JP2002137952A - Hydraulic composition - Google Patents

Hydraulic composition

Info

Publication number
JP2002137952A
JP2002137952A JP2000325942A JP2000325942A JP2002137952A JP 2002137952 A JP2002137952 A JP 2002137952A JP 2000325942 A JP2000325942 A JP 2000325942A JP 2000325942 A JP2000325942 A JP 2000325942A JP 2002137952 A JP2002137952 A JP 2002137952A
Authority
JP
Japan
Prior art keywords
hydraulic composition
weight
parts
cement
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000325942A
Other languages
Japanese (ja)
Other versions
JP4165992B2 (en
Inventor
Masami Uzawa
正美 鵜澤
Tetsuo Hyodo
哲郎 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000325942A priority Critical patent/JP4165992B2/en
Publication of JP2002137952A publication Critical patent/JP2002137952A/en
Application granted granted Critical
Publication of JP4165992B2 publication Critical patent/JP4165992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic composition which is excellent in segregation resistance, fluidity and self-compactability before hardening and develops compression strength of >=150 MPa and bending strength of >=25 MPa after hardening. SOLUTION: The hydraulic composition comprises a cement of 100 pts.wt., a pozzolan-based fine powder of 5-50 pts.wt., a fine aggregate, whose particle size is <=2 μm, of 50-250 pts.wt., a dispersing agent of 0.5-4.0 pts.wt. (as a solid), a metal fiber of 0.1-4.0% (volumetric ratio to the composition), water of 10-35 pts.wt. and a needle-like particle or a flaky particle, whose average particle size is <=1 mm, of <=4.5% (volumetric ratio to the total amount of the cement and the pozzolan-based fine powder).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硬化前には自己充
填性(優れた流動性及び材料分離抵抗性)を有し、施工
性に優れるとともに、硬化後には機械的特性(圧縮強
度、曲げ強度等)に優れるセメント系の水硬性組成物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a self-filling property (excellent fluidity and resistance to material separation) before curing, is excellent in workability, and has mechanical properties (compression strength, bending strength) after curing. The present invention relates to a cement-based hydraulic composition having excellent strength and the like.

【0002】[0002]

【従来の技術】従来より、機械的特性(圧縮強度、曲げ
強度等)に優れた水硬性組成物の開発が行なわれてい
る。例えば、特公昭60−59182号公報の「請求の範囲」
には、粒径50Å〜0.5μmの無機固体粒子A(例えば、シ
リカダスト粒子)と、粒径0.5〜100μmかつ粒子Aより
少なくとも1オーダー大きい固体粒子B(例えば、少な
くとも20重量%がポルトランドセメントからなるもの)
と、表面活性分散剤(例えば、高縮合ナフタレンスルホ
ン酸/ホルムアルデヒド縮合体等のコンクリートスーパ
ープラスチサイザー)と、追加の素材C(砂、石、金属
繊維等からなる群より選択されるもの)とを含む水硬性
複合材料が記載されている。この公報に記載の水硬性複
合材料は、硬化後に100MPa以上の圧縮強度を有し、機械
的特性に優れる(第32頁の63欄の第1表)。
2. Description of the Related Art Hitherto, hydraulic compositions having excellent mechanical properties (compression strength, bending strength, etc.) have been developed. For example, Japanese Patent Publication No. 60-59182, "Claims"
Include inorganic solid particles A having a particle size of 50 ° to 0.5 μm (for example, silica dust particles) and solid particles B having a particle size of 0.5 to 100 μm and being at least one order of magnitude larger than the particle A (for example, at least 20% by weight is made of Portland cement. Become
And a surface active dispersant (for example, a concrete superplasticizer such as a highly condensed naphthalene sulfonic acid / formaldehyde condensate) and an additional material C (a material selected from the group consisting of sand, stone, metal fiber, and the like). A hydraulic composite material is described. The hydraulic composite material described in this publication has a compressive strength of 100 MPa or more after curing, and is excellent in mechanical properties (Table 1 on page 32, column 63).

【0003】[0003]

【発明が解決しようとする課題】一般に、機械的特性
(圧縮強度、曲げ強度等)に優れるコンクリートは、次
のような利点を有する。第一に、現場打ちで建築物等を
構築する場合には、コンクリート層の厚さを薄くするこ
とができるので、コンクリートの打設量が少なくなり、
労力の軽減、コストの削減、利用空間の増大等を図るこ
とができる。第二に、プレキャスト部材を製造する場合
には、プレキャスト部材の厚みを小さくすることができ
るので、軽量化を図ることができ、その結果、運搬や施
工が容易になる。第三に、耐摩耗性や、中性化、クリー
プ等に対する耐久性が向上する。このため、上記公報に
記載の水硬性複合材料と比べて、より優れた機械的特性
を有する水硬性組成物の開発が望まれている。
Generally, concrete excellent in mechanical properties (compression strength, bending strength, etc.) has the following advantages. First, when constructing a building or the like by cast-in-place, since the thickness of the concrete layer can be reduced, the amount of concrete poured is reduced,
It is possible to reduce labor, reduce costs, increase use space, and the like. Secondly, when manufacturing a precast member, the thickness of the precast member can be reduced, so that the weight can be reduced, and as a result, transportation and construction can be facilitated. Third, abrasion resistance, durability to neutralization, creep, and the like are improved. For this reason, there is a demand for the development of a hydraulic composition having better mechanical properties than the hydraulic composite material described in the above-mentioned publication.

【0004】一方、現場打ちで建築物等を構築する場合
や、プレキャスト部材を製造する場合においては、水硬
性組成物(コンクリート等)の打設時間の短縮化や、打
設後のコンクリート等に加える振動の所要時間の短縮化
等の観点から、流動性及び材料分離抵抗性に優れた水硬
性組成物(換言すれば、自己充填性を有する水硬性組成
物)を用いるのが有利である。
On the other hand, when constructing a building or the like by casting in place or manufacturing a precast member, the time required for placing a hydraulic composition (such as concrete) is shortened, and the concrete or the like after casting is used. It is advantageous to use a hydraulic composition having excellent fluidity and resistance to material separation (in other words, a hydraulic composition having self-filling properties) from the viewpoint of shortening the time required for the vibration to be applied.

