JP2002124319A - Anisotropic conductive film and inspection method of semiconductor element or electronic component using same - Google Patents

Anisotropic conductive film and inspection method of semiconductor element or electronic component using same

Info

Publication number
JP2002124319A
JP2002124319A JP2000318423A JP2000318423A JP2002124319A JP 2002124319 A JP2002124319 A JP 2002124319A JP 2000318423 A JP2000318423 A JP 2000318423A JP 2000318423 A JP2000318423 A JP 2000318423A JP 2002124319 A JP2002124319 A JP 2002124319A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
film
electronic component
conductive film
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000318423A
Other languages
Japanese (ja)
Inventor
Akiko Matsumura
亜紀子 松村
Yoshio Yamaguchi
美穂 山口
Yuji Hotta
祐治 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000318423A priority Critical patent/JP2002124319A/en
Publication of JP2002124319A publication Critical patent/JP2002124319A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an isotropic conductive film, and an inspection method of semiconductor element or an electronic component using the same, which enables a continuous inspection at low load and a function inspection of high connection reliability. SOLUTION: The anisotropic conductive film is constructed with conductive paths made of conductive material being arranged in a film base material made of insulating resin, so as to penetrate the film toward width direction in a state of being insulated from each other, and have a protruding part on both sides of the film base material. Each conductive path has almost the same height of protrusion with the other on one side as well as on the other, and yet has an average protrusion higher on one side than that on the other side, and the degree of elasticity of the total structure is 1 MPa to 20 MPa at 25 deg.C to 40 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方導電性フィル
ムの技術分野に属し、半導体素子または電子部品の機能
検査の際に、半導体素子または電子部品と回路基板との
間に介在させるための異方導電性フィルム及びそれを用
いた半導体素子および電子部品の検査方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of anisotropic conductive films, and is used for interposing between a semiconductor element or an electronic component and a circuit board during a function test of the semiconductor element or the electronic component. The present invention relates to an anisotropic conductive film and a method for inspecting a semiconductor element and an electronic component using the same.

【0002】[0002]

【従来の技術】近年、集積回路のさらなる高集積化に伴
い、半導体素子や電子部品の電極数は増加しその配置パ
ターンはさらに狭ピッチで微細化している。そのため、
該半導体素子や電子部品のコストの上昇のみならず、こ
れらを実装するための回路基板も、配線パターンの微細
化によって高価なものとなっている。したがって、該半
導体素子または電子部品を回路基板に実装した後に機能
検査を行なっていたのでは、該半導体素子または電子部
品が不良であった場合に、良品であった回路基板も共に
処分されるため、回路基板の歩留りが無意味に低下し、
金額的な損失も大きくなる。
2. Description of the Related Art In recent years, the number of electrodes of semiconductor elements and electronic components has increased with the further increase in the degree of integration of integrated circuits, and their arrangement patterns have been further refined at narrower pitches. for that reason,
Not only does the cost of the semiconductor elements and electronic components rise, but also the circuit boards for mounting them are expensive due to the finer wiring patterns. Therefore, if the function test is performed after the semiconductor element or the electronic component is mounted on the circuit board, if the semiconductor element or the electronic component is defective, the non-defective circuit board is also disposed. , The yield of the circuit board is reduced meaninglessly,
The monetary loss also increases.

【0003】したがって上記機能検査を行う際には、半
導体素子または電子部品を回路基板に実装する前の段階
で種々の機能検査を行なうことが望まれる。その1つの
方法として、半導体素子または電子部品を、実装時と同
様のポジションで回路基板に異方導電性フィルムを介し
た状態で接触荷重を加えて接触させ、機能検査を行なう
という方法が挙げられる。
Therefore, when performing the above-mentioned function inspection, it is desired to perform various function inspections before the semiconductor element or the electronic component is mounted on the circuit board. As one of the methods, there is a method in which a semiconductor element or an electronic component is brought into contact with a circuit board at a position similar to that at the time of mounting by applying a contact load via an anisotropic conductive film, and a function test is performed. .

【0004】[0004]

【発明が解決しようとする課題】ところが、本発明者等
が、上記のような仮の接触状態での検査の実態をよく調
べたところ、半導体素子や電子部品には反りがあり、ま
た回路基板には反りやうねりがあり、かつ異方導電性フ
ィルムの柔軟性が不充分であるため、1つの半導体素子
または電子部品中の多数の電極の中には、回路基板の導
体部分と適正に導通できないものが発生し、検査自体の
信頼性が低いものになっているということが判った。
However, when the present inventors carefully examined the actual conditions of the above-described inspection in the tentative contact state, the semiconductor elements and electronic components were warped, and the circuit board was warped. Has warpage and undulation, and the flexibility of the anisotropic conductive film is insufficient, so that a large number of electrodes in one semiconductor element or electronic component are properly connected to the conductor of the circuit board. It turned out that some things could not be done and the reliability of the inspection itself was low.

【0005】これを解決すべく、全電極に対する接触荷
重を30Nを超えて40N以下程度に大きくしたとして
も、半導体素子または電子部品中の電極と回路基板の導
体部分とは適正に導通するようにはなるが、半導体素子
または電子部品の電極に設けられたバンプ接点がその検
査自体で変形してしまう不具合があった。このようにバ
ンプ接点が変形してしまうと、検査に合格した半導体素
子または電子部品を回路基板に実装するときの接続不良
の原因となってしまう。また上記のような大きな接触荷
重で機能検査を行うことで、該導通路に圧縮変形や座屈
変形などの塑性変形が生じてしまい、異方導電性フィル
ムが繰り返し使用できなくなる場合もある。
In order to solve this problem, even if the contact load with respect to all the electrodes is increased to more than about 30N and about 40N or less, the electrodes in the semiconductor element or the electronic component and the conductors of the circuit board should be properly conducted. However, there is a problem that the bump contact provided on the electrode of the semiconductor element or the electronic component is deformed by the inspection itself. When the bump contacts are deformed in this way, they cause a connection failure when a semiconductor element or an electronic component that has passed the inspection is mounted on a circuit board. In addition, when a functional test is performed with a large contact load as described above, plastic deformation such as compression deformation or buckling deformation occurs in the conduction path, and the anisotropic conductive film may not be used repeatedly.

【0006】また構造全体の25℃〜40℃における弾
性率を1MPa〜20MPaにして異方導電性フィルム
に柔軟性をもたせたとしても、検査中に半導体素子また
は電子部品に異方導電性フィルムが密着してしまい、連
続して測定することができなかった。
Further, even if the elasticity of the entire structure at 25 ° C. to 40 ° C. is set to 1 MPa to 20 MPa to give flexibility to the anisotropic conductive film, the semiconductor element or the electronic component does not have an anisotropic conductive film during the inspection. Due to the close contact, continuous measurement could not be performed.

【0007】本発明の目的は、上記問題を解決し、低い
荷重で連続して測定でき、接続信頼性の高い機能検査を
可能とする異方導電性フィルムを提供することであり、
またそれを用いた半導体素子または電子部品の検査方法
を提供することである。
An object of the present invention is to solve the above problems and provide an anisotropic conductive film which can be continuously measured with a low load and enables a functional test with high connection reliability.
Another object of the present invention is to provide a semiconductor element or electronic component inspection method using the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を行った結果、本発明を完成す
るに至った。本発明は、以下のとおりである。 (1)絶縁性樹脂からなるフィルム基材中に、導電性材
料からなる導通路が、互いに絶縁された状態で該フィル
ム基材を厚み方向に貫通し、該フィルム基材の両面から
突出する各突出部を有するように複数設けられた構造を
有し、各導通路は、その一方側の各突出部同士ならびに
他方側の各突出部同士が略同一の突出高さを有し、かつ
導通路の一方側の突出部の平均突出高さが他方側の突出
部の平均突出高さよりも高く形成され、上記構造全体の
弾性率が、25℃〜40℃において1MPa〜20MP
aであることを特徴とする異方導電性フィルム。 (2)上記導通路のうち、少なくともフィルム基材内の
部分が直径5μm〜100μmの金属導線であって、フ
ィルム基材の両面から突出した部分が、上記金属導線自
体が延長して突出したものであるか、または、上記金属
導線の端面に金属が堆積して突出したものである上記
(1)に記載の異方導電性フィルム。 (3)導通路は、一方側の突出部の平均突出高さが6μ
m〜30μmから選ばれ、かつ他方側の突出部の平均突
出高さが2μm〜5μmから選ばれることを特徴とする
上記(1)または(2)に記載の異方導電性フィルム。 (4)上記(1)〜(3)のいずれかに記載の異方導電
性フィルムを、半導体素子または電子部品と回路基板と
の間に挟んで接触荷重を加え、半導体素子または電子部
品と回路基板とを機能検査可能に導通させて行う検査方
法であって、該異方導電性フィルムが、導通路の平均突
出高さの高い側を半導体素子または電子部品側に、かつ
平均突出高さの低い側を回路基板側に配置されることを
特徴とする半導体素子または電子部品の検査方法。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. The present invention is as follows. (1) In a film base made of an insulating resin, conductive paths made of a conductive material penetrate the film base in a thickness direction while being insulated from each other, and project from both surfaces of the film base. A plurality of conductive paths are provided so as to have the protruding portions, and each of the protruding portions on one side and each of the protruding portions on the other side have substantially the same protruding height. The average protrusion height of the protrusion on one side is higher than the average protrusion height of the protrusion on the other side, and the elastic modulus of the entire structure is 1 MPa to 20 MPa at 25 ° C. to 40 ° C.
a. An anisotropic conductive film, characterized in that: a. (2) In the conduction path, at least a portion in the film substrate is a metal conductor having a diameter of 5 μm to 100 μm, and a portion protruding from both surfaces of the film substrate protrudes by extending the metal conductor itself. Or the anisotropic conductive film according to the above (1), wherein a metal is deposited on and protrudes from an end face of the metal conductive wire. (3) In the conduction path, the average protrusion height of the protrusion on one side is 6 μm.
The anisotropic conductive film according to the above (1) or (2), wherein the anisotropic conductive film is selected from m to 30 μm, and the average protrusion height of the protrusion on the other side is selected from 2 μm to 5 μm. (4) The anisotropic conductive film according to any one of the above (1) to (3) is sandwiched between a semiconductor element or an electronic component and a circuit board to apply a contact load to the semiconductor element or the electronic component and the circuit. A test method for conducting a functional test with a substrate, wherein the anisotropic conductive film has a high average protrusion height side of the conductive path to the semiconductor element or electronic component side, and a high average protrusion height. A method for inspecting a semiconductor element or an electronic component, wherein a lower side is disposed on a circuit board side.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
図1は、本発明の好ましい一例の異方導電性フィルム1
を簡略化して示す図であり、図1(a)は正面図、図1
(b)は図1(a)の切断面線Ib−Ibからみた断面
図である。本発明の異方導電性フィルム1は、絶縁性材
料からなるフィルム基材2と、導電性材料からなる複数
の導通路3とを基本的に備える。導通路3は、その軸線
方向の長さがフィルム基材2の厚み方向Zの長さ(厚
み)よりも大きく、かつフィルム基材2を貫通して、そ
の両端にフィルム基材の表裏面2a,2bから突出する
各突出部4a,4bを有する。該導通路3は、少なくと
もフィルム基材2内の部分(以下、「基材内導通部5」
と呼ぶことがある)が、該フィルム基材2の厚み方向Z
と略平行(図1においては平行)となるように配置され
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
FIG. 1 shows a preferred example of an anisotropic conductive film 1 of the present invention.
1 (a) is a front view and FIG.
FIG. 2B is a cross-sectional view taken along line Ib-Ib of FIG. The anisotropic conductive film 1 of the present invention basically includes a film base 2 made of an insulating material and a plurality of conductive paths 3 made of a conductive material. The conduction path 3 has a length in the axial direction larger than the length (thickness) of the film base 2 in the thickness direction Z, penetrates the film base 2, and has the front and back surfaces 2 a of the film base at both ends. , 2b, each of which has a projection 4a, 4b. The conduction path 3 is formed at least in a portion within the film substrate 2 (hereinafter, referred to as a “conduction portion 5 in the substrate”).
), But in the thickness direction Z of the film substrate 2.
Are arranged substantially parallel to each other (parallel in FIG. 1).

【0010】本発明の異方導電性フィルム1は、厚み方
向一方Z1側の突出部4a同士、ならびに厚み方向他方
Z2側の突出部4b同士で、その突出高さが略同一であ
り、かつ突出部4a,4bの平均突出高さが異なるよう
に形成される。図1には、たとえば厚み方向一方Z1側
の各突出部4aの平均突出高さが、厚み方向他方Z2側
の突出部4bの平均突出高さよりも高く形成される例を
示している。上記平均突出高さの差は、1μm〜20μ
mに選ばれるのが好ましく、2μm〜15μmに選ばれ
るのがより好ましい。なお上記突出高さとは、フィルム
面と、該フィルム面から突出する突出部の端部との間
の、上記軸線方向に沿った直線距離を指す。
In the anisotropic conductive film 1 of the present invention, the protrusions 4a on one Z1 side in the thickness direction and the protrusions 4b on the other Z2 side in the thickness direction have substantially the same height, and The portions 4a and 4b are formed so that the average protrusion heights are different. FIG. 1 shows an example in which, for example, the average protrusion height of each protrusion 4a on the one Z1 side in the thickness direction is higher than the average protrusion height of the protrusion 4b on the other Z2 side in the thickness direction. The difference between the average protrusion heights is 1 μm to 20 μm.
m, more preferably 2 μm to 15 μm. The term “projection height” refers to a linear distance along the axial direction between a film surface and an end of a protrusion protruding from the film surface.

【0011】また本発明の異方導電性フィルム1は、構
造全体としての弾性率が、25℃〜40℃において1M
Pa〜20MPa、好ましくは8MPa〜12MPaで
ある。該弾性率が1MPa未満であると、半導体素子ま
たは電子部品に異方導電性フィルムが密着してしまい、
連続して測定を続けることができない不具合がある。ま
た該弾性率が20MPaを超えると、半導体素子または
電子部品中の電極と、回路基板の導体部分が充分に接触
しない不具合がある。
The anisotropic conductive film 1 of the present invention has an elastic modulus of 1 M at 25 ° C. to 40 ° C.
The pressure is from Pa to 20 MPa, preferably from 8 MPa to 12 MPa. When the elastic modulus is less than 1 MPa, the anisotropic conductive film adheres to the semiconductor element or the electronic component,
There is a problem that measurement cannot be continued continuously. On the other hand, if the elastic modulus exceeds 20 MPa, there is a problem that the electrodes in the semiconductor element or the electronic component do not sufficiently contact the conductor of the circuit board.

【0012】異方導電性フィルム1の構造全体としての
弾性率を決定する要素としては、導通路3の材料、導通
路3の断面形状や全長、フィルム基材2内の密度や配列
パターン、フィルム基材2面からの突出高さ、フィルム
基材2の材料、フィルム基材2の厚みなどである。本発
明においては、上記のように異方導電性フィルム1の構
造全体としての弾性率が、25℃〜40℃において1M
Pa〜20MPaとなるように、これらの値を選択すれ
ばよい。
The factors that determine the elastic modulus of the entire structure of the anisotropic conductive film 1 include the material of the conductive path 3, the cross-sectional shape and total length of the conductive path 3, the density and arrangement pattern in the film substrate 2, the film The projection height from the surface of the substrate 2, the material of the film substrate 2, the thickness of the film substrate 2, and the like. In the present invention, as described above, the elastic modulus of the entire structure of the anisotropic conductive film 1 is 1 M at 25 ° C. to 40 ° C.
These values may be selected so as to be Pa to 20 MPa.

【0013】異方導電性フィルム1の構造全体の弾性率
は、たとえば動的粘弾性測定装置(DMS210、セイ
コーインスツルメンツ社製)を用いて測定できる。測定
条件は、当該異方導電性フィルム1のフィルム面が拡張
する方向のうちの一方向に対し、引張りモードで、一定
の周波数(10Hz)で、温度を5℃/分で昇温させ2
5℃と40℃での測定とする。測定時に入力する試料の
厚みは、導通路3の長さ(=異方導電性フィルム1全体
の厚み)とする。
The elastic modulus of the entire structure of the anisotropic conductive film 1 can be measured using, for example, a dynamic viscoelasticity measuring device (DMS210, manufactured by Seiko Instruments Inc.). The measurement conditions are as follows. In one of the directions in which the film surface of the anisotropic conductive film 1 expands, the temperature is raised at a constant frequency (10 Hz) at a constant frequency (10 Hz) at a rate of 5 ° C./min.
The measurement is performed at 5 ° C and 40 ° C. The thickness of the sample input at the time of measurement is the length of the conductive path 3 (= the thickness of the entire anisotropic conductive film 1).

【0014】図2は、図1に示した異方導電性フィルム
1を用いた半導体素子または電子部品の機能検査方法の
一例を模式的に示す図である。本発明の検査方法は、図
2に示すように、上記の異方導電性フィルム1を半導体
素子または電子部品6と回路基板7との間に挟んで接触
荷重Fをかけ、半導体素子または電子部品6と回路基板
7とを機能検査可能に導通させて行うものである。この
とき重要なことは、上記の異方導電性フィルム1を、平
均突出高さの高い側(図2の例では厚み方向一方Z1
側)の突出部4aを半導体素子または電子部品6側、残
りの側(厚み方向他方Z2側)の突出部4bを回路基板
7側に配置させて機能検査を行うことである。該機能検
査は、従来から一般に広く行われている25℃〜40℃
の温度環境下で好適に行うことができる。
FIG. 2 is a diagram schematically showing an example of a method for inspecting the function of a semiconductor element or an electronic component using the anisotropic conductive film 1 shown in FIG. As shown in FIG. 2, the inspection method according to the present invention applies a contact load F by sandwiching the anisotropic conductive film 1 between a semiconductor element or electronic component 6 and a circuit board 7 to apply a contact load F to the semiconductor element or electronic component. 6 and the circuit board 7 are electrically connected so that a function test can be performed. What is important at this time is that the anisotropic conductive film 1 is placed on the side having a higher average protrusion height (in the example of FIG.
The function test is performed by arranging the protrusion 4a on the side (side) on the semiconductor element or electronic component 6 side and the protrusion 4b on the remaining side (the other side in the thickness direction Z2) on the circuit board 7 side. The function test is performed at 25 ° C. to 40 ° C.
Can be suitably performed under the following temperature environment.

【0015】このように本発明の異方導電性フィルム1
を用いて半導体素子または電子部品6の機能検査を行う
ことによって、該機能検査中に半導体素子や電子部品、
回路基板に反りやうねりがあっても、これらを充分な柔
軟性を有する異方導電性フィルムにて自らの変位で吸収
させることができ、半導体素子または電子部品の電極と
それに対応する回路基板上の導体部分とを好ましい荷重
で、半導体素子または電子部品6の電極8と回路基板7
の導体部分9とを全て電気的に接触させることができ
る。
As described above, the anisotropic conductive film 1 of the present invention
By performing a function test on the semiconductor element or the electronic component 6 using the semiconductor device or the electronic component 6 during the function test,
Even if the circuit board has warpage or undulation, it can be absorbed by its own displacement with an anisotropic conductive film with sufficient flexibility, and the electrodes of the semiconductor element or electronic component and the corresponding circuit board Of the semiconductor element or the electronic component 6 and the circuit board 7 with a preferable load.
And the entire conductor portion 9 can be electrically contacted.

【0016】本発明の検査方法では、具体的には、20
N〜30Nの接触荷重Fでの確実な機能検査が可能とな
る。上記接触荷重が20N未満の場合、確実な接続がと
りにくい(導通率が100%とならない)不具合があ
る。また上記接触荷重が30Nを超えると、検査時にお
いて半導体素子または電子部品の電極が変形し、実装時
の接続不良を引き起こす一因となってしまう不具合があ
る。本発明では、上記範囲内の接触荷重Fにて確実に機
能検査が行えるので、従来のように接触荷重を大きくす
ることにより起こる上述のような不具合を解消でき、低
い接触荷重で連続的な機能検査を行うことができる。な
お半導体素子または電子部品の一つの電極あたりの接触
荷重は、たとえば、半導体素子にフリップチップボンダ
ーを使用した場合には、設定した全荷重を、接触した電
極の数で割ることによって求めることができる。
In the inspection method of the present invention, specifically, 20
A reliable function test with a contact load F of N to 30N becomes possible. When the contact load is less than 20 N, there is a problem that it is difficult to secure connection (conductivity does not become 100%). If the contact load exceeds 30 N, there is a problem that the electrodes of the semiconductor element or the electronic component are deformed at the time of inspection, which is one of the causes of poor connection at the time of mounting. In the present invention, since the function test can be reliably performed with the contact load F within the above range, the above-described problem caused by increasing the contact load as in the related art can be solved, and the continuous function can be performed with a low contact load. Inspection can be performed. The contact load per electrode of the semiconductor element or the electronic component can be determined by, for example, when a flip chip bonder is used for the semiconductor element, dividing the set total load by the number of electrodes in contact. .

【0017】また、異方導電性フィルム1を上記のよう
に用いることで、異方導電性フィルム1は半導体素子ま
たは電子部品6よりも回路基板7に密着する。したがっ
て機能検査終了時には半導体素子または電子部品を容易
に剥離でき、連続的な機能検査が可能となる。
Further, by using the anisotropic conductive film 1 as described above, the anisotropic conductive film 1 is more closely attached to the circuit board 7 than to the semiconductor element or the electronic component 6. Therefore, at the end of the function test, the semiconductor element or the electronic component can be easily peeled off, and a continuous function test can be performed.

【0018】機能検査の対象となる半導体素子または電
子部品6の電極8は、フラットなパッドや、半田バンプ
が形成されたものなど、様々な態様であってよい。また
回路基板7は、半導体素子または電子部品6を実装すべ
き製品としての回路基板であってもよく、またそれをモ
デルとして製作した検査治具としての回路基板であって
もよい。
The electrode 8 of the semiconductor element or the electronic component 6 to be subjected to the function test may be in various modes such as a flat pad or a solder bump formed thereon. The circuit board 7 may be a circuit board as a product on which the semiconductor element or the electronic component 6 is to be mounted, or may be a circuit board as an inspection jig manufactured using the circuit board as a model.

【0019】本発明において、導通路3の断面(導通方
向に垂直な断面)の形状は、円形状、各種多角形状など
特には限定されないが、互いの絶縁を確保しながらも最
密に集合させ易く、かつ高品質のものが容易に製造でき
る点から、円形状が好ましい。半導体素子または電子部
品6の1つの電極に対しては、1個〜3個程度の導通路
を対応させるのが好ましく、これを達成し得るように、
上記導通路の断面積や、単位面積当たりの本数を決定す
る。本発明においては、断面円形状に形成される場合、
上記導通路3のうち、少なくとも基材内導通部5の外径
が5μm〜100μm、より好ましくは10μm〜80
μmの金属導線であるのが好ましい。該外径が5μm未
満であると、接触荷重によって導通路が変形してしまう
虞があるため好ましくない。また該外径が100μmを
超えると、たとえば50μm以下のようなファインピッ
チの電極配置パターンに充分に対応できない虞があるた
め好ましくない。導通路3を円形状以外の断面形状で形
成する場合には、正多角形が好ましく、その場合、上記
外径の円形状のものと同程度の断面積を有することが好
ましい。導通路3の大きさをこのように選ぶことで、ピ
ッチ50μm以下のようなファインピッチの電極配置パ
ターンに好適に対応させることができる。
In the present invention, the shape of the cross section of the conduction path 3 (cross section perpendicular to the conduction direction) is not particularly limited, such as a circular shape or various polygonal shapes. A circular shape is preferable because it is easy and a high quality product can be easily manufactured. It is preferable that about one to three conductive paths correspond to one electrode of the semiconductor element or the electronic component 6, so that this can be achieved.
The cross-sectional area of the above-mentioned conduction path and the number per unit area are determined. In the present invention, when formed in a circular cross section,
At least the outer diameter of the conductive portion 5 in the base material in the conductive path 3 is 5 μm to 100 μm, more preferably 10 μm to 80 μm.
It is preferably a μm metal conductor. If the outer diameter is less than 5 μm, the conductive path may be deformed by a contact load, which is not preferable. On the other hand, if the outer diameter exceeds 100 μm, it may not be possible to sufficiently cope with a fine pitch electrode arrangement pattern of, for example, 50 μm or less. When the conduction path 3 is formed in a cross-sectional shape other than a circular shape, a regular polygon is preferable. In this case, it is preferable that the conductive path 3 has a cross-sectional area similar to that of the circular shape having the above outer diameter. By selecting the size of the conductive path 3 in this way, it is possible to suitably cope with an electrode arrangement pattern having a fine pitch of 50 μm or less.

【0020】該導通路3を形成する材料としては、公知
の導電性材料が挙げられるが、電気特性の点で銅、金、
アルミニウム、ニッケルなどの金属材料が好ましく、さ
らには導電性の点から、銅、金がより好ましい。
As a material for forming the conductive path 3, a known conductive material can be used, but copper, gold,
Metal materials such as aluminum and nickel are preferable, and copper and gold are more preferable from the viewpoint of conductivity.

【0021】導通路3の材料は上記の通りであるが、同
じ金属材料であってもその形成方法によって、導通性や
弾性率など種々の特性が異なる。導通路3の形成方法と
しては、フィルム基材に形成した貫通孔内に金属材料を
メッキで析出させる方法、フィルム基材を貫通する金属
線にて得る方法などがある。導通路3を金属線で形成す
る場合、たとえばJIS C 3101、JIS C
3103などに規定された銅線などのように電気を伝導
すべく製造された金属導線が好ましく、電気的特性、機
械的特性、さらにはコストの点でも最も優れた導通路が
得られる。
Although the material of the conductive path 3 is as described above, even if the same metal material is used, various characteristics such as conductivity and elastic modulus are different depending on the forming method. Examples of the method of forming the conductive path 3 include a method of depositing a metal material in a through hole formed in the film substrate by plating, a method of obtaining a metal wire through the film substrate, and the like. When the conductive path 3 is formed of a metal wire, for example, JIS C 3101, JIS C
A metal wire manufactured to conduct electricity, such as a copper wire specified in 3103 or the like, is preferable, and a conductive path having the best electrical characteristics, mechanical characteristics, and cost can be obtained.

【0022】後述の異方導電性フィルムの製造方法の具
体例で示すように、導通路3の基材内導通部5と突出部
4a,4bとを互いに異なる金属材料で構成してもよい
し、また異なる方法(金属線とメッキの組合せなど)で
形成してもよい。本発明においては、導通路3のうち基
材内導通部5が金属導線にて形成され、かつ突出部4
a,4bが金属導線自体が延長して突出したものである
か、または、めっきや蒸着などによって上記金属導線の
端面に金属が堆積して突出したものであるのが好まし
い。なお本明細書においては、金属が導通路の端部・端
面に堆積し、その部分が一般に「接点」と呼ばれる電気
的接続に適した形態となっても、それらを含めて全体を
導通路と呼ぶ。
As will be described later in a specific example of a method of manufacturing an anisotropic conductive film, the conductive portion 5 in the base of the conductive path 3 and the projecting portions 4a and 4b may be made of different metal materials. Alternatively, it may be formed by a different method (such as a combination of a metal wire and plating). In the present invention, the conductive portion 5 in the base material of the conductive path 3 is formed of a metal wire, and the projecting portion 4
It is preferable that the metal wires a and 4b extend and protrude, or that metal is deposited and protrudes on the end face of the metal wire by plating or vapor deposition. In the present specification, even if metal is deposited on the end portions and end faces of the conductive path, and the portion is in a form suitable for electrical connection generally called a “contact point”, the entirety including these parts is referred to as a conductive path. Call.

【0023】本発明において、突出部4aの平均突出高
さは、6μm〜30μmであるのが好ましく、8μm〜
15μmであるのがより好ましい。該平均突出高さが6
μm未満であると、半導体素子または電子部品に異方導
電性フィルムが密着してしまい、連続的に測定を続ける
ことができなくなってしまう虞があるため好ましくな
く、30μmを超えると、接触荷重によって導通路が変
形してしまう虞があるため好ましくない。また突出部4
bの平均突出高さは、2μm〜5μmであるのが好まし
く、3μm〜4μmであるのがより好ましい。該平均突
出高さが2μm未満であると、回路基板側の電極と適正
に接触しがたく、接続信頼性が低くなる虞があるため好
ましくなく、5μmを超えると、回路基板上に異方導電
性フィルムを固定しがたく、連続的に測定することがで
きない虞があるため好ましくない。
In the present invention, the average protrusion height of the protrusion 4a is preferably 6 μm to 30 μm, and more preferably 8 μm to 30 μm.
More preferably, it is 15 μm. The average protrusion height is 6
If it is less than μm, the anisotropic conductive film adheres to the semiconductor element or the electronic component, and there is a possibility that the measurement cannot be continuously performed. It is not preferable because the conduction path may be deformed. Also protruding part 4
The average protrusion height of b is preferably 2 μm to 5 μm, more preferably 3 μm to 4 μm. If the average protrusion height is less than 2 μm, it is difficult to properly contact the electrodes on the circuit board side and the connection reliability may be reduced. It is not preferable because it is difficult to fix the conductive film and it may not be possible to continuously measure.

【0024】本発明においては、各突出部4a,4bの
平均突出高さを上記の範囲にそれぞれ選ぶことによっ
て、図2のような機能検査時において、上述した効果に
加えて、異方導電性フィルム1を回路基板7に仮固定で
きる。これによって、異方導電性フィルム1が回路基板
7に仮固定された状態を保持したまま、検査したい半導
体素子または電子部品6のみを容易に剥離できるため、
連続的な機能検査を円滑に行うことができる。また、異
方導電性フィルム1が回路基板7に仮固定されない場合
とは異なり、機能検査のたびに異方導電性フィルムの突
出部4bと回路基板7の電極9とをいちいち位置合わせ
する手間がなく、これによっても連続的な機能検査が円
滑に行える。このように本発明の異方導電性フィルム1
を用いた検査方法では、仮の接続状態にて信頼性の高い
機能検査を連続的に行うことができる。
In the present invention, the average protrusion height of each of the protrusions 4a and 4b is selected within the above range, so that the function test as shown in FIG. The film 1 can be temporarily fixed to the circuit board 7. Thereby, only the semiconductor element or the electronic component 6 to be inspected can be easily peeled off while the state in which the anisotropic conductive film 1 is temporarily fixed to the circuit board 7 is maintained.
Continuous function inspection can be performed smoothly. Also, unlike the case where the anisotropic conductive film 1 is not temporarily fixed to the circuit board 7, it takes time to position the projecting portion 4 b of the anisotropic conductive film and the electrode 9 of the circuit board 7 each time a function test is performed. However, this also enables continuous functional inspection to be performed smoothly. Thus, the anisotropic conductive film 1 of the present invention
In the inspection method using, a highly reliable functional inspection can be continuously performed in a temporary connection state.

【0025】本発明において、フィルム基材2の厚み
は、50μm〜1000μm、特に60μm〜500μ
mが、薄型化を可能としかつフィルムに柔軟性を与える
点で好ましい寸法である。
In the present invention, the thickness of the film substrate 2 is 50 μm to 1000 μm, particularly 60 μm to 500 μm.
m is a preferable dimension in terms of enabling thinning and giving flexibility to the film.

【0026】フィルム基材2を構成する絶縁性樹脂とし
ては、熱可塑性樹脂が挙げられる。たとえば、ポリエー
テルイミド樹脂、アクリル樹脂、フッ素樹脂、ポリエス
テル樹脂、ポリウレタン樹脂などが挙げられ、目的に応
じて適宜選択される。これらの樹脂は、単独でもあるい
は混合して使用してもよい。
The insulating resin constituting the film substrate 2 includes a thermoplastic resin. For example, a polyetherimide resin, an acrylic resin, a fluororesin, a polyester resin, a polyurethane resin and the like can be mentioned, and are appropriately selected according to the purpose. These resins may be used alone or in combination.

【0027】フィルム基材2中における導通路3の集合
状態、すなわち、フィルム面を見たときの導通路の配列
パターンは、図1に示したような最密状、図3に簡略化
して示すような正方行列状、その他、ランダムな集合状
態であってもよいが、微細な電極に対応するには最密状
に近い状態が好ましい。
The aggregated state of the conductive paths 3 in the film base material 2, that is, the arrangement pattern of the conductive paths when the film surface is viewed, is shown in FIG. Such a square matrix shape or other random gathering state may be used, but a state close to the closest density is preferable to correspond to fine electrodes.

【0028】また、図1の態様に対して図4の他の例の
異方導電性フィルム11の断面図に簡略化して示すよう
に、フィルム基材2の樹脂材料と基材内導通部5との間
にさらに他の材料からなる層12が設けられていてもよ
い。このような層12は、何層にも重ねて設けてもよ
く、また絶縁性、導電性など、用途や求められる特性に
応じて材料を選択すればよい。たとえば、フィルム基材
2を接着性の高い樹脂材料にて形成し、基材内導通部5
を取り巻く層12を耐熱絶縁性の高い材料にて形成する
などの態様は挙げられる。このような層12を形成する
材料としては、上述したフィルム基材2を形成する樹脂
材料の例示のうちフィルム基材2とは異なるものであっ
てもよい。具体的には、ポリエーテルイミド樹脂、アク
リル樹脂、フッ素樹脂、ポリエステル樹脂、ポリウレタ
ン樹脂などが挙げられる。
As shown in a simplified cross-sectional view of the anisotropic conductive film 11 in another example of FIG. 4 with respect to the embodiment of FIG. 1, the resin material of the film base 2 and the conductive portion 5 in the base are shown. May be further provided with a layer 12 made of another material. Such a layer 12 may be provided in any number of layers, and a material may be selected according to the application and required characteristics such as insulation and conductivity. For example, the film substrate 2 is formed of a resin material having high adhesiveness, and the conductive portion 5 in the substrate is formed.
In this case, the layer 12 surrounding the layer may be formed of a material having high heat resistance and insulation. The material for forming the layer 12 may be different from the film substrate 2 among the resin materials for forming the film substrate 2 described above. Specifically, a polyetherimide resin, an acrylic resin, a fluororesin, a polyester resin, a polyurethane resin, and the like can be given.

【0029】図5(a)〜図5(c)は、図1に示した
異方導電性フィルム1の製造手順の一例を簡略化して示
す断面図である。本発明の異方導電性フィルム1の製造
方法は特に限定されないが、たとえば以下の方法によっ
て製造される。まず、図5(a)に示すようなフィルム
基材2の両面2a,2bに基材内導通部5の端面5a,
5bが露出したもの(基材内導通部の端面とフィルム基
材の端面が面一の異方導電性フィルム)を形成する。
FIGS. 5A to 5C are cross-sectional views schematically showing an example of a procedure for manufacturing the anisotropic conductive film 1 shown in FIG. The method for producing the anisotropic conductive film 1 of the present invention is not particularly limited, but is produced, for example, by the following method. First, as shown in FIG. 5 (a), the end surfaces 5a,
An exposed 5b (an anisotropic conductive film in which the end face of the conductive portion in the base material and the end face of the film base material are flush with each other) is formed.

【0030】次に、図5(b)に示すように、フィルム
基材2の一方側(厚み方向一方Z1側)の面2aに露出
する基材内導通部5の端面5aに、たとえばメッキや蒸
着によって金属を堆積させて、突出部4aを形成する。
Next, as shown in FIG. 5B, the end face 5a of the conductive portion 5 in the base material, which is exposed on the surface 2a on one side (one Z1 side in the thickness direction) of the film base material 2, is coated with, for example, plating or the like. A metal is deposited by vapor deposition to form the protrusion 4a.

【0031】次に、図5(c)に示すように、フィルム
基材2の残る他方側(厚み方向他方Z2側)の面2bに
露出する基材内導通部5の端面5bに、たとえばメッキ
や蒸着によって金属を堆積させて、上記の突出部4aよ
りも低い平均突出高さを有する突出部4bを形成して、
図1に示した態様の異方導電性フィルム1を得る。
Next, as shown in FIG. 5 (c), for example, plating is performed on the end face 5b of the conductive portion 5 in the base material, which is exposed on the surface 2b on the other side (the other Z2 side in the thickness direction) of the film base material 2. And depositing metal by vapor deposition to form a protrusion 4b having an average protrusion height lower than the protrusion 4a,
An anisotropic conductive film 1 of the embodiment shown in FIG. 1 is obtained.

【0032】なお、上記の例では、半導体素子または電
子部品6側に配置される突出部4aを先に形成したけれ
ども、先に回路基板7側に配置される突出部4bを形成
してもよい。
In the above example, the projection 4a disposed on the semiconductor element or electronic component 6 side is formed first, but the projection 4b disposed on the circuit board 7 side may be formed first. .

【0033】図5(a)のフィルム基材2の両面2a,
2bに基材内導通部5の端面5a,5bが露出した状態
のもの(基材内導通部の端面とフィルム基材の端面が面
一の異方導電性フィルム)を得るには、フィルム基材に
穿孔して貫通孔を形成し、該貫通孔内に金属材料をメッ
キで析出させる、もしくは、金属材料を貫通孔の内壁面
にコーティングしていく方法や、多数の絶縁導線(絶縁
性樹脂層で被覆した金属線)を密に束ねた状態とし、互
いに分離できないように被覆層同士を結合させ、各絶縁
導線と角度を成す面を切断面として、所望のフィルム厚
みにスライスする方法(この方法は国際公開公報WO9
8/07216「異方導電性フィルムおよびその製造方
法」に記載の技術を利用してもよい。)などが挙げられ
る。
5A, both surfaces 2a of the film substrate 2
In order to obtain the one in which the end faces 5a and 5b of the conductive part 5 in the base material are exposed to the base 2b (an anisotropic conductive film in which the end face of the conductive part in the base material and the end face of the film base material are flush), A metal material is deposited in the through hole by plating, or a metal material is coated on the inner wall surface of the through hole; The metal wires covered with the layers are tightly bundled, the coating layers are joined together so that they cannot be separated from each other, and a surface that forms an angle with each of the insulated conductors is cut into slices to obtain a desired film thickness (this method). The method is described in International Publication WO 9
The technique described in 8/07216 “Anisotropic conductive film and method for producing the same” may be used. ).

【0034】なお上記の例では、金属のめっきまたは蒸
着によって突出部4a,4bを形成したが、突出部4
a,4bの形成方法はこれに限定されるものではない。
たとえば図5(a)のフィルム基材2の両面2a,2b
に基材内導通部5の端面5a,5bが露出した状態のも
の(基材内導通部の端面とフィルム基材の端面が面一の
異方導電性フィルム)に対して、フィルム基材2のみが
選択的に除去されるエッチングを施して、突出部4a,
4bを形成するようにしてもよい。その際、エッチング
はフィルム基材2の片面ごとに個別に行い、突出部4
a,4bの平均突出高さが互いに異なるようにする。
In the above example, the protruding portions 4a and 4b are formed by metal plating or vapor deposition.
The method for forming a and 4b is not limited to this.
For example, both surfaces 2a and 2b of the film substrate 2 shown in FIG.
The end faces 5a and 5b of the conductive portion 5 in the base material are exposed (an anisotropic conductive film in which the end face of the conductive portion in the base material and the end face of the film base are flush). Etching for selectively removing only the projections 4a,
4b may be formed. At this time, the etching is performed individually for each side of the film substrate 2 and the protrusions 4
The average protrusion heights of a and 4b are different from each other.

【0035】上記エッチングの方法としては、ウェット
エッチングや、プラズマエッチング、アルゴンイオンレ
ーザー、KrFエキシマレーザーなどのドライエッチン
グなどの手法を単独または併用して使用できる。ウェッ
トエッチングにおけるエッチング液はフィルム基材の材
料、導通路の材料を考慮して選択されるが、たとえば、
ジメチルアセトアミド、ジオキサン、テトラヒドロフラ
ン、塩化メチレンなどが挙げられる。
As the above etching method, wet etching, plasma etching, dry etching such as argon ion laser, KrF excimer laser or the like can be used alone or in combination. The etching solution in the wet etching is selected in consideration of the material of the film base material and the material of the conduction path.
Examples thereof include dimethylacetamide, dioxane, tetrahydrofuran, and methylene chloride.

【0036】また本発明の異方導電性フィルムにおい
て、突出部4a,4bの表面を、導通性が高い金属材料
や耐腐食性に優れた金やニッケルなどの材料でさらに被
覆していてもよい。
In the anisotropic conductive film of the present invention, the surfaces of the protrusions 4a and 4b may be further coated with a highly conductive metal material or a material having excellent corrosion resistance, such as gold or nickel. .

【0037】なお本発明の異方導電性フィルムは、上述
のように半導体素子または電子部品の機能検査において
特に好適に使用されるが、その用途は該機能検査に限定
されるものではない。
As described above, the anisotropic conductive film of the present invention is particularly preferably used in a function test of a semiconductor element or an electronic component, but its use is not limited to the function test.

【0038】[0038]

【実施例】本実施例では、本発明の異方導電性フィルム
として下記試料1、試料2を製作し、比較用の異方導電
性フィルムとして下記試料3、試料4、試料5を製作
し、これらを用いて、本発明による検査方法として実施
し、接触状態などを観察し、検査の信頼性を比較した。 〔試料1〕まず、ポリウレタン樹脂からなるフィルム基
材2(厚み:500μm)に、直径24μmの円形状の
銅線が貫通した状態で保持され基材内導通部5となって
いる構造のフィルムを得た。フィルム基材2の厚み方向
一方Z1側の面2aに露出する銅線(基材内導通部5)
の端面5aに無電解Ni/Auめっきを行い、突出部4
aを形成した。さらに、同様に、フィルム基材2の厚み
方向他方Z2側の面2bに露出する銅線の端面5bに無
電解Ni/Auめっきを行い、突出部4bを形成した。
半導体素子または電子部品6側に配置させる突出部4a
の平均突出高さを7μm、回路基板7側に配置させる突
出部4bの平均突出高さを3μmとした。このようにし
て、図1に示したような本発明の異方導電性フィルム1
を得た。この異方導電性フィルム1の構造全体の弾性率
を、動的粘弾性測定装置(DMS210、セイコーイン
スツルメンツ社製)を用いて測定したところ、12MP
aであった。
EXAMPLE In this example, the following samples 1 and 2 were produced as anisotropic conductive films of the present invention, and the following samples 3, 4 and 5 were produced as anisotropic conductive films for comparison. Using these, an inspection method according to the present invention was carried out, a contact state and the like were observed, and the reliability of the inspection was compared. [Sample 1] First, a film having a structure in which a circular copper wire having a diameter of 24 μm penetrates through a film base material 2 (thickness: 500 μm) made of a polyurethane resin and forms a conductive portion 5 in the base material is prepared. Obtained. Copper wire exposed on the surface 2a on one Z1 side in the thickness direction of the film substrate 2 (the conductive portion 5 in the substrate)
Electroless Ni / Au plating on the end face 5a of
a was formed. Further, similarly, the end face 5b of the copper wire exposed on the surface 2b on the other Z2 side in the thickness direction of the film substrate 2 was subjected to electroless Ni / Au plating to form the protrusion 4b.
Projecting portion 4a arranged on the semiconductor element or electronic component 6 side
The average protrusion height of the protrusions 4b arranged on the circuit board 7 side was 3 μm. Thus, the anisotropic conductive film 1 of the present invention as shown in FIG.
I got When the elastic modulus of the entire structure of the anisotropic conductive film 1 was measured using a dynamic viscoelasticity measuring device (DMS210, manufactured by Seiko Instruments Inc.), 12MP was obtained.
a.

【0039】〔試料2〕突出部4aの平均突出高さを2
2μm、突出部4bの平均突出高さを5μmとした以外
は、上記の試料1と同様にして、異方導電性フィルムを
得た。この異方導電性フィルムの構造全体の弾性率は、
10MPaであった。
[Sample 2] The average protrusion height of the protrusion 4a was 2
An anisotropic conductive film was obtained in the same manner as in Sample 1 described above, except that 2 μm and the average projection height of the projections 4 b were 5 μm. The elastic modulus of the entire structure of this anisotropic conductive film is
It was 10 MPa.

【0040】〔試料3:比較用〕基本的な構造、材料、
製造方法は、試料1と同様であるが、弾性率が32MP
a、各突出部4a,4bの平均突出高さを共に2μmと
なるように形成することで、本発明に用いるべき異方導
電性フィルムの仕様範囲外とした。基材内導通部5の径
は18μm、フィルム基材2の厚みは500μmとし
た。
[Sample 3: For comparison] Basic structure, material,
The manufacturing method is the same as that of Sample 1, but the elastic modulus is 32MP.
a, by forming each of the protrusions 4a and 4b so that the average protrusion height is 2 μm, it is out of the specification range of the anisotropic conductive film to be used in the present invention. The diameter of the conductive portion 5 in the substrate was 18 μm, and the thickness of the film substrate 2 was 500 μm.

【0041】〔試料4:比較用〕基本的な構造、材料、
製造方法は、試料1と同様であるが、弾性率が40MP
aとなるように形成することで、本発明に用いるべき異
方導電性フィルムの仕様範囲外とした。突出部4aの平
均突出高さは8μm、突出部4bの平均突出高さは3μ
mとした。基材内導通部5の径は24μm、フィルム基
材2の厚みは500μmとした。
[Sample 4: Comparative] Basic structure, material,
The manufacturing method is the same as that of the sample 1, except that the elastic modulus is 40MP.
By forming so as to be a, it was out of the specification range of the anisotropic conductive film to be used in the present invention. The average protrusion height of the protrusion 4a is 8 μm, and the average protrusion height of the protrusion 4b is 3 μm.
m. The diameter of the conductive portion 5 in the substrate was 24 μm, and the thickness of the film substrate 2 was 500 μm.

【0042】〔試料5:比較用〕基本的な構造、材料、
製造方法は、試料1と同様であるが、突出部4aの平均
突出高さが2μm、突出部4bの平均突出高さが15μ
mとなるように形成することで、本発明に用いるべき異
方導電性フィルムの仕様範囲外とした。この異方導電性
フィルムの構造全体の弾性率は8MPa、基材内導通部
5の径は24μm、フィルム基材2の厚みは500μm
とした。
[Sample 5: For comparison] Basic structure, material,
The manufacturing method is the same as that of Sample 1, except that the average protrusion height of the protrusion 4a is 2 μm and the average protrusion height of the protrusion 4b is 15 μm.
By forming so as to be m, it was out of the specification range of the anisotropic conductive film to be used in the present invention. The elastic modulus of the entire structure of the anisotropic conductive film is 8 MPa, the diameter of the conductive portion 5 in the base material is 24 μm, and the thickness of the film base material 2 is 500 μm.
And

【0043】評価用の電子部品の仕様は、次の通りであ
る。部品サイズ(9.6mm×7.0mm、厚み:1.
65mm)、電極サイズ(1.0mm×0.8mm)、
電極数(12個)、電極配置における中間ピッチ(1.
8mm)。
The specifications of the electronic components for evaluation are as follows. Part size (9.6 mm x 7.0 mm, thickness: 1.
65mm), electrode size (1.0mm x 0.8mm),
The number of electrodes (12), the intermediate pitch in the electrode arrangement (1.
8 mm).

【0044】評価用の回路基板の仕様は次の通りであ
る。ガラスエポキシ基材(FR−4)、回路パターンの
厚みを含むトータル厚み(1mm)、回路パターンの回
路幅と間隔部分の幅との比(1.0mm:0.8m
m)。上記評価用の電子部品と回路基板を各試料の数だ
け用意し、上記試料1〜5の異方導電性フィルムを介在
させて電子部品と回路基板とを接続し、接触荷重30N
を加えて導通確認を10回繰り返して行い、全点導通し
た回数を測定した。
The specifications of the circuit board for evaluation are as follows. Glass epoxy base material (FR-4), total thickness including circuit pattern thickness (1 mm), ratio of circuit width of circuit pattern to width of space (1.0 mm: 0.8 m)
m). The above-mentioned electronic components for evaluation and circuit boards are prepared by the number of each sample, and the electronic components and the circuit board are connected with the anisotropic conductive films of the above-mentioned samples 1 to 5 interposed therebetween.
, And the conduction was repeated 10 times, and the number of times of conduction at all points was measured.

【0045】〔評価結果〕本発明の異方導電性フィルム
である試料1と試料2を用いた検査では、30Nの接触
荷重にて全点導通した回数は10回であり、上記範囲の
好ましい接触荷重によって全点での接触を達成し得るこ
とが分かった。また、測定時に異方導電性フィルムが電
子部品へ密着せず、連続して測定し得ることが分かっ
た。比較のための試料3を用いた検査では、異方導電性
フィルムの弾性率を32MPaにしたことによって接触
荷重30Nで全点導通した回数は0回であった。また、
突出部の突出高さを両面ともに2μmとしたことによっ
て、測定時に異方導電性フィルムが電子部品へ密着し、
連続測定が不可能であることが分かった。試料4を用い
た検査では、測定時に異方導電性フィルムが電子部品へ
密着せず、連続して測定が可能であったが、異方導電性
フィルムの弾性率を40MPaにしたことによって、接
触荷重30Nで全点導通した回数は0回であった。試料
5を用いた検査では、接触荷重30Nで全点導通した回
数は10回であったが、測定時に異方導電性フィルムが
電子部品へ密着し、連続測定が不可能であった。
[Evaluation Results] In the inspection using the anisotropic conductive films of the present invention, Sample 1 and Sample 2, the number of times of conduction at all points with a contact load of 30 N was 10 times. It has been found that contact at all points can be achieved by loading. In addition, it was found that the anisotropic conductive film did not adhere to the electronic component during the measurement, and the measurement could be performed continuously. In the inspection using the sample 3 for comparison, the number of times of conducting all points at a contact load of 30 N was 0 by setting the elastic modulus of the anisotropic conductive film to 32 MPa. Also,
By setting the protrusion height of the protrusion to 2 μm on both sides, the anisotropic conductive film adheres to the electronic component during measurement,
It turned out that continuous measurement was not possible. In the inspection using the sample 4, the anisotropic conductive film did not adhere to the electronic component at the time of measurement, and continuous measurement was possible. However, the elasticity of the anisotropic conductive film was set to 40 MPa so that the contact was prevented. The number of times that all points were conducted with a load of 30 N was 0 times. In the test using the sample 5, the number of times that all points were conductive at a contact load of 30 N was 10 times, but the anisotropic conductive film adhered to the electronic component at the time of measurement, and continuous measurement was impossible.

【0046】[0046]

【発明の効果】以上の説明で明らかなように、本発明に
よる異方導電性フィルムおよび検査方法によって、半導
体素子および電子部品と回路基板とを低荷重で全点良好
に接続し、連続的な機能検査が可能となり、仮の接続状
態にて信頼性の高い機能検査ができるようになった。
As is clear from the above description, the anisotropic conductive film and the inspection method according to the present invention make it possible to connect the semiconductor element and the electronic component to the circuit board satisfactorily at all points with a low load, and to provide a continuous connection. Functional inspection has become possible, and highly reliable functional inspection can be performed in a temporary connection state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の好ましい一例の異方導電性フ
ィルム1を簡略化して示す図であり、図1(a)は正面
図、図1(b)は図1(a)の切断面線Ib−Ibから
みた断面図である。
FIG. 1 is a simplified view showing an anisotropic conductive film 1 of a preferred example of the present invention. FIG. 1 (a) is a front view, and FIG. 1 (b) is a view of FIG. 1 (a). It is sectional drawing seen from the cutting surface line Ib-Ib.

【図2】図1に示した異方導電性フィルム1を用いた半
導体素子または電子部品の機能検査方法の一例を模式的
に示す図である。
FIG. 2 is a view schematically showing an example of a method for inspecting a function of a semiconductor element or an electronic component using the anisotropic conductive film 1 shown in FIG.

【図3】本発明における導通路3の配列の例を示す簡略
化した正面図である。
FIG. 3 is a simplified front view showing an example of the arrangement of the conductive paths 3 in the present invention.

【図4】本発明の他の例の異方導電性フィルム11を簡
略化して示す断面図である。
FIG. 4 is a simplified cross-sectional view showing an anisotropic conductive film 11 of another example of the present invention.

【図5】図1に示した異方導電性フィルム1の製造手順
の一例を簡略化して示す断面図である。
FIG. 5 is a simplified cross-sectional view showing an example of a procedure for manufacturing the anisotropic conductive film 1 shown in FIG.

【符号の説明】[Explanation of symbols]

1,11 異方導電性フィルム 2 フィルム基材 3 導通路 4a,4b 突出部 5 導通路のフィルム基材内の部分(基材内導
通部) 6 半導体素子または電子部品 7 回路基板
DESCRIPTION OF SYMBOLS 1, 11 Anisotropic conductive film 2 Film base material 3 Conductive path 4a, 4b Projecting part 5 Portion of conductive path in film base (conductive part in base material) 6 Semiconductor element or electronic component 7 Circuit board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 祐治 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 Fターム(参考) 2G003 AA07 AG07 AG12 AH05 2G011 AA00 AB08 AD01 AE03 AF07 5E319 BB16 CD51 5G307 HA02 HB03 HC01  ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuji Hotta 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 2G003 AA07 AG07 AG12 AH05 2G011 AA00 AB08 AD01 AE03 AF07 5E319 BB16 CD51 5G307 HA02 HB03 HC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性樹脂からなるフィルム基材中に、
導電性材料からなる導通路が、互いに絶縁された状態で
該フィルム基材を厚み方向に貫通し、該フィルム基材の
両面から突出する各突出部を有するように複数設けられ
た構造を有し、 各導通路は、その一方側の各突出部同士ならびに他方側
の各突出部同士が略同一の突出高さを有し、かつ導通路
の一方側の突出部の平均突出高さが他方側の突出部の平
均突出高さよりも高く形成され、 上記構造全体の弾性率が、25℃〜40℃において1M
Pa〜20MPaであることを特徴とする異方導電性フ
ィルム。
1. A film substrate comprising an insulating resin,
A conductive path made of a conductive material has a structure in which a plurality of conductive paths are provided so as to penetrate the film base in the thickness direction in a state of being insulated from each other, and to have each protrusion protruding from both surfaces of the film base. Each of the conductive paths has substantially the same protruding height on one side and each protruding part on the other side, and the average protruding height of the protruding part on one side of the conductive path is on the other side. Is formed higher than the average protrusion height of the protrusions, and the elastic modulus of the entire structure is 1 M at 25 ° C. to 40 ° C.
An anisotropic conductive film having a pressure of Pa to 20 MPa.
【請求項2】 上記導通路のうち、少なくともフィルム
基材内の部分が直径5μm〜100μmの金属導線であ
って、フィルム基材の両面から突出した部分が、上記金
属導線自体が延長して突出したものであるか、または、
上記金属導線の端面に金属が堆積して突出したものであ
る請求項1に記載の異方導電性フィルム。
2. In the conductive path, at least a portion in the film base is a metal lead having a diameter of 5 μm to 100 μm, and a portion protruding from both sides of the film base is protruded by extension of the metal lead itself. Or
The anisotropic conductive film according to claim 1, wherein a metal is deposited and protrudes on an end face of the metal conductor.
【請求項3】 導通路は、一方側の突出部の平均突出高
さが6μm〜30μmから選ばれ、かつ他方側の突出部
の平均突出高さが2μm〜5μmから選ばれることを特
徴とする請求項1または2に記載の異方導電性フィル
ム。
3. The conductive path is characterized in that the average protrusion height of the one side protrusion is selected from 6 μm to 30 μm, and the average protrusion height of the other side protrusion is selected from 2 μm to 5 μm. The anisotropic conductive film according to claim 1.
【請求項4】 請求項1〜3のいずれかに記載の異方導
電性フィルムを、半導体素子または電子部品と回路基板
との間に挟んで接触荷重を加え、半導体素子または電子
部品と回路基板とを機能検査可能に導通させて行う検査
方法であって、 該異方導電性フィルムが、導通路の平均突出高さの高い
側を半導体素子または電子部品側に、かつ平均突出高さ
の低い側を回路基板側に配置されることを特徴とする半
導体素子または電子部品の検査方法。
4. An anisotropic conductive film according to claim 1, which is sandwiched between a semiconductor element or an electronic component and a circuit board to apply a contact load to the semiconductor element or the electronic component and the circuit board. And a conductive method for conducting a functional test so that the anisotropic conductive film has a conductive path with a high average protrusion height side to the semiconductor element or electronic component side and a low average protrusion height. A method for inspecting a semiconductor element or an electronic component, wherein the side is arranged on a circuit board side.
JP2000318423A 2000-10-18 2000-10-18 Anisotropic conductive film and inspection method of semiconductor element or electronic component using same Pending JP2002124319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318423A JP2002124319A (en) 2000-10-18 2000-10-18 Anisotropic conductive film and inspection method of semiconductor element or electronic component using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318423A JP2002124319A (en) 2000-10-18 2000-10-18 Anisotropic conductive film and inspection method of semiconductor element or electronic component using same

