JP2002110616A - Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device - Google Patents

Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device

Info

Publication number
JP2002110616A
JP2002110616A JP2000294636A JP2000294636A JP2002110616A JP 2002110616 A JP2002110616 A JP 2002110616A JP 2000294636 A JP2000294636 A JP 2000294636A JP 2000294636 A JP2000294636 A JP 2000294636A JP 2002110616 A JP2002110616 A JP 2002110616A
Authority
JP
Japan
Prior art keywords
water
cleaning
substrate
concentration oxygen
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000294636A
Other languages
Japanese (ja)
Inventor
Hirotoshi Ise
博利 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000294636A priority Critical patent/JP2002110616A/en
Priority to US09/755,177 priority patent/US20020036001A1/en
Publication of JP2002110616A publication Critical patent/JP2002110616A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning apparatus or a cleaning method that can improve after-corrosion generated between Al and Cu or the like and the loss between Al and Cu due to a remaining chlorine ion or long-time rinsing treatment, can inhibit side etching, and can maintain superior etching shape. SOLUTION: Ozone water 31b, that is for example high-concentration oxygen water sent from an inlet 41b, passes through an approach pipe 43b and is discharged into a container 36b from an discharging port 42b, thus forming a solid surface oxide layer on the surface of a wafer that is a substrate 33b to be treated, and hence inhibiting Al side etching as shown by the conventional technique, preventing Al deficiency 16 around a Cu deposit 25 due to battery effect, removing a release solvent, and inhibiting the generation of after- corrosion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、洗浄処理装置、洗
浄処理方法、半導体製造装置および半導体装置に関し、
特に被処理基板に付着した剥離溶剤を除去する洗浄処理
装置、洗浄処理方法、該洗浄処理装置を利用して半導体
装置を製造する半導体製造装置および該洗浄処理装置を
利用して処理される半導体装置に関する。
The present invention relates to a cleaning apparatus, a cleaning method, a semiconductor manufacturing apparatus, and a semiconductor device.
In particular, a cleaning apparatus, a cleaning method, a semiconductor manufacturing apparatus for manufacturing a semiconductor device using the cleaning apparatus, and a semiconductor device processed using the cleaning apparatus, wherein the cleaning apparatus removes a release solvent attached to a substrate to be processed. About.

【0002】[0002]

【従来の技術】近年、半導体素子等の集積度の増大に伴
い、パターンの微細化による高密度化が急速に進展して
きた。特に、DRAM、専用集積回路(Application Sp
ecificIntegrated Circuit : ASIC)等の技術分野
では、ハーフミクロン以下の微細加工パターンを必要と
し、それに対し得る異物除去処理技術や洗浄処理技術が
要求されている。この異物除去処理技術や洗浄処理技術
の一つの手段として剥離溶剤を使用した洗浄技術が広く
使用されている。
2. Description of the Related Art In recent years, as the degree of integration of semiconductor elements and the like has increased, the density has been rapidly increased by miniaturization of patterns. In particular, DRAM, dedicated integrated circuits (Application Sp
In the technical field such as ecific integrated circuit (ASIC), a fine processing pattern of half a micron or less is required, and a foreign matter removal processing technique and a cleaning processing technique for the fine processing pattern are required. A cleaning technique using a stripping solvent is widely used as one means of the foreign substance removal processing technique and the cleaning processing technique.

【0003】図9は、半導体素子等のパターンを形成し
た処理基板の従来における最も代表的な洗浄処理装置及
び洗浄処理方法を示す。図9(A)ないし9(C)にお
いて、符号31aは剥離溶剤、32a、32b、32c
はウェーハカセット、33a、33b、33cは被処理
基板、34a、34bは各々剥離溶剤31a、31bの
導入口、35a、35b、35cは剥離溶剤31a、3
1b等の排気口、36a、36b、36cは容器、38
a、38bは各々剥離溶剤導入口34a、34bの導入
バルブ、39a、39bは各々剥離溶剤排気口35a、
35bの排気バルブ、43cは容器回転支持棒、44c
は容器回転支持受けである。
FIG. 9 shows a conventional most typical cleaning apparatus and a cleaning method for a processing substrate on which a pattern such as a semiconductor element is formed. In FIGS. 9A to 9C, reference numeral 31a denotes a release solvent, 32a, 32b, and 32c.
Is a wafer cassette, 33a, 33b, 33c are substrates to be processed, 34a, 34b are inlets for stripping solvents 31a, 31b, respectively, and 35a, 35b, 35c are stripping solvents 31a, 3c.
1b, etc., 36a, 36b, 36c are containers, 38
Reference numerals a and 38b denote release valve introduction ports 34a and 34b, and 39a and 39b denote release solvent exhaust ports 35a, respectively.
Exhaust valve 35b, 43c is a container rotation support rod, 44c
Is a container rotation support receiver.

【0004】図9(A)ないし9(C)は、例えば被処
理基板であるウェーハの表面に付着した有機・無機ポリ
マーもしくは異物、または残留する塩素イオンを、例え
ば弗酸や硫酸などの剥離溶液で洗浄する処理工程を示
す。図9(A)に示されるように、剥離溶液または溶剤
31aを剥離溶剤導入口34aより容器36a内に導入
する。この容器36a内の剥離溶剤31aの量を導入バ
ルブ34aまたは排気バルブ39aを開閉することによ
り制御する。容器36a内のウェーハカセット32a内
に被処理基板33aであるウェーハを装着し、剥離溶剤
31a内に放置する。
FIGS. 9 (A) to 9 (C) show, for example, an organic / inorganic polymer or a foreign substance adhering to the surface of a wafer as a substrate to be processed or a residual chlorine ion by using a stripping solution such as hydrofluoric acid or sulfuric acid. Shows the processing steps for cleaning. As shown in FIG. 9A, a stripping solution or a solvent 31a is introduced into a container 36a through a stripping solvent inlet 34a. The amount of the stripping solvent 31a in the container 36a is controlled by opening and closing the introduction valve 34a or the exhaust valve 39a. The wafer as the substrate 33a to be processed is mounted in the wafer cassette 32a in the container 36a, and is left in the stripping solvent 31a.

