JP2002121647A - Steel sheet for heat treatment having excellent formability and wear resistance and its production method - Google Patents

Steel sheet for heat treatment having excellent formability and wear resistance and its production method

Info

Publication number
JP2002121647A
JP2002121647A JP2000313490A JP2000313490A JP2002121647A JP 2002121647 A JP2002121647 A JP 2002121647A JP 2000313490 A JP2000313490 A JP 2000313490A JP 2000313490 A JP2000313490 A JP 2000313490A JP 2002121647 A JP2002121647 A JP 2002121647A
Authority
JP
Japan
Prior art keywords
heat treatment
less
rolling
temperature range
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000313490A
Other languages
Japanese (ja)
Inventor
Kaoru Kawasaki
薫 川崎
Keiichiro Nagano
啓一郎 長野
Hiroki Mifuku
浩樹 御福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000313490A priority Critical patent/JP2002121647A/en
Publication of JP2002121647A publication Critical patent/JP2002121647A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excentally workable steel sheet for heat treatment provided with good formability in working such as press forming and with strength and wear resistance by the subsequent heat treatment and to provide its production method. SOLUTION: In the method for producing a steel sheet for heat treatment having excellent formability and wear resistance, a continuously cast slab containing 0.25 to 0.40% C, <=0.5% Mn, Ti: 4×[N] to 0.02%, <=0.003% N and 0.0003 to 0.003% B is reheated or cast, is thereafter directly subjected to rough rolling so that the finish rolling is finished in the temperature range of the Ar3 transformation point or higher, is also cooled from the same temperature range at a cooling rate of <=30 deg.C/s and is coiled in the temperature range of 600 to 700 deg.C to form a structure consisting of ferrite and pearlite and is subsequently subjected to heat holding treatment in the temperature range of <=700 deg.C for >=1 hr and, if required, skinpass rolling is performed before the heat holding treatment to form a structure containing spheroidized cementite and graphite with an area ratio of <=10% and also with a diameter of <=10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プレス成形等の加
工時における良好な成形性と、その後に施される熱処理
により強度と耐磨耗性を具備した、優れた加工性を有す
る熱処理用鋼板及びその製造方法に関するものである。
本発明による鋼板は特に自動車、二輪車及び自転車に使
用される衝突安全性を確保するための強度部材や、耐磨
耗性が必要なギヤやクラッチプレート等に適用されるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-treatable steel sheet having good formability at the time of working such as press forming and strength and wear resistance by heat treatment performed thereafter. And a method of manufacturing the same.
The steel sheet according to the present invention is applied particularly to a strength member used for automobiles, motorcycles, and bicycles for ensuring collision safety, and gears and clutch plates requiring wear resistance.

【0002】[0002]

【従来の技術】一般に、熱処理による耐磨耗性を具備さ
せる方法としては、液浸あるいはガス浸による雰囲気を
利用した浸炭・浸窒処理する方法がある。しかし、この
方法では鋼組成の変動により浸炭・浸窒層の深さが変化
するばかりでなく、コア部の硬さもばらつくという問題
がある。
2. Description of the Related Art In general, as a method of providing abrasion resistance by heat treatment, there is a method of carburizing and nitriding using an atmosphere of liquid immersion or gas immersion. However, this method has a problem that not only the depth of the carburized / nitrided layer changes due to the change of the steel composition, but also the hardness of the core portion varies.

【0003】また、単純な熱処理により耐磨耗性を付与
するものして、高炭素鋼帯を利用する方法がある。例え
ば特開平1−132739号公報に開示されているよう
に、フェライトと直径10μm以下の微細グラファイト
とする組織を有する方法がある。しかし、より短時間で
の熱処理における焼入れ性確保の観点からは、特に本発
明が対象とする高々2〜3分程度の熱処理では、たとえ
10μm以下といってもオーステナイトへの固溶・拡散
が不十分となり、硬度を確保できないことが懸念され
る。
[0003] Further, there is a method in which abrasion resistance is imparted by a simple heat treatment, and a high carbon steel strip is used. For example, as disclosed in Japanese Patent Application Laid-Open No. 1-132739, there is a method having a structure in which ferrite and fine graphite having a diameter of 10 μm or less are used. However, from the viewpoint of ensuring hardenability in a heat treatment in a shorter time, solid solution and diffusion into austenite are not particularly high even in a heat treatment of at most about 2 to 3 minutes which is an object of the present invention even if it is 10 μm or less. There is a concern that sufficient hardness cannot be secured.

【0004】また、特開平6−108158号公報には
成形性の良好な高炭素鋼帯の製造方法が開示されてい
る。この方法も基本的にはセメンタイトをグラファイト
化するものであり、特に0.3〜0.4%のCを含む鋼
での硬度はHvでいずれも450未満であることから、
耐磨耗性からは不十分であると言わざるを得ない。さら
にTi添加についても何ら記載がないばかりでなく、B
/Nに対する配慮もないことことから、根本的に本発明
とは思想を異にするものである。
Japanese Patent Application Laid-Open No. 6-108158 discloses a method for producing a high carbon steel strip having good formability. This method is also basically for graphitizing cementite, and in particular, the hardness of steel containing 0.3 to 0.4% of C is less than 450 in Hv.
It must be said that it is insufficient from the viewpoint of abrasion resistance. Furthermore, not only is there no description about the addition of Ti,
Since there is no consideration for / N, the idea is fundamentally different from the present invention.

