JPH08337817A - Production of ultrahigh tensile strength electric resistance welded tube excellent in hydrogen delayed cracking resistance - Google Patents

Production of ultrahigh tensile strength electric resistance welded tube excellent in hydrogen delayed cracking resistance

Info

Publication number
JPH08337817A
JPH08337817A JP14320695A JP14320695A JPH08337817A JP H08337817 A JPH08337817 A JP H08337817A JP 14320695 A JP14320695 A JP 14320695A JP 14320695 A JP14320695 A JP 14320695A JP H08337817 A JPH08337817 A JP H08337817A
Authority
JP
Japan
Prior art keywords
delayed cracking
electric resistance
cracking resistance
hydrogen delayed
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14320695A
Other languages
Japanese (ja)
Other versions
JP3307164B2 (en
Inventor
Shunsuke Toyoda
俊介 豊田
Haruo Mitsutsuji
晴夫 三辻
Masaki Omura
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14320695A priority Critical patent/JP3307164B2/en
Publication of JPH08337817A publication Critical patent/JPH08337817A/en
Application granted granted Critical
Publication of JP3307164B2 publication Critical patent/JP3307164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce an ultrahigh tensile strength electric resistance welded tube for structural purpose excellent in hydrogen delayed cracking resistance and used for automobile impact beams or the like at a low cost. CONSTITUTION: A steel slab having a compsn. contg., by weight, 0.10 to 0.18% C, 0.01 to 0.5% Si, 1.0 to 1.9% Mn and 0.01 to 0.06% Al, and in which the content of P is regulated to <=0.02%, S to <=0.003% and N to <=0.005% is soaked at 1150 to 1300 deg.C, and after that, this slab is subjected to hot rolling so as to regulate the finishing temp. to the Ar3 point or above and is coiled at 500 to 700 deg.C to form into a hot rolled steel strip, and the same hot rolled steel strip is subjected to pickling and cold rolling, is thereafter soaked under heating at 800 to 900 deg.C by a continuous annealing furnace and is subsequently subjected to rapid cooling. Moreover, tempering treatment is executed at 150 to 250 deg.C, and the obtd. steel strip is subjected to electric resistance welding and sizing at an edge reducing rate Q satisfying 1000<=Q/(t/D)<2> <=3000 to obtain the ultrahigh tensile strength electric resistance welded tube excellent in hydrogen delayed cracking resistance; where Q(%) : the edge reducing rate (= [ slit coil width-π, (outer diameter-sheet thickness)}/π (outer diameter-sheet thickness)]×100), t(mm) : sheet thickness and D(mm): outer diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車インパクトビーム
など、構造用超高張力電縫鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a structurally high tensile strength electric resistance welded steel pipe for an automobile impact beam or the like.

【0002】[0002]

【従来の技術】これまで、超高張力鋼管に関しては、特
開平1-205032号、特開平4-131327号、特開平4-187319
号、特開平6-57375 号、特開平6-88129 号、特開平6-17
9913号の各公報に開示されたような方法が提案されてい
る。これらの技術は、いずれも所定の化学成分を有する
鋼を引張強度980N/mm2 以上の高張力鋼帯とした
後、電縫溶接し高強度電縫鋼管を得る方法である。
2. Description of the Related Art Up to now, Japanese Patent Laid-Open No. 1-205032, Japanese Patent Laid-Open No. 4-131327, Japanese Patent Laid-Open No. 4-187319 have been used for ultra-high-strength steel pipes.
No. 6-57375, No. 6-88129, No. 6-17
The method disclosed in each publication of 9913 is proposed. Each of these techniques is a method in which steel having a predetermined chemical composition is made into a high-strength steel strip having a tensile strength of 980 N / mm 2 or more and then electric resistance welding is performed to obtain a high strength electric resistance welded steel pipe.

【0003】[0003]

【解決しようとする課題】上記特開平1-205032号、特開
平4-131327号、特開平4-187319号、特開平6-57375 号、
特開平6-88129 号、特開平6-179913号の各公報などに示
された方法は、造管に伴い残留歪みが存在するため、そ
の実用に際しては水素遅れ割れに対する配慮が必要であ
る。
[Problems to be Solved] JP-A 1-205032, JP-A 4-131327, JP-A 4-187319, JP-A 6-57375,
In the methods disclosed in JP-A-6-88129 and JP-A-6-179913, there is residual strain associated with pipe making. Therefore, it is necessary to consider hydrogen delayed cracking in practical use.

【0004】しかし、これまでに示された方法では、水
素遅れ割れに対する配慮がなされていないか、あるいは
なされていても十分でなく、したがって超高張力鋼管の
需要拡大が制限されている。
However, in the methods presented so far, hydrogen delayed cracking is not taken into consideration, or even if it is not taken into consideration, the demand expansion of ultra-high strength steel pipe is limited.

【0005】本発明は、水素遅れ割れという従来技術に
おける技術的課題を解決するためになされたものであ
り、引張強度980N/mm2 以上の耐水素遅れ割れ特
性に優れた超高張力電縫鋼管の製造方法を提供すること
を目的とする。
The present invention has been made in order to solve the technical problem of hydrogen delayed cracking in the prior art, and is an ultrahigh-strength electric resistance welded steel pipe having a tensile strength of 980 N / mm 2 or more and excellent in hydrogen delayed cracking resistance. It aims at providing the manufacturing method of.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために多くの実験的検討を行った結果、鋼成
分の調整、最適鋼帯熱処理条件及び最適造管条件の選定
(適正化)により耐水素遅れ割れ特性に優れた超高張力
電縫鋼管の製造が可能となる知見を得た。
Means for Solving the Problems As a result of many experimental investigations for achieving the above-mentioned object, the inventors of the present invention have adjusted the steel composition, selected the optimum steel strip heat treatment condition and the optimum pipe forming condition ( We have obtained the knowledge that it is possible to manufacture ultra-high-strength electric resistance welded steel pipes that have excellent hydrogen-delayed cracking resistance characteristics.

【0007】本発明はこのような知見に基づいてなされ
たものであり、第1に、重量で、C:0.10〜0.1
8%、Si:0.01〜0.5%、Mn:1.0〜1.
9%、Al:0.01〜0.06%を含み、P:0.0
2%以下、S:0.003%以下、N:0.005%以
下である鋼スラブを1150〜1300℃で均熱した
後、このスラブに対してAr3 点以上を仕上温度とする
熱間圧延を施し、500〜700℃で巻取って熱延鋼帯
とし、この熱延鋼帯を酸洗冷圧後、連続焼鈍炉で800
〜900℃に均熱加熱後急冷し、さらに150〜250
℃で焼戻し処理を行い、得られた鋼帯を次式を満たす幅
絞り率[ Q] で電縫溶接ならびにサイジングし、80〜
100%焼戻しマルテンサイト+残部フェライト組織よ
りなる耐水素遅れ割れ特性に優れた引張強度980N/
mm2 以上の電縫鋼管を得ることを特徴とする耐水素遅
れ割れ特性に優れた超高張力電縫鋼管の製造方法を提供
する。
The present invention has been made on the basis of such findings. First, by weight, C: 0.10 to 0.1.
8%, Si: 0.01 to 0.5%, Mn: 1.0 to 1.
9%, including Al: 0.01 to 0.06%, P: 0.0
2% or less, S: 0.003% or less, N: 0.005% or less steel slab is soaked at 1150 to 1300 ° C., and then hot with the Ar 3 point or more as the finishing temperature for this slab. It is rolled and wound at 500 to 700 ° C. to form a hot rolled steel strip. The hot rolled steel strip is pickled and cold pressed, and then 800 in a continuous annealing furnace.
Soak to ~ 900 ° C and then quench, then 150-250
After tempering at ℃, the obtained steel strip is electric resistance welded and sized at a width reduction ratio [Q] satisfying the following formula.
Tensile strength of 980 N / with excellent hydrogen-delayed cracking resistance consisting of 100% tempered martensite + balance ferrite structure
(EN) Provided is a method for producing an ultra-high-strength electric resistance welded steel tube excellent in hydrogen delayed cracking characteristics, which is characterized in that an electric resistance welded steel tube of mm 2 or more is obtained.

【0008】1000≦Q/(t/ D)2 ≦3000 ただし、 Q(%) :幅絞り率(=[{スリットコイル幅−π( 外径
−板厚)} /π(外径−板厚)]×100 ) t(mm):板厚 D(mm):外径 第2に、上記第1の発明において、前記鋼スラブが、さ
らに重量%で0.005〜0.02%のNbを含むこと
を特徴とする耐水素遅れ割れ特性に優れた超高張力電縫
鋼管の製造方法を提供する。
1000 ≦ Q / (t / D) 2 ≦ 3000 where Q (%): width reduction ratio (= [{slit coil width−π (outer diameter−plate thickness)} / π (outer diameter−plate thickness) )] × 100) t (mm): plate thickness D (mm): outer diameter Secondly, in the first invention, the steel slab further contains 0.005 to 0.02% by weight of Nb. Provided is a method for producing an ultra-high-strength electric resistance welded steel pipe excellent in hydrogen delayed cracking characteristics, which is characterized by including the above.

【0009】第3に、上記第1の発明または第2の発明
において、前記鋼スラブが、さらに重量%で0.05〜
0.50%のCuを含み、Niが0.10%以下である
ことを特徴とする耐水素遅れ割れ特性に優れた超高張力
電縫鋼管の製造方法を提供する。
Thirdly, in the first invention or the second invention, the steel slab further has a weight percentage of 0.05 to.
Provided is a method for producing an ultra-high-strength electric resistance welded steel pipe having excellent hydrogen delayed cracking characteristics, which is characterized by containing 0.50% Cu and containing Ni at 0.10% or less.

【0010】[0010]

【作用】本発明は、鋼の成分組成、熱間圧延及び連続焼
鈍炉での熱処理条件、造管条件の各製造因子を総て適正
に制御してはじめて達成されるものであり、以下、本発
明について化学成分、熱間圧延条件、連続焼鈍炉での熱
処理条件、造管条件について詳細に説明する。
The present invention is achieved only by appropriately controlling all the manufacturing factors such as the composition of steel, the heat rolling conditions in the hot rolling and continuous annealing furnaces, and the pipe forming conditions. The chemical composition, hot rolling conditions, heat treatment conditions in a continuous annealing furnace, and pipe forming conditions will be described in detail.

【0011】(1)化学成分 C: Cは所望のマルテンサイトを生成させ、目標とす
る強度を確保するために必須な元素である。しかし、含
有量が0.10%未満であると目標とする980N/m
2 以上の強度が得られず、一方、含有量が0.18%
を超えると、引張強度が高くなりすぎるか、あるいは焼
戻し時に析出する炭化物サイズが大きくなり、いずれに
せよ耐水素遅れ割れ特性が劣化する。したがってCの含
有量を0.10〜0.18%とする。
(1) Chemical component C: C is an essential element for forming a desired martensite and ensuring a target strength. However, if the content is less than 0.10%, the target is 980 N / m.
A strength of m 2 or more cannot be obtained, while the content is 0.18%
If it exceeds, the tensile strength becomes too high, or the size of carbides precipitated during tempering becomes large, and the hydrogen delayed cracking resistance deteriorates in any case. Therefore, the content of C is set to 0.10 to 0.18%.

【0012】Si: Siは電縫溶接部の健全性を確保
するために添加され、その効果はその含有量が0.01
〜0.5%で発揮されるため、Siの含有量を0.01
〜0.5%とする。
Si: Si is added to secure the soundness of the electric resistance welded portion, and its effect is that the content is 0.01.
~ 0.5%, so the Si content is 0.01
~ 0.5%.

【0013】Mn: Mnは所望のマルテンサイトを生
成させ、目標とする強度を確保するために必須な元素で
ある。しかし、含有量が1.0%未満であると目標とす
る980N/mm2 以上の強度が得られず、一方、含有
量が1.9%を超える耐水素遅れ割れ特性が劣化する。
したがって、Mnの含有量を1.0〜1.9%とする。
Mn: Mn is an essential element for forming a desired martensite and securing a target strength. However, if the content is less than 1.0%, the target strength of 980 N / mm 2 or more cannot be obtained, and on the other hand, the hydrogen delayed cracking resistance with the content exceeding 1.9% deteriorates.
Therefore, the Mn content is set to 1.0 to 1.9%.

【0014】Al: Alは脱酸元素として添加され、
また鋼中の不純物として存在するNをAlNとして固定
し、耐水素遅れ割れ特性に有効に作用する。しかし、そ
の添加効果は0.01%未満では発揮されず、一方0.
06%を超えると介在物の増大により耐水素遅れ割れ特
性が劣化する。したがってAlの含有量を0.01〜
0.06%とする。
Al: Al is added as a deoxidizing element,
Further, N existing as an impurity in the steel is fixed as AlN, which effectively acts on hydrogen delayed cracking resistance. However, if the addition effect is less than 0.01%, the effect is not achieved.
If it exceeds 06%, hydrogen inclusion delayed cracking characteristics deteriorate due to the increase of inclusions. Therefore, the content of Al is 0.01 to
It is set to 0.06%.

【0015】P: Pは耐遅れ破壊特性を劣化させるた
め、0.02%以下に規制することが必要である。 S: Sは介在物として存在し、耐水素遅れ割れ特性を
劣化させるため、0.003%以下に規制することが必
要である。
P: Since P deteriorates the delayed fracture resistance, it is necessary to regulate P to 0.02% or less. S: S is present as inclusions and deteriorates the hydrogen delayed cracking resistance, so it is necessary to regulate S to 0.003% or less.

【0016】N: Nが0.005%を超えて含まれる
と耐水素遅れ割れ特性が低下するため、0.005以下
に規制することが必要がある。 Nb: Nbは連続焼鈍炉における加熱時のオーステナ
イト粒成長を抑制し、マルテンサイト組織を微細化し、
耐水素遅れ割れ特性を向上させる元素である。その添加
効果は0.005%以上で認められ、一方0.02%を
超えて添加しても添加効果が飽和する。したがって、N
bを添加する場合にはその含有量を0.005〜0.0
2とする。
N: If N is contained in excess of 0.005%, hydrogen delayed cracking resistance deteriorates, so it is necessary to regulate the content to 0.005 or less. Nb: Nb suppresses austenite grain growth during heating in a continuous annealing furnace, refines the martensite structure,
It is an element that improves the hydrogen delayed cracking resistance. The effect of addition is recognized at 0.005% or more, while the effect of addition is saturated even if added over 0.02%. Therefore, N
When b is added, its content is 0.005 to 0.0
Set to 2.

【0017】Cu: Cuは鋼管の腐食の進行を抑制
し、かつ鋼管中への水素の侵入を抑制し、耐水素遅れ割
れ特性を向上させる元素である。その添加効果は0.0
5%以上で認められ、一方0.50%を超えて添加して
も添加効果が飽和する。したがって、Cuを添加する場
合にはその含有量を0.05〜0.50%とする。
Cu: Cu is an element that suppresses the progress of corrosion of the steel pipe, suppresses the intrusion of hydrogen into the steel pipe, and improves the hydrogen delayed cracking resistance. The effect of addition is 0.0
It is observed at 5% or more, while the addition effect is saturated even if it is added over 0.50%. Therefore, when Cu is added, its content is set to 0.05 to 0.50%.

【0018】図1にCu添加量と割れ発生限界付加歪み
(Δε)の変化量との関係を示す。この図から、Cu添
加によって割れ発生限界付加歪み(Δε)が増大し、水
素遅れ割れが抑制されることが理解される。
FIG. 1 shows the relationship between the amount of Cu added and the amount of change in the crack addition limit additional strain (Δε). From this figure, it is understood that the addition of Cu increases the crack generation limit additional strain (Δε) and suppresses hydrogen delayed cracking.

【0019】Ni: Niは鋳造偏析によって局所的な
腐食を助長し、耐水素遅れ割れ特性を低下させるため添
加しないことが望ましい。しかし、熱延時のCu疵を回
避するためにやむなく添加する場合には、含有量を耐水
素遅れ割れ特性の低下が著しくない0.10%以下とす
る。
Ni: Ni is preferably not added because it promotes local corrosion by casting segregation and deteriorates hydrogen delayed cracking resistance. However, when it is unavoidably added in order to avoid Cu defects during hot rolling, the content is set to 0.10% or less at which the hydrogen-delayed cracking resistance does not significantly decrease.

【0020】図2にNi添加量と割れ発生限界付加歪み
(Δε)の変化量との関係を示す。この図から、Ni添
加によって割れ発生限界付加歪み(Δε)が減少し、水
素遅れ割れが助長されることが理解される。
FIG. 2 shows the relationship between the amount of Ni added and the amount of change in the crack addition limit additional strain (Δε). From this figure, it is understood that the crack addition limit additional strain (Δε) is reduced by the addition of Ni and hydrogen delayed cracking is promoted.

【0021】(2)熱延条件 a.スラブ加熱温度 スラブ加熱温度はNbを固溶させるために1150℃以
上である必要がある。スラブ加熱温度が1150℃に満
たないと、連続焼鈍炉における加熱時にNbが十分なso
lute drug 効果を発揮しないため、マルテンサイト組織
が微細とはならず、Nb添加による耐水素遅れ割れ特性
の向上効果が得られない。一方、操業性の観点からスラ
ブ加熱温度の上限を1300℃とする。
(2) Hot rolling conditions a. Slab heating temperature The slab heating temperature needs to be 1150 ° C. or higher for solid solution of Nb. If the slab heating temperature is less than 1150 ° C, Nb will be sufficient when heating in a continuous annealing furnace.
Since the lute drug effect is not exerted, the martensite structure does not become fine, and the effect of improving the hydrogen delayed cracking resistance property due to the addition of Nb cannot be obtained. On the other hand, from the viewpoint of workability, the upper limit of the slab heating temperature is 1300 ° C.

【0022】b.仕上圧延温度 仕上圧延温度はAr3 点以上である必要がある。仕上圧
延温度がAr3 点以下であると、フェライト変態部での
Nb炭窒化物の歪誘起析出により、連続焼鈍炉における加
熱時にNbが十分なsolute drug 効果を発揮しないた
め、マルテンサイト組織が微細とはならず、Nb添加に
よる耐水素遅れ割れ特性の向上効果が得られない。
B. Finishing rolling temperature The finishing rolling temperature must be Ar 3 points or higher. If the finish rolling temperature is below the Ar 3 point, the ferrite transformation part
Due to the strain-induced precipitation of Nb carbonitride, Nb does not exert a sufficient solute drug effect during heating in a continuous annealing furnace, so that the martensite structure does not become fine, and the effect of improving hydrogen-delayed cracking resistance due to Nb addition is improved. I can't get it.

【0023】c.巻取温度 巻取温度は500〜700℃とする。巻取温度が700
℃を超えるとNb炭化物が粗大化し、連続焼鈍炉におけ
る加熱時に再固溶せず、十分なsolute drug 効果を発揮
しないため、マルテンサイト組織が微細とはならず、N
b添加による耐水素遅れ割れ特性の向上効果が得られな
い。一方、巻取温度が500℃未満であると熱延鋼帯が
硬質化し、操業上問題となる。
C. Winding temperature The winding temperature is 500 to 700 ° C. Winding temperature is 700
When the temperature exceeds ℃, Nb carbides become coarse, do not re-dissolve during heating in a continuous annealing furnace, and do not exert a sufficient solute drug effect, so the martensite structure does not become fine and N
The effect of improving the delayed hydrogen cracking resistance by adding b cannot be obtained. On the other hand, if the winding temperature is lower than 500 ° C, the hot-rolled steel strip becomes hard and becomes a problem in operation.

【0024】(3)連続焼鈍炉での熱処理条件 a.加熱温度 連続焼鈍炉における加熱温度は800〜950℃とす
る。800℃未満では急冷後に十分な量のマルテンサイ
ト量が得られず、目標とする強度が得られない。一方、
950℃を越えると加熱時のオーステナイト粒粗大化に
より、微細なマルテンサイト組織が得られず、耐水素遅
れ割れ特性が低下する。
(3) Heat treatment conditions in continuous annealing furnace a. Heating temperature The heating temperature in the continuous annealing furnace is 800 to 950 ° C. If it is less than 800 ° C, a sufficient amount of martensite cannot be obtained after quenching, and the target strength cannot be obtained. on the other hand,
If it exceeds 950 ° C, a fine martensitic structure cannot be obtained due to coarsening of austenite grains during heating, and hydrogen delayed cracking resistance is deteriorated.

【0025】b.焼戻し熱処理条件 加熱−急冷により得られた80〜100%マルテンサイ
ト+残部フェライト組織とされた鋼帯は、150〜25
0℃の温度範囲で焼戻し処理を行う。焼戻し温度150
℃未満ではマルテンサイト変態歪が残存し、造管後の耐
水素割れ性が低下する。一方、焼戻し温度が250℃を
超えると、焼戻しに伴い析出するセメンタイト相が粗大
となり、耐遅れ破壊特性が低下する。 (4)造管条件 電縫溶接−サイジングの造管工程における幅絞りは、鋼
管の耐水素遅れ割れ特性を良好にせしめるための重要な
要件であり、このためには幅絞り率Qを次式で示される
範囲内に制御した上で造管を行う。
B. Tempering heat treatment conditions Steel strips having a 80-100% martensite + balance ferrite structure obtained by heating-quenching are 150-25
Tempering is performed in the temperature range of 0 ° C. Tempering temperature 150
If it is less than ℃, martensitic transformation strain remains, and the hydrogen cracking resistance after pipe forming decreases. On the other hand, if the tempering temperature exceeds 250 ° C., the cementite phase that precipitates with tempering becomes coarse and the delayed fracture resistance deteriorates. (4) Pipe making conditions The width reduction in the pipe making process of electric resistance welding-sizing is an important requirement for making the hydrogen delayed cracking resistance of the steel pipe good, and for this purpose, the width reduction ratio Q Pipe forming is performed after controlling the temperature within the range indicated by.

【0026】1000≦Q/(t/ D)2 ≦3000 ただし、 Q(%) :幅絞り率(=[{スリットコイル幅−π( 外径
−板厚)} /π(外径−板厚)]×100 ) t(mm):板厚 D(mm):外径 図3にQ/(t/ D)2 と割れ発生限界付加歪みの関係
を示す。本発明者らは造管条件と耐水素遅れ割れ特性に
関する多くの実験的検討を行った結果、図3に示すよう
に、鋼管の割れ発生限界付加歪みは幅絞り率Qが100
0(t/ D)2〜3000(t/ D)2 の間でピークを
持ち、幅絞り率をこの範囲に制御することで優れた耐水
素遅れ割れ特性を有する鋼管が得られることを見出し
た。この適性幅絞り率は製品( 板厚/ 外径) 比により異
なり、優れた耐水素遅れ割れ特性を有する鋼管を得るた
めには( 板厚/ 外径) 比ごとに異なる幅絞り率をとる必
要がある。
1000 ≦ Q / (t / D) 2 ≦ 3000 where Q (%): width reduction ratio (= [{slit coil width−π (outer diameter−plate thickness)} / π (outer diameter−plate thickness) )] × 100) t (mm): Plate thickness D (mm): Outer diameter FIG. 3 shows the relationship between Q / (t / D) 2 and the crack addition limit additional strain. As a result of many experimental studies on the pipe forming conditions and the hydrogen delayed cracking resistance, the present inventors have found that as shown in FIG.
It was found that a steel pipe having a peak between 0 (t / D) 2 and 3000 (t / D) 2 and controlling the width reduction ratio within this range can provide a steel pipe having excellent hydrogen delayed cracking resistance. . This suitable width reduction ratio depends on the product (plate thickness / outer diameter) ratio, and in order to obtain a steel pipe with excellent hydrogen delayed cracking resistance, it is necessary to take a different width reduction ratio for each (plate thickness / outer diameter) ratio. There is.

【0027】鋼管の耐水素遅れ割れ特性が、幅絞り率Q
=1000(t/ D)2 〜3000(t/ D)2 の間で
ピークを持つ理由は次のように考えられる。すなわち、
幅絞り率が1000(t/ D)2 に満たない場合には、
鋼管の最大残留歪みが増大し、鋼管の耐水素遅れ割れ特
性が劣化する。逆に、幅絞り率が3000( t/ D)2を越え
る場合には、造管にともない造管圧延集合組織が形成さ
れ、鋼管の耐水素遅れ割れ感受性が高まり鋼管の耐水素
遅れ割れ特性が劣化する。
The resistance to delayed hydrogen cracking of a steel pipe depends on the width reduction ratio Q.
The reason why it has a peak between 1000 (t / D) 2 and 3000 (t / D) 2 is considered as follows. That is,
If the width reduction ratio is less than 1000 (t / D) 2 ,
The maximum residual strain of the steel pipe increases, and the hydrogen resistance delayed cracking property of the steel pipe deteriorates. On the other hand, when the width reduction ratio exceeds 3000 (t / D) 2, a pipe-forming rolling texture is formed along with the pipe making, the susceptibility to hydrogen delayed cracking of the steel pipe increases, and the hydrogen delayed cracking resistance of the steel pipe increases. to degrade.

【0028】以上のような方法によって80〜100%
焼戻しマルテンサイト+残部フェライト組織を形成する
ことにより、耐水素遅れ割れ特性に優れた引張強度98
0N/mm2 以上の電縫鋼管が製造される。
80% to 100% by the above method
By forming tempered martensite + balance ferrite structure, the tensile strength is 98 which is excellent in hydrogen delayed cracking resistance.
ERW steel pipe of 0 N / mm 2 or more is manufactured.

【0029】[0029]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1に示す6種の鋼を溶製し、表2に示す
ように本発明で規定した熱延条件、連続焼鈍炉における
熱処理条件、造管条件にて31.8mmφ×1.6mm
tの電縫鋼管に造管した。
Embodiments of the present invention will be described below. (Example 1) Six types of steel shown in Table 1 were melted, and as shown in Table 2, 31.8 mmφ × 1 under hot rolling conditions, heat treatment conditions in a continuous annealing furnace, and pipe forming conditions specified in the present invention. 0.6 mm
The electric resistance welded steel pipe of t was manufactured.

【0030】これらの鋼管の引張強度、三点曲げ最大荷
重を測定するとともに、耐水素遅れ割れ試験を実施し
た。三点曲げ試験は押し金具半径=152mm、支持ス
パン=600mmで行った。耐水素遅れ割れ試験は、鋼
管より幅20mmのC−リング試験片を切出し、切出し
前の外径までボルト締めを行い鋼管の残留歪み相当の歪
みを加えた後、さらに以下の数1で示される式で計算さ
れる付加歪み(Δε)を加えて0.1N塩酸中に200 時
間浸漬し割れ発生有無を調べ、割れ発生限界付加歪みを
耐水素遅れ割れ特性の指標とした。結果を表3に示す。
The tensile strength and maximum load of three-point bending of these steel pipes were measured, and a hydrogen resistance delayed cracking test was carried out. The three-point bending test was conducted with a pressing metal fitting radius of 152 mm and a supporting span of 600 mm. The hydrogen resistance delayed cracking test is performed by cutting out a C-ring test piece having a width of 20 mm from a steel pipe, bolting it to the outer diameter before cutting, applying a strain corresponding to the residual strain of the steel pipe, and then further indicated by the following formula 1. The additional strain (Δε) calculated by the formula was added and the sample was immersed in 0.1N hydrochloric acid for 200 hours to check for cracks. The critical strain for crack initiation was used as an index of hydrogen delayed cracking resistance. The results are shown in Table 3.

【0031】[0031]

【数1】 [Equation 1]

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表3から理解されるように、本発明で規定
する組成を満足する鋼A〜Eは比較鋼Fに比べ、割れ発
生限界歪みが高く、優れた耐水素遅れ割れ特性を示すこ
とが確認された。
As can be seen from Table 3, Steels A to E satisfying the composition defined in the present invention have higher crack initiation critical strains than Comparative Steel F and exhibit excellent hydrogen delayed cracking resistance. confirmed.

【0036】(実施例2)前記した鋼A〜Dを用いて表
4に示すような熱延条件、連続焼鈍炉における熱処理条
件、造管条件、( 板厚/ 外径) 比を種々変化させて電縫
鋼管に造管した。これらの機械特性、耐水素遅れ割れ試
験結果を表5に示す。
(Example 2) Using the steels A to D described above, various hot rolling conditions, heat treatment conditions in a continuous annealing furnace, pipe forming conditions and (sheet thickness / outer diameter) ratio as shown in Table 4 were changed. Made into ERW steel pipe. Table 5 shows the mechanical properties and the results of hydrogen delayed cracking test.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】表5から理解されるように、熱延条件、連
続焼鈍炉における熱処理条件、造管条件が本発明で規定
した条件を満たしている実施例の電縫鋼管は、引張強度
が980N/mm2 以上でかつ割れ発生限界歪みが高
く、優れた耐水素遅れ割れ特性を有することが確認され
た。
As can be seen from Table 5, the electric resistance welded steel pipes of the examples in which the hot rolling conditions, the heat treatment conditions in the continuous annealing furnace, and the pipe making conditions satisfy the conditions defined in the present invention have a tensile strength of 980 N / It was confirmed that the crack resistance was higher than that of mm 2 and the crack initiation critical strain was high, and that it had excellent hydrogen delayed cracking resistance.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
自動車インパクトビームなどに用いられる引張強度98
0N/mm2 以上の耐水素遅れ割れ特性に優れた構造用
超高張力電縫鋼管を、低コストで製造することができ
る。
As described above, according to the present invention,
Tensile strength 98 used for automobile impact beams
A structural ultrahigh-strength electric resistance welded steel pipe excellent in hydrogen delayed cracking resistance of 0 N / mm 2 or more can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu添加量と割れ発生限界付加歪み変化量との
関係を示す図。
FIG. 1 is a diagram showing a relationship between a Cu addition amount and a crack generation limit additional strain change amount.

【図2】Ni添加量と割れ発生限界付加歪み変化量との
関係を示す図。
FIG. 2 is a diagram showing the relationship between the amount of Ni added and the amount of change in additional strain that causes cracking.

【図3】Q/(t/ D)2 と割れ発生限界付加歪みとの
関係を示す図。
FIG. 3 is a diagram showing a relationship between Q / (t / D) 2 and crack addition limit additional strain.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量で、C:0.10〜0.18%、
Si:0.01〜0.5%、Mn:1.0〜1.9%、
Al:0.01〜0.06%を含み、P:0.02%以
下、S:0.003%以下、N:0.005%以下であ
る鋼スラブを1150〜1300℃で均熱した後、この
スラブに対してAr3 点以上を仕上温度とする熱間圧延
を施し、500〜700℃で巻取って熱延鋼帯とし、こ
の熱延鋼帯を酸洗冷圧後、連続焼鈍炉で800〜900
℃に均熱加熱後急冷し、さらに150〜250℃で焼戻
し処理を行い、得られた鋼帯を次式を満たす幅絞り率[
Q] で電縫溶接ならびにサイジングし、80〜100%
焼戻しマルテンサイト+残部フェライト組織よりなる耐
水素遅れ割れ特性に優れた引張強度980N/mm2
上の電縫鋼管を得ることを特徴とする耐水素遅れ割れ特
性に優れた超高張力電縫鋼管の製造方法。 1000≦Q/(t/ D)2 ≦3000 ただし、 Q(%) :幅絞り率(=[{スリットコイル幅−π( 外径
−板厚)} /π(外径−板厚)]×100 ) t(mm):板厚 D(mm):外径
1. C: 0.10 to 0.18% by weight,
Si: 0.01 to 0.5%, Mn: 1.0 to 1.9%,
After soaking a steel slab containing Al: 0.01 to 0.06%, P: 0.02% or less, S: 0.003% or less, and N: 0.005% or less at 1150 to 1300 ° C. The slab is hot-rolled at a finishing temperature of Ar 3 or higher and wound at 500 to 700 ° C. to form a hot-rolled steel strip. The hot-rolled steel strip is pickled, cold-pressed, and continuously annealed. 800 ~ 900
After soaking and heating to ℃, quenching, and tempering at 150-250 ℃, the width of the steel strip obtained [
Q] ERW welding and sizing, 80-100%
A super-high-strength electric resistance welded steel pipe excellent in hydrogen delayed cracking resistance, characterized by obtaining an electric resistance welded steel pipe composed of tempered martensite + balance ferrite structure and excellent in hydrogen delayed cracking resistance with a tensile strength of 980 N / mm 2 or more. Production method. 1000 ≦ Q / (t / D) 2 ≦ 3000, where Q (%): width drawing ratio (= [{slit coil width−π (outer diameter−plate thickness)} / π (outer diameter−plate thickness)] × 100) t (mm): Plate thickness D (mm): Outer diameter
【請求項2】 前記鋼スラブは、さらに重量%で0.0
05〜0.02%のNbを含むことを特徴とする請求項
1に記載の耐水素遅れ割れ特性に優れた超高張力電縫鋼
管の製造方法。
2. The steel slab further comprises 0.0% by weight.
The method for producing an ultra-high-strength electric resistance welded steel pipe excellent in hydrogen delayed cracking resistance according to claim 1, wherein the Nb content is 05 to 0.02%.
【請求項3】 前記鋼スラブは、さらに重量%で0.0
5〜0.50%のCuを含み、Niが0.10%以下で
あることを特徴とする請求項1または請求項2に記載の
耐水素遅れ割れ特性に優れた超高張力電縫鋼管の製造方
法。
3. The steel slab further comprises 0.0% by weight.
The ultrahigh-strength electric resistance welded steel pipe excellent in hydrogen delayed cracking resistance according to claim 1 or 2, characterized in that it contains 5 to 0.50% Cu and Ni is 0.10% or less. Production method.
JP14320695A 1995-06-09 1995-06-09 Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking Expired - Fee Related JP3307164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14320695A JP3307164B2 (en) 1995-06-09 1995-06-09 Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14320695A JP3307164B2 (en) 1995-06-09 1995-06-09 Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking

Publications (2)

Publication Number Publication Date
JPH08337817A true JPH08337817A (en) 1996-12-24
JP3307164B2 JP3307164B2 (en) 2002-07-24

Family

ID=15333355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14320695A Expired - Fee Related JP3307164B2 (en) 1995-06-09 1995-06-09 Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking

Country Status (1)

Country Link
JP (1) JP3307164B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096625A1 (en) * 2000-06-14 2001-12-20 Kawasaki Steel Corporation Steel pipe for use in reinforcement of automobile and method for production thereof
JP2009242858A (en) * 2008-03-31 2009-10-22 Nisshin Steel Co Ltd High-strength steel pipe and manufacturing method therefor
CN103757534A (en) * 2013-12-27 2014-04-30 首钢总公司 Cold-rolled steel plate with good flange welding property and production method of cold-rolled steel plate
WO2017111524A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor
JP2020110840A (en) * 2019-01-15 2020-07-27 Jfeスチール株式会社 Electroseamed steel pipe and method for manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096625A1 (en) * 2000-06-14 2001-12-20 Kawasaki Steel Corporation Steel pipe for use in reinforcement of automobile and method for production thereof
JP2001355046A (en) * 2000-06-14 2001-12-25 Kawasaki Steel Corp Steel tube for reinforcing automobile door and its production method
US7018488B2 (en) 2000-06-14 2006-03-28 Jfe Steel Corporation Steel pipe for use in reinforcement of automobile and method for production thereof
JP4608739B2 (en) * 2000-06-14 2011-01-12 Jfeスチール株式会社 Manufacturing method of steel pipe for automobile door reinforcement
JP2009242858A (en) * 2008-03-31 2009-10-22 Nisshin Steel Co Ltd High-strength steel pipe and manufacturing method therefor
CN103757534A (en) * 2013-12-27 2014-04-30 首钢总公司 Cold-rolled steel plate with good flange welding property and production method of cold-rolled steel plate
WO2017111524A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor
CN108431271A (en) * 2015-12-23 2018-08-21 Posco公司 The excellent ultrahigh-strength steel plates of hole expandability and its manufacturing method
JP2020110840A (en) * 2019-01-15 2020-07-27 Jfeスチール株式会社 Electroseamed steel pipe and method for manufacture thereof

Also Published As

Publication number Publication date
JP3307164B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
EP3653736A1 (en) Hot-rolled steel strip and manufacturing method
JP2021509438A (en) Hot-rolled steel sheets, steel pipes, members with excellent impact resistance and their manufacturing methods
JPH07197183A (en) Ultra-high strength thin steel sheet without developing hydrogen brittleness and its production
JP3374659B2 (en) Ultra-high tensile ERW steel pipe and method of manufacturing the same
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3307164B2 (en) Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
KR20220024957A (en) High-strength steel sheet, high-strength member and manufacturing method thereof
JP3849625B2 (en) Manufacturing method of ultra-high strength ERW steel pipe
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
JP3330207B2 (en) Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JPH06340922A (en) Production of low yield ratio high tensile strength steel pipe
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JPH0949065A (en) Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
JPH055156A (en) High strength steel sheet for forming and its production
JPS6410565B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140517

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees