JP2002136828A - Gas-liquid contact device and gas-liquid contact method - Google Patents

Gas-liquid contact device and gas-liquid contact method

Info

Publication number
JP2002136828A
JP2002136828A JP2000338756A JP2000338756A JP2002136828A JP 2002136828 A JP2002136828 A JP 2002136828A JP 2000338756 A JP2000338756 A JP 2000338756A JP 2000338756 A JP2000338756 A JP 2000338756A JP 2002136828 A JP2002136828 A JP 2002136828A
Authority
JP
Japan
Prior art keywords
gas
processing
liquid
water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000338756A
Other languages
Japanese (ja)
Inventor
Kenji Hayashi
賢二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000338756A priority Critical patent/JP2002136828A/en
Publication of JP2002136828A publication Critical patent/JP2002136828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a gas-liquid contact device with which the amount of replenishing water is reduced, the absorption rate of a solvent is maintained and the concentration of the solvent in water finally discharged is made high. SOLUTION: A first gas-liquid contact unit 50 and a second gas-liquid contact unit 56 are arranged in parallel, and a third gas-liquid contact unit 80 and a fourth gas-liquid contact unit 82 are arranged in series. A gas is treated at the first gas-liquid contact unit 50, and when the concentration of a solvent in water in a treating tank 22 becomes high, the gas is treated at the second gas-liquid contact unit 56. Water of the treating tank 22 of the first gas-liquid contact unit 50 is exchanged with water containing the solvent in a low concentration during treating the gas at the second gas-liquid contact unit 56. Then, when the concentration of the solvent in water in a treating tank 54 of the second gas-liquid contact unit 56 becomes high, the gas is again treated at the first gas-liquid contact unit 50. It is possible to improve the removing rate of the solvent in the gas with a small amount of water by alternately repeating the treating processes. Furthermore, it is possible to discharge the treated water containing the solvent of a high concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラント等より大
気へ排出される、例えば揮発性有機化合物のVOCガス
を回収する気液接触装置及び気液接触方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid contact device and a gas-liquid contact method for recovering, for example, VOC gas of a volatile organic compound discharged from a plant or the like into the atmosphere.

【0002】[0002]

【従来の技術】図3に示すように、プラント等より大気
へ排出されるVOCガスを吸収処理する散水型気液接触
装置58で使用される水等の処理液は、処理塔60、6
2、64内において、ガスと接触することで溶剤濃度が
徐々に上昇してくる。この溶剤を吸収した処理液がその
まま処理槽66、68、70へ還流されると、処理槽全
体の処理液の溶剤濃度が上昇し、この処理液を処理塔へ
供給しても、連続的に良好な状態で溶剤を吸収できない
(溶剤の捕集効率が低下する)。
2. Description of the Related Art As shown in FIG. 3, a processing liquid such as water used in a watering type gas-liquid contacting device 58 for absorbing VOC gas discharged from a plant or the like to the atmosphere is processed by processing towers 60 and 6.
In 2 and 64, the solvent concentration gradually increases due to contact with the gas. When the processing liquid having absorbed the solvent is directly returned to the processing tanks 66, 68, and 70, the solvent concentration of the processing liquid in the entire processing tank increases, and even if the processing liquid is supplied to the processing tower, the processing liquid is continuously supplied. Solvent cannot be absorbed in a good state (solvent collection efficiency decreases).

【0003】このため、溶剤吸収効率を維持するために
は、新鮮処理水Wを導水管72から処理槽70へ連続的
に給水する必要があり、補給水量の削減を図ることがで
きない。
For this reason, in order to maintain the solvent absorption efficiency, it is necessary to continuously supply fresh treated water W from the water pipe 72 to the treatment tank 70, and it is not possible to reduce the amount of makeup water.

【0004】また、散水型気液接触装置58の処理槽6
6の排水管74から最終的に排出される処理液の溶剤濃
度を如何に高濃度とし、蒸留して再利用するかがランニ
ングコストを削減する上で大きなポイントとなる。
[0004] Further, the processing tank 6 of the watering type gas-liquid contact device 58 is used.
A key point in reducing the running cost is how to make the solvent concentration of the treatment liquid finally discharged from the drain pipe 74 of No. 6 high, and then recycle it by distillation.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事実を考
慮して、補給水量を削減し、溶剤吸収効率を維持すると
共に最終的に排出される処理液の溶剤濃度を高濃度とす
ることを課題とする。
SUMMARY OF THE INVENTION In view of the above facts, the present invention aims to reduce the amount of makeup water, maintain the solvent absorption efficiency, and increase the solvent concentration of the finally discharged processing solution. Make it an issue.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明で
は、第1処理塔と第1処理槽で第1気液接触ユニット
が、第2処理塔と第2処理槽で第2気液接触ユニットが
構成され、並列的に配置されている。第1処理塔及び第
2処理塔には、ガス切替え手段によりガス発生源からガ
スが選択的に導入される。
According to the first aspect of the present invention, the first gas-liquid contact unit is used in the first processing tower and the first processing tank, and the second gas-liquid contact unit is used in the second processing tower and the second processing tank. Contact units are configured and arranged in parallel. Gas is selectively introduced into the first processing tower and the second processing tower from a gas generation source by gas switching means.

【0007】また、第1処理槽及び第2処理槽には、送
水切替え手段により下流側の処理槽から処理液が選択的
に送水される。そして、第1処理槽及び第2処理槽に
は、排水手段が設けられており、第1処理槽又は第2処
理槽内の処理液を選択的に排水する。
Further, the processing liquid is selectively supplied to the first processing tank and the second processing tank from the downstream processing tank by the water supply switching means. The first processing tank and the second processing tank are provided with drainage means for selectively draining the processing liquid in the first processing tank or the second processing tank.

【0008】この構成では、例えばガスを第1処理塔へ
導入してガス中の溶剤を連続的に回収している間に、第
2処理槽内の処理液を溶剤を殆ど含まない処理液に入れ
替え、第2処理槽内の処理液の溶剤濃度が高くなり溶剤
の捕集率が低下してきたとき、ガス切替え手段を切替え
て、ガス発生源からガスを第2処理塔へ導入してガス中
の溶剤を連続的に回収する。そして、第2処理塔でガス
中の溶剤が回収されている間に、第1処理槽内の処理液
を溶剤を殆ど含まない処理液に入れ替えてる。
In this configuration, for example, while the gas is introduced into the first processing tower and the solvent in the gas is continuously recovered, the processing liquid in the second processing tank is converted to a processing liquid containing almost no solvent. When the solvent concentration of the processing solution in the second processing tank increases and the solvent collection rate decreases, the gas switching means is switched, and gas is introduced from the gas generation source into the second processing tower to replace the gas. Is continuously recovered. Then, while the solvent in the gas is being recovered in the second processing tower, the processing liquid in the first processing tank is replaced with a processing liquid containing almost no solvent.