【0005】図9(B)は、例えば被処理基板に付着し
た残留するフォトレジスト、塩素イオンの除去及び基板
に残留する剥離溶剤を置換・洗浄する水洗工程である。
図9(B)で符号37bは洗浄する純水である。図9
(B)に示されるように、純水37bを導入口34bよ
り容器36b内に導入する。この容器36b内の純水3
7bの量は導入バルブ34bまたは排気バルブ39bを
開閉することにより制御する。容器36b内のウェーハ
カセット32b内に被処理基板33bであるウェーハを
装着し、純水37b内に放置する。
FIG. 9B shows a water washing step for removing, for example, the remaining photoresist and chlorine ions attached to the substrate to be processed, and replacing and washing the stripping solvent remaining on the substrate.
In FIG. 9B, reference numeral 37b denotes pure water to be washed. FIG.
As shown in (B), pure water 37b is introduced into the container 36b from the introduction port 34b. Pure water 3 in this container 36b
The amount of 7b is controlled by opening and closing the introduction valve 34b or the exhaust valve 39b. The wafer as the substrate 33b to be processed is mounted in the wafer cassette 32b in the container 36b, and is left in the pure water 37b.

【0006】図9(C)は、上記水洗工程にて被処理基
板33cであるウェーハに付着した水分を除去する工程
を示す。図9(C)に示されるように、容器36c内で
ウェーハカセット32cを容器回転支持受け44cに装
着し、容器回転支持棒43cを回転させることにより、
例えば被処理基板33cであるウェーハに残留する水分
及び水溶剤を残留水溶液排気ロ35cより除去する。
FIG. 9C shows a step of removing water adhering to the wafer as the substrate 33c in the water washing step. As shown in FIG. 9 (C), the wafer cassette 32c is mounted on the container rotation support receiver 44c in the container 36c, and the container rotation support rod 43c is rotated.
For example, the water and the water solvent remaining on the wafer which is the substrate to be processed 33c are removed from the residual aqueous solution exhaust unit 35c.

【0007】しかし、上述の従来の技術では、図9
(B)に示される水洗工程時、被処理基板33bに残留
した塩素イオンもしくはフォトレジストまたは剥離溶剤
を完全に除去するため水洗時間の長時間化または水洗の
長時間化が生じる。これに伴い、例えばAl−Cu合金
配線基板を含むウェーハではAl層とCu層との間の異
種金属間の結晶内に貯まった電荷がH2Oを得ることに
なる。このため、Al層とCu層とに形成された酸化皮
膜を破壊し局部電池の陽極を形成し、陰極における溶存
酸素の還元(水酸化イオンOH-の発生)が全面に発生
し急速に腐食を進行させアフターコロージョンを発生さ
せることになる。あるいは電荷の移動が起こり電流が流
れる電池効果によりAl層で溶解が発生し欠損となり形
状を著しく悪化させ、且つ製品の品質安定化を著しく低
下させるという問題が生じていた。
However, in the above-mentioned conventional technique, FIG.
At the time of the water washing step shown in (B), the chlorine ion or the photoresist or the stripping solvent remaining on the processing target substrate 33b is completely removed, so that the water washing time or water washing becomes longer. Accordingly, for example, in a wafer including an Al—Cu alloy wiring substrate, electric charges accumulated in crystals between different metals between the Al layer and the Cu layer obtain H 2 O. Therefore, to form an anode of a local cell to destroy the oxide film formed on the Al layer and Cu layer, the reduction of dissolved oxygen at the cathode (hydroxide ion OH - generation) is generated on the entire surface rapidly corrode Then, after-corrosion occurs. Alternatively, there has been a problem that the transfer of electric charges causes the current to flow, and the battery effect causes dissolution in the Al layer, resulting in defects, which significantly deteriorates the shape and significantly lowers the quality stability of the product.

【0008】上述の問題を解決するために、図9(B)
に示される水洗工程の処理時間を短縮すると、残留する
塩素イオンや比較的酸性の強いpH領域である弗酸や硫
酸である剥離溶剤が残留するため、大気中の水分と反応
してAlOH系の反応性生成物を形成し、Al−Cu合
金配線を腐食し、Al−Cu配線等で接触・ショートさ
せ、製品の信頼性を著しく悪化させていた。
To solve the above problem, FIG.
When the treatment time of the water washing step shown in the above is shortened, the remaining chlorine ions and the stripping solvent such as hydrofluoric acid and sulfuric acid, which are in a relatively acidic pH region, remain. Reactive products were formed, the Al-Cu alloy wiring was corroded, and contacted and short-circuited with Al-Cu wiring and the like, thereby significantly deteriorating the reliability of the product.

【0009】その他の方法として、特開平第1−189
92号公報に示すように、フォトレジストの除去やpH
濃度低下として高濃度酸素であるオゾンガスを導入する
洗浄処理方法、または特開昭第62−11733号公報
に示すように、高濃度酸素であるオゾンガスを用いた洗
浄方法も考案されている。しかし、Al−Cu合金配線
等の金属配線で残留した電荷が移動することにより、例
えばAl−Cu間等に発生するアフターコロージョンを
改善し、且つ残留塩素イオンや水洗処理の長時間化にと
もなうAl−Cu間の欠損を改善し、且つサイドエッチ
ングを抑制し、且つ良好なエッチング形状を維持した洗
浄処理の重要性に着目した処理方法は、従来存在してい
なかった。
As another method, Japanese Patent Application Laid-Open No. 1-189-1989
As shown in JP-A-92-92, photoresist removal and pH
A cleaning method in which ozone gas, which is high-concentration oxygen, is introduced to reduce the concentration, or a cleaning method using ozone gas, which is high-concentration oxygen, as described in Japanese Patent Application Laid-Open No. 62-11733, has also been devised. However, the transfer of residual charges in metal wiring such as Al-Cu alloy wiring improves after-corrosion generated between, for example, Al-Cu, etc. Conventionally, there has been no processing method that focuses on the importance of a cleaning process that improves defects between Cu and suppresses side etching and maintains a good etching shape.

【0010】図10は、図9に示す従来の水洗処理によ
る洗浄処理後の被処理基板33cの断面形状を示す。図
10において、符号21は反射防止膜であるTiN、2
2はAlに0.5%のCuを含むAl−Cu合金配線、
23はTiN/Tiの合金配線、24は例えば積層配線
を形成する際に下層の配線と接触またはショートしない
ように形成した酸化膜層または絶縁膜層である。符号2
5はCuの析出物であり、これはAl配線を形成する際
に、前工程として例えば高温スバッタ方式によりAl膜
層を積んだ時、AlとCuとの結晶化の違いまたはウェ
ーハ冷却時に伴うAlとCuとの再結晶化の違いにより
生じるものである。符号16は従来の技術による洗浄処
理により発生したCu析出物25の周りのAl欠損部の
一例である。欠損部16はAl−Cu膜中に例えば洗浄
前工程の微細配線加工時に蓄積された電荷が、洗浄処理
工程において剥離液によりAl−Cu配線側壁部、ウェ
ーハ表面部に残留する有機反応性生成物、無機反応性生
成物、残留塩素、フォトレジストが除去された後、水洗
浄処理において例えば剥離溶剤のH2Oによる置換、除
去が実施された際に、ウェーハ表面部、配線側壁部に防
食作用として形成されていた表面酸化皮膜を破壊し、A
l−Cu膜中に析出するCuと外周に隣接するAl−C
u層間で局部電池の陽極を形成し、陰極における溶存酸
素の還元、水酸化イオンOH-が全面に発生し、急速に
腐食を進行させ、Al層で溶解し発生するものである。
符号17は、欠損部16と同プロセスにより溶解したA
l層が水酸化イオンOH-と反応し、AlOH系反応生
成物となったアフターコロージョンの一例である。符号
18は、上記H20による剥離溶剤の置換、除去の際、
表面酸化皮膜の破壊によりAl−Cu合金配線側壁部が
水酸化イオンOH-と反応しメタル層が溶解し後退した
一例である。
FIG. 10 shows a cross-sectional shape of the substrate 33c after the cleaning process by the conventional water-washing process shown in FIG. In FIG. 10, reference numeral 21 denotes TiN as an anti-reflection film, 2
2 is an Al-Cu alloy wiring containing 0.5% Cu in Al,
Reference numeral 23 denotes a TiN / Ti alloy wiring, and reference numeral 24 denotes, for example, an oxide film layer or an insulating film layer formed so as not to contact or short-circuit with a lower wiring when forming a laminated wiring. Sign 2
Numeral 5 is a precipitate of Cu, which is used for forming an Al wiring, for example, when an Al film layer is stacked by a high-temperature sputter method as a pre-process, a crystallization difference between Al and Cu, or Al accompanying when cooling the wafer. This is caused by the difference in recrystallization between Cu and Cu. Reference numeral 16 denotes an example of an Al deficiency around the Cu precipitate 25 generated by the cleaning process according to the related art. The defective portion 16 is an organic reactive product in which charge accumulated in the Al-Cu film, for example, during fine wiring processing in a pre-cleaning process, remains on the Al-Cu wiring side wall portion and the wafer surface portion by a stripping solution in the cleaning process. After the inorganic reactive products, residual chlorine and photoresist are removed, when water is removed and replaced with H 2 O, for example, in a water washing process, the anti-corrosion action is exerted on the wafer surface and wiring sidewalls. Destroys the surface oxide film formed as
Cu deposited in the l-Cu film and Al-C adjacent to the outer periphery
The anode of the local battery is formed between the u layers, the reduction of dissolved oxygen at the cathode, hydroxide ions OH - are generated on the entire surface, and the corrosion is rapidly progressed and dissolved and generated in the Al layer.
Reference numeral 17 denotes A dissolved by the same process as the defective portion 16.
l layer hydroxide ions OH - reacts with an example of after-corrosion became AlOH based reaction product. Reference numeral 18 denotes the time of replacement and removal of the stripping solvent by the above H 20 .
Surface oxide film destruction by Al-Cu alloy wiring sidewall portion hydroxide ion OH of - reacted with an example retracted dissolved metal layer.

【0011】上述の問題を解決するため、図9(B)に
示される水洗時間を短縮化すると、例えば剥離溶剤の除
去性不足、残留塩素の除去性不足、有機反応性生成物の
除去性不足、無機系反応性生成物の除去性不足およびフ
ォトレジスト除去性不足が生じる。これらの除去性不足
に伴い、残留塩素または剥離溶剤と大気中の水分との反
応によるアフターコロージョンが発生し、配線信頼性の
悪化を招くという問題があり、従来の洗浄処理方法での
改善はきわめて困難であった。
[0011] In order to solve the above-mentioned problems, if the washing time shown in FIG. 9 (B) is shortened, for example, insufficient removal of the stripping solvent, insufficient removal of residual chlorine, and insufficient removal of organic reactive products. In addition, insufficient removal of inorganic reactive products and insufficient removal of photoresist occur. Due to the insufficient removability, after-corrosion occurs due to the reaction between residual chlorine or a stripping solvent and moisture in the air, which causes a problem that wiring reliability is deteriorated. It was difficult.

【0012】[0012]

【発明が解決しようとする課題】上述のように、剥離溶
液処理後、被処理基板表面に付着した剥離溶剤を除去す
る従来の洗浄装置または洗浄方法では、Al−Cu間等
におけるアフターコロージョン、Al配線側壁部等にお
けるサイドエッチング、Al−Cu間の欠損および良好
な形状を得ることができないという問題があった。
As described above, in the conventional cleaning apparatus or cleaning method for removing the release solvent adhered to the surface of the substrate after the release solution treatment, the after-corrosion between Al and Cu, etc. There has been a problem that side etching in the wiring side wall and the like, defects between Al and Cu, and a good shape cannot be obtained.

【0013】そこで、本発明の目的は、上記問題を解決
するためになされたものであり、Al−Cu間等に発生
するアフターコロージョンを改善し、残留塩素イオンま
たは水洗処理の長時間化にともなうAl−Cu間の欠損
を改善し、サイドエッチングを抑制し、且つ良好なエッ
チング形状を維持することができる洗浄装置または洗浄
方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problem, and to improve after-corrosion generated between Al and Cu, etc., and to increase the residual chlorine ion or the length of the water washing treatment. An object of the present invention is to provide a cleaning apparatus or a cleaning method capable of improving defects between Al and Cu, suppressing side etching, and maintaining a good etching shape.

【0014】[0014]

【課題を解決するための手段】この発明の洗浄処理装置
は、被処理基板に付着した剥離溶剤を除去する洗浄処理
装置であって、前記被処理基板を内部に有し、内部へ溶
液を制御可能に導入する導入口と外部へ溶液を制御可能
に排出する排出口とを有する容器と、前記容器内へ高濃
度酸素水を導入する高濃度酸素水導入管とを備えたもの
である。
A cleaning apparatus according to the present invention is a cleaning apparatus for removing a stripping solvent adhered to a substrate to be processed. The cleaning apparatus has the substrate to be processed therein and controls a solution therein. The container is provided with a container having an inlet for enabling the introduction and a discharge port for discharging the solution to the outside in a controllable manner, and a high-concentration oxygen water introducing pipe for introducing the high-concentration oxygen water into the container.

【0015】ここで、この発明の洗浄処理装置におい
て、前記導入口から前記容器の内部へ導入される溶液は
純水とすることができる。
Here, in the cleaning apparatus of the present invention, the solution introduced into the container from the inlet may be pure water.

【0016】ここで、この発明の洗浄処理装置におい
て、前記高濃度酸素水はオゾン水とすることができる。
Here, in the cleaning apparatus of the present invention, the high-concentration oxygen water may be ozone water.

【0017】ここで、この発明の洗浄処理装置におい
て、前記オゾン水の溶存濃度は1ppmから30ppm
の範囲とすることができる。
Here, in the cleaning apparatus of the present invention, the dissolved concentration of the ozone water is from 1 ppm to 30 ppm.
In the range.

【0018】ここで、この発明の洗浄処理装置におい
て、前記高濃度酸素水は過酸化水素水とすることができ
る。
Here, in the cleaning apparatus of the present invention, the high-concentration oxygen water may be a hydrogen peroxide solution.

【0019】ここで、この発明の洗浄処理装置におい
て、前記過酸化水素水の濃度は1%から5%の範囲とす
ることができる。
Here, in the cleaning apparatus of the present invention, the concentration of the hydrogen peroxide solution may be in a range of 1% to 5%.

【0020】この発明の洗浄処理方法は、被処理基板に
付着した剥離溶剤を除去する洗浄処理方法であって、前
記被処理基板を内部に有し、内部へ溶液を制御可能に導
入する導入口と外部へ溶液を制御可能に排出する排出口
とを有する容器の内部へ、高濃度酸素水を導入する高濃
度酸素水導入管により前記容器の内部へ高濃度酸素水を
導入するものである。
A cleaning method according to the present invention is a cleaning method for removing a stripping solvent adhered to a substrate to be processed, wherein the introduction port has the substrate to be processed therein and introduces a solution into the inside in a controllable manner. The high-concentration oxygen water is introduced into the container by a high-concentration oxygen water introduction pipe for introducing the high-concentration oxygen water into a container having a discharge port for discharging the solution to the outside in a controllable manner.

【0021】ここで、この発明の洗浄処理方法におい
て、前記導入口から前記容器の内部へ導入される溶液は
純水とすることができる。
Here, in the cleaning treatment method of the present invention, the solution introduced into the container from the introduction port may be pure water.

【0022】ここで、この発明の洗浄処理方法におい
て、前記高濃度酸素水はオゾン水とすることができる。
Here, in the cleaning treatment method of the present invention, the high-concentration oxygen water may be ozone water.

【0023】ここで、この発明の洗浄処理方法におい
て、前記オゾン水の溶存濃度は1ppmから30ppm
の範囲とすることができる。
Here, in the cleaning treatment method of the present invention, the dissolved concentration of the ozone water is from 1 ppm to 30 ppm.
In the range.

【0024】ここで、この発明の洗浄処理方法におい
て、前記高濃度酸素水は過酸化水素水とすることができ
る。
Here, in the cleaning method of the present invention, the high-concentration oxygen water may be a hydrogen peroxide solution.

【0025】ここで、この発明の洗浄処理方法におい
て、前記過酸化水素水の濃度は1%から5%の範囲とす
ることができる。
Here, in the cleaning method of the present invention, the concentration of the hydrogen peroxide solution may be in the range of 1% to 5%.

【0026】この発明の半導体製造装置は、請求項1な
いし6記載の洗浄処理装置を利用して半導体装置を製造
するものである。
According to a semiconductor manufacturing apparatus of the present invention, a semiconductor device is manufactured using the cleaning apparatus according to the first to sixth aspects.

【0027】この発明の半導体装置は、請求項1ないし
6記載の洗浄処理装置を利用して処理されるものであ
る。
A semiconductor device according to the present invention is processed using the cleaning apparatus according to the first to sixth aspects.

【0028】[0028]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0029】実施の形態1.図1は、本発明の実施の形
態1における剥離溶液処理後、被処理基板表面に付着し
た剥離溶剤を除去する高濃度酸素水を使用した洗浄装置
の全体構成を示す。図1(A)ないし1(C)におい
て、符号31a、31bは剥離溶剤、31bは高濃度酸
素水、32a、32b、32cはウェーハカセット、3
3a、33b、33cは被処理基板、34a、34bは
各々剥離溶剤31a、31bの導入口、35a、35
b、35cは剥離溶剤31a、31b等の排気口、36
a、36b、36cは容器、38a、38bは各々剥離
溶剤導入口34a、34bの導入バルブ、39a、39
bは各々剥離溶剤排気口35a、35bの排気バルブ、
41bは高濃度酸素水31bの導入口、42bは高濃度
酸素水31bの排出口、43bは高濃度酸素水31bの
導入管、43cは容器回転支持棒、44cは容器回転支
持受けである。
Embodiment 1 FIG. 1 shows an overall configuration of a cleaning apparatus using high-concentration oxygen water for removing a stripping solvent adhered to the surface of a substrate to be processed after a stripping solution treatment in Embodiment 1 of the present invention. Show. 1A to 1C, reference numerals 31a and 31b denote stripping solvents, 31b denotes high-concentration oxygen water, 32a, 32b, and 32c denote wafer cassettes,
3a, 33b, 33c are substrates to be processed, 34a, 34b are inlets for release solvents 31a, 31b, 35a, 35
b, 35c are exhaust ports of the stripping solvents 31a, 31b, etc., 36
a, 36b, and 36c are containers; 38a and 38b are introduction valves of the stripping solvent introduction ports 34a and 34b, 39a and 39, respectively.
b is an exhaust valve of the stripping solvent exhaust port 35a, 35b, respectively.
41b is an inlet for the high-concentration oxygen water 31b, 42b is an outlet for the high-concentration oxygen water 31b, 43b is an introduction pipe for the high-concentration oxygen water 31b, 43c is a container rotation support rod, and 44c is a container rotation support receiver.

【0030】図1(A)ないし1(C)は、例えば被処
理基板33aであるウェーハの表面に付着した有機・無
機ポリマーもしくは異物、または残留する塩素イオン
を、例えば弗酸や硫酸などの剥離溶液で洗浄する処理工
程を示す。図1(A)に示されるように、剥離溶液また
は溶剤31aを剥離溶剤導入口34aより容器36a内
に導入する。この容器36a内の剥離溶剤31aの量を
導入バルブ34aまたは排気バルブ39aを開閉するこ
とにより制御する。容器36a内のウェーハカセット3
2a内に被処理基板33aであるウェーハを装着し、剥
離溶剤31a内に放置する。
FIGS. 1 (A) to 1 (C) show, for example, the removal of organic / inorganic polymers or foreign substances or residual chlorine ions adhering to the surface of a wafer serving as a substrate 33a by, for example, hydrofluoric acid or sulfuric acid. 4 shows a processing step of washing with a solution. As shown in FIG. 1A, a stripping solution or a solvent 31a is introduced into a container 36a from a stripping solvent inlet 34a. The amount of the stripping solvent 31a in the container 36a is controlled by opening and closing the introduction valve 34a or the exhaust valve 39a. Wafer cassette 3 in container 36a
The wafer as the substrate 33a to be processed is mounted in 2a and left in the stripping solvent 31a.

【0031】図1(B)は、例えば被処理基板に付着し
た残留するフォトレジスト、塩素イオンの除去及び基板
に残留する剥離溶剤を置換・洗浄する水洗工程である。
図1(B)に示されるように、導入口41bより送入さ
れた例えば高濃度酸素水であるオゾン水31bが導入管
43bを経由し排出口42bより容器36b内に排出さ
れる。このため被処理基板33bであるウェーハ表面上
に堅固な表面酸化皮膜を形成することができる。この容
器36b内の高濃度酸素水であるオゾン水31bの量は
排気バルブ39bを開閉することにより制御する。容器
36b内のウェーハカセット32b内に被処理基板33
bであるウェーハを装着し、高濃度酸素水であるオゾン
水31b内に放置する。
FIG. 1B shows a water washing step for removing, for example, the remaining photoresist and chlorine ions adhering to the substrate to be processed, and replacing and washing the stripping solvent remaining on the substrate.
As shown in FIG. 1B, for example, ozone water 31b, which is high-concentration oxygen water, sent from the inlet 41b, is discharged from the outlet 42b into the container 36b via the inlet pipe 43b. Therefore, a solid surface oxide film can be formed on the surface of the wafer serving as the substrate 33b to be processed. The amount of the ozone water 31b, which is high-concentration oxygen water, in the container 36b is controlled by opening and closing the exhaust valve 39b. The substrate 33 to be processed is stored in the wafer cassette 32b in the container 36b.
The wafer b is mounted and left in the ozone water 31b, which is high-concentration oxygen water.

【0032】図1(C)は、上記水洗工程にて被処理基
板33cであるウェーハに付着した水分を除去する工程
を示す。図1(C)に示されるように、容器36c内で
ウェーハカセット32cを容器回転支持受け44cに装
着し、容器回転支持棒43cを回転させることにより、
例えば被処理基板33cであるウェーハに残留する水分
及び水溶剤を残留水溶液排気ロ35cより除去する。
FIG. 1C shows a step of removing water adhering to the wafer which is the substrate 33c to be processed in the water washing step. As shown in FIG. 1C, the wafer cassette 32c is mounted on the container rotation support receiver 44c in the container 36c, and the container rotation support rod 43c is rotated.
For example, the water and the water solvent remaining on the wafer which is the substrate to be processed 33c are removed from the residual aqueous solution exhaust unit 35c.

【0033】上述のように洗浄処理を行った結果、従来
の技術で示されたようなAlサイドエッチングを抑制
し、電池効果によるCu析物25出周りのAl欠損16
を防止し、剥離溶剤を除去し、且つアフターコロージョ
ンの発生を抑制することができる。
As a result of the cleaning treatment as described above, Al side etching as shown in the prior art is suppressed, and Al defects 16 around the Cu precipitates 25 due to the battery effect are reduced.
Can be prevented, the stripping solvent can be removed, and the occurrence of after-corrosion can be suppressed.

【0034】図2は、本発明の実施の形態1における高
濃度酸素水としてオゾン水を送入した洗浄処理方法によ
る、洗浄処理後の被処理基板の断面形状を示す。図2に
おいて、符号21は反射防止膜であるTiN、22はA
lに0.5%のCuを含むAl−Cu合金配線、23は
TiN/Tiの合金配線、24は例えば積層配線を形成
する際に下層の配線と接触またはショートしないように
形成した酸化膜層または絶縁膜層である。符号25はC
uの析出物であり、これはAl配線を形成する際に、前
工程として例えば高温スバッタ方式によりAl膜層を積
んだ時、AlとCuとの結晶化の違いまたはウェーハ冷
却時に伴うAlとCuとの再結晶化の違いにより生じる
ものである。符号211はオゾン水を送入することによ
り、純水中に溶解したオゾンが短時間で酸素に分解し、
オゾンの直接反応とオゾンの分解反応とによって生じる
フリーラジカルのヒドロキシラジカルのHO、ヒドロバ
ーオキシラジカルのHO2により形成された表面酸化皮
膜である。
FIG. 2 shows a cross-sectional shape of the substrate to be processed after the cleaning processing according to the cleaning processing method in which ozone water is supplied as high-concentration oxygen water in the first embodiment of the present invention. In FIG. 2, reference numeral 21 denotes TiN as an antireflection film, and 22 denotes A.
Al-Cu alloy wiring containing 0.5% Cu in l, 23 is a TiN / Ti alloy wiring, 24 is an oxide film layer formed so as not to contact or short-circuit with a lower wiring when forming a laminated wiring, for example. Or it is an insulating film layer. Symbol 25 is C
This is a precipitate of u, which is formed when Al wiring is formed, for example, when an Al film layer is deposited by a high-temperature sputtering method as a pre-process, a difference in crystallization between Al and Cu, or Al and Cu accompanying wafer cooling. This is caused by the difference in recrystallization from the above. Reference numeral 211 indicates that by supplying ozone water, ozone dissolved in pure water is decomposed into oxygen in a short time,
It is a surface oxide film formed by HO of free radical hydroxy radical and HO 2 of hydrobaroxy radical generated by direct reaction of ozone and decomposition reaction of ozone.

【0035】オゾンは純水により加水分解してヒドロバ
ーオキシラジカルを生成し、連鎖反応し強い酸化力を有
するヒドロキシラジカルやヒドロバーオキシラジカルを
生成し、ラジカルの再結合反応で過酸化水素であるH2
2を形成し連鎖分解反応を停止する。この堅固な酸化皮
膜211の形成により、Al配線側壁部のサイドエッチ
ングを抑制し、且つCu析出物25周りのAl欠損が無
く、且つアフターコロージョンが抑制でき、且つ良好な
形状を得ることができた。
Ozone is hydrolyzed by pure water to generate hydroperoxy radicals, and a chain reaction is performed to generate hydroxy radicals and hydroperoxy radicals having strong oxidizing power, which is hydrogen peroxide by a recombination reaction of the radicals. H 2 O
Form 2 to stop the chain decomposition reaction. By the formation of the solid oxide film 211, side etching of the side wall of the Al wiring was suppressed, there was no Al deficiency around the Cu precipitate 25, after-corrosion could be suppressed, and a good shape could be obtained. .

【0036】以上より、実施の形態1によれば、導入口
41bより送入された例えば高濃度酸素水であるオゾン
水31bが、導入管43bを経由し排出口42bより容
器36b内に排出される。このため被処理基板33bで
あるウェーハ表面上に堅固な表面酸化皮膜を形成するこ
とができる。この結果、従来の技術で示されたようなA
lサイドエッチングを抑制し、電池効果によるCu析物
25出周りのAl欠損16を防止し、剥離溶剤を除去
し、且つアフターコロージョンの発生を抑制することが
できる。
As described above, according to the first embodiment, the ozone water 31b, which is, for example, high-concentration oxygen water, sent from the inlet 41b is discharged into the container 36b from the outlet 42b via the inlet pipe 43b. You. Therefore, a solid surface oxide film can be formed on the surface of the wafer serving as the substrate 33b to be processed. As a result, A as shown in the prior art
It is possible to suppress l-side etching, prevent Al deficiency 16 around the Cu precipitate 25 due to the battery effect, remove the stripping solvent, and suppress the occurrence of after-corrosion.

【0037】実施の形態2.図3は、本発明の実施の形
態2における剥離溶液処理後、被処理基板表面に付着し
た剥離溶剤の除去として高濃度酸素水であるオゾン水を
使用した洗浄処理方法と従来の洗浄処理方法とのAl−
Cu合金配線サイドエッチング量の比較を示す。図3に
おいて、縦軸はAlサイドエッチング量(Å)であり、
横軸は純水/オゾン水洗浄処理時間(秒)である。図3
の測定及び処理条件として、微細加工処理により配線ラ
イン寸法と配線間寸法とが0.40um間隔に仕上がっ
たAl−Cu合金配線を含む被処理基板であるウェーハ
を、ジメチルホルムアミドが含まれた剥離溶剤で10分
間剥離洗浄処理する。剥離液除去処理として、純水によ
る水洗処理と本発明による高濃度酸素水として溶存オゾ
ン濃度が9ppmのオゾン水処理とを各処理時間で30
秒間から600秒間まで振り分け各々洗浄処理を行う。
この後、従来技術の図10内の後退部18に示すAl−
Cu合金配線のサイドエッチング量を測定する。図3で
線P1が従来の技術の純水による水洗処理の測定結果を
示し、線P2が本発明のオゾン水による測定結果を示
す。
Embodiment 2 FIG. 3 shows a cleaning process using ozone water, which is a high-concentration oxygen water, to remove a stripping solvent adhering to the surface of a substrate to be processed after the stripping solution processing in Embodiment 2 of the present invention. Method and conventional cleaning treatment method
A comparison of the amount of Cu alloy wiring side etching is shown. In FIG. 3, the vertical axis indicates the Al side etching amount (Å),
The horizontal axis is the pure water / ozone water cleaning processing time (second). FIG.
As a measurement and processing condition, a wafer as a substrate to be processed including an Al-Cu alloy wiring whose wiring line dimensions and inter-wiring dimensions were finished at intervals of 0.40 μm by microfabrication was treated with a stripping solvent containing dimethylformamide. For 10 minutes. As the stripping solution removing treatment, a water washing treatment with pure water and an ozone water treatment with a dissolved ozone concentration of 9 ppm as a high-concentration oxygen water according to the present invention for 30 minutes in each treatment time.
The cleaning process is performed for each second from 600 seconds to 600 seconds.
Thereafter, the Al-
The side etching amount of the Cu alloy wiring is measured. In FIG. 3, a line P1 shows the measurement result of the conventional water washing process using pure water, and a line P2 shows the measurement result of the ozone water of the present invention.

【0038】図3に示されるように、従来の技術の水洗
処理P1では、処理時間の長時間化に伴い、Al−Cu
合金配線のサイドエッチング量は増加するのに対し、本
発明の高濃度酸素水処理であるオゾン水処理P2では、
600秒までほとんどAl−Cu配線のサイドエッチン
グ量に変化が無い。サイドエッチング量の最小値を比較
すると、処理時間30秒で従来の水洗処理P1の場合
(Alサイドエッチング量=約100Å)と比較して、
本発明による高濃度酸素水であるオゾン水処理P2の場
合(Alサイドエッチング量=約20Å)の方が約80
%Alサイドエッチング量が低減している。この結果よ
り、本発明の剥離溶液処理後、被処理基板表面に付着し
た剥離溶剤の除去として高濃度酸素水であるオゾン水を
使用した洗浄処理装置及び洗浄処理方法により、例えば
Al−Cu合金配線を含む被処理基板において、Al−
Cu合金配線内のサイドエッチング量を抑制できること
が得られた。尚、本実施の形態ではメタル配線としてA
l−Cu合金配線を使用したが、メタル配線を含む被処
理基板についても同様の結果が得られることは言うまで
もない。また本実施の形態では高濃度酸素水としてオゾ
ン水を使用し、且つ溶存オゾン濃度が9ppmのオゾン
水を使用したが、少なくとも溶存オゾン濃度が1ppm
から30ppmの範囲で同様の傾向が得られることは言
うまでもない。また本実施の形態では、剥離溶液として
ジメチルホルムアミドを使用したが、弗化アンモニウム
であるNH4F等のフッ素やアンモニウム、硫化物を含む
剥離溶液であれば同様の傾向が得られることは言うまで
もない。
As shown in FIG. 3, in the water washing process P1 of the prior art, the Al-Cu
While the side etching amount of the alloy wiring increases, the ozone water treatment P2, which is the high concentration oxygen water treatment of the present invention,
There is almost no change in the side etching amount of the Al-Cu wiring until 600 seconds. Comparing the minimum value of the side etching amount, as compared with the case of the conventional rinsing process P1 with a processing time of 30 seconds (Al side etching amount = about 100 °),
In the case of ozone water treatment P2 which is a high concentration oxygen water according to the present invention (Al side etching amount = about 20 °), about 80
% Al side etching amount is reduced. From this result, after the release solution treatment of the present invention, for example, an Al—Cu alloy wiring was obtained by using a cleaning apparatus and a cleaning method using ozone water that is high-concentration oxygen water as a removal of the release solvent attached to the surface of the substrate to be processed. In the substrate to be treated containing
It was obtained that the amount of side etching in the Cu alloy wiring could be suppressed. In this embodiment, A is used as the metal wiring.
Although the l-Cu alloy wiring is used, it is needless to say that the same result can be obtained for the substrate to be processed including the metal wiring. In the present embodiment, ozone water is used as the high-concentration oxygen water, and ozone water having a dissolved ozone concentration of 9 ppm is used.
Needless to say, the same tendency can be obtained in the range from 1 to 30 ppm. In this embodiment, dimethylformamide is used as the stripping solution. However, needless to say, a stripping solution containing fluorine, ammonium, or sulfide, such as NH 4 F, which is ammonium fluoride, can obtain the same tendency. .