【0005】しかし、上記公報(特公昭60−59182号公
報)に記載の水硬性複合材料では、硬化前の流動性及び
材料分離抵抗性の向上と、硬化後の機械的特性(圧縮強
度、曲げ強度等)の向上を両立させることは、困難であ
る。例えば、曲げ強度を向上させるために、金属繊維を
配合した場合には、流動性が小さくなってしまい、施工
性が劣る。一方、金属繊維を配合するとともに、混練水
や混和剤の配合割合を大きくした場合には、良好な流動
性を確保できる反面、材料分離抵抗性が小さくなってし
まう。
However, in the hydraulic composite material described in the above publication (Japanese Patent Publication No. 60-59182), the fluidity and the material separation resistance before curing and the mechanical properties (compression strength, bending strength) after curing are improved. It is difficult to achieve both improvements in strength and the like. For example, when metal fibers are blended to improve the bending strength, the fluidity is reduced, and the workability is poor. On the other hand, when the mixing ratio of the kneading water and the admixture is increased while mixing the metal fibers, good flowability can be ensured, but the material separation resistance decreases.

【0006】そこで、本発明は、硬化前には、流動性及
び材料分離抵抗性に優れ、自己充填性を有するととも
に、硬化後には、従来の水硬性組成物(例えば、上記公
報に記載の水硬性複合材料)よりも機械的特性(圧縮強
度、曲げ強度等)に優れる水硬性組成物を提供すること
を目的とする。
Therefore, the present invention provides a liquid composition which is excellent in fluidity and resistance to material separation before curing, has self-filling properties, and is cured after curing. An object of the present invention is to provide a hydraulic composition having more excellent mechanical properties (compressive strength, flexural strength, etc.) than hard composite materials.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意研究した結果、特定の材料を組み合
わせることで、上記目的を達成することができるとの知
見を得、本発明に到達した。すなわち、本願の請求項1
に記載の水硬性組成物は、セメント、ポゾラン質微粉
末、粒径2mm以下の細骨材、分散剤(例えば、高性能A
E減水剤等の各種減水剤)、金属繊維、水、平均粒度1m
m以下の針状粒子又は薄片状粒子を含む水硬性組成物で
あって、前記針状粒子又は薄片状粒子の配合量が、前記
セメント及び前記ポゾラン質微粉末の合計量に対して、
容積比で4.5%以下であるように構成される。このよう
に構成された水硬性組成物は、硬化前には、流動性及び
材料分離抵抗性に優れ、自己充填性を有するとともに、
硬化後には、従来の水硬性組成物よりも優れた機械的特
性(圧縮強度、曲げ強度等)を有する。当該水硬性組成
物は、硬化後の充填密度を高めるために、平均粒径3〜2
0μmの無機粉末(例えば、石英粉)を含むことができる
(請求項2)。
Means for Solving the Problems The present inventor has conducted intensive studies to achieve the above object, and as a result, obtained the finding that the above object can be achieved by combining specific materials. Reached. That is, claim 1 of the present application
Is a cement, a pozzolanic fine powder, a fine aggregate having a particle size of 2 mm or less, a dispersant (for example, high performance A
Various water reducing agents such as E water reducing agent), metal fiber, water, average particle size 1m
m or less hydraulic composition containing acicular particles or flaky particles, the blending amount of the acicular particles or flaky particles, the total amount of the cement and the pozzolanic fine powder,
It is configured to have a volume ratio of 4.5% or less. The hydraulic composition thus configured is excellent in fluidity and material separation resistance before curing, and has a self-filling property,
After curing, it has better mechanical properties (compressive strength, flexural strength, etc.) than conventional hydraulic compositions. The hydraulic composition has an average particle size of 3 to 2 in order to increase the filling density after curing.
It may contain 0 μm inorganic powder (for example, quartz powder) (claim 2).

【0008】前記水硬性組成物は、好ましくは、次のよ
うな配合割合の材料からなる。すなわち、本願の請求項
3に記載の水硬性組成物は、セメント100重量部、ポゾ
ラン質微粉末5〜50重量部、粒径2mm以下の細骨材50〜25
0重量部、分散剤(減水剤)0.5〜4.0重量部(固形分換
算)、金属繊維、水10〜35重量部、平均粒度1mm以下の
針状粒子又は薄片状粒子を含む水硬性組成物であって、
前記金属繊維の配合量が、当該水硬性組成物中の容積比
で0.1〜4.0%であり、かつ、前記針状粒子又は薄片状粒
子の配合量が、前記セメント及び前記ポゾラン質微粉末
の合計量に対して、容積比で0.05〜4.5%であるように
構成される。当該水硬性組成物は、硬化後の充填密度を
高めるために、前記セメント100重量部当たり50重量部
以下の配合量で、平均粒径3〜20μmの無機粉末(例え
ば、石英粉)を含むことができる(請求項4)。
[0008] The hydraulic composition preferably comprises materials having the following compounding ratios. That is, the hydraulic composition according to claim 3 of the present application comprises 100 parts by weight of cement, 5 to 50 parts by weight of pozzolanic fine powder, and 50 to 25 fine aggregate having a particle size of 2 mm or less.
0 parts by weight, dispersant (water reducing agent) 0.5 to 4.0 parts by weight (solid content conversion), metal fiber, water 10 to 35 parts by weight, a hydraulic composition containing needle-like particles or flaky particles having an average particle size of 1 mm or less. So,
The compounding amount of the metal fiber is 0.1 to 4.0% by volume ratio in the hydraulic composition, and the compounding amount of the acicular particles or flaky particles is the total of the cement and the pozzolanic fine powder. It is configured to be 0.05 to 4.5% by volume based on the amount. The hydraulic composition contains inorganic powder (for example, quartz powder) having an average particle size of 3 to 20 μm in an amount of 50 parts by weight or less per 100 parts by weight of the cement in order to increase the filling density after curing. (Claim 4).

【0009】前記水硬性組成物において、前記金属繊維
は、例えば、直径0.01〜1.0mm、長さ2〜30mmの鋼繊維で
ある(請求項5)。前記水硬性組成物は、通常、150MPa
以上の圧縮強度、及び25MPa以上の曲げ強度を有する
(請求項6)。
In the hydraulic composition, the metal fiber is, for example, a steel fiber having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm (claim 5). The hydraulic composition is usually 150 MPa
It has the above compressive strength and the bending strength of 25 MPa or more (Claim 6).

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明で使用するセメントの種類は、特に限定さ
れるものではなく、例えば、普通ポルトランドセメン
ト、早強ポルトランドセメント、中庸熱ポルトランドセ
メント、低熱ポルトランドセメント等の各種ポルトラン
ドセメントや、高炉セメント、フライアッシュセメント
等の混合セメントを使用することができる。本発明にお
いて、水硬性組成物の硬化後の早期強度を向上させよう
とする場合には、早強ポルトランドセメントを使用する
ことが好ましい。また、水硬性組成物の流動性を向上さ
せようとする場合には、中庸熱ポルトランドセメントや
低熱ポルトランドセメントを使用することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The type of cement used in the present invention is not particularly limited, and includes, for example, various portland cements such as ordinary Portland cement, early-strength Portland cement, moderate-heat Portland cement, low-heat Portland cement, blast furnace cement, and fly ash cement. Etc. can be used. In the present invention, in order to improve the early strength of the hydraulic composition after curing, it is preferable to use early-strength Portland cement. In order to improve the fluidity of the hydraulic composition, it is preferable to use a medium heat Portland cement or a low heat Portland cement.

【0011】ポゾラン質微粉末としては、シリカフュー
ム、シリカダスト、フライアッシュ、スラグ、火山灰、
シリカゾル、沈降シリカ等が挙げられる。一般に、シリ
カフュームやシリカダストは、平均粒径が1.0μm以下で
あり、粉砕等の処理を行なう必要がないので、本発明で
使用するポゾラン質微粉末として好適である。ポゾラン
質微粉末の配合量は、セメント100重量部に対して5〜50
重量部が好ましく、10〜45重量部がより好ましい。ポゾ
ラン質微粉末の配合量が少なすぎると、水硬性組成物の
材料分離抵抗性が低くなり、また、硬化後の機械的特性
も低下するので好ましくない。ポゾラン質微粉末の配合
量が多すぎると、単位水量が増大し、硬化後の機械的特
性が低下するので好ましくない。
As the pozzolanic fine powder, silica fume, silica dust, fly ash, slag, volcanic ash,
Silica sol, precipitated silica and the like. Generally, silica fume and silica dust have an average particle size of 1.0 μm or less and do not need to be subjected to a treatment such as pulverization. Therefore, they are suitable as the pozzolanic fine powder used in the present invention. The compounding amount of the pozzolanic fine powder is 5 to 50 per 100 parts by weight of cement.
Part by weight is preferred, and 10 to 45 parts by weight is more preferred. If the blending amount of the pozzolanic fine powder is too small, the material separation resistance of the hydraulic composition becomes low, and the mechanical properties after curing are also unfavorably lowered. If the blending amount of the pozzolanic fine powder is too large, the unit water amount increases, and the mechanical properties after curing are undesirably reduced.

【0012】本発明においては、粒径2mm以下の細骨材
が用いられる。ここで、細骨材の「粒径」とは、85%重
量累積粒径である。細骨材の粒径が2mmを超えると、水
硬性組成物の硬化後の強度が低下する。なお、本発明に
おいては、最大粒径が2mm以下の細骨材を用いることが
好ましく、最大粒径が1.5mm以下の細骨材を用いること
が、より好ましい。細骨材としては、川砂、陸砂、海
砂、砕砂、珪砂、又はこれらの混合物を使用することが
できる。細骨材の配合量は、セメント100重量部に対し
て、50〜250重量部が好ましく、80〜180重量部がより好
ましい。細骨材の配合量が少なすぎると、硬化初期(凝
結段階)の自己収縮が大きくなるうえ、水和熱も大きく
なるので好ましくない。細骨材の配合量が多すぎると、
硬化後の機械的特性(特に、曲げ強度)が低下するので
好ましくない。
In the present invention, fine aggregate having a particle size of 2 mm or less is used. Here, the “particle size” of the fine aggregate is an 85% weight cumulative particle size. If the particle size of the fine aggregate exceeds 2 mm, the strength of the hydraulic composition after curing is reduced. In the present invention, it is preferable to use fine aggregate having a maximum particle size of 2 mm or less, and it is more preferable to use fine aggregate having a maximum particle size of 1.5 mm or less. As the fine aggregate, river sand, land sand, sea sand, crushed sand, quartz sand, or a mixture thereof can be used. The compounding amount of the fine aggregate is preferably 50 to 250 parts by weight, more preferably 80 to 180 parts by weight, based on 100 parts by weight of cement. If the blending amount of the fine aggregate is too small, the self-shrinkage in the initial stage of hardening (setting stage) increases and the heat of hydration also increases, which is not preferable. If the amount of fine aggregate is too large,
It is not preferable because the mechanical properties (particularly, bending strength) after curing are reduced.