【0009】以上のような操作を交互に行なうことによ
り、少量の処理液でガス中の溶剤の除去率を向上させる
ことができる。また、第1処理槽及び第2処理槽から高
濃度の処理液を排水することができるので、水/溶剤分
離装置をコンパクトに設計でき、且つ設備のランニング
コストを削減することができる。
By performing the above operations alternately, the removal rate of the solvent in the gas can be improved with a small amount of the processing liquid. In addition, since a high-concentration processing solution can be drained from the first processing tank and the second processing tank, the water / solvent separation device can be designed to be compact, and the running cost of the equipment can be reduced.

【0010】なお、第1処理塔或は第2処理塔で処理さ
れたガスは、下流側の処理塔を順次通過して、最終的に
は大気に放出される。また、下流側の処理塔へ送られた
ガスは、下流側の処理槽から下流側の処理塔へ供給され
た処理水と接触して、ガス中の溶剤が吸収される。
[0010] The gas processed in the first processing tower or the second processing tower sequentially passes through the downstream processing tower, and is finally discharged to the atmosphere. Further, the gas sent to the downstream processing tower comes into contact with the processing water supplied from the downstream processing tank to the downstream processing tower, and the solvent in the gas is absorbed.

【0011】溶剤を吸収した還流処理液と混合された処
理液の一部は、上述したように、第1処理槽或は第2処
理槽へ送られる。この処理液は、ガス中に含まれる溶剤
濃度は低い。
A part of the processing liquid mixed with the reflux processing liquid having absorbed the solvent is sent to the first processing tank or the second processing tank as described above. This processing liquid has a low concentration of the solvent contained in the gas.

【0012】請求項2に記載の発明では、第1処理槽及
び第2処理槽に濃度検出手段が設けられており、各処理
槽の処理液濃度を検出する。この濃度検出手段の検出結
果に基づき、制御手段が、ガス切替え手段、送水切替え
手段、及び排水手段を作動させ、下記のように気液接触
装置を制御する。
According to the second aspect of the invention, the first processing tank and the second processing tank are provided with concentration detecting means for detecting the concentration of the processing liquid in each processing tank. Based on the detection result of the concentration detection means, the control means activates the gas switching means, the water supply switching means, and the drainage means, and controls the gas-liquid contact device as described below.

【0013】すなわち、ガスを第1処理塔へ導入してい
るときは、第2処理槽へ処理液を送り第2処理槽内の処
理液を入れ替える。また、第1処理槽の処理液濃度が所
定値以上になると、ガスを第2処理塔へ導入し、ガス中
の溶剤の回収を連続して続ける。このとき、第1処理槽
へ下流側の処理槽から処理液を送り、第1処理槽内の処
理液を入れ替える。
That is, when the gas is being introduced into the first processing tower, the processing liquid is sent to the second processing tank and the processing liquid in the second processing tank is replaced. When the concentration of the processing liquid in the first processing tank becomes equal to or higher than a predetermined value, the gas is introduced into the second processing tower, and the solvent in the gas is continuously collected. At this time, the processing liquid is sent from the downstream processing tank to the first processing tank, and the processing liquid in the first processing tank is replaced.

【0014】このような制御を交互に行なうことで、ガ
ス中の溶剤を高効率で捕集することができ、また、排水
される処理液も高濃度となる。
By alternately performing such control, the solvent in the gas can be collected with high efficiency, and the concentration of the treated liquid discharged becomes high.

【0015】請求項3に記載の発明では、複数の処理塔
を順次通過するガスと処理塔へ供給される処理液とを接
触させ、ガス中の溶剤を処理液に吸収させる気液接触方
法において、ガス発生源からガスが導入される気液接触
ユニットを複数設け、前記気液接触ユニットへガスを選
択的に導入して、ガスを導入していない気液接触ユニッ
トの処理液を入れ替えることを特徴としている。
According to a third aspect of the present invention, there is provided a gas-liquid contact method in which a gas sequentially passing through a plurality of processing towers is brought into contact with a processing liquid supplied to the processing tower, and a solvent in the gas is absorbed by the processing liquid. Providing a plurality of gas-liquid contact units into which gas is introduced from a gas generation source, selectively introducing gas into the gas-liquid contact unit, and replacing the processing liquid in the gas-liquid contact unit into which gas is not introduced. Features.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1及び図2に示すように、本形態に係る
気液接触装置10は、処理塔20と処理槽22で構成さ
れる第1気液接触ユニット50、処理塔52と処理槽5
4で構成される第2気液接触ユニット56、処理塔16
と処理槽18で構成される第3気液接触ユニット80、
処理塔12と処理槽14で構成される第4気液接触ユニ
ット82を備えている。
As shown in FIGS. 1 and 2, the gas-liquid contact device 10 according to the present embodiment includes a first gas-liquid contact unit 50 including a processing tower 20 and a processing tank 22, a processing tower 52 and a processing tank 5.
Second gas-liquid contact unit 56 composed of the four, processing tower 16
A third gas-liquid contact unit 80 composed of
A fourth gas-liquid contact unit 82 including the processing tower 12 and the processing tank 14 is provided.

【0018】そして、第1気液接触ユニット50と第2
気液接触ユニット56は並列的に配置され、第3気液接
触ユニット80、第4気液接触ユニット82が直列的に
配置されている。
The first gas-liquid contact unit 50 and the second
The gas-liquid contact unit 56 is arranged in parallel, and the third gas-liquid contact unit 80 and the fourth gas-liquid contact unit 82 are arranged in series.

【0019】処理槽14には、導水管24から処理水と
して新鮮な水が補給されている。また、処理槽14の側
壁に接続された給水管26には送液ポンプ28が設けら
れており、送液ポンプ28で処理塔12の頂部へ揚水さ
れた水は散水装置32によって、下方へ向けて散水され
る。
The treatment tank 14 is supplied with fresh water as treatment water from a water pipe 24. A liquid feed pump 28 is provided in a water supply pipe 26 connected to the side wall of the processing tank 14, and water pumped to the top of the processing tower 12 by the liquid feed pump 28 is directed downward by a sprinkler 32. Is sprinkled.

