JP2002128716A - Method for producing isopropyl alcohol - Google Patents

Method for producing isopropyl alcohol

Info

Publication number
JP2002128716A
JP2002128716A JP2000320214A JP2000320214A JP2002128716A JP 2002128716 A JP2002128716 A JP 2002128716A JP 2000320214 A JP2000320214 A JP 2000320214A JP 2000320214 A JP2000320214 A JP 2000320214A JP 2002128716 A JP2002128716 A JP 2002128716A
Authority
JP
Japan
Prior art keywords
acetone
gas
isopropyl alcohol
reactor
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000320214A
Other languages
Japanese (ja)
Other versions
JP4321838B2 (en
Inventor
Yuzo Ono
有三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000320214A priority Critical patent/JP4321838B2/en
Publication of JP2002128716A publication Critical patent/JP2002128716A/en
Application granted granted Critical
Publication of JP4321838B2 publication Critical patent/JP4321838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing isopropyl alcohol by a vapor phase hydrogenation reaction of acetone, in which an equipment installation cost is reduced and energy can be efficiently utilized. SOLUTION: This method for producing the isopropyl alcohol by subjecting the acetone and hydrogen to the vapor phase reaction is characterized in that an effluent gas from a reactor is brought into contact with the raw material acetone and/or the recovered acetone to vaporize the acetone and thereby to liquefy the produced isopropyl alcohol.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イソプロピルアル
コールの製造方法に関し、詳しくは、アセトンと水素を
気相で反応させ、しかもエネルギーの低減化を計るなど
の高純度イソプロピルアルコールの経済的な製造方法に
関する。イソプロピルアルコールは有機合成の重要な中
間体であり、また、工業上重要な溶媒でもある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing isopropyl alcohol, and more particularly, to an economical method for producing high-purity isopropyl alcohol, for example, by reacting acetone and hydrogen in a gas phase and reducing the energy. About. Isopropyl alcohol is an important intermediate in organic synthesis and an industrially important solvent.

【0002】[0002]

【従来の技術】イソプロピルアルコールは、一般溶剤と
しても使われるが、IC基盤の洗浄剤や、消毒液として
も多く使われており、高純度品が要求されている。製品
純度としては、一般的には99.9重量%以上の物が市
販されている。
2. Description of the Related Art Isopropyl alcohol is used as a general solvent, but is often used as a cleaning agent for IC substrates and a disinfectant, and high purity products are required. As for the product purity, generally, 99.9% by weight or more is commercially available.

【0003】イソプロピルアルコールを製造する方法と
して近年広く利用されている方法は、プロピレンの水和
法である。濃硫酸を触媒としてオレフィンを水和する方
法は古くから知られていたが、この場合硫酸による腐食
という問題がある。
A method widely used in recent years for producing isopropyl alcohol is a hydration method of propylene. A method of hydrating an olefin using concentrated sulfuric acid as a catalyst has been known for a long time, but in this case, there is a problem of corrosion by sulfuric acid.

【0004】最近では、強酸性のイオン交換樹脂を用い
た気液混相の水和反応、あるいは強酸性の固体酸を触媒
に用いた気相水和反応、さらには担体にヘテロポリ酸、
無機酸を担持した触媒を用いた気相接触反応による水和
が広く行われている。
Recently, a gas-liquid mixed phase hydration reaction using a strongly acidic ion exchange resin, a gas phase hydration reaction using a strongly acidic solid acid as a catalyst, and a heteropolyacid,
Hydration by gas phase catalytic reaction using a catalyst supporting an inorganic acid is widely performed.

【0005】イソプロピルアルコールを製造する方法と
して古くからアセトンのカルボニル基を水添する方法も
知られている。例えば、水素化アルミニウムリチウム、
水素化ホウ素ナトリウム等の試薬を用いた還元方法、あ
るいは水素ガスを用いた接触還元方法である。
[0005] As a method for producing isopropyl alcohol, a method of hydrogenating the carbonyl group of acetone has been known for a long time. For example, lithium aluminum hydride,
This is a reduction method using a reagent such as sodium borohydride or a catalytic reduction method using hydrogen gas.

【0006】水素ガスを用いる方法としては、例えば、
液相でラネーニッケル触媒の存在化に水素化反応を行う
方法(特開平3−141235号公報)や酸化銅・酸化
クロム触媒を用いる気相水素化反応を行う方法(特開平
3-41038)等が提案されている。
As a method using hydrogen gas, for example,
A method of performing a hydrogenation reaction in the presence of a Raney nickel catalyst in a liquid phase (Japanese Patent Laid-Open No. 3-141235) or a method of performing a gas-phase hydrogenation reaction using a copper oxide / chromium oxide catalyst (Japanese Patent Laid-Open No.
3-41038) has been proposed.

【0007】製造プロセスに関するものとしては、液相
水素化反応法ではトリクルベッド方式で反応を行う方法
(特開平2-270829)や、反応収率向上の為に反応混合物
の入部を反応器に循環する方法(特開平3-133941)が提
案されている。
[0007] As to the production process, in the liquid phase hydrogenation reaction method, a reaction is carried out in a trickle bed system (Japanese Patent Laid-Open No. 2-270829), or the inlet of the reaction mixture is circulated to the reactor to improve the reaction yield. (Japanese Patent Laid-Open No. 3-33941) has been proposed.

【0008】また、気相水素化反応方法における製造プ
ロセスに関し、USP2,456,187(1948)
には、多管式反応器を用いてアセトンの蒸発と生成した
イソプロピルアルコールの分離を別々に行っており、ア
セトン蒸発装置とイソプロピルアルコール分離装置とい
った2種類の設備が必要となり、また、エネルギー面に
おいても、イソプロピルアルコールの分離のために循環
水素ガスを一旦冷却しなければならない等、設備コスト
の増大と循環水素ガスのエネルギーなどが有効に活用さ
れていなかった。
[0008] Further, regarding a production process in a gas phase hydrogenation reaction method, US Pat. No. 2,456,187 (1948)
Uses a multitubular reactor to separately evaporate acetone and separate the produced isopropyl alcohol, which requires two types of equipment, an acetone evaporator and an isopropyl alcohol separator. However, the circulating hydrogen gas has to be cooled once to separate the isopropyl alcohol, so that the equipment cost is increased and the energy of the circulating hydrogen gas is not effectively utilized.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
課題に鑑み、アセトンの気相水素化反応におけるイソプ
ロピルアルコールの製造設備の低減を図り、しかもエネ
ルギーを効率的に活用できるイソプロピルアルコールの
製造プロセスを提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to reduce the number of isopropyl alcohol production facilities in the gas phase hydrogenation reaction of acetone and to produce isopropyl alcohol capable of efficiently utilizing energy. To provide a process.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく製造設備の低減とエネルギーの効率的な活
用について鋭意検討した結果、反応器流出ガスのエネル
ギーを有効に活用することにより、経済的かつ効率の良
いイソプロピルアルコールが製造できることを見出し、
本発明を完成させるに至ったものである。すなわち、本
発明は、アセトンと水素を気相反応させてイソプロピル
アルコールを製造する方法において、反応器流出ガスを
原料アセトン及び/又は回収アセトンと接触させてアセ
トンを気化させることにより、生成したイソプロピルア
ルコールを液化せしめることを特徴とするイソプロピル
アルコールの製造方法である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on reducing the number of manufacturing facilities and efficiently using energy in order to solve the above-mentioned problems. It was found that isopropyl alcohol can be produced economically and efficiently,
The present invention has been completed. That is, the present invention relates to a method for producing isopropyl alcohol by reacting acetone with hydrogen in a gas phase, wherein the isopropyl alcohol produced by contacting a reactor effluent gas with raw material acetone and / or recovered acetone to vaporize acetone is produced. Is a method for producing isopropyl alcohol.

【0011】[0011]

【発明の実施の形態】本発明のアセトンと水素を気相で
反応させて得た反応器流出ガスのエネルギーを有効に活
用するイソプロピルアルコールの製造方法であり、この
イソプロピルアルコールは一般に蒸留精製されて製品と
なる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing isopropyl alcohol, which makes effective use of the energy of a gas discharged from a reactor obtained by reacting acetone and hydrogen in a gas phase. The isopropyl alcohol is generally purified by distillation. Product.

【0012】本発明の水素化反応における触媒は、Cu−
Cr系の酸化物触媒、ラネーNi触媒、ラネーCu触媒、
Pt、Pd、Ru等の貴金属触媒が挙げられ、一般的に
用いられているものがそのまま適用できる。
The catalyst in the hydrogenation reaction of the present invention is Cu-
Cr-based oxide catalyst, Raney Ni catalyst, Raney Cu catalyst,
Noble metal catalysts such as Pt, Pd, Ru and the like can be mentioned, and those generally used can be applied as they are.

【0013】原料であるアセトンは、例えばクメン法フ
ェノールプラントによる副生やプロピレンの直接酸化法
等により製造される粗アセトンでも良いが、高純度のイ
ソプロピルアルコールを製造するには、分離除去の困難
な不純物含有量の少ないものの方が製品品質面からは好
ましい。
Acetone as a raw material may be crude acetone produced by, for example, a by-product of a cumene phenol plant or direct oxidation of propylene. However, in order to produce high-purity isopropyl alcohol, separation and removal are difficult. Those having a low impurity content are preferable from the viewpoint of product quality.

【0014】原料アセトンを水素化する為の水素として
は、特別純度の高い水素を使用する必要はなく、例え
ば、エチレン製造プラントで発生するメタンを含む水素
やエタンや窒素等の不純物を含む水素でも使用可能であ
る。
As hydrogen for hydrogenating the raw material acetone, it is not necessary to use hydrogen having a particularly high purity. For example, hydrogen containing methane generated in an ethylene production plant or hydrogen containing impurities such as ethane and nitrogen may be used. Can be used.

【0015】ここで水素とアセトンのモル比は、通常に
1.1〜5の範囲である。モル比が1.1未満では、ア
セトンの転化率が低下するばかりか、イソプロピルアル
コールへの選択率も低下し副生物が多くなる。また、モ
ル比が5を越えると、未反応水素を回収して循環使用す
る動力が増大することから好ましくない。
Here, the molar ratio between hydrogen and acetone is usually in the range of 1.1 to 5. If the molar ratio is less than 1.1, not only does the conversion of acetone decrease, but also the selectivity to isopropyl alcohol decreases and the by-products increase. On the other hand, if the molar ratio exceeds 5, the power for recovering unreacted hydrogen and circulating it increases, which is not preferable.

【0016】本発明に用いる反応器としては、一般的な
充填層反応器、多管式反応器、移動床反応器、懸濁気泡
塔反応器、攪拌槽式懸濁反応器等が用いられる。また、
反応温度及び圧力は、特に規定ははしないが、一般的に
言って、気相反応では、60〜200℃、0.1〜1M
Pa−G、圧力が0.1MPa−G未満では反応速度が
低下し、また1MPaを越えると反応器の耐圧が高くな
り経済的でない。
As the reactor used in the present invention, a general packed bed reactor, a multitubular reactor, a moving bed reactor, a suspended bubble column reactor, a stirred tank type suspension reactor and the like are used. Also,
The reaction temperature and pressure are not particularly limited, but generally speaking, in a gas phase reaction, 60-200 ° C., 0.1-1 M
If the Pa-G and pressure are less than 0.1 MPa-G, the reaction rate decreases, and if it exceeds 1 MPa, the pressure resistance of the reactor increases, which is not economical.

【0017】本発明における好ましい態様としては、反
応器流出ガスと原料アセトン及び/又は回収アセトンを
向流接触させて、蒸留精製を平行して行う事で、液化し
たイソプロピルアルコール中へのアセトンの混入を極力
減らす事ができる。さらに好ましくは、反応器供給ガス
と熱交換を行って後の反応器流出ガスを、原料アセトン
及び/又は回収アセトンと接触させる事により、一層エ
ネルギーの有効活用が図れる。
In a preferred embodiment of the present invention, the effluent gas of the reactor and the raw material acetone and / or recovered acetone are brought into countercurrent contact with each other, and the distillation and purification are carried out in parallel to mix acetone into liquefied isopropyl alcohol. Can be reduced as much as possible. More preferably, by performing heat exchange with the gas supplied to the reactor and bringing the gas discharged from the reactor into contact with the raw material acetone and / or the recovered acetone, the energy can be more effectively utilized.

【0018】本発明をさらに理解すべく、一実施例であ
る図1を用いてプロセスの流れに沿って詳細に説明す
る。反応器1より出た反応器流出ガスは、イソプロピル
アルコール、未反応アセトン、反応副生物、未反応水素
及びメタン等の水素ガス中の不純物等よりなる。該反応
器流出ガスは、後述の熱交換器2で反応器供給ガスと熱
交換した後気液接触装置3に至り、該装置3上部より供
給される原料アセトン及び/又は回収アセトンと接触し
てアセトンの気化と生成したイソプロピルアルコールの
液化が行われる。この気液接触装置3では、好ましい態
様として前記接触操作と同時に蒸留精製を行うことで、
気相アセトン中へのイソプロピルアルコールや反応副生
物の同伴を押さえ、しかも液相イソプロピルアルコール
中へのアセトンの混入を最小限に押さえることができ、
設備費とエネルギーの低減を図ることが可能となる。こ
こで蒸留操作の還流量は、気液接触装置3の頂部に付設
または別途設置されたコンデンサー(分縮器)4により
制御される。
In order to further understand the present invention, a detailed description will be given along a process flow with reference to FIG. 1 which is an embodiment. The gas discharged from the reactor 1 from the reactor 1 comprises isopropyl alcohol, unreacted acetone, reaction by-products, unreacted hydrogen and impurities in hydrogen gas such as methane. The reactor effluent gas exchanges heat with the reactor supply gas in the heat exchanger 2 described later, and then reaches the gas-liquid contact device 3 where it contacts the raw material acetone and / or recovered acetone supplied from the upper portion of the device 3. The acetone is vaporized and the isopropyl alcohol produced is liquefied. In this gas-liquid contact device 3, by performing distillation purification at the same time as the contact operation as a preferred embodiment,
It is possible to suppress the entrainment of isopropyl alcohol and reaction by-products in the gaseous phase acetone, and to minimize the incorporation of acetone into the liquid phase isopropyl alcohol,
Equipment costs and energy can be reduced. Here, the reflux amount of the distillation operation is controlled by a condenser (divider) 4 attached to the top of the gas-liquid contact device 3 or separately provided.

【0019】コンデンサー(分縮器)4により制御され
て、気液接触装置3頂部から流出する気化した原料アセ
トン及び水素ガスやメタン等の不純物からなる反応器供
給ガスは循環ガスとして、ブロアー、コンプレッサー等
のガス循環設備6により昇圧された後、メークアップ水
素と共に反応器1に循環される。この時好ましくは、反
応器流出ガスと熱交換器2にて熱交換して後、反応器1
に循環され、一方、反応器流出ガスは気液接触装置3に
供給する事で更にエネルギーの効率化が図れる。
Controlled by a condenser (decompressor) 4, a vaporized raw material acetone and a reactor supply gas comprising impurities such as hydrogen gas and methane flowing out from the top of the gas-liquid contacting device 3 are supplied as a circulating gas to a blower and a compressor. After being pressurized by the gas circulating equipment 6, it is circulated to the reactor 1 together with the make-up hydrogen. At this time, preferably, after heat exchange with the gas discharged from the reactor in the heat exchanger 2, the reactor 1
The gas flowing out of the reactor is supplied to the gas-liquid contact device 3, whereby energy efficiency can be further improved.

【0020】また、気液接触装置3の留出ガスの一部
は、冷却器(ノックアウトコンデンサー)5にて更に冷
却されて、アセトン等の常温で液体の物質を凝縮分離し
て後、水素、メタン等の非凝縮性ガスが一部系外にパー
ジされる。このパージ量は、特に規定はないが、量が多
いと水素ロスが多くなり、また、少なすぎると、循環ガ
ス中への蓄積量が多くなり、ガス循環の機器費と動力費
が大となる。これらを考慮の上、使用する水素ガス中に
含まれる不純物量に応じて適正な循環量が決定される。
アセトン・他よりなる凝縮液は、コンデンサー(分縮
器)4及び又は気液接触装置3に戻される。ここで冷却
器5は、気液接触装置3やコンデンサー4と分離されて
いても良いし、同装置と一体となっていても良い。一
方、気液接触装置3で液化したイソプロピルアルコール
を主成分とする液混合物は、続く精製工程(図示せず)
に送られ、蒸留精製されて高純度のイソプロピルアルコ
ールが得られる。
A part of the distillate gas from the gas-liquid contact device 3 is further cooled by a cooler (knock-out condenser) 5 to condense and separate a liquid substance such as acetone at room temperature. Non-condensable gas such as methane is partially purged out of the system. Although the purge amount is not particularly limited, if the amount is large, hydrogen loss increases, and if the amount is too small, the amount of accumulation in the circulating gas increases, and the equipment cost and power cost of gas circulation increase. . In consideration of these factors, an appropriate circulation amount is determined according to the amount of impurities contained in the hydrogen gas used.
The condensed liquid composed of acetone and others is returned to the condenser (divider) 4 and / or the gas-liquid contact device 3. Here, the cooler 5 may be separated from the gas-liquid contact device 3 and the condenser 4, or may be integrated with the device. On the other hand, a liquid mixture containing isopropyl alcohol as a main component liquefied by the gas-liquid contact device 3 is subjected to a subsequent purification step (not shown).
And purified by distillation to obtain high-purity isopropyl alcohol.

【0021】本願の様にアセトンと水素を原料とする場
合の一般的な蒸留精製の例としては、まず未反応のアセ
トンを分離回収する。分離回収されたアセトンは、上述
の気液接触装置3及び又はコンデンサー(分縮器)4に
供給されて、気化し、反応原料として循環ガスと共に反
応器1に戻される。次いで、イソプロピルアルコール混
合液は続いて水分の除去、さらには近沸点化合物や高沸
点化合物を分離する事により、高純度のイソプロピルア
ルコールが得られる。これらの蒸留操作は、バッチ蒸留
であっても良いが、効率的には、複数の反応器からなる
連続蒸留方式が採用される。
As an example of general distillation purification using acetone and hydrogen as raw materials as in the present application, first, unreacted acetone is separated and recovered. The separated and recovered acetone is supplied to the above-mentioned gas-liquid contact device 3 and / or the condenser (decomposer) 4 to be vaporized and returned to the reactor 1 together with the circulating gas as a reaction raw material. Then, the isopropyl alcohol mixed solution is subsequently subjected to removal of water and further separation of near-boiling compounds and high-boiling compounds to obtain high-purity isopropyl alcohol. Although these distillation operations may be batch distillation, a continuous distillation system including a plurality of reactors is employed efficiently.

【0022】[0022]

【実施例】以下に本発明を実施例により更に詳細に説明
する。尚、実施例に記載した組成分析は、島津製作所製
GC−14A(検出器:FID、カラム:DB−WA
X)ガスクロマトグラフィーを使用し、Heをキャリア
ガスとして測定した。
The present invention will be described in more detail with reference to the following examples. The composition analysis described in the examples was performed using GC-14A manufactured by Shimadzu Corporation (detector: FID, column: DB-WA).
X) Gas chromatography was used to measure He as a carrier gas.

【0023】実施例1 内径27.2mm、長さ4000mmのステンレス製反
応器に酸化銅・酸化クロム触媒を1.5L充填し、触媒
を水素で還元した。続いて反応器流出ガスの循環を行
い、水素を所定流量になる様に調節した。なお、今回は
3.7モル%のメタンを含むと水素を使用し、流量はメ
タン込みで毎時54モルとした。続いて気化したアセト
ンを毎時26モル供給し、温度110℃、入り口圧力
0.25MPa−Gで反応を開始した。反応器流出ガス
は熱交換器を経て後、気液接触装置としての理論段数1
0段の蒸留塔に供給された。本蒸留塔では、塔上部より
供給された原料アセトンと気液接触して、アセトンは気
化し、イソプロピルアルコールは液化すると共に、蒸留
精製されて塔頂及び塔底より流出した。塔底温度75
℃、塔頂圧力0.18MPa−Gとし、また還流比は、
塔上部に付けられたコンデンサー(分縮器)にてコント
ロールした。また、塔頂からの流出蒸気の一部は、系内
でのメタン蓄積防止の為、ノックアウトコンデンサー
(冷却器)で5℃まで冷却してアセトン等の凝縮成分を
除去して後に系外に排出された。ここでの系外への排出
量は、反応器供給ガス中の水素とメタンのモル比が1:
1となる様に排出ガス量をコントロールした。
Example 1 A stainless steel reactor having an inner diameter of 27.2 mm and a length of 4000 mm was charged with 1.5 L of a copper oxide / chromium oxide catalyst, and the catalyst was reduced with hydrogen. Subsequently, the reactor effluent gas was circulated to adjust the hydrogen to a predetermined flow rate. In this case, hydrogen was used when 3.7 mol% of methane was contained, and the flow rate was 54 mol / h including methane. Subsequently, 26 mol / h of vaporized acetone was supplied per hour, and the reaction was started at a temperature of 110 ° C. and an inlet pressure of 0.25 MPa-G. Reactor effluent gas passes through a heat exchanger, and then has 1 theoretical plate as a gas-liquid contactor.
It was fed to a zero-stage distillation column. In this distillation column, the raw material acetone supplied from the top of the column was brought into gas-liquid contact to evaporate the acetone, liquefied isopropyl alcohol, and purified by distillation and flowed out from the top and bottom of the column. Tower bottom temperature 75
° C, the top pressure was 0.18 MPa-G, and the reflux ratio was:
It was controlled by a condenser (divider) attached to the top of the tower. In addition, part of the vapor discharged from the top of the tower is cooled to 5 ° C with a knockout condenser (cooler) to remove condensed components such as acetone to prevent methane accumulation in the system, and then discharged outside the system. Was done. Here, the amount of discharge to the outside of the system is such that the molar ratio of hydrogen to methane in the reactor supply gas is 1: 1:
The amount of exhaust gas was controlled to be 1.

【0024】蒸留塔を出たアセトン、水素及びメタンを
主成分とする反応器供給ガスは、メークアップ水素と混
合され、かつ熱交換器にて反応器流出ガスとの熱交換で
35℃から110℃に予熱されて後に、反応器に循環さ
れる。
The reactor feed gas mainly composed of acetone, hydrogen and methane leaving the distillation column is mixed with make-up hydrogen and heat-exchanged from 35 ° C. to 110 ° C. with the reactor effluent gas in a heat exchanger. After being preheated to 0 ° C, it is recycled to the reactor.

【0025】この時の反応成績は、アセトン転化率99
%、イソプロピルアルコール選択率99%であった。ま
た、反応器出口温度は130℃で、反応器供給ガスの予
熱源及び、原料アセトンの蒸発精製を行う蒸留塔の熱源
として有効活用された。また、反応器供給ガス中のイソ
プロピルアルコールは0.2モル%と少なく、かつ、蒸
留塔塔底液中のアセトン濃度は0.15重量%であっ
た。
The reaction results at this time were as follows:
% And isopropyl alcohol selectivity was 99%. The temperature at the outlet of the reactor was 130 ° C., which was effectively used as a preheating source for the gas supplied to the reactor and a heat source for a distillation column for evaporating and refining the raw material acetone. Further, isopropyl alcohol in the gas supplied to the reactor was as small as 0.2 mol%, and the acetone concentration in the bottom liquid of the distillation column was 0.15% by weight.

【0026】[0026]

【発明の効果】本発明の原料アセトンと反応生成物であ
る反応器流出ガスとを接触してアセトンの気化と生成し
たイソプロピルアルコールの液化や蒸留精製を平行して
行い、しかも反応器流出ガスとの熱交換により反応器供
給ガスの余熱を行う事により、設備費とエネルギーの低
減を図ることができ、産業上優位である。
The raw material acetone of the present invention is brought into contact with the reactor effluent gas which is a reaction product to vaporize acetone and to liquefy or purify the isopropyl alcohol produced in parallel. By performing the residual heat of the gas supplied to the reactor by heat exchange, the equipment cost and energy can be reduced, which is industrially superior.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の理解を助ける為のイソプロピルアルコ
ールの製造における一実施例を示すフローズである。
FIG. 1 is a flow chart showing one embodiment of the production of isopropyl alcohol to assist the understanding of the present invention.

【符号の説明】[Explanation of symbols]

1.反応器 2.熱交換器 3.気液接触装置(蒸留塔) 4.コンデンサー(分縮器) 5.冷却器(ノックアウトコンデンサー) 6.ガス循環設備 7.反応器供給ガスライン 8.原料アセトン/回収アセトン供給口 9.水素供給口 10.イソプロピルアルコール混合液 11.排出ガス 1. Reactor 2. Heat exchanger 3. Gas-liquid contactor (distillation tower) 4. Condenser (divider) 5. Cooler (knockout condenser) Gas circulation equipment 7. 7. Reactor feed gas line 8. Raw material acetone / recovered acetone supply port Hydrogen supply port 10. Isopropyl alcohol mixture 11. Exhaust gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アセトンと水素を気相反応させてイソプロ
ピルアルコールを製造する方法において、反応器流出ガ
スを原料アセトン及び/又は回収アセトンと接触させて
アセトンを気化させることにより、生成したイソプロピ
ルアルコールを液化せしめることを特徴とするイソプロ
ピルアルコールの製造方法。
1. A method for producing isopropyl alcohol by reacting acetone and hydrogen in a gas phase, wherein the produced isopropyl alcohol is produced by contacting a reactor effluent gas with raw material acetone and / or recovered acetone to vaporize the acetone. A method for producing isopropyl alcohol, which comprises liquefying.
【請求項2】反応器流出ガスと原料アセトン及び/又は
回収アセトンを向流接触させながら、蒸留精製を平行し
て行う請求項1記載の方法。
2. The process according to claim 1, wherein distillation purification is carried out in parallel while bringing the reactor effluent gas and the raw acetone and / or recovered acetone into countercurrent contact.
【請求項3】反応器供給ガスと熱交換を行って後の反応
器流出ガスを、原料アセトン及び/又は回収アセトンと
接触させる事を特徴とする請求項1又は2記載の方法。
3. The process according to claim 1, wherein the gas discharged from the reactor after heat exchange with the gas supplied to the reactor is brought into contact with raw acetone and / or recovered acetone.
JP2000320214A 2000-10-20 2000-10-20 Method for producing isopropyl alcohol Expired - Lifetime JP4321838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320214A JP4321838B2 (en) 2000-10-20 2000-10-20 Method for producing isopropyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320214A JP4321838B2 (en) 2000-10-20 2000-10-20 Method for producing isopropyl alcohol

Publications (2)

Publication Number Publication Date
JP2002128716A true JP2002128716A (en) 2002-05-09
JP4321838B2 JP4321838B2 (en) 2009-08-26

Family

ID=18798525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320214A Expired - Lifetime JP4321838B2 (en) 2000-10-20 2000-10-20 Method for producing isopropyl alcohol

Country Status (1)

Country Link
JP (1) JP4321838B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269653A (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp Method for producing alkyltin alkoxide
KR100874774B1 (en) 2006-08-21 2008-12-19 이수화학 주식회사 Simultaneous preparation of isopropanol and high purity normal paraffin
KR101242685B1 (en) 2006-08-21 2013-03-12 이수화학 주식회사 Method for preparing isopropanol using bottom-up flow system
JPWO2018135408A1 (en) * 2017-01-23 2019-11-21 株式会社トクヤマ Isopropyl alcohol composition and method for producing isopropyl alcohol
WO2022244797A1 (en) * 2021-05-19 2022-11-24 株式会社日本触媒 Method for producing isopropyl alcohol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269653A (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp Method for producing alkyltin alkoxide
KR100874774B1 (en) 2006-08-21 2008-12-19 이수화학 주식회사 Simultaneous preparation of isopropanol and high purity normal paraffin
KR101242685B1 (en) 2006-08-21 2013-03-12 이수화학 주식회사 Method for preparing isopropanol using bottom-up flow system
JPWO2018135408A1 (en) * 2017-01-23 2019-11-21 株式会社トクヤマ Isopropyl alcohol composition and method for producing isopropyl alcohol
JP7118898B2 (en) 2017-01-23 2022-08-16 株式会社トクヤマ Isopropyl alcohol composition and method for producing isopropyl alcohol
WO2022244797A1 (en) * 2021-05-19 2022-11-24 株式会社日本触媒 Method for producing isopropyl alcohol

Also Published As

Publication number Publication date
JP4321838B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
CN101298443B (en) Process for the purification of crude propene oxide
JP2003026639A (en) Method for producing meta-xylylenediamine having high purity
EP2243762B1 (en) Process for production of 2-propanol
JP7268017B2 (en) Method for producing ethyleneamine
JP4858168B2 (en) Method for producing high purity xylylenediamine
US9388107B2 (en) Process for the production of a mixture comprising cyclohexanone and cyclohexanol from phenol
US8710269B2 (en) DMAPN having a low DGN content and a process for preparing DMAPA having a low DGN content
JP4746254B2 (en) Hydroformylation product of propylene and process for producing acrylic acid and / or acrolein
KR20150033702A (en) Method for producing nitrobenzene by adiabatic nitriding
JP2004536147A (en) Method for producing isopropanol
JP6249467B1 (en) Method for producing cyclohexanone from phenol
JP4321838B2 (en) Method for producing isopropyl alcohol
JP2834495B2 (en) Method and apparatus for producing isopropanol
JP5040460B2 (en) Method for producing xylylenediamine
US9422213B2 (en) Method for producing dimethyl ether and device suitable therefor
CN112939765B (en) Method for co-producing adipic acid and cyclohexanone oxime from cyclohexane
US20220298128A1 (en) Integrated process and plant for making styrene and propene oxide
JP2004501891A (en) Method for producing aromatic amine
CN112661619B (en) Method for preparing cyclopentanone
JP2863646B2 (en) Method for producing isopropylaniline
JPH09100258A (en) Production of ethylamine compounds
EP3115350B1 (en) A process for the production of a mixture comprising cyclohexanol and cyclohexanone
JP3429063B2 (en) Ethylamine production method
JP2001131135A (en) Method for producing acrylonitrile
JP3915152B2 (en) Method for producing benzyl acetate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4321838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250