【0013】分散剤としては、リグニン系、ナフタレン
スルホン酸系、メラミン系、ポリカルボン酸系等の各種
減水剤(減水剤、AE減水剤、高性能減水剤、高性能A
E減水剤)を使用することができる。これらのうち、減
水効果の大きな高性能減水剤又は高性能AE減水剤を使
用することが好ましい。分散剤の配合量は、セメント10
0重量部に対して、固形分換算で0.5〜4.0重量部が好ま
しい。セメント100重量部に対して、分散剤の配合量
(固形分換算)が0.5重量部未満では、混練が困難にな
るとともに、水硬性組成物の流動性が低下するので好ま
しくない。セメント100重量部に対して、分散剤の配合
量(固形分換算)が4.0重量部を超えると、硬化後の機
械的特性が低下するので好ましくない。なお、分散剤
は、液状又は粉末状のいずれでも使用可能である。
Examples of the dispersing agent include various water reducing agents such as lignin type, naphthalene sulfonic acid type, melamine type and polycarboxylic acid type (water reducing agent, AE water reducing agent, high performance water reducing agent, high performance A
E water reducing agent) can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. The amount of the dispersant is 10
The amount is preferably 0.5 to 4.0 parts by weight based on 0 parts by weight in terms of solid content. If the amount of the dispersing agent is less than 0.5 part by weight per 100 parts by weight of cement (solid content conversion), kneading becomes difficult and the fluidity of the hydraulic composition decreases, which is not preferable. If the amount of the dispersant (in terms of solid content) exceeds 4.0 parts by weight with respect to 100 parts by weight of cement, the mechanical properties after curing are undesirably reduced. The dispersant can be used in either liquid or powder form.

【0014】本発明の水硬性組成物において用いる水の
量は、セメント100重量部に対して10〜35重量部が好ま
しく、より好ましくは15〜30重量部である。水の量が10
重量部未満では、混練が困難になるとともに、水硬性組
成物の流動性が低下するので好ましくない。水の量が35
重量部を超えると、硬化後の機械的特性が低下するので
好ましくない。
The amount of water used in the hydraulic composition of the present invention is preferably from 10 to 35 parts by weight, more preferably from 15 to 30 parts by weight, per 100 parts by weight of cement. 10 water
If the amount is less than part by weight, kneading becomes difficult, and the fluidity of the hydraulic composition decreases, which is not preferable. 35 water
Exceeding the weight parts is not preferred because the mechanical properties after curing deteriorate.

【0015】本発明の水硬性組成物は、金属繊維を含む
ものである。金属繊維を含むことによって、曲げ強度を
向上させ、かつ、マイクロクラック(数百μm〜数mmの
クラック)の伝播を抑制して構造的欠陥を未然に防止す
ることができる。金属繊維としては、鋼繊維、アモルフ
ァス繊維等が挙げられる。中でも、鋼繊維は、強度に優
れており、また、コストや入手のし易さの点からも好ま
しいものである。金属繊維は、直径0.01〜1.0mm、長さ2
〜30mmのものが好ましい。直径が0.01mm未満では、繊維
自身の強度が不足し、張力を受けた際に切れ易くなる。
直径が1.0mmを超えると、同一配合量での本数が少なく
なり、曲げ強度を向上させる効果が低下する。長さが2
mm未満では、曲げ強度を向上させる効果が低下する。長
さが30mmを超えると、混練の際、ファイバーボールが生
じ易くなる。金属繊維の配合量は、水硬性組成物中、容
積比(体積割合)で4%以下が好ましく、0.1〜4.0%が
より好ましく、0.5〜3.5%が特に好ましい。金属繊維の
配合量が4%を超えると、混練時の作業性等を確保する
ために単位水量が増大するので、硬化後の機械的特性が
低下し、好ましくない。
[0015] The hydraulic composition of the present invention contains metal fibers. By including the metal fibers, the bending strength can be improved, and the propagation of microcracks (cracks of several hundred μm to several mm) can be suppressed to prevent structural defects. Examples of the metal fiber include a steel fiber and an amorphous fiber. Among them, steel fibers are excellent in strength, and are preferable in terms of cost and availability. Metal fiber is 0.01 ~ 1.0mm in diameter, length 2
の も の 30 mm is preferred. When the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and the fiber tends to be cut when subjected to tension.
When the diameter is more than 1.0 mm, the number of pieces with the same compounding amount decreases, and the effect of improving the bending strength decreases. Length 2
If it is less than mm, the effect of improving the bending strength decreases. If the length exceeds 30 mm, fiber balls tend to be formed during kneading. The mixing amount of the metal fiber in the hydraulic composition is preferably 4% or less by volume ratio (volume ratio), more preferably 0.1 to 4.0%, and particularly preferably 0.5 to 3.5%. If the blending amount of the metal fiber exceeds 4%, the unit water volume increases in order to ensure workability during kneading, and the mechanical properties after curing are undesirably reduced.

【0016】本発明の水硬性組成物は、平均粒度が1mm
以下の針状粒子又は薄片状粒子を含むものである。ここ
で、針状粒子又は薄片状粒子の「粒度」とは、これらの
粒子の最大寸法の大きさ(特に、針状粒子ではその長
さ)である。針状粒子(繊維状粒子;微細な針状物)と
しては、ウォラストナイト、ボーキサイト、ムライト等
が挙げられる。薄片状粒子(微細な薄片状物)として
は、マイカフレーク、タルクフレーク、バーミキュライ
トフレーク、アルミナフレーク等が挙げられる。針状粒
子と薄片状粒子は、各々単独で用いてもよいし、併用し
てもよい。針状粒子又は薄片状粒子の配合量(ただし、
併用する場合はこれらの合計量)は、セメントとポゾラ
ン質微粉末の合計量(100%)に対して、容積比で4.5%
以下、好ましくは0.05〜4.5%、より好ましくは0.1〜4.
0%、特に好ましくは0.5〜3.5%である。針状粒子又は
薄片状粒子を配合しない場合は、金属繊維が分離し易
く、材料分離抵抗性が低下するので好ましくない。針状
粒子又は薄片状粒子の配合量が、セメントとポゾラン質
微粉末の合計量に対して容積比で4.5%を超えると、水
硬性組成物の粘性が高くなって、流動性が低下し、型枠
への打設等に要する時間が長くなるので、好ましくな
い。なお、針状粒子においては、硬化後の靭性を高める
観点から、長さ/直径の比で表される針状度が2以上の
ものを用いるのが好ましい。
The hydraulic composition of the present invention has an average particle size of 1 mm
It contains the following needle-like particles or flaky particles. Here, the “particle size” of the acicular particles or the flaky particles is the size of the largest dimension of these particles (in particular, the length of the acicular particles). Examples of the acicular particles (fibrous particles; fine acicular materials) include wollastonite, bauxite, and mullite. Examples of the flaky particles (fine flaky materials) include mica flake, talc flake, vermiculite flake, and alumina flake. The acicular particles and the flaky particles may be used alone or in combination. Amount of needle-like particles or flaky particles (however,
When used together, the total amount is 4.5% by volume relative to the total amount of cement and pozzolanic fine powder (100%).
Hereinafter, preferably 0.05 to 4.5%, more preferably 0.1 to 4.
0%, particularly preferably 0.5 to 3.5%. When the needle-like particles or the flaky particles are not blended, the metal fibers are easily separated, and the resistance to material separation is undesirably reduced. When the compounding amount of the acicular particles or the flaky particles exceeds 4.5% by volume relative to the total amount of the cement and the pozzolanic fine powder, the viscosity of the hydraulic composition increases, and the fluidity decreases. It is not preferable because the time required for casting into a mold or the like becomes long. From the viewpoint of increasing the toughness after curing, it is preferable to use needle-like particles having a needle-likeness expressed by a length / diameter ratio of 2 or more.

