JP2002112464A - Charging apparatus for vehicle - Google Patents

Charging apparatus for vehicle

Info

Publication number
JP2002112464A
JP2002112464A JP2000296306A JP2000296306A JP2002112464A JP 2002112464 A JP2002112464 A JP 2002112464A JP 2000296306 A JP2000296306 A JP 2000296306A JP 2000296306 A JP2000296306 A JP 2000296306A JP 2002112464 A JP2002112464 A JP 2002112464A
Authority
JP
Japan
Prior art keywords
charger
chargers
output
voltage battery
changer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000296306A
Other languages
Japanese (ja)
Inventor
Masahisa Kashimoto
雅久 樫本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000296306A priority Critical patent/JP2002112464A/en
Publication of JP2002112464A publication Critical patent/JP2002112464A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve in quality of a charging plural parallel connection type charging apparatus for vehicle deterring an enhancement of structure, parts and costs. SOLUTION: A pair of chargers 1 and 2 which receive transmitted electricity in parallel from the first high voltage battery 3 and supply electric power in parallel to the second battery 4, the changer 1 has a higher output voltage than the changer 2 and relatively puts out a large current, and a cooling of the changer 1 is better than it of the changer 2 and enables to suppress an overheating of the changer 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用充電装置に
関する。
The present invention relates to a vehicle charging device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年の
内燃機関駆動車両、ハイブリッド自動車、電気自動車
(純バッテリ型、燃料電池型を含む)では、搭載大電気
負荷への給電を低損失かつ軽量の回路系で実現するため
に、高圧回路系に給電する高圧バッテリと、低圧回路計
に給電する低圧バッテリとからなる二電源型車両回路系
が採用されつつある。
2. Description of the Related Art In recent years, vehicles powered by internal combustion engines, hybrid vehicles, and electric vehicles (including a pure battery type and a fuel cell type) are capable of supplying power to a large electric load with low loss and light weight. In order to realize such a circuit system, a dual power supply type vehicle circuit system including a high-voltage battery for supplying power to a high-voltage circuit system and a low-voltage battery for supplying power to a low-voltage circuit meter is being adopted.

【0003】また、この二電源型車両回路系では、高圧
バッテリと低圧バッテリとの間で電力を融通しあうこと
による利便性を得るために、両バッテリ間に車両用充電
装置を設置することが一般的である。
In this dual-power-supply type vehicle circuit system, a vehicle charging device may be installed between the high-voltage battery and the low-voltage battery in order to obtain convenience by exchanging power between the two batteries. General.

【0004】この車両用充電装置として、互いに並列接
続された複数の充電器(DC−DCコンバータ)を用いれ
ば、並列接続個数を変更することにより、一種類の出力
容量の充電器で種々の出力容量の車両用充電装置を実現
することができる。
If a plurality of chargers (DC-DC converters) connected in parallel to each other are used as this vehicle charging device, various outputs can be obtained by changing the number of connected in parallel to a charger having one type of output capacity. A high-capacity vehicle charging device can be realized.

【0005】本発明は、構造、コストの増大を抑止しつ
つ上記した充電器複数並列接続型の車両用充電装置の更
なる性能改善を図ることをその目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to further improve the performance of a vehicle charger having a plurality of chargers connected in parallel while suppressing an increase in structure and cost.

【0006】[0006]

【課題を解決するための手段】請求項1記載の車両用充
電装置は、高圧バッテリ及び低圧バッテリとの間に互い
に並列に接続されて少なくとも前記両バッテリの一方か
ら他方への送電を行う第一、第二充電器を有する車両用
充電装置において、前記第一充電器は、前記第二充電器
よりも高い出力電圧と優れた冷却性能とを有するので、
構造、コストの増大を抑止しつつ上記した充電器複数並
列接続型の車両用充電装置の更なる性能改善を図ること
ができる。
According to a first aspect of the present invention, there is provided a vehicle charging apparatus connected between a high-voltage battery and a low-voltage battery in parallel with each other to transmit power from at least one of the two batteries to the other. In a vehicle charging device having a second charger, the first charger has a higher output voltage and better cooling performance than the second charger,
It is possible to further improve the performance of the above-described vehicle charger having a plurality of chargers connected in parallel while suppressing an increase in structure and cost.

【0007】なお、第二充電器の出力電圧は、第一充電
器の最大出力電流発生時の出力電圧値以下に設定されて
いる。
[0007] The output voltage of the second charger is set to be equal to or lower than the output voltage value of the first charger when the maximum output current is generated.

【0008】以下、更に説明する。[0008] This will be further described below.

【0009】本発明では、出力電流が小さい場合に、出
力電圧が高い第一充電器が出力を担当する。出力電流が
増大すると、第一充電器の制御によりその出力電圧が低
下する。出力電流増大による第一充電器の出力電圧低下
により第一充電器の出力電圧が第二充電器の出力電圧以
下となると、第二充電器も出力電流を発生し、両充電器
が並列運転を開始する。この並列運転においても、出力
電流増大による第一充電器の出力電圧低下につれて、第
二充電器は、第一充電器の出力電圧に等しい出力電圧に
対応する相当する出力電流を発生する。 結局、第一充
電器は、第二充電器よりも温度的に過酷な動作を行うこ
とになるが、第一充電器は第二充電器よりも優れた冷却
性能を有するので、第一充電器の温度上昇は第二充電器
のそれに対して相対的に抑止でき、その結果、相対的に
冷却に優れた第一充電器が相対的に大きな出力電流を負
担するので、両充電器が等しい出力電圧をもつ場合に比
較して、両者の温度の均一化を図ることができる。
According to the present invention, when the output current is small, the first charger having the high output voltage takes charge of the output. When the output current increases, the output voltage decreases under the control of the first charger. When the output voltage of the first charger falls below the output voltage of the second charger due to a decrease in the output voltage of the first charger due to an increase in the output current, the second charger also generates an output current, and both chargers operate in parallel. Start. Also in this parallel operation, as the output voltage of the first charger decreases due to the increase of the output current, the second charger generates a corresponding output current corresponding to the output voltage equal to the output voltage of the first charger. Eventually, the first charger will operate more severely in temperature than the second charger, but since the first charger has better cooling performance than the second charger, the first charger Temperature rise can be suppressed relatively to that of the second charger, and as a result, the first charger, which has better cooling, bears a relatively large output current, so that both chargers have the same output. Compared to the case where there is a voltage, the two temperatures can be made more uniform.

【0010】第一充電器の冷却性能を相対的に向上させ
るには、種々の方式がある。たとえば、第一充電器を冷
却媒体(たとえば冷却空気や冷却液)の上流側(低温
側)に配置したり、第一充電器を第二充電器よりも大面
積の冷却フィンに固定してもよい。また、冷却媒体を第
一充電器に相対的に多く分流させ、第二充電器に相対的
に少なく分流させてもよい。更に、第一充電器には冷却
媒体を直接流し、第二充電器には他の回路装置の冷却
後、流しても良い。
There are various methods for relatively improving the cooling performance of the first charger. For example, the first charger may be arranged upstream (lower temperature side) of a cooling medium (for example, cooling air or cooling liquid), or the first charger may be fixed to a cooling fin having a larger area than the second charger. Good. Further, the cooling medium may be relatively diverted to the first charger and relatively diverted to the second charger. Further, the cooling medium may be directly supplied to the first charger, and may be supplied to the second charger after cooling other circuit devices.

【0011】両充電器の出力電圧を変更するには種々の
方式がある。出力電圧の変更は、充電器を構成するDC-D
Cコンバータのトランスの巻線比やチョークコイルのイ
ンダクタンスを変更して行われる。このとき、両充電器
は出力電圧値を設定する回路部品以外は同一の回路部品
を用いて作成すれば、製造が容易となる。また、出力電
圧が同一の充電器を一方は直接、他方は小抵抗器を通じ
て出力ラインに接続しても良い。これにより、実質的に
出力ラインからみた両充電器の出力電圧は、出力電流が
ある場合において変更されることになる。この変形態様
として、第二充電器の出力端を、第一充電器と電気負荷
との接続点に出力ラインで接続してもよい。これによ
り、この出力ラインの電気抵抗分の電圧降下分だけ、上
記接続点からみた第二充電器の出力電圧は小さくなる。
There are various methods for changing the output voltage of both chargers. The output voltage can be changed by the DC-D
This is done by changing the turns ratio of the transformer of the C converter and the inductance of the choke coil. At this time, if both chargers are formed using the same circuit components except for the circuit components for setting the output voltage value, the manufacture becomes easy. Alternatively, a charger having the same output voltage may be directly connected to one of the chargers and the other to an output line through a small resistor. As a result, the output voltages of both chargers as viewed substantially from the output line are changed when there is an output current. As a variation, the output end of the second charger may be connected to a connection point between the first charger and the electric load via an output line. As a result, the output voltage of the second charger viewed from the connection point decreases by the voltage drop corresponding to the electric resistance of the output line.

【0012】単独で使用する場合の両充電器の定格最大
出力電流は、等しくても良く、異なっていてもよい。
[0012] The rated maximum output currents of both chargers when used alone may be equal or different.

【0013】請求項2記載の車両用充電装置は、高圧バ
ッテリ及び低圧バッテリとの間に互いに並列に接続され
て少なくとも前記両バッテリの一方から他方への送電を
行う第一、第二充電器を有する車両用充電装置におい
て、前記両充電器は、異なる定格出力容量を有すること
を特徴としている。
According to a second aspect of the present invention, there is provided a vehicle charging device comprising first and second chargers connected in parallel with each other between a high-voltage battery and a low-voltage battery and transmitting power from at least one of the two batteries to the other. In the vehicle charging device having the above-mentioned structure, the two chargers have different rated output capacities.

【0014】このようにすれば、少ない部品点数で種々
の定格出力電流容量をもつ車両用充電装置を実現するこ
とができる。
In this manner, a vehicle charging apparatus having various rated output current capacities with a small number of parts can be realized.

【0015】たとえば第一充電器が第二充電器の50%
大きい定格出力電流容量をもつようにすれば、第二充電
器を一個用いる場合の定格出力電流容量を1とすれば、
第一充電器を一個用いる場合の定格出力電流容量は1.
5、第一充電器を二個用いる場合の定格出力電流容量を
2、両充電器を一個づつ用いる場合の定格出力電流容量
を2.5、第二充電器を二個用いる場合の定格出力電流
容量を3、第一充電器を二個、第二充電器を一個用いる
場合の定格出力電流容量を3.5、第二充電器を一個、
第二充電器を二個用いる場合の定格出力電流容量を4と
することができ、小型車両から大型車両まで種々の出力
容量に対応することができる。
For example, the first charger is 50% of the second charger
If one has a large rated output current capacity, and if the rated output current capacity when one second charger is used is 1, then
The rated output current capacity when one first charger is used is 1.
5. The rated output current capacity when using two first chargers is 2, the rated output current capacity when using both chargers one by one, and the rated output current when using two second chargers. 3, the rated output current capacity when using two first chargers and one second charger, 3.5, one second charger,
When two second chargers are used, the rated output current capacity can be set to 4, and can correspond to various output capacities from small vehicles to large vehicles.

【0016】また、両充電器の出力電圧をわずかに変更
することにより、請求項1記載の効果も併せて奏するこ
ともできる。
Further, by slightly changing the output voltages of the two chargers, the effect of the first aspect can also be achieved.

【0017】[0017]

【発明の実施の形態】本発明の車両用充電装置の好適な
実施態様を図面を参照して以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a vehicle charging apparatus according to the present invention will be described below with reference to the drawings.

【0018】[0018]

【実施例1】実施例1の車両用充電装置のブロック図を
図1に示す。
Embodiment 1 FIG. 1 shows a block diagram of a vehicle charging apparatus according to Embodiment 1.

【0019】1は第一充電器、2は第二充電器、3は高
圧バッテリ、4は低圧バッテリ、5、6はアルミ基板、
7は入力ブスバー、8は出力ブスバーである。
1 is a first charger, 2 is a second charger, 3 is a high voltage battery, 4 is a low voltage battery, 5 and 6 are aluminum substrates,
7 is an input bus bar and 8 is an output bus bar.

【0020】図2に示すように、充電器1,2はそれぞ
れ、インバータ10と、トランス11と、整流器12と
で構成されたDC-DCコンバータからなる。充電器1,2
の必要箇所には電流平滑用のチョークコイルやコンデン
サなどを設けても良い。この実施例では、充電器1,2
は高圧バッテリ3から低圧バッテリ4へ送電する。もち
ろん、逆に送電する回路構成としてもよく、双方向送電
可能な回路構成を採用しても良い。また、スイッチング
トランジスタでチョークコイルの電流を一定周期で断続
し、発生する高電圧をダイオードを通じて出力する回路
構成を採用しても良い。図2に示す充電器回路構成自体
は周知であるので、更なる説明は省略する。
As shown in FIG. 2, each of the chargers 1 and 2 comprises a DC-DC converter comprising an inverter 10, a transformer 11, and a rectifier 12. Chargers 1, 2
May be provided with a current smoothing choke coil, a capacitor, or the like. In this embodiment, the chargers 1, 2
Transmits power from the high-voltage battery 3 to the low-voltage battery 4. Of course, a circuit configuration for transmitting power in reverse may be used, and a circuit configuration for bidirectional power transmission may be adopted. Further, a circuit configuration may be adopted in which the current of the choke coil is intermittently switched at a constant cycle by the switching transistor and the generated high voltage is output through a diode. Since the charger circuit configuration shown in FIG. 2 itself is well known, further description is omitted.

【0021】図1において、充電器1は、冷却フィン5
1付きのヒートシンク兼用アルミ基板5に実装され、充
電器2は、冷却フィン61付きのヒートシンク兼用アル
ミ基板6に実装されている。この実施例では、両アルミ
基板5,6、及び、冷却フィン51、61は等しい形状
に形成されているが、アルミ基板5の冷却フィンを増設
することも可能である。アルミ基板5、6を一体化して
もよく、プリント基板としてもよい。ただし、この実施
例では、充電器1は冷却風(COOLING AIR)の上流側
に、充電器2は下流側に配置され、充電器2は、充電器
1で加熱された冷却風により冷却される。これにより、
充電器1の冷却性能は充電器2のそれより優れている。
In FIG. 1, a charger 1 includes a cooling fin 5
The charger 2 is mounted on a heat sink and aluminum substrate 6 with cooling fins 61. In this embodiment, the two aluminum substrates 5, 6 and the cooling fins 51, 61 are formed in the same shape, but it is also possible to increase the number of cooling fins of the aluminum substrate 5. The aluminum substrates 5 and 6 may be integrated, or may be a printed circuit board. However, in this embodiment, the charger 1 is arranged on the upstream side of the cooling air (COOLING AIR), and the charger 2 is arranged on the downstream side, and the charger 2 is cooled by the cooling air heated by the charger 1. . This allows
The cooling performance of the charger 1 is superior to that of the charger 2.

【0022】入力ブスバー7は、送電側の高圧バッテリ
3から分岐点(接続点)までの共通部71と、分岐点か
ら第一充電器1の入力端に達する第一分岐部72と、分
岐点から第二充電器2の入力端に達する第二分岐部73
とからなる。第二分岐部73は第一分岐部72より長
く、所定抵抗値だけ大きな電気抵抗をもつ。
The input bus bar 7 includes a common part 71 from the high voltage battery 3 on the power transmission side to the branch point (connection point), a first branch part 72 reaching the input end of the first charger 1 from the branch point, and a branch point. Branch 73 reaching the input end of the second charger 2 from
Consists of The second branch portion 73 is longer than the first branch portion 72 and has an electric resistance larger by a predetermined resistance value.

【0023】入力ブスバー8は、充電側の低圧バッテリ
4から分岐点(接続点)までの共通部81と、分岐点か
ら第一充電器1の出力端に達する第一分岐部82と、分
岐点から第二充電器2の出力端に達する第二分岐部83
とからなる。第二分岐部83は第一分岐部82より長
く、所定抵抗値だけ大きな電気抵抗をもつ。
The input bus bar 8 includes a common part 81 from the low-voltage battery 4 on the charging side to the branch point (connection point), a first branch part 82 reaching the output end of the first charger 1 from the branch point, and a branch point. Branch 83 that reaches the output end of the second charger 2 from the
Consists of The second branch portion 83 is longer than the first branch portion 82 and has an electrical resistance larger by a predetermined resistance value.

【0024】(動作)この実施例では、充電器1の無負
荷出力電圧は14.1V、充電器2の無負荷出力電圧1
4.0Vに設定されている。これにより既に説明したご
とく、低圧バッテリ4の充電不足が小さく、その入力電
流が小さい場合には充電器1が低圧バッテリ4に優勢に
電流を供給し、低圧バッテリ4の充電不足が大きく、そ
の入力電流が大きい場合には充電器1のみならず充電器
2も大電流を低圧バッテリ4に供給する。
(Operation) In this embodiment, the no-load output voltage of the charger 1 is 14.1 V, and the no-load output voltage 1 of the charger 2 is
It is set to 4.0V. As described above, when the low voltage battery 4 has a small charge shortage and its input current is small, the charger 1 supplies the current to the low voltage battery 4 dominantly, and the low voltage battery 4 has a large charge shortage. When the current is large, not only the charger 1 but also the charger 2 supplies a large current to the low-voltage battery 4.

【0025】両充電器1、2の出力電圧差は、入力ブス
バー7、出力ブスバー8の両分岐部71,72及び8
2,83間の電気抵抗差で生じさせても良い。この場合
には、両充電器1,2を全く同一機種とすることができ
るため、部品点数が減り、製造が容易となる。
The output voltage difference between the two chargers 1 and 2 is determined by the two branch portions 71, 72 and 8 of the input bus bar 7 and the output bus bar 8.
The difference may be caused by a difference in electric resistance between 2,83. In this case, since both of the chargers 1 and 2 can be of exactly the same model, the number of parts is reduced and the manufacture becomes easier.

【0026】上記の結果、第一充電器1の発熱はほとん
どの場合、第二充電器2のそれよりも大きくなるが、第
一充電器1は冷却通路の上流側に配置されているため、
充電器1の最高温度を充電器2のそれと同程度に抑止す
ることができる。なお、充電器1の回路構造や冷却フィ
ンなどの形状変更により、充電器1の冷却性能を相対的
に向上することも当然可能である。
As a result, the heat generated by the first charger 1 is almost always greater than that generated by the second charger 2, but since the first charger 1 is disposed upstream of the cooling passage,
The maximum temperature of the charger 1 can be suppressed to the same degree as that of the charger 2. Note that it is naturally possible to relatively improve the cooling performance of the charger 1 by changing the circuit structure of the charger 1 and the shape of the cooling fins.

【0027】この実施例によれば、第一充電器1が相対
的に冷却性に優れており、その分だけ内部最高温度が低
くなることを利用して、相対的に大きい出力電流負担を
掛けるものであり、回路構造を複雑化することなく、全
体最大出力電流を安全に向上することができる上、複数
の充電器を並列動作させて送電を行うので、一方の充電
器が動作不良を起こしても、送電は部分的に継続でき、
回路の信頼性が向上する。
According to this embodiment, a relatively large output current load is applied by utilizing the fact that the first charger 1 is relatively excellent in cooling performance and the internal maximum temperature is reduced accordingly. It is possible to safely improve the overall maximum output current without complicating the circuit structure, and to perform power transmission by operating multiple chargers in parallel, causing one of the chargers to malfunction. However, power transmission can partially continue,
The reliability of the circuit is improved.

【0028】(変形態様)この変形態様では、充電器
1,2は電気的、熱的に同一性能をもつ。しかしなが
ら、上記した入力ブスバー7及び出力ブスバー8の電気
抵抗差により、放熱性に優れた(冷却性に優れた)充電
器1は低圧バッテリ4からみて高い出力電圧をもつ(相
対的に大きな出力電流を負担する)。
(Modification) In this modification, the chargers 1 and 2 have the same electrical and thermal performance. However, due to the electric resistance difference between the input bus bar 7 and the output bus bar 8, the charger 1 having excellent heat radiation (excellent cooling) has a high output voltage as viewed from the low-voltage battery 4 (relatively large output current). To bear).

【0029】[0029]

【実施例2】他の実施例を図1を参照して以下に説明す
る。
Embodiment 2 Another embodiment will be described below with reference to FIG.

【0030】この実施例は、両充電器の無負荷出力電圧
を等しくし、両充電器1、2のどちらかの許容最大出力
電流を、他方のそれに対して50%増としたものであ
る。すなわち、この実施例では、許容最大出力電流が異
なる2種類の充電器A,Bを準備する。
In this embodiment, the no-load output voltages of both chargers are made equal, and the allowable maximum output current of either charger 1 or 2 is increased by 50% with respect to the other. That is, in this embodiment, two types of chargers A and B having different allowable maximum output currents are prepared.

【0031】このようにすれば、大電流型の充電器Aを
二つ用いる場合、両方用いる場合、小電流型の充電器A
を二つ用いる場合などの種々の組み合わせを採用するだ
けで、部品点数の増加を防止しつつ多数の最大出力電流
をもつ車両用充電装置を実現することができる。
In this way, when two large current type chargers A are used, when both are used, a small current type charger A is used.
By using various combinations such as the case where two are used, it is possible to realize a vehicle charging device having a large number of maximum output currents while preventing an increase in the number of components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の車両用充電装置のブロック図であ
る。
FIG. 1 is a block diagram of a vehicle charging device according to a first embodiment.

【図2】図1に示す充電器のブロック回路図である。FIG. 2 is a block circuit diagram of the charger shown in FIG.

【符号の説明】[Explanation of symbols]

1:第一充電器 2:第二充電器 3:高圧バッテリ 4:低圧バッテリ 1: First charger 2: Second charger 3: High voltage battery 4: Low voltage battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高圧バッテリ及び低圧バッテリとの間に互
いに並列に接続されて少なくとも前記両バッテリの一方
から他方への送電を行う第一、第二充電器を有する車両
用充電装置において、 前記第一充電器は、前記第二充電器よりも高い出力電圧
と優れた冷却性能とを有することを特徴とする車両用充
電装置。
1. A vehicle charging device having first and second chargers connected in parallel with each other between a high-voltage battery and a low-voltage battery and transmitting power from at least one of the two batteries to the other thereof, A charging device for a vehicle, wherein one of the chargers has a higher output voltage and better cooling performance than the second charger.
【請求項2】高圧バッテリ及び低圧バッテリとの間に互
いに並列に接続されて少なくとも前記両バッテリの一方
から他方への送電を行う第一、第二充電器を有する車両
用充電装置において、 前記両充電器は、異なる定格出力容量を有することを特
徴とする車両用充電装置。
2. A vehicle charging apparatus having first and second chargers connected in parallel with each other between a high-voltage battery and a low-voltage battery and transmitting power from at least one of the two batteries to the other thereof. A charger for a vehicle, wherein the chargers have different rated output capacities.
JP2000296306A 2000-09-28 2000-09-28 Charging apparatus for vehicle Pending JP2002112464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296306A JP2002112464A (en) 2000-09-28 2000-09-28 Charging apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296306A JP2002112464A (en) 2000-09-28 2000-09-28 Charging apparatus for vehicle

Publications (1)

Publication Number Publication Date
JP2002112464A true JP2002112464A (en) 2002-04-12

Family

ID=18778599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296306A Pending JP2002112464A (en) 2000-09-28 2000-09-28 Charging apparatus for vehicle

Country Status (1)

Country Link
JP (1) JP2002112464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526003A (en) * 2019-04-03 2022-05-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Energy supply configuration for vehicle control equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526003A (en) * 2019-04-03 2022-05-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Energy supply configuration for vehicle control equipment
JP7265648B2 (en) 2019-04-03 2023-04-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Energy supply configuration for vehicle controls

Similar Documents

Publication Publication Date Title
JP4995005B2 (en) DCDC converter device for vehicle
US7889524B2 (en) Integrated bi-directional converter for plug-in hybrid electric vehicles
Kim et al. An integrated battery charger with high power density and efficiency for electric vehicles
KR101241221B1 (en) Charging system for mild hybrid vehicle
Lai et al. Energy management power converters in hybrid electric and fuel cell vehicles
US6452815B1 (en) Accelerated commutation for passive clamp isolated boost converters
US7638904B2 (en) Isolated bidirectional DC-DC converter
JP2009055687A (en) Dc-dc converter for vehicle
JP5674379B2 (en) System for storing and managing a plurality of energies and method for producing the same
EP3776797B1 (en) Charging station for electric vehicles
JP6480935B2 (en) Charge balance device
KR20110109801A (en) Power source apparatus and car with the same
US20220332204A1 (en) Powertrain architecture for a vehicle utilizing an on-board charger
CN102007677A (en) Bidirectional dc/dc converter and power conditioner
US9718376B2 (en) Electricity supply system having double power-storage devices of a hybrid or electric motor vehicle
Uno et al. Modularized equalization architecture with voltage multiplier-based cell equalizer and switchless switched capacitor converter-based module equalizer for series-connected electric double-layer capacitors
JP2016131486A (en) Bi-directional dc/dc power converter for vehicle system
RU2709196C1 (en) Electric power conversion system and electric power conversion system control method
WO2008063461A1 (en) Fuel cell power management module
Al-Sheikh et al. Power electronics interface configurations for hybrid energy storage in hybrid electric vehicles
Bai et al. The impact of bidirectional DC-DC converter on the inverter operation and battery current in hybrid electric vehicles
Hou et al. Low-voltage electrical systems for nonpropulsion loads
JP2002112464A (en) Charging apparatus for vehicle
US11972888B2 (en) Variable voltage inductor with direct liquid cooling
JP7353008B2 (en) power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120