【0005】[0005]

【発明が解決しようとする課題】したがって本発明の課
題は、短時間の熱処理により十分な硬度が得られるよう
に焼入れ性を確保すると同時に、プレス加工時の成形性
を兼ね備えた鋼板ならびにその製造方法を確立すること
にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a steel sheet having not only hardenability so that sufficient hardness can be obtained by a short heat treatment, but also formability at the time of press working, and a method for producing the same. Is to establish.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために基礎実験を行い、Ti、B及びN量の
制御と熱延時の冷却条件の最適化により、本発明に至る
以下の知見を得た。すなわち、質量%でC:0.31
%、Mn:0.22%、B:0.0010%を基本組成
として、Ti及びN量を種々変化させた鋼を溶製した。
これらの鋼について、加熱温度:1200℃、仕上温
度:840℃として熱間圧延を行い、20℃/sの冷却
速度で冷却を行い、650℃で巻取処理を行った。な
お、この時の巻取処理条件は、650℃で2時間保熱し
た後に炉冷した。引き続き20℃/hの加熱速度で70
0℃まで加熱し、10h保熱してから20℃/hの冷却
速度で100℃以下の温度まで冷却した。さらにこれら
の熱処理材について表面粗度を調整するために14%の
冷間圧延を施してから、高周波による焼入れ処理に供し
た。焼入れ処理は900℃まで10℃/sで加熱し、3
0s保熱後100℃/sで冷却した。荷重:1kgでの
ビッカースによる表面硬度測定の結果、以下のことを知
見した。
Means for Solving the Problems The present inventors conducted basic experiments to solve the above problems, and reached the present invention by controlling the amounts of Ti, B and N and optimizing the cooling conditions during hot rolling. The following findings were obtained. That is, in mass%, C: 0.31
%, Mn: 0.22%, and B: 0.0010% as basic compositions, and steels in which the amounts of Ti and N were variously changed were melted.
These steels were subjected to hot rolling at a heating temperature of 1200 ° C. and a finishing temperature of 840 ° C., cooled at a cooling rate of 20 ° C./s, and wound at 650 ° C. In this case, the winding treatment conditions were as follows: the furnace was cooled at 650 ° C. for 2 hours and then cooled. Subsequently, at a heating rate of 20 ° C./h, 70
It was heated to 0 ° C., kept for 10 hours, and then cooled at a cooling rate of 20 ° C./h to a temperature of 100 ° C. or less. Further, these heat-treated materials were subjected to 14% cold rolling in order to adjust the surface roughness, and then subjected to a quenching treatment by high frequency. The quenching treatment is performed by heating to 900 ° C. at 10 ° C./s.
After keeping the heat for 0 s, it was cooled at 100 ° C./s. As a result of surface hardness measurement by Vickers under a load of 1 kg, the following was found.

【0007】焼入れ処理による硬度を確保するには、マ
ルテンサイト自身の硬さを高くすると同時に、焼入れ性
を向上させる必要がある。特にTi及びN量の増加に伴
う焼入れ性の変動が懸念され、図1に示すようにTi及
びN量によっては焼入れ処理後の硬度が低下する。これ
は、TiNの析出と関連するものと推察される。すなわ
ち、Ti量及びN量の増加によりTiNの析出量が多く
なることから、焼入れ温度に加熱した際のオーステナイ
トの粒成長性が不十分となることが原因となり、焼入れ
性が低下したためと推察される。したがって、本発明で
のHv>450を確保するには、Ti量の上限は0.0
2%であり、N量ついても30ppmを上限とするのが
好適である。
In order to secure the hardness by quenching, it is necessary to increase the hardness of martensite itself and at the same time to improve the quenchability. In particular, there is a concern that the hardenability varies with an increase in the amount of Ti and N, and as shown in FIG. 1, the hardness after the quenching treatment decreases depending on the amount of Ti and N. This is presumed to be related to the precipitation of TiN. In other words, it is speculated that the precipitation amount of TiN increases due to the increase of the Ti amount and the N amount, and that the grain growth of austenite when heated to the quenching temperature becomes insufficient, and that the quenching property is reduced. You. Therefore, in order to secure Hv> 450 in the present invention, the upper limit of the Ti content is 0.0
It is preferably 2%, and the upper limit of the amount of N is preferably 30 ppm.

【0008】また、上述した検討成分系のうちTi:
0.007%、N:0.0015%、B:0.001%
である鋼について、熱延段階における冷却速度の影響を
調査した。各冷却条件で冷却された熱延板は、650℃
で2時間の保熱と炉冷による巻取処理を実施した。さら
に引き続き20℃/hの加熱速度で700℃まで加熱
し、10h保熱してから20℃/hの冷却速度で100
℃以下の温度まで冷却した後に、前述と同様の条件で硬
度測定を実施した。
[0008] Further, among the above-mentioned components for examination, Ti:
0.007%, N: 0.0015%, B: 0.001%
The effect of cooling rate on the hot rolling stage was investigated for steel. The hot rolled sheet cooled under each cooling condition was 650 ° C.
, A winding process was performed by heat retention and furnace cooling for 2 hours. Further, it is further heated to 700 ° C. at a heating rate of 20 ° C./h, kept for 10 hours, and then cooled to 100 ° C.
After cooling to a temperature of not more than ° C., the hardness was measured under the same conditions as described above.

【0009】結果を図2に示す。仕上圧延後の冷却速度
が20℃/s以下の場合は、巻取りまでの冷却中にパーラ
イト変態が終了するため、セメンタイトの球状化が促進
され、十分な軟質化がなされている。一方、冷却速度が
30℃/sを超えると急激に硬度が上がり、軟質化が十分
とは言えない。これは、巻取り後にもパーライト変態が
引き続き進行するため、その体積率が増えることに起因
して球状化が十分に進行しないためと推察される。
FIG. 2 shows the results. When the cooling rate after the finish rolling is 20 ° C./s or less, the pearlite transformation ends during the cooling up to the winding, so that the spheroidization of the cementite is promoted and sufficient softening is achieved. On the other hand, when the cooling rate exceeds 30 ° C./s, the hardness rapidly increases, and softening cannot be said to be sufficient. This is presumed to be because pearlite transformation continued to progress even after winding, and spheroidization did not sufficiently proceed due to an increase in the volume ratio.

【0010】以上の知見をもとに、本発明の成形性と耐
磨耗性に優れた熱処理用鋼板及びその製造方法を確立し
た。即ち、本発明の要旨とするところは以下の通りであ
る。(1)質量比で、 C :0.25〜0.40%、 Mn:0.5%以下、 Ti:4×[N]〜0.02%、 N :0.003%以下、 B :0.0003〜0.003%を含み、 球状化したセメンタイトを含む組織からなることを特徴
とする成形性と耐磨耗性に優れた熱処理用鋼板。 (2) 質量比で、 C :0.25〜0.40%、 Mn:0.5%以下、 Ti:4×[N]〜0.02%、 N :0.003%以下、 B :0.0003〜0.003%を含み、 球状化したセメンタイトと面積率で10%以下でかつ、
直径で10μm以下のグラファイトを含む組織からなる
ことを特徴とする成形性と耐磨耗性に優れた熱処理用鋼
板。 (3)前記(1)または(2)に記載の成分を含有する
鋼を連続鋳造にてスラブとし、再加熱後に粗圧延を実施
し、あるいは鋳造後直ちに粗圧延または仕上圧延を実施
し、800℃以上の温度域で仕上圧延を終了させかつ、
その温度域から30℃/s以下の冷却速度で冷却し、6
00〜700℃の温度域で巻き取ることによりフェライ
トとパーライトからなる組織とした後、引き続き700
℃以下の温度域で保熱処理を行うことを特徴とする成形
性と耐磨耗性に優れた熱処理用鋼板の製造方法。 (4)前記保熱処理の前にスキンパス圧延することを特
徴とする前記(3)に記載の成形性と耐磨耗性に優れた
熱処理用鋼板の製造方法。 (5)粗圧延を終了し、シートバーを一旦コイルに巻き
取り、そのまま仕上圧延に供するか、あるいは先行する
シートバーに接続後、仕上圧延を行うことを特徴とする
前記(3)または(4)に記載の成形性と耐磨耗性に優
れた熱処理用鋼板の製造方法。
Based on the above findings, a heat treatment steel sheet having excellent formability and abrasion resistance according to the present invention and a method for producing the same have been established. That is, the gist of the present invention is as follows. (1) By mass ratio, C: 0.25 to 0.40%, Mn: 0.5% or less, Ti: 4 × [N] to 0.02%, N: 0.003% or less, B: 0 A steel sheet for heat treatment having excellent formability and abrasion resistance, characterized by having a structure containing spheroidized cementite containing 0.0003 to 0.003%. (2) In mass ratio, C: 0.25 to 0.40%, Mn: 0.5% or less, Ti: 4 × [N] to 0.02%, N: 0.003% or less, B: 0 0.0003% to 0.003%, and 10% or less in area ratio with spheroidized cementite,
A heat treatment steel sheet having excellent formability and abrasion resistance, comprising a structure containing graphite having a diameter of 10 μm or less. (3) A steel containing the component described in the above (1) or (2) is converted into a slab by continuous casting, and rough rolling is performed after reheating, or rough rolling or finish rolling is performed immediately after casting, and 800 Finish rolling in a temperature range of ℃ or more, and
Cooling from the temperature range at a cooling rate of 30 ° C./s or less, 6
After winding in a temperature range of 00 to 700 ° C. to form a structure composed of ferrite and pearlite,
A method for producing a heat-treating steel sheet having excellent formability and abrasion resistance, characterized by performing heat-retaining treatment in a temperature range of not more than ℃. (4) The method for producing a heat-treated steel sheet having excellent formability and abrasion resistance according to (3), wherein skin pass rolling is performed before the heat-retaining heat treatment. (5) The above (3) or (4), wherein the rough rolling is completed, and the sheet bar is once wound into a coil and subjected to finish rolling as it is, or the finish bar is connected to a preceding sheet bar and then subjected to finish rolling. A) a method for producing a heat-treating steel sheet having excellent formability and abrasion resistance according to (1).

【0011】[0011]

【発明の実施の形態】まず、この発明における成分組成
の限定理由について述べる。Cは0.25〜0.4%と
する。過度に添加すると、セメンタイトがグラファイト
として形成されるようになることから、焼入れ処理にお
けるCの再固溶が十分に達成されず、部分的な硬度不足
となることが懸念されることから、0.4%を上限とす
る。一方、焼入れ処理後の硬度を確保するにはC量が必
要であり、ビッカース硬度で安定して450を得るには
0.25%以上必要である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the component composition in the present invention will be described. C is 0.25 to 0.4%. If it is added excessively, cementite will be formed as graphite, so that the re-dissolution of C in the quenching process will not be sufficiently achieved, and there is a concern that partial hardness will be insufficient. The upper limit is 4%. On the other hand, the amount of C is required to secure the hardness after the quenching treatment, and 0.25% or more is required to obtain 450 stably at Vickers hardness.

【0012】Mnは、焼入れ性を確保するには重要な役
割を果たす元素ではあるが、熱延段階における仕上圧延
後の冷却段階でのパーライトの形成を遅滞させる。すな
わち、巻取り後にもパーライト変態が進むため、その体
積率が増加すると球状化に長時間を要するようになるこ
とが懸念される。したがって、0.5%を上限とする。
一方、焼入れ性の確保の観点からは0.1%以上とする
のが好ましい。
Mn is an element that plays an important role in securing hardenability, but delays the formation of pearlite in a cooling stage after finish rolling in a hot rolling stage. That is, since the pearlite transformation proceeds even after winding, there is a concern that a long time is required for spheroidization when the volume ratio increases. Therefore, the upper limit is 0.5%.
On the other hand, from the viewpoint of ensuring hardenability, the content is preferably 0.1% or more.