【0017】本発明においては、硬化後の充填密度を高
める観点から、水硬性組成物に平均粒径3〜20μm、より
好ましくは平均粒径4〜10μmの無機粉末を含ませること
が好ましい。無機粉末としては、石英粉末、石灰石粉
末、炭化物粉末、窒化物粉末等が挙げられる。中でも、
石英粉末は、コストや硬化後の品質安定性の点から、好
ましいものである。石英粉末としては、石英、非晶質石
英、オパール質やクリストバライト質のシリカ含有粉末
等が挙げられる。無機粉末の配合量は、硬化前の流動性
や、硬化後の強度、耐久性等の観点から、セメント100
重量部に対して50重量部以下が好ましく、20〜35重量部
がより好ましい。
In the present invention, from the viewpoint of increasing the packing density after curing, the hydraulic composition preferably contains an inorganic powder having an average particle size of 3 to 20 μm, more preferably 4 to 10 μm. Examples of the inorganic powder include quartz powder, limestone powder, carbide powder, nitride powder and the like. Among them,
Quartz powder is preferred from the viewpoint of cost and quality stability after curing. Examples of the quartz powder include quartz, amorphous quartz, opal and cristobalite silica-containing powder, and the like. The amount of the inorganic powder is from the viewpoint of fluidity before curing, strength after curing, durability, etc.
The amount is preferably 50 parts by weight or less, more preferably 20 to 35 parts by weight with respect to parts by weight.

【0018】本発明において、水硬性組成物の混練方法
は、特に限定されるものではなく、例えば、次の(1)
〜(3)のいずれかの方法を採用することができる。 (1)水、分散剤(減水剤)以外の材料を予め混合し、
混合物(プレミックス材)を調製した後、プレミックス
材、水、分散剤をミキサに投入し、混練する。 (2)水以外の材料(ただし、分散剤は、粉末タイプの
ものを使用する。)を予め混合し、混合物(プレミック
ス材)を調製した後、プレミックス材、水をミキサに投
入し、混練する。 (3)各材料を個別にミキサに投入し、混練する。
In the present invention, the method of kneading the hydraulic composition is not particularly limited, and for example, the following (1)
To (3). (1) Materials other than water and a dispersant (water reducing agent) are mixed in advance,
After preparing a mixture (premix material), the premix material, water, and a dispersant are charged into a mixer and kneaded. (2) Materials other than water (however, a powder type dispersant is used) are preliminarily mixed to prepare a mixture (premix material), and then the premix material and water are charged into a mixer. Knead. (3) Each material is individually charged into a mixer and kneaded.

【0019】混練に用いるミキサは、通常のコンクリー
トの混練に用いられるどのタイプのものでもよく、例え
ば、揺動型ミキサ、パンタイプミキサ、ニ軸練りミキサ
等が用いられる。
The mixer used for kneading may be any type used for kneading ordinary concrete, for example, an oscillating mixer, a pan-type mixer, a twin-shaft kneading mixer, or the like.

【0020】本発明の水硬性組成物の成形方法は、特に
限定されるものではなく、流し込み成形等の任意の方法
を採用することができる。また、養生方法も、特に限定
されるものではなく、気中養生、蒸気養生、オートクレ
ーブ養生等を行なうことができる。
The method for molding the hydraulic composition of the present invention is not particularly limited, and any method such as cast molding can be employed. The curing method is not particularly limited, and air curing, steam curing, autoclave curing, and the like can be performed.

【0021】本発明の水硬性組成物は、「JIS R 5201
(セメントの物理試験方法)11.フロー試験」に記載さ
れる方法において、15回の落下運動を行なわないで測定
したフロー値が、200mm以上の値を示し、流動性に優れ
るものである。また、本発明の水硬性組成物は、材料分
離抵抗性にも優れるものである。したがって、現場打ち
で建築物等を構築する場合や、プレキャスト部材を製造
する場合において、本発明の水硬性組成物を用いれば、
水硬性組成物(コンクリート)の打設時間の短縮化や、
打設された水硬性組成物に加える振動の所要時間の短縮
化等を図ることができる。
[0021] The hydraulic composition of the present invention can be used in accordance with "JIS R 5201".
(Physical test method of cement) 11. In the method described in “11. Flow test”, the flow value measured without performing the dropping motion 15 times shows a value of 200 mm or more, and is excellent in fluidity. Further, the hydraulic composition of the present invention also has excellent material separation resistance. Therefore, when building a building or the like by cast-in-place, or in the case of manufacturing a precast member, if the hydraulic composition of the present invention is used,
Shortening the time for placing hydraulic composition (concrete),
It is possible to reduce the time required for vibration applied to the cast hydraulic composition and the like.

【0022】更に、本発明の水硬性組成物は、150MPa以
上、好ましくは170MPa以上、特に好ましくは180MPa以上
の圧縮強度を発現するとともに、25MPa以上、好ましく
は28MPa以上、特に好ましくは30MPa以上の曲げ強度を発
現するものであり、機械的特性に優れる。したがって、
現場打ちで建築物等を構築する場合や、プレキャスト部
材を製造する場合において、水硬性組成物の使用量が少
なくなり、コストの削減、施工や運搬における労力の軽
減、利用空間の増大、耐久性の向上等を実現することが
できる。
Further, the hydraulic composition of the present invention exhibits a compressive strength of 150 MPa or more, preferably 170 MPa or more, particularly preferably 180 MPa or more, and has a bending strength of 25 MPa or more, preferably 28 MPa or more, particularly preferably 30 MPa or more. It develops strength and has excellent mechanical properties. Therefore,
When building buildings, etc. by casting in place, or when manufacturing precast members, the amount of hydraulic composition used is reduced, reducing costs, reducing labor in construction and transportation, increasing the use space, and durability. Can be improved.

【0023】[0023]

【実施例】以下、実施例に基づいて本発明を説明する。 1.使用材料 以下に示す材料を使用した。 (1)セメント ;低熱ポルトランドセメント(太平洋セメント社製) (2)ポゾラン質微粉末;シリカフューム(平均粒径:0.7μm) (3)細骨材 ;珪砂5号(最大粒径:0.6mm以下) (4)金属繊維 ;鋼繊維(直径:0.2mm、長さ:15mm) (5)分散剤 ;ポリカルボン酸系高性能AE減水剤 (6)水 ;水道水 (7)無機粉末 ;石英粉(平均粒径:7μm) (8)針状粒子 ;ウォラストナイト(平均長さ:0.3mm、長さ/直径の 比:4)DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. 1. Materials used The following materials were used. (1) Cement; low heat Portland cement (manufactured by Taiheiyo Cement Corporation) (2) Pozzolanic fine powder; silica fume (average particle size: 0.7 μm) (3) Fine aggregate: silica sand No. 5 (maximum particle size: 0.6 mm or less) (4) metal fiber; steel fiber (diameter: 0.2 mm, length: 15 mm) (5) dispersant: polycarboxylic acid-based high-performance AE water reducing agent (6) water: tap water (7) inorganic powder: quartz powder ( (8) Needle-shaped particles; wollastonite (average length: 0.3 mm, length / diameter ratio: 4)

【0024】2.配合及び混練 [実施例1〜3、比較例1〜2]低熱ポルトランドセメ
ント100重量部、シリカフューム32.5重量部、細骨材120
重量部、高性能AE減水剤1.0重量部(固形分換算)、
水22重量部、鋼繊維2%(水硬性組成物中の体積割
合)、石英粉35重量部、及び表1に示す量のウォラスト
ナイトをニ軸練りミキサに投入し、混練した。なお、ウ
ォラストナイトは、石英粉の一部を置換する形で用い、
石英粉との合計量が一定(35重量部)になるようにし
た。 [比較例3]低熱ポルトランドセメント100重量部、シ
リカフューム32.5重量部、細骨材120重量部、高性能A
E減水剤1.0重量部(固形分換算)、水22重量部、石英
粉35重量部をニ軸練りミキサに投入し、混練した。 [実施例4〜6、比較例4〜5]低熱ポルトランドセメ
ント100重量部、シリカフューム32.5重量部、細骨材120
重量部、高性能AE減水剤0.8重量部(固形分換算)、
水22重量部、鋼繊維2%(水硬性組成物中の体積割
合)、及び表1に示す量のウォラストナイトをニ軸練り
ミキサに投入し、混練した。なお、ウォラストナイト
は、細骨材の一部を置換する形で用い、細骨材との合計
量が一定(120重量部)になるようにした。
2. [Examples 1-3, Comparative Examples 1-2] Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120
Parts by weight, 1.0 part by weight of high-performance AE water reducing agent (in terms of solid content),
22 parts by weight of water, 2% of steel fiber (volume ratio in the hydraulic composition), 35 parts by weight of quartz powder, and wollastonite in the amounts shown in Table 1 were charged into a twin-screw kneading mixer and kneaded. In addition, wollastonite is used by replacing a part of quartz powder,
The total amount with the quartz powder was kept constant (35 parts by weight). [Comparative Example 3] 100 parts by weight of low heat Portland cement, 32.5 parts by weight of silica fume, 120 parts by weight of fine aggregate, high performance A
1.0 part by weight of water reducing agent (in terms of solid content), 22 parts by weight of water, and 35 parts by weight of quartz powder were charged into a twin-screw kneading mixer and kneaded. Examples 4-6, Comparative Examples 4-5 Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120
Parts by weight, 0.8 parts by weight of high-performance AE water reducing agent (in terms of solid content),
22 parts by weight of water, 2% of steel fiber (volume ratio in the hydraulic composition), and wollastonite in the amounts shown in Table 1 were charged into a twin-screw kneading mixer and kneaded. The wollastonite was used in such a manner that a part of the fine aggregate was replaced, and the total amount of the wollastonite and the fine aggregate was constant (120 parts by weight).

【0025】3.評価 (1)フロー値 各水硬性組成物のフロー値を、「「JIS R 5201(セメン
トの物理試験方法)11.フロー試験」に記載される方法
において、15回の落下運動を行なわないで測定した。 (2)材料分離の有無 上記(1)のフロー値の測定の際に、拡がった各水硬性
組成物を目視観察し、材料分離の有無を観察した。 (3)モルタル用Vロート流下時間 モルタル用のVロートを用いて、各水硬性組成物の流下
時間を測定した。流下時間が10〜30秒であれば、流動性
が良好である。 (4)施工性 下記(5)〜(6)の試験において、各水硬性組成物を
型枠に流し込む際の作業時間と流し込み易さ(作業性)
から、施工性を「○:良好」、「×:不良」で評価し
た。 (5)圧縮強度 各水硬性組成物をφ50×100mmの型枠に流し込み、20℃
で48時間、湿空養生後、90℃で48時間、蒸気養生した。
得られた硬化体の圧縮強度を、「JIS A 1108(コンクリ
ートの圧縮強度試験方法)」に準じて測定した。 (6)曲げ強度 各水硬性組成物を10×10×40cmの型枠に流し込み、20℃
で48時間、湿空養生後、90℃で48時間、蒸気養生した。
得られた硬化体の曲げ強度を、「JIS R 5201(セメント
の物理試験方法)」に準じて測定した。 上記「3.評価(1)〜(6)」の試験結果を表1に示
す。
3. Evaluation (1) Flow value The flow value of each hydraulic composition was measured in accordance with the method described in “JIS R 5201 (Physical test method for cement) 11. Flow test” without performing 15 dropping motions. did. (2) Presence or absence of material separation During the measurement of the flow value in the above (1), each spread hydraulic composition was visually observed, and the presence or absence of material separation was observed. (3) Falling time of mortar V funnel The falling time of each hydraulic composition was measured using a mortar V funnel. If the falling time is 10 to 30 seconds, the fluidity is good. (4) Workability In the tests (5) and (6) below, the work time and ease of pouring each hydraulic composition into the mold (workability)
Therefore, the workability was evaluated as “○: good” and “×: poor”. (5) Compressive strength Each hydraulic composition is poured into a mold of φ50 × 100mm,
For 48 hours, and then steam-cured at 90 ° C. for 48 hours.
The compressive strength of the obtained cured product was measured according to “JIS A 1108 (Method of testing compressive strength of concrete)”. (6) Flexural strength Pour each hydraulic composition into a 10 × 10 × 40 cm formwork, 20 ° C
For 48 hours, and then steam-cured at 90 ° C. for 48 hours.
The bending strength of the obtained cured product was measured according to “JIS R 5201 (physical test method for cement)”. Table 1 shows the test results of "3. Evaluation (1) to (6)".

【0026】[0026]

【表1】 [Table 1]

【0027】表1中、比較例1、4では、針状粒子(ウ
ォラストナイト)を含まないため、材料分離が生じ、そ
の結果、Vロート流下時間の測定時に閉塞が生じてい
る。比較例2、5では、針状粒子(ウォラストナイト)
の配合割合が、本発明で規定する数値範囲を超えるた
め、流動性が低下し、施工性が劣る。一方、実施例1〜
6では、特定範囲内の配合量の針状粒子(ウォラストナ
イト)を含むため、施工性(流動性と材料分離抵抗性に
優れ、自己充填性を有すること)及び機械的特性(圧縮
強度、曲げ強度)が優れている。比較例3では、金属繊
維を含まないため、曲げ強度が小さく、機械的特性が劣
る。
In Table 1, Comparative Examples 1 and 4 do not contain needle-like particles (wollastonite), so that material separation occurs, and as a result, clogging occurs during the measurement of the V funnel flow time. In Comparative Examples 2 and 5, acicular particles (wollastonite)
Is beyond the numerical range specified in the present invention, the fluidity is reduced, and the workability is poor. On the other hand, Examples 1 to
In the case of No. 6, since needle-like particles (wollastonite) having a compounding amount within a specific range are contained, workability (excellent in fluidity and material separation resistance and self-filling property) and mechanical properties (compression strength, Excellent bending strength). In Comparative Example 3, since no metal fiber was included, the bending strength was low and the mechanical properties were poor.

【0028】[0028]

【発明の効果】本発明の水硬性組成物は、硬化前には、
流動性及び材料分離抵抗性に優れ、自己充填性を有する
ため、施工が容易であり、硬化後には、優れた機械的特
性(150MPa以上の圧縮強度と25MPa以上の曲げ強度)を
有する。
EFFECT OF THE INVENTION The hydraulic composition of the present invention is prepared before curing.
Since it has excellent fluidity and resistance to material separation and has self-filling properties, it is easy to apply, and after curing, has excellent mechanical properties (compressive strength of 150 MPa or more and bending strength of 25 MPa or more).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 14:02 C04B 14:02 Z 14:20 14:20 A Z 14:48 14:48 D 24:24) 24:24) Z 103:40 103:40 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 14:02 C04B 14:02 Z 14:20 14:20 AZ 14:48 14:48 D 24:24 ) 24:24) Z 103: 40 103: 40

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セメント、ポゾラン質微粉末、粒径2mm
以下の細骨材、分散剤、金属繊維、水、平均粒度1mm以
下の針状粒子又は薄片状粒子を含む水硬性組成物であっ
て、 前記針状粒子又は薄片状粒子の配合量が、前記セメント
及び前記ポゾラン質微粉末の合計量に対して、容積比で
4.5%以下である水硬性組成物。
Cement, pozzolanic fine powder, particle size 2mm
The following fine aggregate, dispersant, metal fiber, water, a hydraulic composition containing needle-like particles or flaky particles having an average particle size of 1 mm or less, the compounding amount of the needle-like particles or flaky particles, With respect to the total amount of cement and the pozzolanic fine powder, by volume ratio
A hydraulic composition that is 4.5% or less.
【請求項2】 平均粒径3〜20μmの無機粉末を含む請求
項1に記載の水硬性組成物。
2. The hydraulic composition according to claim 1, comprising an inorganic powder having an average particle size of 3 to 20 μm.
【請求項3】 セメント100重量部、ポゾラン質微粉末5
〜50重量部、粒径2mm以下の細骨材50〜250重量部、分散
剤0.5〜4.0重量部(固形分換算)、金属繊維、水10〜35
重量部、平均粒度1mm以下の針状粒子又は薄片状粒子を
含む水硬性組成物であって、 前記金属繊維の配合量が、当該水硬性組成物中の容積比
で0.1〜4.0%であり、かつ、前記針状粒子又は薄片状粒
子の配合量が、前記セメント及び前記ポゾラン質微粉末
の合計量に対して、容積比で0.05〜4.5%である水硬性
組成物。
3. 100 parts by weight of cement, fine pozzolanic powder 5
50 to 250 parts by weight, fine aggregate having a particle size of 2 mm or less 50 to 250 parts by weight, dispersant 0.5 to 4.0 parts by weight (in terms of solid content), metal fiber, water 10 to 35
Parts by weight, a hydraulic composition containing needle-like particles or flaky particles having an average particle size of 1 mm or less, wherein the blending amount of the metal fibers is 0.1 to 4.0% by volume in the hydraulic composition, A hydraulic composition wherein the blending amount of the acicular particles or flaky particles is 0.05 to 4.5% by volume relative to the total amount of the cement and the pozzolanic fine powder.
【請求項4】 前記セメント100重量部当たり50重量部
以下の配合量で、平均粒径3〜20μmの無機粉末を含む請
求項3に記載の水硬性組成物。
4. The hydraulic composition according to claim 3, comprising an inorganic powder having an average particle size of 3 to 20 μm in an amount of 50 parts by weight or less per 100 parts by weight of the cement.
【請求項5】 前記金属繊維が、直径0.01〜1.0mm、長
さ2〜30mmの鋼繊維である請求項1〜4のいずれかに記
載の水硬性組成物。
5. The hydraulic composition according to claim 1, wherein the metal fiber is a steel fiber having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm.
【請求項6】 150MPa以上の圧縮強度、及び25MPa以上
の曲げ強度を有する請求項1〜5のいずれかに記載の水
硬性組成物。
6. The hydraulic composition according to claim 1, having a compressive strength of 150 MPa or more and a bending strength of 25 MPa or more.
JP2000325942A 2000-10-25 2000-10-25 Hydraulic composition Expired - Fee Related JP4165992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325942A JP4165992B2 (en) 2000-10-25 2000-10-25 Hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325942A JP4165992B2 (en) 2000-10-25 2000-10-25 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2002137952A true JP2002137952A (en) 2002-05-14
JP4165992B2 JP4165992B2 (en) 2008-10-15

Family

ID=18803227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325942A Expired - Fee Related JP4165992B2 (en) 2000-10-25 2000-10-25 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP4165992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018908A1 (en) * 2004-08-18 2006-02-23 Taisei Corporation Shearing force reinforcing structure and shearing force reinforcing member
GB2424418A (en) * 2005-03-21 2006-09-27 Felix Allen Hughes Cement composition containing amongst other constituents, pozzolanic reaction particles and fibres
WO2014030610A1 (en) * 2012-08-21 2014-02-27 大成建設株式会社 Cement-based matrix and fiber-reinforced cement-based mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910904B (en) * 2017-11-23 2021-02-23 南京理工大学 High-voltage direct-current synchronous phase modulator starting grid-connected control system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JPH11228253A (en) * 1998-02-03 1999-08-24 Sekisui Chem Co Ltd High-strength hardened cement body
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof
JP2002514567A (en) * 1998-05-14 2002-05-21 ボイゲ Concrete, concrete cement matrix and premix with organic fibers dispersed in cement matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof
JPH11228253A (en) * 1998-02-03 1999-08-24 Sekisui Chem Co Ltd High-strength hardened cement body
JP2002514567A (en) * 1998-05-14 2002-05-21 ボイゲ Concrete, concrete cement matrix and premix with organic fibers dispersed in cement matrix

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018908A1 (en) * 2004-08-18 2006-02-23 Taisei Corporation Shearing force reinforcing structure and shearing force reinforcing member
US7823356B2 (en) 2004-08-18 2010-11-02 Taisei Corporation Shearing force reinforced structure and member
GB2424418A (en) * 2005-03-21 2006-09-27 Felix Allen Hughes Cement composition containing amongst other constituents, pozzolanic reaction particles and fibres
GB2424418B (en) * 2005-03-21 2008-10-08 Felix Allen Hughes Concrete compositions
WO2014030610A1 (en) * 2012-08-21 2014-02-27 大成建設株式会社 Cement-based matrix and fiber-reinforced cement-based mixture
JP5623679B2 (en) * 2012-08-21 2014-11-12 大成建設株式会社 Cementitious matrix and fiber-reinforced cementitious mixture
US9115026B2 (en) 2012-08-21 2015-08-25 Taisei Corporation Cementitious matrix and fiber reinforced cement based mixture
JPWO2014030610A1 (en) * 2012-08-21 2016-07-28 大成建設株式会社 Cementitious matrix and fiber-reinforced cementitious mixture

Also Published As

Publication number Publication date
JP4165992B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
KR100877026B1 (en) Hydraulic Composition
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP3397775B2 (en) Hydraulic composition
JP3397774B2 (en) Hydraulic composition
JP2002348167A (en) Hydraulic composition
JP2009221053A (en) Cement composition
JP2002338324A (en) Hydraulic composition
JP4039801B2 (en) Hydraulic composition
JP4056696B2 (en) Cement slurry
JP2001322857A (en) Mortar composition for joining fresh concrete at construction joint
JP4165992B2 (en) Hydraulic composition
JP2001220201A (en) Fiber reinforced concrete
JP4167787B2 (en) Composite material
JP2001254302A (en) Sleeper for railway line
JP2001212817A (en) Method for producing fiber-reinforced concrete
JP2001226958A (en) Steel pipe concrete pile
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2001206754A (en) Highly flowable concrete
JP4230158B2 (en) Method for preparing mortar
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength
JP2001226160A (en) Ultrahigh strength cement hardened body
JP4167373B2 (en) Hand hole
JP2001207577A (en) Embedded form
JP4157666B2 (en) Concrete repair and reinforcement materials
JP2001214604A (en) Grouting material for flowable grout pad construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4165992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees