寿命特性の向上を図ることができる。これにより、
従来の炭素系材料を用いた負極と同程度又はそれ以上の
サイクル寿命特性を得ることができる。
Further, alloying of V and Sn makes it difficult for pulverization accompanying occlusion and release of Li to occur, thereby improving cycle life characteristics. This allows
It is possible to obtain a cycle life characteristic equal to or better than that of a negative electrode using a conventional carbon-based material.

【0032】さらに、V−Sn系合金中に所定量の酸素
が含まれる場合には、電池の充放電による合金中のSn
の吸着・脱離を円滑にし、合金中においてVとSnのた
めのバインダー的な役割を果たす。このV−O−Sn結
合状態は、Liを可逆的に吸蔵・放出する反応性を高め
ることができる。
Further, when a predetermined amount of oxygen is contained in the V-Sn-based alloy, Sn-
Plays a role as a binder for V and Sn in the alloy. This VO-Sn bonding state can enhance the reactivity of reversibly occluding and releasing Li.

【0033】このような特長をもつ本発明負極材料は、
リチウム二次電池に好適に用いることができる。
The negative electrode material of the present invention having such features is as follows:
It can be suitably used for a lithium secondary battery.

【0034】[0034]

【実施例】以下に実施例及び比較例を示し、本発明の特
徴をより詳細に説明する。但し、本発明の範囲は、これ
ら実施例に限定されるものではない。
EXAMPLES Examples and comparative examples will be shown below to explain the features of the present invention in more detail. However, the scope of the present invention is not limited to these examples.

【0035】実施例1 (1)焼成体の製造 粒径45μm以下の金属バナジウム粉末0.503gと
粒径50μm以下の金属スズ粉末1.500gとをそれ
ぞれ秤量し、乳鉢上で十分に混合した。この混合粉末を
加圧力150kgf/cm2の圧力で加圧成形すること
により、直径10mm及び厚さ約6mmの円筒状の加圧
成形体を得た。この加圧成形体をアルゴンガス0.7M
Paの雰囲気下において、昇温速度2.5℃/分で室温
から750℃まで昇温した後、750℃で10時間保持
することによって焼成した。焼成により得られたV−S
n合金の化学分析値を表1に示す。
Example 1 (1) Production of fired body 0.503 g of metal vanadium powder having a particle size of 45 μm or less and 1.500 g of metal tin powder having a particle size of 50 μm or less were weighed and thoroughly mixed in a mortar. This mixed powder was pressed under a pressure of 150 kgf / cm 2 to obtain a cylindrical pressed body having a diameter of 10 mm and a thickness of about 6 mm. This press-formed body was treated with 0.7M argon gas.
In a Pa atmosphere, the temperature was raised from room temperature to 750 ° C. at a rate of 2.5 ° C./min, followed by firing at 750 ° C. for 10 hours. VS obtained by firing
Table 1 shows the chemical analysis values of the n alloy.

【0036】[0036]

【表1】 [Table 1]

【0037】(2)電極評価用試験セルの作製 上記V−Sn合金を振動ミルで粉砕し、分級して粒径2
5μm以下の粉末に粒度調整した。この合金粉末80重
量部に対し、導電助剤としてケッチェンブラック10重
量部、結着剤としてポリフッ化ビニリデン10重量部を
加え、これらを溶媒(N−メチルピロリドン)約5ml
中で混合し、スラリーを得た。得られたスラリーを銅箔
(厚さ18μm)にドクターブレード法で塗布し、仮乾
燥後、ロール圧延により圧密化させた後、真空中120
℃で16時間乾燥した。次いで、乾燥したシート状物を
打ち抜いて直径11mmの円板を得た。これを電極(作
用極)として用いた。
(2) Preparation of Test Cell for Evaluating Electrode The above V-Sn alloy was pulverized with a vibration mill and classified to obtain a particle size of 2
The particle size was adjusted to a powder of 5 μm or less. To 80 parts by weight of this alloy powder, 10 parts by weight of Ketjen black as a conductive aid and 10 parts by weight of polyvinylidene fluoride as a binder were added, and these were added in a solvent (N-methylpyrrolidone) of about 5 ml.
And a slurry was obtained. The obtained slurry was applied to a copper foil (thickness: 18 μm) by a doctor blade method, temporarily dried, and then consolidated by roll rolling.
Dry at 16 ° C. for 16 hours. Next, the dried sheet was punched to obtain a disk having a diameter of 11 mm. This was used as an electrode (working electrode).

【0038】この作用極を用いて電極評価用試験セルを
作製した。まず、対極としてLi金属箔を直径16mm
に打ち抜いた円板を用い、セパレータとしてポリプロピ
レン多孔質フィルムを用いた。また、電解液としては、
エチレンカーボネート:ジメチルカーボネート=1:2
(体積比)の混合液にLiPF6を1M濃度で溶解させ
た溶液を使用した。次に、電解液をセパレータに含浸さ
せ、このセパレータを作用極と対極との間に挟んでステ
ンレス鋼製ケースに収納した後、ケースをかしめにより
封止して電極評価用試験セルとした。 (3)電池試験 上記セルを用いて電池試験を行った。充電については、
0.25mAの電流で、作用極に対する対極の電位差が
0Vになるまで充電した。放電については、0.25m
Aの電流で、作用極に対する対極の電位差が1.5Vと
なるまで放電した。なお、上記試験セルでは、対極のL
i金属の方が負極となり、充電・放電が上記とは逆にな
るが、この電池試験は本発明の合金を負極材料として評
価するものであるため、Liを放出する方を「放電」と
定義した。
Using this working electrode, a test cell for electrode evaluation was prepared. First, a Li metal foil having a diameter of 16 mm was used as a counter electrode.
Was used, and a porous polypropylene film was used as a separator. Also, as the electrolyte,
Ethylene carbonate: dimethyl carbonate = 1: 2
A solution obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solution (volume ratio) was used. Next, the separator was impregnated with the electrolytic solution, the separator was sandwiched between the working electrode and the counter electrode, and stored in a stainless steel case, and the case was sealed by caulking to obtain a test cell for electrode evaluation. (3) Battery test A battery test was performed using the above cell. For charging,
The battery was charged with a current of 0.25 mA until the potential difference between the working electrode and the counter electrode became 0V. 0.25m for discharge
The current A was discharged until the potential difference between the counter electrode and the working electrode became 1.5 V. In the above test cell, the counter electrode L
The i-metal is the negative electrode, and charging and discharging are opposite to the above, but since this battery test evaluates the alloy of the present invention as a negative electrode material, the one that releases Li is defined as "discharge". did.

【0039】上記の充電・放電の条件にて1回放電する
ことを1サイクルとし、1サイクル目、10サイクル
目、20サイクル目及び30サイクル目の放電容量をそ
れぞれ測定した。その結果を表2に示す。また、サイク
ル−放電容量カーブを図2に示す。
One cycle was defined as discharging once under the above-described charge / discharge conditions, and the discharge capacities at the first cycle, the tenth cycle, the twentieth cycle and the thirty cycle were measured. Table 2 shows the results. FIG. 2 shows a cycle-discharge capacity curve.

【0040】実施例2 テルミット反応によりV−Sn合金を製造した。まず、
原料であるV25936g、粒状Sn1638g及びA
l粉末451gを適当量の着火剤とともに図1に示す反
応容器内に入れ、着火剤に点火してテルミット反応させ
た。反応終了後、冷却し、生成した合金を取り出した。
得られた合金の化学分析値を表1に示す。また、この合
金の粉末X線回折パターンの結果より、その主成分がV
2Sn3であることが判明した。
Example 2 A V-Sn alloy was produced by a thermite reaction. First,
936 g of V 2 O 5 as raw materials, 1638 g of granular Sn and A
451 g of the powder was placed in the reaction vessel shown in FIG. 1 together with an appropriate amount of the igniting agent, and the igniting agent was ignited to cause a thermite reaction. After the completion of the reaction, the resultant was cooled and the produced alloy was taken out.
Table 1 shows the chemical analysis values of the obtained alloy. Also, from the result of the powder X-ray diffraction pattern of this alloy, the main component was V
It was found to be 2 Sn 3 .

【0041】次いで、この合金を用いて実施例1の
(2)と同様にして電極評価用試験セルを作製した。さ
らに、このセルを用い実施例1の(3)と同様にして電
池試験を行った。その結果を表2に示す。
Next, a test cell for electrode evaluation was prepared using this alloy in the same manner as in (2) of Example 1. Further, a battery test was performed using this cell in the same manner as in (3) of Example 1. Table 2 shows the results.

【0042】[0042]

【表2】 [Table 2]

【0043】実施例3 実施例2で得られたV−Sn合金をさらにアルゴンガス
0.7MPaの雰囲気下において、昇温速度2.5℃/
分で室温から750℃まで昇温した後、750℃で10
時間保持することによって焼成した。
Example 3 The V-Sn alloy obtained in Example 2 was further heated at a rate of 2.5 ° C./2.5° C. in an atmosphere of 0.7 MPa of argon gas.
After raising the temperature from room temperature to 750 ° C. in
It was fired by holding for a time.

【0044】焼成された合金を用いて実施例1の(2)
と同様にして電極評価用試験セルを作製した。さらに、
このセルを用い実施例1の(3)と同様にして電池試験
を行った。その結果を表2に示す。
Using the fired alloy in Example 1 (2)
In the same manner as in the above, a test cell for electrode evaluation was produced. further,
Using this cell, a battery test was performed in the same manner as in Example 1, (3). Table 2 shows the results.

【0045】比較例1 V−Sn合金粉末80重量部の代わりにSn粉末80重
量部を用いたほかは、実施例1の(2)と同様にして電
極評価用試験セルを作製した。さらに、このセルを用い
実施例1の(3)と同様にして電池試験を行った。その
結果を表3に示す。また、サイクル−放電容量カーブを
図3に示す。
Comparative Example 1 A test cell for electrode evaluation was prepared in the same manner as in (2) of Example 1, except that 80 parts by weight of Sn powder was used instead of 80 parts by weight of V-Sn alloy powder. Further, a battery test was performed using this cell in the same manner as in (3) of Example 1. Table 3 shows the results. FIG. 3 shows a cycle-discharge capacity curve.

【0046】[0046]

【表3】 [Table 3]

【0047】比較例2 粒径150μm以下の金属バナジウム2.862gと粒
径20μm以下の金属スズ粉末10gとをステンレス鋼
製ボール190gとともにステンレス鋼製ポットに入
れ、これを遊星ボールミルにて75Gの重力加速度にお
いて10時間粉砕を行った。
Comparative Example 2 2.862 g of metal vanadium having a particle size of 150 μm or less and 10 g of metal tin powder having a particle size of 20 μm or less were placed in a stainless steel pot together with 190 g of stainless steel balls, and this was placed in a planetary ball mill at a gravity of 75 G. Grinding was performed at an acceleration for 10 hours.

【0048】得られた混合粉末を用いて実施例1の
(2)と同様にして電極評価用試験セルを作製した。さ
らに、このセルを用い実施例1の(3)と同様にして電
池試験を行った。その結果を表3に示す。
Using the obtained mixed powder, a test cell for electrode evaluation was prepared in the same manner as in (2) of Example 1. Further, a battery test was performed using this cell in the same manner as in (3) of Example 1. Table 3 shows the results.

【0049】以上の結果より、本発明の電極材料では、
30サイクル後でも比較的高い放電容量を維持できるこ
とがわかる。また、実施例の中で最も容量の低い実施例
2の体積容量(30サイクル後)は1474Ah/リッ
トルであることから、本発明品は最大容量837Ah/
リットルである炭素系材料負極よりも優れていることが
わかる。
From the above results, in the electrode material of the present invention,
It can be seen that a relatively high discharge capacity can be maintained even after 30 cycles. Further, since the volume capacity (after 30 cycles) of Example 2, which has the lowest capacity among the examples, is 1474 Ah / liter, the product of the present invention has a maximum capacity of 837 Ah / liter.
It turns out that it is superior to the carbon-based material negative electrode which is liter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いたテルミット反応の反応方法の概
要を示す図(断面図)である。
FIG. 1 is a diagram (cross-sectional view) showing an outline of a reaction method of a thermite reaction used in Examples.

【図2】実施例1〜3の電池試験におけるサイクル−放
電容量カーブを示す図である。
FIG. 2 is a diagram showing a cycle-discharge capacity curve in the battery tests of Examples 1 to 3.

【図3】比較例1〜2の電池試験におけるサイクル−放
電容量カーブを示す図である。
FIG. 3 is a diagram showing a cycle-discharge capacity curve in battery tests of Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1…アルミナ耐火物製反応容器 2…原料 3…着火剤 1. Reactor container made of alumina refractory 2. Raw material 3. Ignition agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水谷 肇 兵庫県赤穂市中広字東沖1603番1号 太陽 鉱工株式会社内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 夏 永姚 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 藤枝 卓也 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AK05 AL12 AM03 AM05 AM07 CJ01 CJ02 CJ03 CJ06 CJ28 HJ01 HJ02 HJ14 5H050 AA07 AA08 BA17 CA07 CA11 CB11 GA01 GA02 GA03 GA08 GA27 HA01 HA02 HA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hajime Mizutani 1603-1 No.1, Higashi-oki, Nakahirohiro, Ako-shi, Hyogo Taiyo Mining Co., Ltd. No. 72, Industrial Technology Institute, Osaka Industrial Technology Research Institute (72) Inventor Natsu Yongya, 8-3-131 Midorioka, Ikeda-shi, Osaka Prefecture, Japan Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor, Takuya Fujieda Midorioka, Ikeda-shi, Osaka Prefecture 1-8-31 F Term in Osaka Institute of Industrial Technology, Industrial Technology Institute (Reference) HA02 HA14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】V−Sn系合金を用いたリチウム二次電池
用負極合金材料。
A negative electrode alloy material for a lithium secondary battery using a V-Sn alloy.
【請求項2】V−Sn系合金が、合金組成(酸素を除
く。)V1-xSnax(但し、MはAl、Fe、Mn、
Cu、Co、Cr、Ni及びCの少なくとも1種、0≦
x≦0.5、1≦a≦2を示す。)を有する請求項1記
載のリチウム二次電池用負極合金材料。
2. A V-Sn based alloy comprising an alloy composition (excluding oxygen) V 1-x Sn a M x (where M is Al, Fe, Mn,
At least one of Cu, Co, Cr, Ni and C, 0 ≦
x ≦ 0.5 and 1 ≦ a ≦ 2. The negative electrode alloy material for a lithium secondary battery according to claim 1, comprising:
【請求項3】酸素含有量が合金材料中0.1重量%以上
である請求項1又は2に記載のリチウム二次電池用負極
合金材料。
3. The negative electrode alloy material for a lithium secondary battery according to claim 1, wherein the oxygen content is 0.1% by weight or more in the alloy material.
【請求項4】V及びSnを含む原料粉末を加圧成形した
後、得られた成形体を不活性ガス雰囲気下600〜90
0℃で焼成することを特徴とするリチウム二次電池用負
極合金材料の製造方法。
4. After pressure-forming a raw material powder containing V and Sn, the obtained compact is subjected to 600 to 90 under an inert gas atmosphere.
A method for producing a negative electrode alloy material for a lithium secondary battery, characterized by firing at 0 ° C.
【請求項5】酸化バナジウム、スズ及びアルミニウムを
含む原料粉末をテルミット反応させることを特徴とする
リチウム二次電池用負極合金材料の製造方法。
5. A method for producing a negative electrode alloy material for a lithium secondary battery, wherein a raw material powder containing vanadium oxide, tin and aluminum is subjected to a thermite reaction.
【請求項6】さらに、不活性ガス雰囲気下400〜10
00℃で熱処理する請求項5記載の製造方法。
6. The method according to claim 1, further comprising the steps of:
The method according to claim 5, wherein the heat treatment is performed at 00C.
【請求項7】請求項1〜3のいずれかに記載のリチウム
二次電池用負極合金材料を用いたリチウム二次電池用負
極。
7. A negative electrode for a lithium secondary battery using the negative electrode alloy material for a lithium secondary battery according to claim 1.
【請求項8】請求項7記載の負極を用いたリチウム二次
電池。
8. A lithium secondary battery using the negative electrode according to claim 7.
JP2000348256A 2000-11-15 2000-11-15 Negative electrode alloy material for lithium secondary battery, and its manufacturing method Pending JP2002151067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000348256A JP2002151067A (en) 2000-11-15 2000-11-15 Negative electrode alloy material for lithium secondary battery, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000348256A JP2002151067A (en) 2000-11-15 2000-11-15 Negative electrode alloy material for lithium secondary battery, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002151067A true JP2002151067A (en) 2002-05-24

Family

ID=18821872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000348256A Pending JP2002151067A (en) 2000-11-15 2000-11-15 Negative electrode alloy material for lithium secondary battery, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002151067A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102699A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Lithium secondary battery and negative electrode used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102699A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Lithium secondary battery and negative electrode used therefor

Similar Documents

Publication Publication Date Title
KR101050352B1 (en) Anode Active Material for Secondary Battery
JP2004362895A (en) Negative electrode material, and battery using it
JP3372204B2 (en) Method for producing Li-Mn composite oxide
EP1912271A1 (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2006155941A (en) Method of manufacture for electrode active material
WO2020145116A1 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded article
JP2018049732A (en) Sulfide-based inorganic solid electrolytic material, solid electrolyte film, all-solid lithium ion battery, and method for manufacturing sulfide-based inorganic solid electrolytic material
WO2016043061A1 (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
KR20160132826A (en) Negative-electrode material for electricity-storage device
JP2000149927A (en) Electric energy storage device
JP2002124254A (en) Negative electrode material for lithium battery and its manufacturing method
US6761998B2 (en) Non-aqueous electrolyte secondary cell
JPH07262995A (en) Cobalt acid lithium positive electrode active material for lithium secondary battery and manufacture thereof
JP2001118568A (en) Nonaqueous secondary battery
JP2004079463A (en) Negative electrode active material for lithium ion secondary battery, its manufacturing method, negative electrode for the same, and lithium ion secondary battery
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2000090922A (en) Lithium secondary battery, its negative electrode material, and manufacture of the material
JP4217893B2 (en) Sputtering target material and manufacturing method thereof
JP2002216762A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2002151067A (en) Negative electrode alloy material for lithium secondary battery, and its manufacturing method
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP6583254B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery and method for producing positive electrode material for non-aqueous secondary battery
JP2004335271A (en) Manufacturing method of negative electrode activator for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111