【0013】Tiは、本発明において非常に重要な役割
を果たす元素の1つである。BNの析出に先立ちTiN
を析出させるために添加される。固溶Bによる焼入れ性
向上効果をより有効に現出させるため、Nと当量(4×
[N])を下限とする。また、過度に添加するとTiN
の析出量が増加し、オーステナイト域での加熱中におけ
る粒成長を阻害し、焼入れ性を劣化させるため0.02
%を上限とする。
[0013] Ti is one of the elements that play a very important role in the present invention. TiN prior to BN precipitation
Is added to precipitate out. In order to more effectively exhibit the hardenability improving effect of solid solution B, an equivalent amount of N (4 ×
[N]) is the lower limit. In addition, excessive addition of TiN
Increases the amount of precipitates, inhibits grain growth during heating in the austenite region, and deteriorates hardenability.
% As the upper limit.

【0014】Nは、上述と同様の理由からTi量との関
係で極力低い方が良い。そのため上限を0.003%と
するが、好ましくは0.002%以下とする。
N is preferably as low as possible in relation to the amount of Ti for the same reason as described above. Therefore, the upper limit is made 0.003%, but preferably 0.002% or less.

【0015】Bは、前述したように焼入れ性を確保する
ことを目的に添加される。0.0003%未満ではその
効果が不十分であり、0.003%を超えると硬質化す
るため加工性の劣化が懸念されることから、0.003
%を上限とする。
B is added for the purpose of ensuring hardenability as described above. If the content is less than 0.0003%, the effect is insufficient, and if the content exceeds 0.003%, there is a concern that workability may deteriorate due to hardening.
% As the upper limit.

【0016】なお、Siについては本発明においては特
に規定されるべきものではないが、溶接性、メッキ性あ
るいは化成処理性を考慮すると0.3%以下とするのが
好ましい。
The content of Si is not particularly limited in the present invention, but is preferably 0.3% or less in consideration of weldability, plating property or chemical conversion treatment property.

【0017】P及びSについても、本発明では特に限定
されるものではないが、過剰な添加はコスト増になるた
め、それぞれ0.02%及び0.015%を上限とする
ことが好ましい。
Although P and S are not particularly limited in the present invention, excessive addition increases the cost. Therefore, the upper limit is preferably set to 0.02% and 0.015%, respectively.

【0018】また、スクラップの利用による微量のC
u,Ni,Sn及びCrの混入は、本発明における効果
を何ら損なうものではない。
In addition, a small amount of C due to the use of scrap
Mixing of u, Ni, Sn and Cr does not impair the effects of the present invention at all.

【0019】本発明の熱延工程は、連続鋳造にて製造
した例えば200〜250mmのスラブを再加熱し、ある
いは鋳造後直ちに粗圧延し、仕上圧延する工程、例え
ば50〜100mmの薄スラブとしてそのまま粗圧延に送
る工程、例えば50mm以下極薄スラブとしてそのまま
仕上圧延に送る工程の、いずれでも構わない。その際、
の再加熱工程おける加熱温度は、本発明において特に
規定されるものではない。また、の粗圧延工程を終
了後、一旦巻き取ることで長手方向の温度均一化を図る
ことや、さらに巻き戻した後に先行する圧延材に接合
し、いわゆる連続圧延で実施しても、本発明の効果を損
なうものではない。ここで、仕上温度を800℃以上と
するが、これより圧延温度が低くなると変形抵抗が大き
くなり、板厚精度の低下をきたすため、800℃を下限
とする。
The hot rolling step of the present invention is a step of reheating a slab of, for example, 200 to 250 mm produced by continuous casting, or performing rough rolling immediately after casting and finish rolling, for example, as a thin slab of 50 to 100 mm. Any of a step of sending to rough rolling, for example, a step of sending as an ultrathin slab of 50 mm or less as a very thin slab to finish rolling may be used. that time,
The heating temperature in the reheating step is not particularly limited in the present invention. Further, after the rough rolling step is completed, the temperature in the longitudinal direction can be made uniform by winding once, or further unwound and joined to the preceding rolled material, so-called continuous rolling can be performed. It does not impair the effect of. Here, the finishing temperature is set to 800 ° C. or higher. However, when the rolling temperature is lower than this, the deformation resistance increases and the thickness accuracy is reduced.

【0020】仕上圧延後冷却され巻き取られるが、その
際、巻取りまでにパーライト変態を終了させておく必要
がある。そのためにはランアウトテーブル上での冷却速
度を30℃/s以下とする必要がある。これよりも冷却
速度が速くなると、前述したように巻取った後にもパー
ライト変態が進み、その分率も増加することになる。そ
の結果、球状化焼鈍に長時間を要すると同時に、短時間
処理では球状化が不十分となるために軟質化が不足し、
加工性の劣化が懸念される。
After finish rolling, it is cooled and wound up. At this time, it is necessary to complete the pearlite transformation before winding up. For that purpose, the cooling rate on the run-out table needs to be 30 ° C./s or less. If the cooling rate is higher than this, the pearlite transformation proceeds even after winding as described above, and the fraction increases. As a result, the spheroidizing annealing takes a long time, and at the same time, the softening is insufficient due to insufficient spheroidizing in a short time treatment,
Deterioration of workability is a concern.

【0021】冷却に引き続いてコイルに巻き取られる
が、その際の温度は600〜700℃とする。600℃
より低くなるとベイナイトが形成されるようになるた
め、セメンタイトの球状化を遅滞させるため好ましくな
い。一方、700℃を超えるとCがパーライトとして十
分に析出しないことから、巻取り後の冷却中に粒界に析
出し、セメンタイトの球状化が不均一となる。そのため
に焼入れ処理後の硬度が不均一となることが懸念され
る。
After cooling, the film is wound around a coil, and the temperature at this time is 600 to 700 ° C. 600 ° C
If the temperature is lower, bainite is formed, which is not preferable because the spheroidization of cementite is delayed. On the other hand, when the temperature exceeds 700 ° C., C does not sufficiently precipitate as pearlite, and thus precipitates at the grain boundaries during cooling after winding, and the spheroidization of cementite becomes uneven. Therefore, there is a concern that the hardness after the quenching treatment becomes non-uniform.

【0022】セメンタイトの球状化は700℃以下の温
度で実施される。700℃より高い温度域で実施される
とセメンタイトが再固溶し、冷却中に再析出するため軟
質化が不十分となる。一方、あまり低いとCの拡散に長
時間を要し処理時間の長時間化をきたすため、好ましく
は600℃以上とする。
The spheroidization of cementite is performed at a temperature of 700 ° C. or less. If it is carried out in a temperature range higher than 700 ° C., cementite will re-dissolve in solution and re-precipitate during cooling, resulting in insufficient softening. On the other hand, if the temperature is too low, the diffusion of C takes a long time and the processing time becomes long.

【0023】ここで形成される組織としては、フェライ
トと球状化したセメンタイトを含む組織が良い。あるい
はさらに面積率で10%以下でかつ、直径で10μm以
下のグラファイトを含んでも良い。グラファイトの大き
さが10μmを超えると、熱処理中のCの拡散が不均一
となり、焼入れ処理後の硬度が不均一となる。また、グ
ラファイトは極力少ない方が均一な硬度を得るには好ま
しい。そのため、面積率で10%以下とした。
The structure formed here is preferably a structure containing ferrite and spheroidized cementite. Alternatively, it may further contain graphite having an area ratio of 10% or less and a diameter of 10 μm or less. If the size of the graphite exceeds 10 μm, the diffusion of C during the heat treatment becomes uneven, and the hardness after the quenching becomes uneven. It is preferable that graphite is as small as possible to obtain uniform hardness. Therefore, the area ratio is set to 10% or less.

【0024】なお、セメンタイトの球状化焼鈍前に実施
される20%以下の圧下率によるスキンパス圧延は、増
工程になるが前述の球状化をより効率良く進める点から
は好ましい。
The skin pass rolling at a rolling reduction of 20% or less, which is performed before the spheroidizing annealing of cementite, is an additional step, but is preferable from the viewpoint of promoting the spheroidizing more efficiently.

【0025】[0025]

【実施例】[実施例1]C:0.31%(質量%、以下
同じ)、Si:0.25%、Mn:0.3%、P:0.
011%、S:0.006%、Al:0.032%、
N:0.0018%、T:0.011%、B:0.00
18%、Cu:0.09%、Ni:0.05%、Sn:
0.015%、Cr:0.04%を含む鋼を転炉出鋼
し、連続鋳造にてスラブとした。熱延は1200℃で加
熱後、粗圧延及び仕上圧延(仕上温度:840℃)を終
了し、2mm厚の熱延板とした。その後、表1に示すよ
うな条件で冷却及び巻取を実施した。続いて700℃で
同表に示すような保熱時間でセメンタイトの球状化処理
を行った。それぞれの熱延板について、高周波誘導加熱
装置を用いて加熱速度:10℃/s、保熱条件:900
℃×30s、冷却速度:100℃/sの条件で熱処理を
行い、表面の硬度をビッカース(荷重:1kg)で測定
した結果を同表に示す。また、熱処理後の組織について
も同表に示す。
[Example 1] C: 0.31% (mass%, the same applies hereinafter), Si: 0.25%, Mn: 0.3%, P: 0.
011%, S: 0.006%, Al: 0.032%,
N: 0.0018%, T: 0.011%, B: 0.00
18%, Cu: 0.09%, Ni: 0.05%, Sn:
A steel containing 0.015% and Cr: 0.04% was output from a converter and made into a slab by continuous casting. After hot rolling at 1200 ° C., rough rolling and finish rolling (finishing temperature: 840 ° C.) were completed to obtain a hot-rolled sheet having a thickness of 2 mm. Thereafter, cooling and winding were performed under the conditions shown in Table 1. Subsequently, the spheroidizing treatment of cementite was performed at 700 ° C. for the heat retention time shown in the same table. For each hot-rolled sheet, using a high-frequency induction heating device, heating rate: 10 ° C./s, heat retention condition: 900
Heat treatment was performed under the conditions of a temperature of 30 ° C. × 30 s and a cooling rate of 100 ° C./s, and the hardness of the surface was measured by Vickers (load: 1 kg). The table also shows the structure after the heat treatment.

【0026】本発明にしたがった No.1、2、4、5、
7、8、9、10及び12では、フェライト+球状化セ
メンタイトからなる組織を呈するため熱処理前の硬度が
低い。そのため、軟鋼と同程度の加工性を有しかつ、熱
処理後にはHv>450以上の硬度が得られている。
According to the present invention, Nos. 1, 2, 4, 5,
7, 8, 9, 10 and 12 have a low hardness before heat treatment because they have a structure composed of ferrite and spheroidized cementite. Therefore, it has the same level of workability as mild steel and has a hardness of Hv> 450 or more after heat treatment.

【0027】一方、仕上圧延後の冷却速度が本発明の範
囲より高く外れた No.13及び14では、球状化セメン
タイトの他にパーライトが残存するばかりでなく、球状
化が不完全なセメンタイトも形成されている。そのた
め、700℃×30hの焼鈍を実施しても加工前の硬度
が高く、加工不良をきたす可能性がある。また、巻取温
度が本発明の範囲より低く外れた No.3及び11でも、
球状化セメンタイトの他にパーライトからの球状化が不
完全な塊状のセメンタイトがあるため、やはり700℃
×10hの焼鈍では軟質化が不十分となる。その結果、
加工性の劣化が懸念される。さらに、巻取温度が高く外
れた No.6では、粒界に塊状に析出するセメンタイトが
多いことから、熱処理前の硬度は低い。しかし、熱処理
によって形成される粒内の球状化セメンタイトが少ない
ことから、熱処理によるCの粒内への拡散が不十分なた
め、硬度が低い。
On the other hand, in Nos. 13 and 14 in which the cooling rate after finish rolling was higher than the range of the present invention, not only pearlite remained but also cementite incompletely spheroidized in addition to spheroidized cementite. Have been. Therefore, even if annealing is performed at 700 ° C. for 30 hours, the hardness before processing is high, and there is a possibility that processing failure may occur. Further, even in Nos. 3 and 11 in which the winding temperature was lower than the range of the present invention,
In addition to spheroidized cementite, there is lump cementite incompletely spheroidized from pearlite.
Softening becomes insufficient by annealing for 10 hours. as a result,
Deterioration of workability is a concern. Further, in No. 6 where the winding temperature was high and deviated, the hardness before the heat treatment was low because there was much cementite precipitated in a lump at the grain boundaries. However, the hardness is low due to insufficient diffusion of C into the grains due to the heat treatment because the spheroidized cementite in the grains formed by the heat treatment is small.

【0028】[0028]

【表1】 [Table 1]

【0029】[実施例2]表2に示す種々の鋼を転炉出
鋼し、連続鋳造でスラブとした。熱延は1150〜12
50℃で加熱後800〜850℃の温度域で同表に示し
た板厚で仕上圧延を終了し、引き続きランアウトテーブ
ル上での冷却速度を10〜20℃/sとして冷却した。
その後、巻取温度を650〜680℃として巻取り、冷
却後、690℃で10hのセメンタイトの球状化処理を
実施した。なお、一部のものにはこの球状化処理前に、
15%のスキンパスを施した。
Example 2 Various steels shown in Table 2 were output from a converter and made into slabs by continuous casting. Hot rolling is 1150-12
After heating at 50 ° C., finish rolling was completed in the temperature range of 800 to 850 ° C. with the sheet thickness shown in the same table, and then cooled at a cooling rate of 10 to 20 ° C./s on the run-out table.
Thereafter, the film was wound at a winding temperature of 650 to 680 ° C, and after cooling, a cementite spheroidizing treatment was performed at 690 ° C for 10 hours. In addition, before this spheroidizing process,
A 15% skin pass was applied.

【0030】球状化処理後の材質調査として、JIS
Z2201に記載の5号試験片に加工し、JIS Z2
241に記載の試験方法にしたがって引張試験を行っ
た。また、あわせてセメンタイトの球状化処理前後のビ
ッカース(荷重:1kg)による硬度測定、さらに、高
周波加熱により加熱速度10℃/s、加熱条件:900
℃×30s加熱し、直ちに冷却速度:100℃/sで冷
却する熱処理工程後の硬度測定を同様に実施するととも
に、絞り比2.0での成形試験試験も実施した。結果を
あわせて表3に示す。なお、成形試験結果については割
れの発生なく成形できたものを○、割れの発生したもの
を×で示した。
As a material investigation after the spheroidizing treatment, JIS
Processed into the No. 5 test piece described in Z2201, JIS Z2
A tensile test was performed according to the test method described in H.241. In addition, the hardness was measured by Vickers (load: 1 kg) before and after the spheroidizing treatment of the cementite, and the heating rate was 10 ° C./s by high frequency heating, and the heating condition was 900.
The hardness was measured after the heat treatment step of heating at 30 ° C. × 30 s and immediately cooling at a cooling rate of 100 ° C./s, and a molding test at a draw ratio of 2.0 was also performed. The results are shown in Table 3. As for the molding test results, those that could be molded without cracks were indicated by ○, and those that cracked were indicated by x.

【0031】本発明にしたがったB,C,D,E,F及
びG鋼では、球状化処理後の軟質化が十分であることか
ら絞り成形性が確保されておりかつ、熱処理後の硬度も
ビッカースでいずれも500を超えるものが得られてい
る。C量が低く外れたA鋼は、熱処理後に十分な硬度が
得られていない。逆に高く外れたN鋼では、球状化セメ
ンタイトの分率が高くなるために硬度が高く、加工性の
劣化が懸念される。一方、Mn量が本発明の範囲を超え
て過度に添加されたH鋼では、熱延段階の冷却中にパー
ライト変態が終了せず、巻取り後にも継続したために球
状化処理後にもパーライトが多く残存し、その結果、セ
メンタイトの球状化が促進せず軟質化が不十分となっ
た。したがって成形性が悪い。
In the B, C, D, E, F and G steels according to the present invention, since the softening after the spheroidizing treatment is sufficient, the drawability is secured, and the hardness after the heat treatment is also increased. Vickers obtained more than 500 in each case. Steel A with a low C content does not have sufficient hardness after heat treatment. Conversely, in the case of N steel which is deviated high, since the fraction of spheroidized cementite is high, the hardness is high, and there is a concern that the workability may deteriorate. On the other hand, in the H steel in which the amount of Mn is excessively added beyond the range of the present invention, the pearlite transformation does not end during the cooling in the hot rolling stage, and the pearlite transformation is continued even after the winding, so that a large amount of pearlite is obtained even after the spheroidizing treatment. As a result, spheroidization of cementite was not promoted and softening became insufficient. Therefore, the moldability is poor.

【0032】Ti量が本発明の範囲から低く外れたI
鋼、さらにN量が高く外れたK鋼では、一部のNがBN
として析出したために、パーライトの球状化焼鈍中にそ
のBNを核としてグラファイトの形成が顕著である。そ
の結果、加工後の熱処理段階でCの拡散が不均一となる
ことから、焼入れ処理後に十分な硬度が得られていな
い。また、Ti量が本発明の範囲から高く外れたJ鋼、
Ti及びN量ともに本発明の範囲から高く外れたM鋼
は、TiNの析出量が多いことから熱処理中のオーステ
ナイト粒の粒成長性が悪いため、十分な焼きが入らず目
標とする硬度が得られていない。さらに、B量が添加さ
れていないL鋼についても、焼入れ性が不足するため硬
度が低い。一方、B量が過度に添加されたO鋼では、球
状化処理後の強度が高く、絞り成形性も悪い。
When the amount of Ti falls outside the range of the present invention,
In steel and further in K steel, which has a high N content, some N is BN
During the spheroidizing annealing of pearlite, the formation of graphite with its BN as a nucleus is remarkable. As a result, the diffusion of C becomes non-uniform in the heat treatment stage after the working, so that sufficient hardness is not obtained after the quenching. In addition, J steel whose Ti content is out of the range of the present invention,
The M steel, in which both the Ti and N contents are outside the range of the present invention, has a large amount of TiN and therefore has poor austenite grain growth during heat treatment. Not been. Further, the L steel to which the B content is not added also has a low hardness due to insufficient hardenability. On the other hand, the O steel to which the B amount is excessively added has high strength after the spheroidizing treatment and poor draw formability.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[実施例3]実施例2の本発明の範囲にし
たがったC及びD鋼について、薄スラブ連鋳法による鋳
造後直ちに粗圧延工程に送る製造工程と、熱延工程で粗
圧延終了後に先行材と接続して圧延を実施する、いわゆ
る連続熱延による工程で製造した。表4に製造工程を示
す。なお、仕上温度、冷却条件、巻取温度、球状化処理
条件は実施例2と同じとしたが、球状化処理前のスキン
パスはいずれも実施していない。球状化処理後の組織は
フェライトと球状化セメンタイトのみであり、得られた
材質を同表に示す。得られた材質も実施例2でのものと
ほぼ同様の特性である。
Example 3 For the C and D steels according to the scope of the present invention of Example 2, a production process in which casting is performed immediately after casting by the thin slab continuous casting method, and a rough rolling process is completed in the hot rolling process. It was manufactured by a so-called continuous hot rolling process in which rolling was performed by connecting to a preceding material later. Table 4 shows the manufacturing process. The finishing temperature, cooling conditions, winding temperature, and spheroidizing conditions were the same as those in Example 2, but none of the skin passes before the spheroidizing treatment were performed. The structure after the spheroidizing treatment was only ferrite and spheroidized cementite, and the obtained materials are shown in the same table. The obtained material has substantially the same characteristics as those of the second embodiment.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明により、プレス等による加工時に
は優れた成形性を有しかつ、高周波加熱等を用いた短時
間の焼入れ処理により、強度特に表面硬度を有するた
め、優れた耐磨耗性をも具備した良成形性の熱処理用鋼
板を製造することができる。
According to the present invention, excellent abrasion resistance can be obtained because it has excellent formability at the time of working with a press or the like, and has strength, particularly surface hardness, by short-time quenching treatment using high-frequency heating or the like. A heat-treatable steel sheet having good formability, which is also provided with:

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱処理後の表面硬度と、Ti及びN量の関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the surface hardness after heat treatment and the amounts of Ti and N.

【図2】熱延段階における仕上〜巻取間の冷却速度と、
球状化処理後の表面硬度との関係を示す図である。
FIG. 2 shows a cooling rate between finishing and winding in a hot rolling stage;
It is a figure showing the relation with surface hardness after spheroidization processing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 御福 浩樹 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 Fターム(参考) 4K037 EA02 EA06 EA15 EA18 EA31 EB11 EC01 EC02 FA02 FA03 FC03 FD03 FE02 FE03 FF02 FG01 JA06  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroki Mitsuku 1Fuji-cho, Hirohata-ku, Himeji-shi Nippon Steel Corporation Hirohata Works F-term (reference) 4K037 EA02 EA06 EA15 EA18 EA31 EB11 EC01 EC02 FA02 FA03 FC03 FD03 FE02 FE03 FF02 FG01 JA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量比で、 C :0.25〜0.40%、 Mn:0.5%以下、 Ti:4×[N]〜0.02%、 N :0.003%以下、 B :0.0003〜0.003% を含み、球状化したセメンタイトを含む組織からなるこ
とを特徴とする成形性と耐磨耗性に優れた熱処理用鋼
板。
1. Mass ratio: C: 0.25 to 0.40%, Mn: 0.5% or less, Ti: 4 × [N] to 0.02%, N: 0.003% or less, B : A steel sheet for heat treatment having excellent formability and abrasion resistance, characterized by comprising a structure containing spheroidized cementite containing 0.0003 to 0.003%.
【請求項2】 質量比で、 C :0.25〜0.40%、 Mn:0.5%以下、 Ti:4×[N]〜0.02%、 N :0.003%以下、 B :0.0003〜0.003% を含み、球状化したセメンタイトと面積率で10%以下
でかつ、直径で10μm以下のグラファイトを含む組織
からなることを特徴とする成形性と耐磨耗性に優れた熱
処理用鋼板。
2. Mass: C: 0.25 to 0.40%, Mn: 0.5% or less, Ti: 4 × [N] to 0.02%, N: 0.003% or less, B : 0.0003 to 0.003%, comprising a spheroidized cementite and a structure containing graphite having an area ratio of 10% or less and a diameter of 10 μm or less. Excellent heat treatment steel sheet.
【請求項3】 請求項1または2に記載の鋼を連続鋳造
にてスラブとし、再加熱後に粗圧延を実施し、あるいは
鋳造後直ちに粗圧延または仕上圧延を実施し、800℃
以上の温度域で仕上圧延を終了させ、かつその温度域か
ら30℃/s以下の冷却速度で冷却し、600〜700
℃の温度域で巻き取ることによりフェライトとパーライ
トからなる組織とした後、引き続き700℃以下の温度
域で保熱処理を行うことを特徴とする成形性と耐磨耗性
に優れた熱処理用鋼板の製造方法。
3. The steel according to claim 1 or 2 is formed into a slab by continuous casting, and is subjected to rough rolling after reheating, or to rough rolling or finish rolling immediately after casting, at 800 ° C.
Finish rolling is completed in the above temperature range, and cooling is performed at a cooling rate of 30 ° C./s or less from the temperature range.
After forming a structure composed of ferrite and pearlite by winding in a temperature range of 700 ° C., a heat treatment is performed subsequently in a temperature range of 700 ° C. or less. Production method.
【請求項4】 前記保熱処理の前にスキンパス圧延を施
すことを特徴とする請求項3に記載の成形性と耐磨耗性
に優れた熱処理用鋼板の製造方法。
4. The method according to claim 3, wherein skin pass rolling is performed before the heat treatment.
【請求項5】 粗圧延を終了し、シートバーを一旦コイ
ルに巻き取り、そのまま仕上圧延に供するか、あるいは
先行するシートバーに接続後、仕上圧延を行うことを特
徴とする請求項3または4に記載の成形性と耐磨耗性に
優れた熱処理用鋼板の製造方法。
5. The method according to claim 3, wherein the rough rolling is completed, the sheet bar is once wound into a coil and subjected to finish rolling as it is, or the finish rolling is performed after connecting to a preceding sheet bar. The method for producing a heat-treating steel sheet having excellent formability and abrasion resistance according to the above.
JP2000313490A 2000-10-13 2000-10-13 Steel sheet for heat treatment having excellent formability and wear resistance and its production method Withdrawn JP2002121647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313490A JP2002121647A (en) 2000-10-13 2000-10-13 Steel sheet for heat treatment having excellent formability and wear resistance and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313490A JP2002121647A (en) 2000-10-13 2000-10-13 Steel sheet for heat treatment having excellent formability and wear resistance and its production method

Publications (1)

Publication Number Publication Date
JP2002121647A true JP2002121647A (en) 2002-04-26

Family

ID=18792899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313490A Withdrawn JP2002121647A (en) 2000-10-13 2000-10-13 Steel sheet for heat treatment having excellent formability and wear resistance and its production method

Country Status (1)

Country Link
JP (1) JP2002121647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097043A1 (en) 2006-02-27 2007-08-30 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
JP2010255066A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp High carbon hot rolled steel sheet and method for producing the same
JP2015218361A (en) * 2014-05-16 2015-12-07 新日鐵住金株式会社 Medium or high carbon steel material
CN109628826A (en) * 2018-11-21 2019-04-16 唐山钢铁集团有限责任公司 A kind of agricultural machinery low-carbon abrasion resistant steel band and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097043A1 (en) 2006-02-27 2007-08-30 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
US8142576B2 (en) 2006-02-27 2012-03-27 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
JP2010255066A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp High carbon hot rolled steel sheet and method for producing the same
JP2015218361A (en) * 2014-05-16 2015-12-07 新日鐵住金株式会社 Medium or high carbon steel material
CN109628826A (en) * 2018-11-21 2019-04-16 唐山钢铁集团有限责任公司 A kind of agricultural machinery low-carbon abrasion resistant steel band and its production method
CN109628826B (en) * 2018-11-21 2021-02-26 唐山钢铁集团有限责任公司 Low-carbon wear-resistant steel strip for agricultural machinery and production method thereof

Similar Documents

Publication Publication Date Title
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
JP2010255066A (en) High carbon hot rolled steel sheet and method for producing the same
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
WO2015004902A1 (en) High-carbon hot-rolled steel sheet and production method for same
JPWO2019131099A1 (en) Hot rolled steel sheet and method for producing the same
JP2002121647A (en) Steel sheet for heat treatment having excellent formability and wear resistance and its production method
JPH08199310A (en) Production of high strength martensitic stainless steel member
JP3869754B2 (en) Steel plate for carburizing and quenching with less variation at the time of burring and method for producing the same
JPH09310165A (en) Thin steel sheet for working excellent in fatigue characteristic and its production
JP2001262282A (en) Quenching-free stainless steel sheet for motorcycle disc brake, and its manufacturing method
JPH0372032A (en) Production of sheet steel
KR0143478B1 (en) The making method of coil strip with ductile
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JPH0196330A (en) Manufacture of cold rolled steel sheet combining high gamma-value with high tensile strength
JP4319940B2 (en) High carbon steel plate with excellent workability, hardenability and toughness after heat treatment
JPH0949065A (en) Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
JP6210045B2 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
JPH08337817A (en) Production of ultrahigh tensile strength electric resistance welded tube excellent in hydrogen delayed cracking resistance
KR20050095776A (en) Method of producing ultra-high-strength cold-and hot-rolled steel sheets and plate thus obtained
JPH0741865A (en) Method for spheroidizing high carbon steel sheet by continuous annealing
JPH0321611B2 (en)
JP2938147B2 (en) Manufacturing method of cold rolled steel sheet by thin cast strip
JP2003003239A (en) High strength hot rolled steel sheet having excellent baking hardenability and production method therefor
JPH08269538A (en) Production of hot rolled steel plate excellent in stretch-flange formability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108