Publications (1)

Publication Number Publication Date
JP2002124319A true JP2002124319A (en) 2002-04-26

Family

ID=18797051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318423A Pending JP2002124319A (en) 2000-10-18 2000-10-18 Anisotropic conductive film and inspection method of semiconductor element or electronic component using same

Country Status (1)

Country Link
JP (1) JP2002124319A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093298A (en) * 2003-09-18 2005-04-07 Nitto Denko Corp Anisotropic conductive film for inspecting electronic part and inspection method for electronic part using it
JP2007232627A (en) * 2006-03-02 2007-09-13 Asahi Kasei Electronics Co Ltd Anisotropic conductive film for inspecting minute circuit
JP2008140574A (en) * 2006-11-30 2008-06-19 Shin Etsu Polymer Co Ltd Sheet form connector, and its manufacturing method
CN100426591C (en) * 2004-07-30 2008-10-15 日本压着端子制造株式会社 Anisotropic conductive thin boards
JP2009002759A (en) * 2007-06-21 2009-01-08 Japan Electronic Materials Corp Method for maintaining plane parallelism between probe card and its probe substrate
WO2009075220A1 (en) * 2007-12-10 2009-06-18 Tokyo Electron Limited Probe card
JP2009276346A (en) * 2008-05-13 2009-11-26 Ind Technol Res Inst Conductive film structure, its manufacturing method, and conductive film type integrated circuit probe device
CN103050170A (en) * 2011-10-17 2013-04-17 财团法人工业技术研究院 Anisotropic conductive film and manufacturing method thereof
CN105305126A (en) * 2015-11-20 2016-02-03 华为技术有限公司 Electric connector and communication equipment
WO2018079982A1 (en) * 2016-10-28 2018-05-03 주식회사 이노글로벌 Method for manufacturing bidirectional conductive module using ultra precision machining technology and method for manufacturing bidirectional conductive test module using same
WO2019218421A1 (en) * 2018-05-16 2019-11-21 武汉华星光电半导体显示技术有限公司 Anisotropic conductive film having controllable conductive material distribution state and manufacturing method therefor
US20210104854A1 (en) * 2017-05-18 2021-04-08 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093298A (en) * 2003-09-18 2005-04-07 Nitto Denko Corp Anisotropic conductive film for inspecting electronic part and inspection method for electronic part using it
CN100426591C (en) * 2004-07-30 2008-10-15 日本压着端子制造株式会社 Anisotropic conductive thin boards
JP2007232627A (en) * 2006-03-02 2007-09-13 Asahi Kasei Electronics Co Ltd Anisotropic conductive film for inspecting minute circuit
JP2008140574A (en) * 2006-11-30 2008-06-19 Shin Etsu Polymer Co Ltd Sheet form connector, and its manufacturing method
JP2009002759A (en) * 2007-06-21 2009-01-08 Japan Electronic Materials Corp Method for maintaining plane parallelism between probe card and its probe substrate
WO2009075220A1 (en) * 2007-12-10 2009-06-18 Tokyo Electron Limited Probe card
JP2009276346A (en) * 2008-05-13 2009-11-26 Ind Technol Res Inst Conductive film structure, its manufacturing method, and conductive film type integrated circuit probe device
CN103050170A (en) * 2011-10-17 2013-04-17 财团法人工业技术研究院 Anisotropic conductive film and manufacturing method thereof
CN105305126A (en) * 2015-11-20 2016-02-03 华为技术有限公司 Electric connector and communication equipment
WO2018079982A1 (en) * 2016-10-28 2018-05-03 주식회사 이노글로벌 Method for manufacturing bidirectional conductive module using ultra precision machining technology and method for manufacturing bidirectional conductive test module using same
US20210104854A1 (en) * 2017-05-18 2021-04-08 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same
US11637406B2 (en) * 2017-05-18 2023-04-25 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same
WO2019218421A1 (en) * 2018-05-16 2019-11-21 武汉华星光电半导体显示技术有限公司 Anisotropic conductive film having controllable conductive material distribution state and manufacturing method therefor
US10957668B2 (en) 2018-05-16 2021-03-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Anisotropic conductive film (ACF) with controllable distribution state of conductive substance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3022312B2 (en) Method of manufacturing probe card
KR0151134B1 (en) Probe device
JP3737899B2 (en) Semiconductor element inspection method and anisotropic conductive film therefor
JP2002124319A (en) Anisotropic conductive film and inspection method of semiconductor element or electronic component using same
KR0180579B1 (en) Method of manufacturing probe card
JP4361161B2 (en) Anisotropic conductive connector
US6525551B1 (en) Probe structures for testing electrical interconnections to integrated circuit electronic devices
JPH1164425A (en) Method and device for continuity inspection in electronic part
JPH07167892A (en) Probe assembly, manufacture thereof, and probe card for measurement of ic using the same
JPH10132855A (en) Probe card for ic inspection
JP2001036245A (en) Manufacture of wiring board
US20020125901A1 (en) Probe for inspecting semiconductor device and method of manufacturing the same
TW200306423A (en) Probe card and method for manufacturing probe card
JP4256237B2 (en) Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same
JPH08330469A (en) Wiring board for semiconductor device, and its manufacture
JP2001006770A (en) Anisotropic conductive film
JPH07321169A (en) Probe structure
JP2001004700A (en) Interposer board
JPH05226430A (en) Probe card body structure and manufacturing method thereof
JP2000002746A (en) Probe structure
JPH09281145A (en) Inspecting jig with anisotropic conductive material and its manufacture
JP2002176082A (en) Semiconductor inspection equipment and method for inspecting and manufacturing semiconductor device using it
JP2001242219A (en) Inspection probe board and its manufacturing method
JP3128200B2 (en) Electronic circuit board inspection method
JP4401627B2 (en) Contact probe manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918