【0020】一方の処理塔20及び処理塔52の外周壁
には、プラント等から排出された揮発性有機化合物であ
るMEKガスGが取り込まれるガス管34、ガス管84
が接続されており、分岐部には電動ダンパ86が設けら
れている。この電動ダンパ86を切替えることで、ME
KガスGが選択的に処理塔20及び処理塔52へ導入さ
れる。
On the outer peripheral walls of the processing tower 20 and the processing tower 52, a gas pipe 34 and a gas pipe 84 into which MEK gas G which is a volatile organic compound discharged from a plant or the like is taken.
Are connected, and an electric damper 86 is provided at the branch portion. By switching this electric damper 86, ME
The K gas G is selectively introduced into the processing tower 20 and the processing tower 52.

【0021】このガス管34から処理塔20へ取り込ま
れたMEKガスGは上昇しながら散水装置32で散水さ
れた水と接触して含有する溶剤の濃度が低下される。ガ
ス管84から処理塔52へ導入されたMEKガスGも同
様に処理される。
The MEK gas G taken into the processing tower 20 from the gas pipe 34 comes into contact with the water sprinkled by the sprinkler 32 while the concentration of the contained solvent is reduced. The MEK gas G introduced from the gas pipe 84 to the processing tower 52 is also processed in the same manner.

【0022】そして、水と接触したMEKガスGは、処
理塔20或は処理塔52の頂部に接続されたガス管36
又はガス管88を通じて、側面から上流側の処理塔16
内へ取り込まれる。処理塔16内のMEKガスは、水と
接触して溶剤がさらに回収され、ガス管38を通じて、
側面から上流側の処理塔12内へ取り込まれる。ここ
で、また、水と接触して溶剤が回収され、排気管40か
ら環境に影響を与えないガスとして大気に放出される。
The MEK gas G that has come into contact with the water is supplied to the gas pipe 36 connected to the top of the processing tower 20 or 52.
Alternatively, the processing tower 16 on the upstream side from the side through the gas pipe 88.
It is taken in. The MEK gas in the processing tower 16 is brought into contact with water to further recover the solvent, and through the gas pipe 38,
It is taken into the processing tower 12 on the upstream side from the side surface. Here, the solvent is recovered by coming into contact with water, and is released from the exhaust pipe 40 to the atmosphere as a gas that does not affect the environment.

【0023】なお、ガス管36とガス管88の合流部に
は、電動ダンパ96が設けられており、処理塔20、5
2のどちらかの一方が稼動していないときは、稼動して
いない処理塔へガスが漏れないように一方のガス管を閉
じている。
An electric damper 96 is provided at the junction of the gas pipe 36 and the gas pipe 88, and
When one of the two is not operating, one of the gas pipes is closed so that gas does not leak to the processing tower that is not operating.

【0024】一方、処理塔12内でMEKガスと接触し
た水は、処理槽14の液面に口部が水没した還流管42
を通じて処理槽14内へ還流する。ここで、還流水は貯
留水と混合され、上述したように、給水管26を通じて
散水装置32へ送られる。
On the other hand, the water that has come into contact with the MEK gas in the processing tower 12 is supplied to the reflux pipe 42 whose mouth is submerged in the liquid level of the processing tank 14.
To the inside of the processing tank 14. Here, the reflux water is mixed with the stored water and sent to the water sprinkling device 32 through the water supply pipe 26 as described above.

【0025】また、処理槽14には、処理槽18へ水を
送る送水管44が設けられており、処理塔16でMEK
ガスと接触して溶剤を含む還流水と貯留水の混合水が処
理槽18へ送られる。
The processing tank 14 is provided with a water pipe 44 for sending water to the processing tank 18.
A mixture of reflux water and stored water containing a solvent in contact with the gas is sent to the treatment tank 18.

【0026】処理槽18と処理槽22及び処理槽54と
は、送水管46、92で接続されている。送水管46と
送水管92の合流部には電磁弁94が配設されており、
処理槽18の水の行き先を選択できる。
The processing tank 18, the processing tank 22 and the processing tank 54 are connected by water pipes 46 and 92. An electromagnetic valve 94 is provided at the junction of the water pipe 46 and the water pipe 92.
The destination of the water in the processing tank 18 can be selected.

【0027】なお、処理槽14に導水管24から補給さ
れる水量と処理槽14から処理槽18へ送水される水量
はほぼ同じであり、また、処理槽18から処理槽22或
は処理槽54へ送水される水と、処理槽22或は処理槽
54から排水される排水量はほぼ同じである。
The amount of water supplied to the processing tank 14 from the water pipe 24 and the amount of water sent from the processing tank 14 to the processing tank 18 are substantially the same. And the amount of wastewater drained from the processing tank 22 or 54 is substantially the same.

【0028】一方、処理槽22及び処理槽54に濃度セ
ンサ98、100が設けられており、各処理槽の処理液
濃度を検出して、制御部102へ信号を送る。制御部1
02は、電動バルブ86、96及び電磁弁94、108
と接続されており、濃度センサ98、100の検出結果
に基づき、MEKガス及び処理水の行き先を切替える。
On the other hand, concentration sensors 98 and 100 are provided in the processing tanks 22 and 54 to detect the concentration of the processing liquid in each processing tank and send a signal to the control unit 102. Control unit 1
02 denotes electric valves 86 and 96 and solenoid valves 94 and 108
And switches the destinations of the MEK gas and the treated water based on the detection results of the concentration sensors 98 and 100.

【0029】この制御方法では、MEKガスを処理塔2
0へ導入しているときは、処理槽18から送水管92を
通じて処理槽54へ水を送り、排水管48から溶剤濃度
が高い水を排水して、処理槽54の中を低濃度の水に置
き換える。
In this control method, MEK gas is supplied to the processing tower 2
0, water is sent from the processing tank 18 to the processing tank 54 through the water supply pipe 92, and water having a high solvent concentration is drained from the drain pipe 48, and the water in the processing tank 54 is converted into low-concentration water. replace.

【0030】ここで、濃度センサ98が検出した処理槽
22内の水の溶剤濃度が所定値以上になると、電動ダン
パ86を切替えてMEKガスを処理塔52へ導入する。
この処理塔52へは、低濃度の水が処理槽54から供給
されるため、MEKガス中の溶剤が効率良く吸収され
る。また、電動ダンパ96が切替えられ、処理塔52で
処理されたMEKガスは、ガス管88を通じて処理塔1
6へ送られる。
Here, when the concentration of the solvent in the water in the processing tank 22 detected by the concentration sensor 98 exceeds a predetermined value, the electric damper 86 is switched to introduce the MEK gas into the processing tower 52.
Since low-concentration water is supplied to the processing tower 52 from the processing tank 54, the solvent in the MEK gas is efficiently absorbed. The electric damper 96 is switched, and the MEK gas processed in the processing tower 52 is passed through the gas pipe 88 to the processing tower 1.
Sent to 6.

【0031】このとき、電磁弁94が切替えられ、処理
槽18から送水管46を通じて処理槽22へ水を送り、
電磁弁108を切替え排水管106から溶剤濃度が高い
水を排水して、処理槽22の中を低濃度の水に置き換え
る。
At this time, the solenoid valve 94 is switched, and water is sent from the processing tank 18 to the processing tank 22 through the water supply pipe 46.
The electromagnetic valve 108 is switched to drain water having a high solvent concentration from the drain pipe 106, and the inside of the treatment tank 22 is replaced with water having a low concentration.

【0032】以上のような操作を繰り返すことにより、
MEKガス中の溶剤を高効率で捕集することができ、ま
た、排水される水の溶剤濃度も高濃度となる。このた
め、次工程の回収効率が上がり、設備コスト及びランニ
ングコストが削減できる。
By repeating the above operation,
The solvent in the MEK gas can be collected with high efficiency, and the solvent concentration of the drained water also becomes high. For this reason, the recovery efficiency in the next step is increased, and equipment costs and running costs can be reduced.

【0033】なお、気液接触方式としては、散水方式、
充填方式が知られているが、方式についてば特定されな
い。また、直列に配置された気液接触のユニットの数
は、本形態のように2つに特定されるものでなく、1つ
以上あればよい。
The gas-liquid contact method includes a water spray method,
Although the filling method is known, the method is not specified. The number of gas-liquid contact units arranged in series is not limited to two as in the present embodiment, but may be one or more.

【0034】さらに、処理対象となる揮発性有機化合物
ガス濃度は、100ppm以上が好ましく、1000p
pm以上が効果が顕著に現れる。また、溶剤ガスの種類
として、水との溶解度パラメータの差が19(cal・
cm-31/2以内が好ましく、15(cal・cm-3
1/2以内がより好ましい(溶解度パラメータ:Hild
ebrandの溶解パラメータ)。
Further, the concentration of the volatile organic compound gas to be treated is preferably 100 ppm or more,
At pm or more, the effect appears remarkably. Further, as a type of the solvent gas, a difference in solubility parameter with water is 19 (cal ·
cm −3 ) within 1/2 , preferably 15 (cal · cm −3 )
More preferably within 1/2 (solubility parameter: Hild)
ebrand dissolution parameters).

【0035】さらに、揮発性有機化合物の溶剤は水溶性
であればよく、メチルエチルケトンに限定されず、メタ
ノール、エタノール、及びn−プロパノール等のアルコ
ール類、エチレングリコール等の多価アルコール類、ア
セトン、メチルアセトン、及びシクロヘキサン等のケト
ン類、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチ
ル、及び乳酸エチル等のエステル類でもよい。さらに、
混合溶剤ガスでも処理可能である。
Further, the solvent of the volatile organic compound is not limited to methyl ethyl ketone as long as it is water-soluble. Alcohols such as methanol, ethanol and n-propanol, polyhydric alcohols such as ethylene glycol, acetone, methyl Ketones such as acetone and cyclohexane, and esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, and ethyl lactate may be used. further,
It can be treated with mixed solvent gas.

【0036】また、上流側と下流側の処理塔及び処理槽
の容量比率差(気液接触時間差)は、要求される処理条
件によって設定されるものであり、限定される訳ではな
い。
The capacity ratio difference (gas-liquid contact time difference) between the upstream and downstream processing towers and processing tanks is set according to required processing conditions and is not limited.

【0037】さらに、補給される水の温度は30℃以下
が好ましく、15℃以下がより好ましい。また、補給さ
れる水の溶剤濃度は500ppm以下が好ましい。さら
に、本例では、MEKガス中の溶剤を回収する処理水と
して水を使用したが、汚泥水や微生物を含む活性汚泥で
も同様な効果を得ることができる。
Further, the temperature of the replenished water is preferably 30 ° C. or lower, more preferably 15 ° C. or lower. The solvent concentration of the replenished water is preferably 500 ppm or less. Further, in this example, water was used as the treated water for recovering the solvent in the MEK gas, but the same effect can be obtained with activated sludge containing sludge water or microorganisms.

【0038】次に、従来技術として図3に示した気液接
触装置58と本形態に係る気液接触装置10の能力を比
較して見る。
Next, the performance of the gas-liquid contact device 58 shown in FIG. 3 as a prior art and the capability of the gas-liquid contact device 10 according to this embodiment will be compared.

【0039】放出源より放出されるガスを、揮発性有機
化合物であるMEKガスとし、MEKガスの風量を1.
0m3/min、濃度を1000ppm、また、補給水
の水温を10〜15℃として連続的に処理する。
The gas emitted from the emission source is MEK gas, which is a volatile organic compound, and the flow rate of the MEK gas is 1.
The treatment is continuously performed at 0 m 3 / min, the concentration is 1000 ppm, and the temperature of the makeup water is 10 to 15 ° C.

【0040】図3に示す気液接触装置58では、新鮮水
Wを1リットル/minで処理槽70補給し続けると、
大気に放出されるガスの溶剤除去率が50%、処理槽6
6の排水管74から排水される水の溶剤濃度が1500
ppmとなり、これ以上の結果を出すことができなかっ
た。
In the gas-liquid contact device 58 shown in FIG. 3, if the processing tank 70 is continuously supplied with fresh water W at 1 liter / min,
Solvent removal rate of gas released to the atmosphere is 50%, treatment tank 6
The solvent concentration of the water discharged from the drain pipe 74 of No. 6 is 1500
ppm, and no further results could be obtained.

【0041】一方、図1及び図2に示す気液接触装置1
0では、MEKガスの風量:1.0m3/min、濃
度:1000ppm、補給水の水温:10〜15℃と条
件は同じであるが、気液接触ユニットを交互に切替え
て、ガス中の溶剤を除去している。
On the other hand, the gas-liquid contact device 1 shown in FIGS.
At 0, the flow rate of the MEK gas is 1.0 m 3 / min, the concentration is 1000 ppm, the temperature of the makeup water is 10 to 15 ° C., and the conditions are the same. Has been removed.

【0042】本例では、運転開始後100分、MEKガ
スを処理塔52→処理塔16→処理塔12の経路で流
し、水を処理槽14→処理槽18→処理槽22の経路で
流すことで、MEKガス中の溶剤濃度が50%まで低下
し、処理槽22から排水される水の溶剤濃度が2500
ppmmまで上昇した。
In this example, 100 minutes after the start of the operation, MEK gas is caused to flow through the processing tower 52 → the processing tower 16 → the processing tower 12, and water is allowed to flow through the processing tank 14 → the processing tank 18 → the processing tank 22. As a result, the solvent concentration in the MEK gas decreases to 50%, and the solvent concentration of the water discharged from the treatment tank 22 becomes 2500.
ppmm.

【0043】そして、次の100分を、MEKガスを処
理塔22→処理塔16→処理塔12の経路で流し、水を
処理槽14→処理槽18→処理槽54の経路で流した。
Then, for the next 100 minutes, MEK gas was flowed through the route of the processing tower 22 → the processing tower 16 → the processing tower 12, and water was flowed through the route of the processing bath 14 → the processing bath 18 → the processing bath 54.

【0044】このように、第1気液接触ユニット50と
第2気液接触ユニット56を交互に切替えることで、M
EKガス中の溶剤濃度が平均で75%となり、処理槽2
2から排水される水の溶剤濃度が2500ppmmまで
上昇した。
As described above, by alternately switching the first gas-liquid contact unit 50 and the second gas-liquid contact unit 56, M
The concentration of the solvent in the EK gas becomes 75% on average,
The solvent concentration of the water discharged from 2 increased to 2500 ppmm.

【0045】ここで、MEKガスを発生する製造工程の
1つであるPS版の製造工程を簡単に説明しておく。
Here, the manufacturing process of the PS plate, which is one of the manufacturing processes for generating the MEK gas, will be briefly described.

【0046】PS版は、99.5重量%アルミニウム
に、銅を0.01重量%、チタンを0.03重量%、鉄
を0.3重量%、ケイ素を0.1重量%含有するJIS
―A1050アルミニウム材の厚み0.30mm圧延板
を、400メッシュのパミストン(共立窯業製)の20
重量%水性懸濁液と、回転ナイロンブラシ(6,10−
ナイロン)とを用いてその表面を砂目立てした後、よく
水で洗浄した。
The PS plate is a JIS containing 99.5% by weight of aluminum, 0.01% by weight of copper, 0.03% by weight of titanium, 0.3% by weight of iron, and 0.1% by weight of silicon.
-A1050 rolled plate of aluminum material with a thickness of 0.30 mm was converted to 400 mesh pumice stone (manufactured by Kyoritsu Ceramics).
Weight percent aqueous suspension and a rotating nylon brush (6,10-
(Nylon) and the surface was grained, and then washed well with water.

【0047】これを15重量%水酸化ナトリウム水溶液
(アルミニウム4.5重量%含有)に浸漬してアルミニ
ウムの溶解量が5g/m2 になるようにエッチングした
後、流水で水洗した。さらに、1重量%硝酸で中和し、
次に0.7重量%硝酸水溶液(アルミニウム0.5重量
%含有)中で、陽極時電圧10.5ボルト、陰極時電圧
9.3ボルトの矩形波交番波形電圧(電流比r=0.9
0、特公昭58−5796号公報実施例に記載されてい
る電流波形)を用いて160クーロン/dm2の陽極時
電気量で電解粗面化処理を行った。水洗後、35℃の1
0重量%水酸化ナトリウム水溶液中に浸漬して、アルミ
ニウム溶解量が1g/m2 になるようにエッチングした
後、水洗した。次に、50℃30重量%の硫酸水溶液中
に浸漬し、デスマットした後、水洗した。
This was immersed in a 15% by weight aqueous solution of sodium hydroxide (containing 4.5% by weight of aluminum), etched so that the amount of aluminum dissolved was 5 g / m 2 , and washed with running water. Furthermore, neutralize with 1% by weight nitric acid,
Next, in a 0.7% by weight nitric acid aqueous solution (containing 0.5% by weight of aluminum), a rectangular wave alternating waveform voltage (current ratio r = 0.9) having a voltage at the time of anode of 10.5 V and a voltage of cathode at 9.3 V was used.
0, a current waveform described in Examples of JP-B-58-5796), and an electrolytic surface roughening treatment was carried out at an anode electricity amount of 160 coulomb / dm 2 . After washing with water,
It was immersed in a 0% by weight aqueous sodium hydroxide solution, etched so that the amount of aluminum dissolved was 1 g / m 2 , and washed with water. Next, it was immersed in a 30% by weight aqueous sulfuric acid solution at 50 ° C., desmutted, and washed with water.

【0048】さらに、35℃の硫酸20重量%水溶液
(アルミニウム0.8重量%含有)中で直流電流を用い
て、多孔性陽極酸化皮膜形成処理を行った。すなわち電
流密度13A/dm2 で電解を行い、電解時間の調節に
より陽極酸化皮膜重量2.7g/m2 とした。ジアゾ樹
脂と結合剤を用いたネガ型感光性平版印刷版を作成する
為に、この支持体を水洗後、70℃のケイ酸ナトリウム
の3重量%水溶液に30秒間浸漬処理し、水洗乾燥し
た。
Further, a porous anodic oxide film forming treatment was performed in a 20% by weight aqueous sulfuric acid solution (containing 0.8% by weight of aluminum) at 35 ° C. using a direct current. That is, electrolysis was performed at a current density of 13 A / dm 2 , and the anodic oxide film weight was adjusted to 2.7 g / m 2 by adjusting the electrolysis time. To prepare a negative photosensitive lithographic printing plate using a diazo resin and a binder, the support was washed with water, immersed in a 3% by weight aqueous solution of sodium silicate at 70 ° C. for 30 seconds, washed with water and dried.

【0049】以上のようにして得られたアルミニウム支
持体は、マクベスRD920反射濃度計で測定した反射
濃度は0.30で、JIS B00601に規定する中
心線平均粗さRaは0.58μmであった。
[0049] The thus-obtained aluminum support, reflection density was measured with Macbeth RD920 reflection densitometer 0.30, the center line average roughness R a as defined in JIS B00601 is 0.58μm met Was.

【0050】次に上記支持体にメチルメタクリレート/
エチルアクリレート/2−アクリルアミド−2−メチル
プロパンスルホン酸ナトリウム共重合体(平均分子量約
6万)(モル比50/30/20)の1.0重量%水溶
液をロールコーターにより乾燥後の塗布量が0.05g
/m2 になるように塗布した。
Next, methyl methacrylate /
The coating amount after drying a 1.0% by weight aqueous solution of an ethyl acrylate / 2-acrylamide-2-methylpropanesulfonate sodium copolymer (average molecular weight: about 60,000) (molar ratio: 50/30/20) with a roll coater is reduced. 0.05g
/ M 2 .

【0051】さらに、塗布液として下記感光液−1を、
本形態で用いたバーコーターを用いて塗布し、110℃
で45秒間乾燥させた。乾燥塗布量は2.0g/m2
あった。 感光液−1 ジアゾ樹脂−1 0.50g 結合剤−1 5.00g スチライトHS−2(大同工業(株)製) 0.10g ビクトリアピュアブルーBOH 0.15g トリクレジルホスフェート 0.50g ジピコリン酸 0.20g FC−430(3M社製界面活性剤) 0.05g 溶剤 1−メトキシ−2−プロパノール 25.00g 乳酸メチル 12.00g メタノール 30.00g メチルエチルケトン 30.00g 水 3.00g
Further, the following photosensitive solution-1 was used as a coating solution.
Apply using the bar coater used in the present embodiment, 110 ° C
For 45 seconds. The dry coating amount was 2.0 g / m 2 . Photosensitive solution-1 Diazo resin-1 0.50 g Binder-1 5.00 g Stylite HS-2 (manufactured by Daido Kogyo Co., Ltd.) 0.10 g Victoria Pure Blue BOH 0.15 g Tricresyl phosphate 0.50 g Dipicolinic acid 0 .20 g FC-430 (Surfactant manufactured by 3M) 0.05 g Solvent 1-methoxy-2-propanol 25.00 g Methyl lactate 12.00 g Methanol 30.00 g Methyl ethyl ketone 30.00 g Water 3.00 g

【0052】上記のジアゾ樹脂―1は、次ぎのようにし
て得たものである。まず、4−ジアゾジフェニルアミン
硫酸塩(純度99.5%)29.4gを25℃にて、9
6%硫酸70mlに徐々に添加し、かつ20分間攪拌し
た。これに、パラホルムアルデヒド(純度92%)3.
26gを約10分かけて徐々に添加し、該混合物を30
℃にて、4時間攪拌し、縮合反応を進行させた。なお、
上記ジアゾ化合物とホルムアルデヒドとの縮合モル比は
1:1である。この反応生成物を攪拌しつつ氷水2リッ
トル中に注ぎ込み、塩化ナトリウム130gを溶解した
冷濃厚水溶液で処理した。この沈澱物を吸引濾過により
回収し、部分的に乾燥した固体を1リットルの水に溶解
し、濾過し、氷で冷却し、かつ、ヘキサフルオロリン酸
カリ23gを溶解した水溶液で処理した。最後に、この
沈澱物を濾過して回収し、かつ風乾して、ジアゾ樹脂−
1gを得た。
The above diazo resin-1 was obtained as follows. First, 29.4 g of 4-diazodiphenylamine sulfate (99.5% purity) was added at 25 ° C to 9
It was slowly added to 70 ml of 6% sulfuric acid and stirred for 20 minutes. To this, paraformaldehyde (purity 92%) 3.
26 g was added gradually over about 10 minutes, and the mixture was added to 30
The mixture was stirred at 4 ° C. for 4 hours to allow the condensation reaction to proceed. In addition,
The condensation molar ratio between the diazo compound and formaldehyde is 1: 1. The reaction product was poured into 2 liters of ice water with stirring, and treated with a cold concentrated aqueous solution in which 130 g of sodium chloride was dissolved. The precipitate was collected by suction filtration, and the partially dried solid was dissolved in 1 liter of water, filtered, cooled with ice and treated with an aqueous solution of 23 g of potassium hexafluorophosphate. Finally, the precipitate is recovered by filtration and air-dried to give the diazo resin-
1 g was obtained.

【0053】結合剤−1は、2−ヒドロキシエチルメタ
クリレート/アクリロニトリル/メチルメタクリレート
/メタクリル酸共重合体(重量比50/20/26/
4、平均分子量75,000、酸含量0.4meq/
g)の水不溶性、アルカリ水可溶性の皮膜形成性高分子
である。
Binder-1 was a 2-hydroxyethyl methacrylate / acrylonitrile / methyl methacrylate / methacrylic acid copolymer (weight ratio 50/20/26 /
4, average molecular weight 75,000, acid content 0.4 meq /
g) is a water-insoluble, alkaline water-soluble film-forming polymer.

【0054】スチライトHS−2(大同工業(株)製)
は、結合剤よりも感脂性の高い高分子化合物であって、
スチレン/マレイン酸モノ−4−メチル−2−ペンチル
エステル=50/50(モル比)の共重合体であり、平
均分子量は約100,000であった。このようにして
作成した感光層の表面に下記の様にしてマット層形成用
樹脂液を吹き付けてマット層を設けた。
Stylite HS-2 (manufactured by Daido Industry Co., Ltd.)
Is a polymer compound having a higher oil sensitivity than the binder,
It was a copolymer of styrene / mono-4-methyl-2-pentyl maleate = 50/50 (molar ratio), and the average molecular weight was about 100,000. A mat layer-forming resin solution was sprayed on the surface of the thus prepared photosensitive layer as described below to form a mat layer.

【0055】マット層形成用樹脂液としてメチルメタク
リレート/エチルアクリレート/2−アクリルアミド−
2−メチルプロパンスルホン酸(仕込重量比65:2
0:15)共重合体の一部をナトリウム塩とした12%
水溶液を準備し、回転霧化静電塗装機で霧化頭回転数2
5,000rpm、樹脂液の送液量は4.0ml/分、
霧化頭への印加電圧は−90kV、塗布時の周囲温度は
25℃、相対湿度は50%とし、塗布液2.5秒で塗布
面に蒸気を吹き付けて湿潤させ、ついで湿潤した3秒後
に温度60℃、湿度10%の温風を5秒間吹き付けて乾
燥させた。マットの高さは平均約6μm、大きさは平均
約30μm、塗布量は150mg/m2 であった。
As a resin solution for forming a mat layer, methyl methacrylate / ethyl acrylate / 2-acrylamide-
2-methylpropanesulfonic acid (65: 2 weight ratio charged)
0:15) 12% of a part of the copolymer as a sodium salt
Prepare an aqueous solution and use a rotary atomizing electrostatic coating machine to atomize the head 2 times
5,000 rpm, the feeding amount of the resin liquid is 4.0 ml / min,
The voltage applied to the atomizing head was -90 kV, the ambient temperature during coating was 25 ° C, the relative humidity was 50%, and the coating surface was sprayed with steam for 2.5 seconds to wet the coating surface. Hot air with a temperature of 60 ° C. and a humidity of 10% was blown for 5 seconds to dry. The average height of the mat was about 6 μm, the average size was about 30 μm, and the application amount was 150 mg / m 2 .

【0056】[0056]

【発明の効果】本発明は上記構成としたので、補給水量
を削減し、溶剤吸収効率を維持すると共に最終的に排出
される処理液の溶剤濃度を高濃度とすることができる。
Since the present invention has the above-described structure, the amount of replenishing water can be reduced, the solvent absorption efficiency can be maintained, and the solvent concentration of the treatment liquid finally discharged can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本形態に係る気液接触装置を示す斜視図であ
る。
FIG. 1 is a perspective view showing a gas-liquid contact device according to the present embodiment.

【図2】本形態に係る気液接触装置を示す側面図であ
る。
FIG. 2 is a side view showing the gas-liquid contact device according to the embodiment.

【図3】従来の気液接触装置を示す側面図である。FIG. 3 is a side view showing a conventional gas-liquid contact device.

【符号の説明】[Explanation of symbols]

12 処理塔(下流側の処理塔) 14 処理槽(下流側の処理槽) 16 処理塔(下流側の処理塔) 18 処理槽(下流側の処理槽) 20 処理塔(第1処理塔) 22 処理槽(第1処理槽) 50 第1気液接触ユニット 52 処理塔(第2処理塔) 54 処理槽(第2処理槽) 56 第2気液接触ユニット 86 電動ダンパ(ガス切替え手段) 94 電磁弁(送水切替え手段) 96 電動ダンパ 98 濃度センサ(濃度検出手段) 100 濃度センサ(濃度検出手段) 102 制御部(制御手段) 108 電磁弁(排水手段) Reference Signs List 12 processing tower (downstream processing tower) 14 processing tank (downstream processing tank) 16 processing tower (downstream processing tower) 18 processing tank (downstream processing tank) 20 processing tower (first processing tower) 22 Processing tank (first processing tank) 50 First gas-liquid contact unit 52 Processing tower (second processing tower) 54 Processing tank (second processing tank) 56 Second gas-liquid contact unit 86 Electric damper (gas switching means) 94 Electromagnetic Valve (water supply switching means) 96 Electric damper 98 Density sensor (concentration detection means) 100 Density sensor (concentration detection means) 102 Control unit (control means) 108 Electromagnetic valve (drainage means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の処理塔を順次通過するガスと処理
塔へ供給される処理液とを接触させ、ガス中の溶剤を処
理液に吸収させる気液接触装置において、 ガス発生源からガスが導入される第1処理塔と、この第
1処理塔へ処理液を供給する第1処理槽とで構成される
第1気液接触ユニットと、 ガス発生源からガスが導入される第2処理塔と、この第
2処理塔へ処理液を供給する第2処理槽とで構成される
第2気液接触ユニットと、 前記第1処理塔又は前記第2処理塔で処理されたガスが
順次通過する下流側の処理塔と、 前記下流側の処理塔へ処理水を供給すると共に、前記第
1処理槽又は前記第2処理槽へ処理水を送る下流側の処
理槽と、 前記ガス発生源からのガスを前記第1処理塔又は前記第
2処理塔へ選択的に送るガス切替え手段と、 前記下流側の処理槽からの処理水を前記第1処理槽又は
前記第2処理槽へ選択的に送水する送水切替え手段と、 前記第1処理槽及び前記第2処理槽へ設けられ、処理液
を選択的に排水する排水手段と、 を有することを特徴とする気液接触装置。
1. A gas-liquid contacting device in which a gas sequentially passing through a plurality of processing towers is brought into contact with a processing liquid supplied to the processing tower, and a solvent in the gas is absorbed by the processing liquid. A first gas-liquid contact unit comprising a first processing tower to be introduced, a first processing tank for supplying a processing liquid to the first processing tower, and a second processing tower to which gas is introduced from a gas generation source And a second gas-liquid contact unit composed of a second processing tank for supplying a processing liquid to the second processing tower, and a gas processed in the first processing tower or the second processing tower sequentially passing therethrough. A downstream processing tower, a downstream processing tank that supplies the processing water to the downstream processing tower and sends the processing water to the first processing tank or the second processing tank, Gas switching means for selectively sending gas to the first processing tower or the second processing tower, A water supply switching unit for selectively supplying treated water from the downstream treatment tank to the first treatment tank or the second treatment tank; and a treatment liquid provided to the first treatment tank and the second treatment tank. And a drainage means for selectively draining water.
【請求項2】 前記第1処理槽及び前記第2処理槽へ設
けられ処理液濃度を検出する濃度検出手段と、 前記濃度検出手段の検出結果に基づき、前記ガス切替え
手段、前記送水切替え手段、及び排水手段を作動させ、 ガスを前記第1処理塔へ導入しているときは、前記第2
処理槽へ処理液を送り前記第2処理槽内の処理液を入れ
替え、ガスを前記第2処理塔へ導入しているときは、前
記第1処理槽へ処理液を送り前記第1処理槽内の処理液
を入れ替える、制御手段と、 を有することを特徴とする請求項1に記載の気液接触装
置。
2. A concentration detecting means provided in each of the first processing tank and the second processing tank for detecting a concentration of a processing liquid; a gas switching means, a water supply switching means based on a detection result of the concentration detecting means; And when the gas is introduced into the first treatment tower, the second
When the processing liquid is sent to the processing tank, the processing liquid in the second processing tank is replaced, and when the gas is introduced into the second processing tower, the processing liquid is sent to the first processing tank and the processing liquid is sent to the first processing tank. The gas-liquid contact device according to claim 1, further comprising: a control unit configured to replace the processing liquid.
【請求項3】 複数の処理塔を順次通過するガスと処理
塔へ供給される処理液とを接触させ、ガス中の溶剤を処
理液に吸収させる気液接触方法において、 ガス発生源からガスが導入される気液接触ユニットを複
数設け、前記気液接触ユニットへガスを選択的に導入し
て、ガスを導入していない気液接触ユニットの処理液を
入れ替えることを特徴とする気液接触方法。
3. A gas-liquid contact method in which a gas sequentially passing through a plurality of processing towers is brought into contact with a processing liquid supplied to the processing tower, and a solvent in the gas is absorbed by the processing liquid. A plurality of gas-liquid contacting units to be introduced, a gas being selectively introduced into the gas-liquid contacting unit, and a processing liquid in a gas-liquid contacting unit not introducing a gas being exchanged. .
JP2000338756A 2000-11-07 2000-11-07 Gas-liquid contact device and gas-liquid contact method Pending JP2002136828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338756A JP2002136828A (en) 2000-11-07 2000-11-07 Gas-liquid contact device and gas-liquid contact method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338756A JP2002136828A (en) 2000-11-07 2000-11-07 Gas-liquid contact device and gas-liquid contact method

Publications (1)

Publication Number Publication Date
JP2002136828A true JP2002136828A (en) 2002-05-14

Family

ID=18813919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338756A Pending JP2002136828A (en) 2000-11-07 2000-11-07 Gas-liquid contact device and gas-liquid contact method

Country Status (1)

Country Link
JP (1) JP2002136828A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109416A1 (en) * 2005-04-05 2006-10-19 Mitsui Chemicals Polyurethanes, Inc. Apparatus for polyisocyanate production and apparatus for gas treatment
CN101151243B (en) * 2005-04-05 2011-01-26 三井化学株式会社 Apparatus for polyisocyanate production and apparatus for gas treatment
JP2012503541A (en) * 2008-09-26 2012-02-09 ニューマン システムズ グループ、インコーポレイティッド Gas-liquid contactor and exhaust cleaning system and method
US8668766B2 (en) 2005-02-14 2014-03-11 Neumann Systems Group, Inc. Gas liquid contactor and method thereof
US8814146B2 (en) 2005-02-14 2014-08-26 Neumann Systems Group, Inc. Two phase reactor
US8864876B2 (en) 2005-02-14 2014-10-21 Neumann Systems Group, Inc. Indirect and direct method of sequestering contaminates

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668766B2 (en) 2005-02-14 2014-03-11 Neumann Systems Group, Inc. Gas liquid contactor and method thereof
US8814146B2 (en) 2005-02-14 2014-08-26 Neumann Systems Group, Inc. Two phase reactor
US8864876B2 (en) 2005-02-14 2014-10-21 Neumann Systems Group, Inc. Indirect and direct method of sequestering contaminates
WO2006109416A1 (en) * 2005-04-05 2006-10-19 Mitsui Chemicals Polyurethanes, Inc. Apparatus for polyisocyanate production and apparatus for gas treatment
US7718145B2 (en) 2005-04-05 2010-05-18 Mitsui Chemicals, Inc. Polyisocyanate production system and gas treatment apparatus
CN101151243B (en) * 2005-04-05 2011-01-26 三井化学株式会社 Apparatus for polyisocyanate production and apparatus for gas treatment
US8158086B2 (en) 2005-04-05 2012-04-17 Mitsui Chemicals, Inc. Polyisocyanate production system and gas treatment apparatus
EP2468387A1 (en) * 2005-04-05 2012-06-27 Mitsui Chemicals, Inc. Gas treatment apparatus, particularly for polyisocyanate production system.
KR101255869B1 (en) * 2005-04-05 2013-04-17 미쓰이 가가쿠 가부시키가이샤 Apparatus for polyisocyanate production and apparatus for gas treatment
TWI484996B (en) * 2005-04-05 2015-05-21 Mitsui Chemicals Inc Apparatus for processing gas
JP2012503541A (en) * 2008-09-26 2012-02-09 ニューマン システムズ グループ、インコーポレイティッド Gas-liquid contactor and exhaust cleaning system and method

Similar Documents

Publication Publication Date Title
CN102161534B (en) Device for processing dimethylamine exhaust gas and wastewater
JPWO2002033490A1 (en) Method and apparatus for developing photosensitive resin relief printing plate
JP2002136828A (en) Gas-liquid contact device and gas-liquid contact method
US4961859A (en) Method of treating an aqueous processing waste solution of a non-silver halide light-sensitive material and a device therefor
JP2004249215A (en) Deaeration system of liquid and deaeration method of liquid
CN102402120B (en) Lithographic printing plate support and presensitized plate
JP2002136829A (en) Gas-liquid contact device and gas-liquid contact method
JP2002136827A (en) Gas-liquid contact device and gas-liquid contact method
JP2002191932A (en) Method and apparatus for gas-liquid contact
JP2002126446A (en) Gas-liquid contact equipment and method
JP2001228601A (en) Method for producing photosensitive planographic printing plate
JPH02157084A (en) Treatment of non-silver salt photosensitive material improving in workability of waste liquid treatment and the like, and device therefor
JP2002211159A (en) Method for manufacturing support for lithographic printing plate, support for lithographic printing plate and lithographic printing original plate
JPWO2005084831A1 (en) Method for removing alkali-soluble photosensitive resin
JP2002253917A (en) Gas-liquid contacting device
JP4005317B2 (en) Gas-liquid contact device
JP2002363799A (en) Aluminum plate, method for producing supporting body for planographic printing plate, supporting body for planographic printing plate and planographic printing original plate
JP2003024736A (en) Gas-liquid contact apparatus and freezing, concentration, and separation method
JP2003190938A (en) Freeze-concentration and separation method and apparatus
JP3788943B2 (en) Lithographic printing plate support, method for producing the same, and lithographic printing plate
JP2003190940A (en) Freeze-concentration and separation method and apparatus
JP2002370060A (en) Deaeration system of coating liquid and deaeration method for coating liquid
JP2002336681A (en) Gas-liquid contact apparatus and freezing concentration separation method
CN210915714U (en) Landfill leachate treatment system based on MVR technology and RO device
JP2003145137A (en) Freeze concentration separation method and freeze concentration separation apparatus