JP2002124259A - Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material - Google Patents

Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material

Info

Publication number
JP2002124259A
JP2002124259A JP2000317378A JP2000317378A JP2002124259A JP 2002124259 A JP2002124259 A JP 2002124259A JP 2000317378 A JP2000317378 A JP 2000317378A JP 2000317378 A JP2000317378 A JP 2000317378A JP 2002124259 A JP2002124259 A JP 2002124259A
Authority
JP
Japan
Prior art keywords
pitch
carbon material
negative electrode
secondary battery
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000317378A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Koichi Sugano
公一 菅野
Takatsugu Fujiura
隆次 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000317378A priority Critical patent/JP2002124259A/en
Priority to KR1020010063584A priority patent/KR20020033411A/en
Publication of JP2002124259A publication Critical patent/JP2002124259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing, with high productivity, a carbon material realizing high service capacity and high charging/discharging efficiency. SOLUTION: Sulfur of 0.1 to 100 pts.wt. is mixed with material pitch of 100 pts.wt. The mixture is heated at temperatures between 100 and 1,000 deg.C in a non-oxidizing atmosphere. The heat-treated pitch product thus obtained is graphitized at 2,000 deg.C or higher temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池等の非水溶媒二次電池負極用炭素材料の製法およ
び該製法により得られる炭素材料に関する。
The present invention relates to a method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery such as a lithium ion secondary battery and a carbon material obtained by the method.

【0002】[0002]

【従来の技術】負極に炭素材料を用いたリチウムイオン
二次電池は、高電圧・高エネルギ−密度を有し、安全性
・サイクル特性にも優れていることから、高度情報化社
会を支える各種電子機器用の電源として、最近急速に実
用化が進んでいる。これまで使用されてきた天然黒鉛は
他の炭素材料に比べ結晶性が高いため放電容量は高い
が、負極材料に調製するために黒鉛化後に粉砕を行うこ
とから表面積が大きくなり、初回サイクル時の充放電効
率が低い。また、金属分等の不純物を多く含むことでサ
イクル寿命の低下の要因となっている。したがって、金
属分等の不純物が少なく、初回サイクル時の充放電効率
の高い材料が求められている。このような要求に応える
炭素材料として、発明者等は先に特開平10−121054号お
よび特開2000−149946号において、メソフェーズピッチ
を熱処理した後、黒鉛化処理して得られる黒鉛粉末を提
案した。また、電極含浸用などに用いられるQI(キノ
リン不溶分)フリーのコールタールピッチや石油ピッチ
も、比較的黒鉛化性が良好であるため人造黒鉛粉末の原
料として用いられる。
2. Description of the Related Art A lithium ion secondary battery using a carbon material for a negative electrode has a high voltage, a high energy density, and excellent safety and cycle characteristics. As a power source for electronic devices, practical use has recently been rapidly progressing. Natural graphite, which has been used so far, has a higher discharge capacity because of its higher crystallinity than other carbon materials, but the surface area increases because it is ground after graphitization to prepare it as a negative electrode material, and the surface area during the first cycle is increased. Low charge / discharge efficiency. In addition, the inclusion of a large amount of impurities such as metals causes a decrease in cycle life. Therefore, there is a demand for a material having a small amount of impurities such as metal components and a high charge / discharge efficiency in the first cycle. As a carbon material that meets such demands, the inventors have previously proposed graphite powder obtained by subjecting mesophase pitch to a heat treatment and then graphitizing in JP-A-10-121054 and JP-A-2000-149946. . Further, QI (quinoline insoluble matter) -free coal tar pitch and petroleum pitch used for electrode impregnation and the like are also used as raw materials for artificial graphite powder because of their relatively good graphitization properties.

【0003】[0003]

【発明が解決しようとする課題】発明者等が先に提案し
た特開平10−121054号は、縮合多環式炭化水素またはこ
れを含有する物質を弗化水素・三弗化硼素の存在下で重
合させて得られたメソフェ−ズピッチを、非酸化性雰囲
気下で特定の温度領域において熱処理した後、粉砕、黒
鉛化するものであり、不純物が少なく、かつ天然黒鉛に
匹敵する結晶性を持つ黒鉛粉末が高い炭化収率で得られ
る。しかしながらこの方法で得られた黒鉛粉末は、高度
に配向した流れ組織を持っているため、黒鉛粉末表面の
結晶構造に起因した充電時に起こる電解液中の溶媒の分
解活性が高く、充放電効率が低下してしまう欠点があ
り、またメソフェーズピッチを電気炉中に静置して熱処
理を行うと発生ガスによってピッチが発泡し数十倍の体
積となるため、生産性に難点があることが分かった。一
方、QIフリーのコールタールピッチや石油ピッチは、
熱処理の際に、メソフェーズピッチの熱処理時に見られ
るほどの大きな発泡を起こさないが、本質的に炭化収率
が低いため生産性が悪い。更に、これらのQIフリーの
ピッチを原料としてピッチコークスを製造し、粉砕、黒
鉛化してリチウムイオン二次電池負極材料用黒鉛粉末を
調製したところ、上述したメソフェーズピッチの場合と
同様に、黒鉛粉末表面の結晶構造に起因した充電時に起
こる電解液中の溶媒の分解活性が高く、充放電効率が低
下してしまう欠点があることが分かった。本発明の目的
は、以上のような充放電効率の低下という問題点を克服
して、高い放電容量と高充放電効率を実現し、高い生産
性の得られる炭素材料を製造する方法を提供することで
ある。
Japanese Patent Application Laid-Open No. Hei 10-121054, which was proposed by the inventors, discloses a method in which a condensed polycyclic hydrocarbon or a substance containing the same is dissolved in the presence of hydrogen fluoride / boron trifluoride. A mesophase pitch obtained by polymerization is heat-treated in a non-oxidizing atmosphere in a specific temperature range, and then pulverized and graphitized.The graphite has few impurities and has crystallinity comparable to natural graphite. The powder is obtained with a high carbonization yield. However, since the graphite powder obtained by this method has a highly oriented flow structure, the decomposition activity of the solvent in the electrolytic solution that occurs during charging due to the crystal structure of the graphite powder surface is high, and the charge and discharge efficiency is high. There is a drawback that the pitch decreases, and when the mesophase pitch is left standing in an electric furnace and subjected to heat treatment, the pitch is foamed by the generated gas and the volume becomes several tens times larger, so that it is found that there is a problem in productivity. . On the other hand, QI-free coal tar pitch and petroleum pitch
During the heat treatment, foaming as large as that observed during the heat treatment of the mesophase pitch does not occur, but the productivity is poor because the carbonization yield is essentially low. Furthermore, pitch coke was produced using these QI-free pitches as raw materials, and pulverized and graphitized to prepare graphite powder for a negative electrode material of a lithium ion secondary battery. As in the case of the mesophase pitch described above, the graphite powder surface It has been found that there is a disadvantage that the decomposition activity of the solvent in the electrolytic solution caused at the time of charging caused by the crystal structure of is high, and the charge / discharge efficiency is reduced. An object of the present invention is to provide a method for producing a carbon material that achieves a high discharge capacity and a high charge / discharge efficiency by overcoming the above-described problems of a decrease in the charge / discharge efficiency and achieves a high productivity. That is.

【0004】[0004]

【課題を解決するための手段】発明者らはピッチを原料
とした非水溶媒二次電池負極用炭素材料についての上記
課題を解決すべく鋭意検討した結果、ピッチに対して適
正量のイオウを混合し、この混合物を熱処理および黒鉛
化処理することによって、高い放電容量と高い充放電効
率を示す高結晶性黒鉛粉末が高い生産性で得られ、非水
溶媒二次電池用炭素材料として有利に使用できることを
見出し、本発明に至った。即ち本発明は、原料ピッチ1
00重量部に対して0.1〜100重量部のイオウを混
合し、該混合物を非酸化性雰囲気下で100〜1000
℃の温度で加熱し、得られたピッチ熱処理品を更に20
00℃以上で黒鉛化することを特徴とする該非水溶媒二
次電池負極用炭素材料の製造法および、該製造法により
得られた(002)面の結晶子の面間隔d002が0.3
37nm以下、結晶子の大きさLcが50nm以上であ
ることをを特徴とする非水溶媒二次電池負極用炭素材料
である。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems with respect to the carbon material for a negative electrode of a non-aqueous solvent secondary battery using pitch as a raw material. By mixing and heat-treating and graphitizing the mixture, highly crystalline graphite powder showing high discharge capacity and high charge / discharge efficiency can be obtained with high productivity, which is advantageous as a carbon material for non-aqueous solvent secondary batteries. They found that they could be used, leading to the present invention. That is, the present invention relates to a raw material pitch 1
0.1 to 100 parts by weight of sulfur are mixed with respect to 100 parts by weight, and the mixture is mixed in a non-oxidizing atmosphere at 100 to 1000 parts by weight.
At a temperature of 200 ° C., and the obtained pitch heat-treated product is further
00 ° C. preparation of non-aqueous solvent secondary battery negative electrode carbon material and characterized by graphitizing the above, the plane spacing d 002 of the obtained by the production method (002) plane of the crystallite is 0.3
A carbon material for a negative electrode of a nonaqueous solvent secondary battery, wherein the carbon material has a size of 37 nm or less and a crystallite size Lc of 50 nm or more.

【0005】[0005]

【発明の実施の形態】本発明において用いられる原料ピ
ッチは、石油系、石炭系、合成系のいずれのピッチでも
用いることができる。なかでも、炭化収率が高く、黒鉛
化性に優れたメソフェーズピッチ(異方性ピッチ)が好
適に使用される。メソフェーズピッチの中でも、ナフタ
レン、メチルナフタレン、アントラセン、フェナントレ
ン、アセナフテン、アセナフチレン、ピレン等の縮合多
環炭化水素を超強酸触媒の弗化水素・三弗化硼素存在下
で重合させて得られる合成系メソフェーズピッチは、高
い化学純度を示し、黒鉛化性に優れ、炭素化収量もきわ
めて高いことから、さらに好適に使用される。
DETAILED DESCRIPTION OF THE INVENTION The raw material pitch used in the present invention may be any of petroleum, coal and synthetic pitches. Above all, a mesophase pitch (anisotropic pitch) having a high carbonization yield and excellent graphitization properties is preferably used. Among mesophase pitches, synthetic mesophases obtained by polymerizing condensed polycyclic hydrocarbons such as naphthalene, methylnaphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, and pyrene in the presence of hydrogen fluoride / boron trifluoride as a super strong acid catalyst. Pitch is more preferably used because it has high chemical purity, excellent graphitization properties, and extremely high carbonization yield.

【0006】本発明では、ピッチ100重量部に対して
0.1〜100重量部、好ましくは1〜30重量部のイ
オウを混合する。ピッチとイオウの混合方法は特に指定
しないが、両者を粉末状態でミキサー等で混合する、水
やメタノール等の媒体を用いて湿式混合した後乾燥す
る、あるいは加温することによってピッチのみ、イオウ
のみ、あるいは両者とも溶融状態で攪拌混合する、等の
方法がある。
In the present invention, 0.1 to 100 parts by weight, preferably 1 to 30 parts by weight of sulfur is mixed with 100 parts by weight of the pitch. The method of mixing the pitch and sulfur is not particularly specified, but both are mixed in a powder state by a mixer or the like, wet-mixed using a medium such as water or methanol, and then dried, or only the pitch is obtained by heating, and only the sulfur is mixed. Or a method of stirring and mixing both in a molten state.

【0007】この混合物を非酸化性雰囲気下、100〜
1000℃、好ましくは 400〜800℃で加熱する
ことによってピッチ熱処理品を製造する。非酸化性ガス
としては、窒素、アルゴン等が使用される。この熱処理
は、例えば、ステンレス等の耐熱性容器に該混合物を仕
込み、炉の中で加熱することによって行われる。また、
コンベア式の連続熱処理炉、ロータリーキルン等も使用
可能である。イオウを添加しないピッチは電気炉中に静
置して熱処理を行うと発生ガスによってピッチが発泡し
数倍から数十倍の体積となる。これに対して本発明で示
されたイオウを添加したピッチの場合、イオウがピッチ
に含まれる水素原子と反応して低温で炭化が進むため、
ピッチ単独のような激しい発泡現象を起こさず生産性に
優れている。ここでイオウとピッチとの反応を有効に行
わせるため、100〜400℃の温度で一度熱処理を別
途行った後、更に高温で炭化を行うと、発泡が更に抑制
され、優れた生産性が得られる。また、予め粒状または
粉末状のピッチ熱処理品を反応器内に仕込んで撹拌して
おき、そこへこのピッチとイオウの混合物を添加するこ
とで、粒状または粉末状のピッチ熱処理品を連続的に製
造することもできる。更に、炭化収率の低いコールター
ルピッチや石油ピッチなどの場合は、イオウを添加する
ことで炭化収率が増加する。
[0007] This mixture is placed in a non-oxidizing atmosphere at 100 to
The pitch heat-treated product is manufactured by heating at 1000 ° C, preferably 400 to 800 ° C. Nitrogen, argon, or the like is used as the non-oxidizing gas. This heat treatment is performed, for example, by charging the mixture in a heat-resistant container such as stainless steel and heating the mixture in a furnace. Also,
Conveyor-type continuous heat treatment furnaces, rotary kilns and the like can also be used. When the pitch to which sulfur is not added is left standing in an electric furnace and subjected to heat treatment, the generated gas causes the pitch to foam and the volume becomes several times to several tens times. On the other hand, in the case of the pitch to which sulfur shown in the present invention is added, since sulfur reacts with hydrogen atoms contained in the pitch and carbonization proceeds at a low temperature,
Excellent productivity without intense foaming phenomenon like pitch alone. Here, in order to effectively carry out the reaction between sulfur and pitch, once heat treatment is separately performed at a temperature of 100 to 400 ° C. and then carbonization is further performed, foaming is further suppressed, and excellent productivity is obtained. Can be In addition, a granular or powdery pitch heat-treated product is charged into a reactor and stirred in advance, and a mixture of this pitch and sulfur is added thereto to continuously produce a granular or powdery pitch heat-treated product. You can also. Further, in the case of coal tar pitch or petroleum pitch having a low carbonization yield, the addition of sulfur increases the carbonization yield.

【0008】次に、ピッチ熱処理品は、室温近くまで冷
却後、粉砕する。粉末の粒度が平均粒径で通常1〜50
μm、好ましくは2〜30μmの範囲になるよう、粉砕
条件が選択される。粉砕機は衝撃式粉砕機やジェットミ
ル等から適宜、最適機種が選択される。分級機について
も機械式分級機、風力式分級機等から適宜、最適機種が
選択される。
Next, the pitch heat-treated product is cooled to near room temperature and then pulverized. The average particle size of the powder is usually 1 to 50.
The grinding conditions are selected so as to be in the range of μm, preferably in the range of 2 to 30 μm. As the crusher, an optimal model is appropriately selected from an impact crusher, a jet mill, and the like. As for the classifier, an optimal model is appropriately selected from a mechanical classifier, a wind classifier and the like.

【0009】粉砕処理された炭素質粉末は、黒鉛化処理
前に通常仮焼されるが、この仮焼工程を省いて、粉砕後
すぐに黒鉛化処理を行なってもよい。一般に仮焼工程は
非酸化性雰囲気下800〜1600℃で行なわれる。こ
の粉末を2000℃以上、好ましくは2500℃以上で
黒鉛化処理することによって、黒鉛化度が高く、金属分
が少ない黒鉛粉末が得られる。
The pulverized carbonaceous powder is usually calcined before the graphitization treatment. However, the calcining step may be omitted and the graphitization treatment may be performed immediately after the pulverization. Generally, the calcining step is performed at 800 to 1600 ° C. in a non-oxidizing atmosphere. By subjecting this powder to a graphitization treatment at 2000 ° C. or higher, preferably 2500 ° C. or higher, a graphite powder having a high degree of graphitization and a low metal content can be obtained.

【0010】本発明の炭素材料は以上の方法により得ら
れ、学振法により解析された(002)面の結晶子の面
間隔d002が0.337nm以下、結晶子の大きさLc
が50nm以上、好ましくは100nm以上であるもの
である。このような黒鉛粉末をリチウムイオン二次電池
の負極材料として用いた場合、イオウを添加しないピッ
チ単独から同様にして調製された黒鉛粉末の場合に見ら
れるような充電時に起こる電解液中の溶媒の分解による
充放電効率の低下といった欠点を有さず、高い放電容量
と高充放電効率を実現する。更に、特に原料ピッチが縮
合多環式炭化水素またはこれを含有する物質を弗化水素
・三弗化硼素の存在下で重合させて得られたピッチであ
る場合には、金属不純物の量が少ないため、リチウムイ
オン二次電池の負極材料に用いれば、工業製品として高
い性能と信頼性を有するリチウムイオン二次電池が得ら
れる。
The carbon material of the present invention is obtained by the above-mentioned method, and analyzed by the Gakushin method. The (002) plane crystallite spacing d 002 is 0.337 nm or less, and the crystallite size Lc
Is 50 nm or more, preferably 100 nm or more. When such a graphite powder is used as a negative electrode material of a lithium ion secondary battery, the solvent in the electrolyte that occurs at the time of charging as seen in the case of a graphite powder prepared in the same manner from the pitch alone without adding sulfur is used. It achieves high discharge capacity and high charge / discharge efficiency without the drawbacks of reduced charge / discharge efficiency due to decomposition. Further, particularly when the raw material pitch is a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride, the amount of metal impurities is small. Therefore, when used as a negative electrode material of a lithium ion secondary battery, a lithium ion secondary battery having high performance and reliability as an industrial product can be obtained.

【0011】[0011]

【実施例】以下、実施例ならびに比較例により、本発明
をさらに具体的に説明する。但し本発明はこれら実施例
により、なんら制限されるものではない。
The present invention will be more specifically described below with reference to examples and comparative examples. However, the present invention is not limited by these examples.

【0012】実施例1 弗化水素・三弗化硼素の共存下、ナフタレンを重合させ
て原料ピッチ(軟化点:235℃、光学的異方性含有率
100%、炭化収率:87%)を合成した。該ピッチ1
00重量部に対してイオウ5重量部をコーヒーミルで粉
砕、混合し、ピッチ/イオウ混合物を調製した。該混合
物10gを100ccガラスビーカーに入れ、窒素流通
下のマッフル炉内で、昇温速度5℃/分で300℃まで
昇温し1時間保持した。さらに5℃/分で400℃まで
昇温した後1時間保持し、冷却し取り出した。次に、こ
の処理物5gを100ccガラスビーカーに入れ、窒素
流通下のマッフル炉内で、室温から昇温速度10℃/分
で600℃まで昇温し1時間保持した。600℃熱処理
時の収率は94%であり、処理後の見掛け体積は50c
cであった。該処理物を室温まで冷却したのち、ボール
ミルにより平均粒径15μmに粉砕した。該粉末を窒素
雰囲気下5℃/minで昇温し、1000℃に到達後1
0分保持して仮焼を行なった。引き続き、アルゴン雰囲
気下3000℃で黒鉛化処理を行なった。学振法を用い
たX線回折法によって該黒鉛粉末の結晶構造を解析した
結果、(002)面の結晶子の面間隔d002は0.33
58nm、結晶子の大きさLcは、150nmであり、
高い黒鉛化度を有していた。得られた炭素材料90重量
部に、ポリフッ化ビニリデン粉末10重量部(バインダ
ー)を加え、ジメチルホルムアミドを溶媒として配合・
混合した後、銅箔上に塗布し、乾燥後1cm角に切り出
して、評価用試験片とした。次いで、LiPF6をエチ
レンカーボネート/ジエチルカーボネートの配合比が、
1/1の2種類の混合物に溶解した溶液(濃度1.0mol
/l)を電解液とし、厚さ50μmのポリプロピレン製微
孔膜をセパレーターとするハーフセルを作製した。な
お、対極として直径16mm、厚さ0.5mmのリチウ
ム金属を使用し、参照極として対極と同様にリチウム金
属の小片を使用した。電流密度0.2mA/cm2で参
照極に対する評価用試験片の電極電位が10mVになる
まで定電流充電を行った。次いで、電流密度0.2mA
h/cm2で参照極に対する評価用試験片の電極電位が
1.5Vまで定電流放電を行ったところ、初回サイクル
の充電容量が341mAh/g、放電容量が321mA
h/g、充放電効率は94.1%であり、高効率であっ
た。さらに、同条件で2サイクル目を実施した後、3サ
イクル目は、電流密度1.0mA/cm2、参照極に対
する評価用試験片の電極電位10mVで12時間定電流
定電圧充電を行った。次いで、電流密度0.2mAh/
cm2で参照極に対する評価用試験片の電極電位が1.5
Vまで定電流放電を行ったところ、充電容量が349m
Ah/g、放電容量が346mAh/gであり、充放電
効率は99.1%であった。
Example 1 Naphthalene is polymerized in the presence of hydrogen fluoride and boron trifluoride to obtain a raw material pitch (softening point: 235 ° C., optical anisotropy content 100%, carbonization yield: 87%). Synthesized. The pitch 1
5 parts by weight of sulfur was ground and mixed with a coffee mill to prepare a pitch / sulfur mixture. 10 g of the mixture was put into a 100 cc glass beaker, and the temperature was raised to 300 ° C. at a rate of 5 ° C./min in a muffle furnace under a nitrogen flow and maintained for 1 hour. After the temperature was raised to 400 ° C. at a rate of 5 ° C./min, the temperature was maintained for 1 hour, cooled, and taken out. Next, 5 g of the treated product was placed in a 100 cc glass beaker, and the temperature was raised from room temperature to 600 ° C. at a rate of 10 ° C./min from room temperature in a muffle furnace under a nitrogen flow, and maintained for 1 hour. The yield at the time of heat treatment at 600 ° C. is 94%, and the apparent volume after the treatment is 50 c.
c. After cooling the treated product to room temperature, it was pulverized by a ball mill to an average particle size of 15 μm. The temperature of the powder was increased at a rate of 5 ° C./min in a nitrogen atmosphere.
Calcination was performed by holding for 0 minutes. Subsequently, a graphitization treatment was performed at 3000 ° C. in an argon atmosphere. As a result of analyzing the crystal structure of the graphite powder by the X-ray diffraction method using the Gakushin method, the (002) plane crystallite spacing d 002 was 0.33.
58 nm, the crystallite size Lc is 150 nm,
It had a high degree of graphitization. To 90 parts by weight of the obtained carbon material, 10 parts by weight of polyvinylidene fluoride powder (binder) were added, and dimethylformamide was used as a solvent.
After mixing, the mixture was applied on a copper foil, dried, cut into 1 cm squares, and used as test specimens for evaluation. Next, the mixing ratio of LiPF 6 to ethylene carbonate / diethyl carbonate is
A solution (concentration: 1.0 mol) dissolved in two types of 1/1 mixture
/ l) was used as an electrolytic solution, and a half cell was prepared using a 50 μm thick polypropylene microporous membrane as a separator. Note that a lithium metal having a diameter of 16 mm and a thickness of 0.5 mm was used as a counter electrode, and a small piece of lithium metal was used as a reference electrode in the same manner as the counter electrode. Constant current charging was performed at a current density of 0.2 mA / cm 2 until the electrode potential of the test piece for evaluation with respect to the reference electrode became 10 mV. Then, a current density of 0.2 mA
When a constant current discharge was performed at 1.5 h / cm 2 until the electrode potential of the test piece with respect to the reference electrode was 1.5 V, the charge capacity in the first cycle was 341 mAh / g, and the discharge capacity was 321 mA.
h / g, the charge / discharge efficiency was 94.1%, which was high efficiency. Further, after the second cycle was performed under the same conditions, in the third cycle, constant current and constant voltage charging was performed at a current density of 1.0 mA / cm 2 and an electrode potential of the evaluation test piece with respect to the reference electrode of 10 mV for 12 hours. Then, the current density was 0.2 mAh /
The electrode potential of the test piece for evaluation with respect to the reference electrode is 1.5 cm 2.
When constant current discharging was performed to V, the charging capacity was 349 m.
Ah / g, discharge capacity was 346 mAh / g, and charge / discharge efficiency was 99.1%.

【0013】実施例2 実施例1で使用したものと同じ原料ピッチ100重量部
に対してイオウ10重量部をコーヒーミルで粉砕、混合
し、ピッチ/イオウ混合物を調製した。該混合物10g
を100ccガラスビーカーに入れ、窒素流通下のマッ
フル炉内で、昇温速度5℃/分で300℃まで昇温し1
時間保持した。さらに5℃/分で400℃まで昇温した
後1時間保持し、冷却し取り出した。次に、この処理物
5gを100ccガラスビーカーに入れ、窒素流通下の
マッフル炉内で、室温から昇温速度10℃/分で600
℃まで昇温し1時間保持した。600℃熱処理時の収率
は94%であり、処理後の見掛け体積は10ccであっ
た。室温まで冷却したのち、ボールミルにより平均粒径
15μmに粉砕した。該粉末を窒素雰囲気下5℃/mi
nで昇温し、1000℃に到達後10分保持して仮焼を
行なった。引き続き、アルゴン雰囲気下3000℃で黒
鉛化処理を行なった。X線回折法によって該黒鉛粉末の
結晶構造を解析した結果、(002)面の結晶子の面間
隔d002は0.3360nm、結晶子の大きさLcは1
20nmであり、高い黒鉛化度を有していた。実施例1
と同様に、リチウム電池負極性能を測定した。初回サイ
クルの充電容量が343mAh/g、放電容量が327
mAh/g、充放電効率は95.3%であり、高効率で
あった。3サイクル目は、充電容量が346mAh/
g、放電容量が344mAh/gであり、充放電効率は
99.4%であった。
Example 2 A pitch / sulfur mixture was prepared by pulverizing and mixing 10 parts by weight of sulfur with a coffee mill based on 100 parts by weight of the same raw material pitch used in Example 1. 10 g of the mixture
Was placed in a 100 cc glass beaker, and heated to 300 ° C. at a rate of 5 ° C./min in a muffle furnace under a flow of nitrogen.
Hold for hours. After the temperature was raised to 400 ° C. at a rate of 5 ° C./min, the temperature was maintained for 1 hour, cooled, and taken out. Next, 5 g of the treated product was put into a 100 cc glass beaker, and was heated from room temperature to 600 ° C. at a rate of 10 ° C./min in a muffle furnace under nitrogen flow.
The temperature was raised to ° C. and maintained for 1 hour. The yield at the time of heat treatment at 600 ° C. was 94%, and the apparent volume after the treatment was 10 cc. After cooling to room temperature, it was pulverized with a ball mill to an average particle size of 15 μm. The powder was placed in a nitrogen atmosphere at 5 ° C / mi.
The temperature was raised at n, and after reaching 1000 ° C., the temperature was maintained for 10 minutes to perform calcination. Subsequently, a graphitization treatment was performed at 3000 ° C. in an argon atmosphere. As a result of analyzing the crystal structure of the graphite powder by the X-ray diffraction method, the (002) plane crystallite spacing d 002 was 0.3360 nm, and the crystallite size Lc was 1
It was 20 nm and had a high degree of graphitization. Example 1
As in the above, the performance of the negative electrode of the lithium battery was measured. Initial cycle charge capacity is 343 mAh / g, discharge capacity is 327
mAh / g, the charge / discharge efficiency was 95.3%, which was high efficiency. In the third cycle, the charging capacity was 346 mAh /
g, the discharge capacity was 344 mAh / g, and the charge / discharge efficiency was 99.4%.

【0014】実施例3 コールタールピッチ(軟化点:80℃、光学的異方性含
有率0%、炭化収率:45%)100重量部に対してイ
オウ7重量部をコーヒーミルで粉砕、混合し、ピッチ/
イオウ混合物を調製した。該混合物10gを100cc
ガラスビーカーに入れ、窒素流通下のマッフル炉内で、
昇温速度5℃/分で300℃まで昇温し1時間保持し
た。さらに5℃/分で600℃まで昇温し1時間保持し
た。600℃熱処理時の収率は57%であり、処理後の
見掛け体積は10ccであった。室温まで冷却したの
ち、ボールミルにより平均粒径15μmに粉砕した。該
粉末を窒素雰囲気下5℃/minで昇温し、1000℃
に到達後10分保持して仮焼を行なった。引き続き、ア
ルゴン雰囲気下3000℃で黒鉛化処理を行なった。X
線回折法によって該黒鉛粉末の結晶構造を解析した結
果、(002)面の結晶子の面間隔d002は0.336
0nm、結晶子の大きさLcは、120nmであり、高
い黒鉛化度を有していた。実施例1と同様に、リチウム
電池負極性能を測定した。初回サイクルの充電容量が3
49mAh/g、放電容量が328mAh/g、充放電
効率は94.0%であり、高効率であった。3サイクル
目は、充電容量が340mAh/g、放電容量が338
mAh/gであり、充放電効率は99.4%であった。
Example 3 100 parts by weight of coal tar pitch (softening point: 80 ° C., optical anisotropy content: 0%, carbonization yield: 45%) were ground and mixed with 7 parts by weight of sulfur in a coffee mill. And pitch /
A sulfur mixture was prepared. 100 g of the mixture 10 g
In a glass beaker, in a muffle furnace under nitrogen flow,
The temperature was raised to 300 ° C. at a rate of 5 ° C./min and maintained for 1 hour. Further, the temperature was raised to 600 ° C. at a rate of 5 ° C./min and maintained for 1 hour. The yield at the time of heat treatment at 600 ° C. was 57%, and the apparent volume after the treatment was 10 cc. After cooling to room temperature, it was pulverized with a ball mill to an average particle size of 15 μm. The temperature of the powder was increased at a rate of 5 ° C./min in a nitrogen atmosphere.
And calcined for 10 minutes. Subsequently, a graphitization treatment was performed at 3000 ° C. in an argon atmosphere. X
As a result of analyzing the crystal structure of the graphite powder by the X-ray diffraction method, the interplanar spacing d 002 of the (002) crystallite was 0.336.
0 nm and the crystallite size Lc was 120 nm, indicating a high degree of graphitization. As in Example 1, the performance of the negative electrode of the lithium battery was measured. The charge capacity of the first cycle is 3
The efficiency was 49 mAh / g, the discharge capacity was 328 mAh / g, and the charge / discharge efficiency was 94.0%. In the third cycle, the charge capacity was 340 mAh / g, and the discharge capacity was 338.
mAh / g, and the charge / discharge efficiency was 99.4%.

【0015】比較例1 弗化水素・三弗化硼素の共存下、ナフタレンを重合させ
てピッチ(軟化点:235℃、光学的異方性含有率10
0%、炭化収率:87%)を合成した。該ピッチ10g
を100ccガラスビーカーに入れ、窒素流通下のマッ
フル炉内で、昇温速度5℃/分で300℃まで昇温し1
時間保持した。さらに5℃/分で400℃まで昇温した
後1時間保持し、冷却し取り出した。次に、この処理物
5gを100ccガラスビーカーに入れ、窒素流通下の
マッフル炉内で、室温から昇温速度10℃/分で600
℃まで昇温し1時間保持した。600℃熱処理時の収率
は94%であり、処理後の見掛け体積は120ccと大
きく発泡した。室温まで冷却したのち、ボールミルによ
り平均粒径15μmに粉砕した。該粉末を窒素雰囲気下
5℃/minで昇温し、1000℃に到達後10分保持
して仮焼を行なった。引き続き、アルゴン雰囲気下30
00℃で黒鉛化処理を行なった。X線回折法によって該
黒鉛粉末の結晶構造を解析した結果、(002)面の結
晶子の面間隔d002は0.3357nm、結晶子の大き
さLcは、250nmであり、高い黒鉛化度を有してい
た。実施例1と同様に、リチウム電池負極性能を測定し
たところ、初回サイクルの充電容量が525mAh/
g、放電容量が315mAh/gであり、充放電効率が
60%と低かった。3サイクル目は、充電容量が340
mAh/g、放電容量が325mAh/gと低く、充放
電効率も95.6%と低いままであった。
Comparative Example 1 Naphthalene was polymerized in the presence of hydrogen fluoride and boron trifluoride to form a pitch (softening point: 235 ° C., optical anisotropy content: 10).
(0%, carbonization yield: 87%). The pitch 10g
Was placed in a 100 cc glass beaker, and heated to 300 ° C. at a rate of 5 ° C./min in a muffle furnace under a flow of nitrogen.
Hold for hours. After the temperature was raised to 400 ° C. at a rate of 5 ° C./min, the temperature was maintained for 1 hour, cooled, and taken out. Next, 5 g of the treated product was put into a 100 cc glass beaker, and was heated from room temperature to 600 ° C. at a rate of 10 ° C./min in a muffle furnace under nitrogen flow.
The temperature was raised to ° C. and maintained for 1 hour. The yield at the time of heat treatment at 600 ° C. was 94%, and the apparent volume after the treatment was as large as 120 cc. After cooling to room temperature, it was pulverized with a ball mill to an average particle size of 15 μm. The temperature of the powder was increased at a rate of 5 ° C./min in a nitrogen atmosphere. Then, under argon atmosphere,
Graphitization was performed at 00 ° C. As a result of analyzing the crystal structure of the graphite powder by the X-ray diffraction method, the (002) plane crystallite spacing d 002 was 0.3357 nm, and the crystallite size Lc was 250 nm, indicating a high degree of graphitization. Had. When the negative electrode performance of the lithium battery was measured in the same manner as in Example 1, the charge capacity in the first cycle was 525 mAh /
g, the discharge capacity was 315 mAh / g, and the charge / discharge efficiency was as low as 60%. In the third cycle, the charging capacity is 340
mAh / g, the discharge capacity was as low as 325 mAh / g, and the charge / discharge efficiency remained as low as 95.6%.

【0016】比較例2 コールタールピッチ(軟化点:80℃、光学的異方性含
有率0%、炭化収率:45%)10gを100ccガラ
スビーカーに入れ、窒素流通下のマッフル炉内で、昇温
速度5℃/分で300℃まで昇温し1時間保持した。さ
らに5℃/分で600℃まで昇温し1時間保持した。6
00℃熱処理時の収率は45%であり、処理後の見掛け
体積は20ccであった。室温まで冷却した後、ボール
ミルにより平均粒径15μmに粉砕した。該粉末を窒素
雰囲気下5℃/minで昇温し、1000℃に到達後1
0分保持して仮焼を行なった。引き続き、アルゴン雰囲
気下3000℃で黒鉛化処理を行なった。X線回折法に
よって該黒鉛粉末の結晶構造を解析した結果、(00
2)面の結晶子の面間隔d002は0.3358nm、結
晶子の大きさLcは、140nmであり、高い黒鉛化度
を有していた。実施例1と同様に、リチウム電池負極性
能を測定したところ、初回サイクルの充電容量が510
mAh/g、放電容量が301mAh/gであり、充放
電効率が59%と低かった。3サイクル目は、充電容量
が330mAh/g、放電容量が315mAh/gと低
く、充放電効率も95.5%と低いままであった。
Comparative Example 2 10 g of coal tar pitch (softening point: 80 ° C., optical anisotropy content: 0%, carbonization yield: 45%) was placed in a 100 cc glass beaker, and placed in a muffle furnace under a nitrogen flow. The temperature was raised to 300 ° C. at a rate of 5 ° C./min and maintained for 1 hour. Further, the temperature was raised to 600 ° C. at a rate of 5 ° C./min and maintained for 1 hour. 6
The yield during the heat treatment at 00 ° C. was 45%, and the apparent volume after the treatment was 20 cc. After cooling to room temperature, it was pulverized with a ball mill to an average particle size of 15 μm. The temperature of the powder was increased at a rate of 5 ° C./min in a nitrogen atmosphere.
Calcination was performed by holding for 0 minutes. Subsequently, a graphitization treatment was performed at 3000 ° C. in an argon atmosphere. As a result of analyzing the crystal structure of the graphite powder by X-ray diffraction, (00
2) The plane spacing d 002 between crystallites on the plane was 0.3358 nm, and the crystallite size Lc was 140 nm, indicating a high degree of graphitization. When the lithium battery negative electrode performance was measured in the same manner as in Example 1, the charge capacity in the first cycle was 510.
mAh / g, the discharge capacity was 301 mAh / g, and the charge / discharge efficiency was as low as 59%. In the third cycle, the charge capacity was as low as 330 mAh / g, the discharge capacity was as low as 315 mAh / g, and the charge / discharge efficiency was as low as 95.5%.

【0017】[0017]

【発明の効果】以上の実施例からも明らかなように、本
発明の方法により得られる炭素材料は高い結晶性を有
し、高い放電容量と高い充放電効率の二次電池が製造さ
れる。従って本発明の炭素材料は、リチウムイオン電池
等の非水溶媒二次電池の負極材料として好適であり、高
いエネルギ−密度の非水溶媒二次電池が極めて有利に得
られる。さらに、本発明の製造法は次のような特性があ
り、簡便なプロセスで安価に製造できる。 (1)本発明で示されたイオウを添加したピッチでは、
イオウがピッチに含まれる水素原子と反応して低温で炭
化が進むため、ピッチ単独のような激しい発泡現象を起
こさず、熱処理工程で優れた生産性が得られる。また、
予め粒状または粉末状のピッチ熱処理品を反応器内に仕
込んで撹拌しておき、そこへピッチとイオウの混合物を
添加することで、粒状または粉末状のピッチ熱処理品を
連続的に製造することもできる。 (2)炭化収率の低いコールタールピッチや石油ピッチ
などの場合は、イオウを添加することで炭化収率が高く
なり、生産性が増加する。
As is clear from the above examples, the carbon material obtained by the method of the present invention has high crystallinity, and a secondary battery having high discharge capacity and high charge / discharge efficiency can be manufactured. Therefore, the carbon material of the present invention is suitable as a negative electrode material for a non-aqueous solvent secondary battery such as a lithium ion battery, and a non-aqueous solvent secondary battery having a high energy density can be obtained very advantageously. Furthermore, the production method of the present invention has the following characteristics, and can be produced at a low cost by a simple process. (1) In the pitch to which sulfur shown in the present invention is added,
Since sulfur reacts with hydrogen atoms contained in the pitch and carbonization proceeds at a low temperature, a vigorous foaming phenomenon unlike the pitch alone does not occur, and excellent productivity can be obtained in the heat treatment step. Also,
A granular or powdery pitch heat-treated product can be produced continuously by charging a granular or powdery pitch heat-treated product in a reactor and stirring the mixture, and then adding a mixture of pitch and sulfur thereto. it can. (2) In the case of coal tar pitch or petroleum pitch with a low carbonization yield, the addition of sulfur increases the carbonization yield and increases productivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤浦 隆次 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 Fターム(参考) 4G046 EA02 EB02 EB04 EC02 EC06 5H029 AJ03 AJ05 AL06 AM03 AM05 AM07 CJ02 CJ28 DJ17 HJ01 HJ04 HJ13 5H050 AA08 AA19 BA17 CB07 EA24 FA19 GA02 GA27 HA01 HA04 HA13 HA14  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Ryuji Fujiura 22nd Wadai, Tsukuba-shi, Ibaraki F-term in Mitsubishi Gas Chemical Company, Ltd. DJ17 HJ01 HJ04 HJ13 5H050 AA08 AA19 BA17 CB07 EA24 FA19 GA02 GA27 HA01 HA04 HA13 HA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原料ピッチ100重量部に対して0.1〜
100重量部のイオウを混合し、該混合物を非酸化性雰
囲気下で100〜1000℃の温度で加熱し、得られた
ピッチ熱処理品を更に2000℃以上で黒鉛化すること
を特徴とする非水溶媒二次電池負極用炭素材料の製造
法。
(1) 0.1 to 100 parts by weight of raw material pitch
100 parts by weight of sulfur are mixed, the mixture is heated at a temperature of 100 to 1000 ° C. in a non-oxidizing atmosphere, and the obtained pitch heat-treated product is further graphitized at 2000 ° C. or more. A method for producing a carbon material for a negative electrode of a solvent secondary battery.
【請求項2】原料ピッチが縮合多環式炭化水素またはこ
れを含有する物質を弗化水素・三弗化硼素の存在下で重
合させて得られたピッチである請求項1に記載の非水溶
媒二次電池負極用炭素材料の製造法。
2. The non-aqueous solution according to claim 1, wherein the raw material pitch is a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride. A method for producing a carbon material for a negative electrode of a solvent secondary battery.
【請求項3】請求項1により得られ、(002)面の結
晶子の面間隔d002が0.337nm以下、結晶子の大
きさLcが50nm以上であること特徴とする非水溶媒
二次電池負極用炭素材料。
3. The non-aqueous solvent secondary obtained according to claim 1, wherein the (002) plane crystallite spacing d 002 is 0.337 nm or less and the crystallite size Lc is 50 nm or more. Carbon material for battery anode.
JP2000317378A 2000-10-18 2000-10-18 Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material Pending JP2002124259A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000317378A JP2002124259A (en) 2000-10-18 2000-10-18 Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material
KR1020010063584A KR20020033411A (en) 2000-10-18 2001-10-16 Process for producing carbon material for anode of non-water soluble solvent secondary battery and carbon material produced by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000317378A JP2002124259A (en) 2000-10-18 2000-10-18 Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material

Publications (1)

Publication Number Publication Date
JP2002124259A true JP2002124259A (en) 2002-04-26

Family

ID=18796167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000317378A Pending JP2002124259A (en) 2000-10-18 2000-10-18 Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material

Country Status (2)

Country Link
JP (1) JP2002124259A (en)
KR (1) KR20020033411A (en)

Also Published As

Publication number Publication date
KR20020033411A (en) 2002-05-06

Similar Documents

Publication Publication Date Title
EP1186646B1 (en) Processes for producing coke, graphite and carbon material for negative electrode of non-aqueous solvent type secondary battery
JP6775577B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery including this
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
KR20090120476A (en) Method of making active materials for use in secondary electrochemical cells
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2010529622A (en) Process for the production of lithium vanadium polyanion powder for batteries
KR101993625B1 (en) Carbon material, production method thereof and use thereof
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
KR20160065107A (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP4204720B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4108226B2 (en) Bulk mesophase production method, carbon material production method, negative electrode active material, and lithium ion secondary battery
JP2002124256A (en) Nonaqueous solvent secondary battery
JP2000149946A (en) Carbon material for nonaqueous solvent secondary battery negative electrode and its manufacture
JP4179720B2 (en) Method for producing carbon material and graphite material, and material for negative electrode of lithium ion secondary battery
JP2002124255A (en) Nonaqueous solvent secondary battery
JP2000149947A (en) Graphite powder for lithium ion battery negative electrode
JPH10149830A (en) Carbon material for nonaqueous solvent secondary battery negative electrode
JP2002124259A (en) Manufacturing method of carbon material for nonaqueous solvent secondary battery negative electrode and carbon material
JPH10241679A (en) Electrode material for secondary battery