【0039】以上より、実施の形態2によれば、剥離液
除去処理として、純水による水洗処理と本発明による高
濃度酸素水として溶存オゾン濃度が9ppmのオゾン水
処理とを各処理時間で30秒間から600秒間まで振り
分け各々洗浄処理を行う。この後、後退部18に示すA
l−Cu合金配線のサイドエッチング量を測定する。こ
の結果、本発明の高濃度酸素水処理であるオゾン水処理
P2では、600秒までほとんどAl−Cu配線のサイ
ドエッチング量に変化が無い。さらにサイドエッチング
量の最小値を比較すると、処理時間30秒で従来の水洗
処理P1の場合と比較して、本発明による高濃度酸素水
であるオゾン水処理の場合の方が約80%Alサイドエ
ッチング量を低減させているという結果を得ることがで
きる。溶存オゾン濃度が1ppmから30ppmの範囲
でも同様の傾向を得ることができる。
As described above, according to the second embodiment, as the stripping solution removing treatment, the washing treatment with pure water and the ozone water treatment with the dissolved ozone concentration of 9 ppm as the high-concentration oxygen water according to the present invention are performed for 30 minutes in each processing time. The cleaning process is performed for each second from 600 seconds to 600 seconds. Thereafter, A shown in the retreat portion 18
The side etching amount of the l-Cu alloy wiring is measured. As a result, in the ozone water treatment P2 which is the high-concentration oxygen water treatment of the present invention, there is almost no change in the side etching amount of the Al-Cu wiring until 600 seconds. Further, comparing the minimum value of the side etching amount, the ozone water treatment, which is a high concentration oxygen water according to the present invention, is about 80% Al side in comparison with the conventional water washing treatment P1 in a processing time of 30 seconds. The result that the etching amount is reduced can be obtained. The same tendency can be obtained even when the dissolved ozone concentration is in the range of 1 ppm to 30 ppm.

【0040】実施の形態3.図4は、本発明の実施の形
態3における剥離溶液処理後、被処理基板表面に付着し
た剥離溶剤の除去として高濃度酸素水であるオゾン水を
使用した洗浄処理方法と従来の洗浄処理方法とによるC
u析出物周りのAl欠損比較を示す。図4において、縦
軸はCu析出物周りのAl欠損数(個)であり、横軸は
洗浄処理条件である。図4の処理条件として、微細加工
処理により配線ライン寸法と配線間寸法とが0.80u
m間隔に仕上がったAl−Cu合金配線を含む被処理基
板であるウェーハを、ジメチルホルムアミドが含まれた
剥離溶剤で10分間剥離洗浄処理する。剥離液除去処理
として純水による水洗処理と本発明による高濃度酸素水
として溶存オゾン濃度が9ppmのオゾン水処理とを各
処理時間で30秒間から600秒間まで振り分け各々洗
浄処理する。その後、従来技術の図10内の欠損部
(数)16を被処理基板であるウェーハ面内の中心部と
外周部とで測定する。図4で、各処理の黒い方のAl欠
損数が中心部の測定結果を示し、白い方のAl欠損数が
外周部の測定結果を示す。
Embodiment 3 FIG. 4 shows a cleaning process using ozone water, which is a high-concentration oxygen water, to remove a stripping solvent adhered to the surface of a substrate to be processed after the stripping solution processing in Embodiment 3 of the present invention. Method and conventional cleaning treatment method
4 shows a comparison of Al deficiency around the u precipitate. In FIG. 4, the vertical axis represents the number (number) of Al vacancies around the Cu precipitate, and the horizontal axis represents the cleaning conditions. As a processing condition of FIG. 4, the wiring line size and the space between the wirings are 0.80 u by the fine processing.
A wafer, which is a substrate to be processed and includes Al-Cu alloy wirings finished at intervals of m, is subjected to release cleaning treatment for 10 minutes with a release solvent containing dimethylformamide. As the stripping solution removing treatment, a washing treatment with pure water and an ozone water treatment with a dissolved ozone concentration of 9 ppm as a high-concentration oxygen water according to the present invention are distributed from 30 seconds to 600 seconds for each treatment time, and the respective washing treatments are performed. After that, the defective portion (number) 16 in FIG. 10 of the related art is measured at the center portion and the outer peripheral portion in the surface of the wafer to be processed. In FIG. 4, the number of black Al vacancies in each treatment indicates the measurement result at the center, and the number of white Al vacancies indicates the measurement result at the outer periphery.

【0041】図4の左側に示されるように、従来の技術
の水洗処理では、Al−Cu合金配線側壁部のAL欠損
数は被処理基板であるウェーハ面内の中心部、外周部と
も100個以上発生している。しかし、本発明の高濃度
酸素水処理であるオゾン水処理では、処理時間を30秒
間から600秒間まで増加させても、ほとんどAl欠損
数に変化が無く、且つ発生数も10個以下である。この
結果より本発明の剥離溶液処理後、被処理基板表面に付
着した剥離溶剤の除去として高濃度酸素水であるオゾン
水を使用した洗浄処理装置及び洗浄処理方法により、例
えばAl−Cu合金配線を含む被処理基板において、堅
固な酸化皮膜211を形成し、Al−Cu合金配線内の
Cu析出物25周りのAl欠損を抑制できることが得ら
れた。尚、本実施の形態ではメタル配線としてAl−C
u合金配線を使用したが、メタル配線を含む被処理基板
について同様の傾向が得られることは言うまでもない。
また本実施の形態では高濃度酸素水としてオゾン水を使
用し、且つ溶存オゾン濃度が9ppmのオゾン水を使用し
たが、少なくとも溶存オゾン濃度が1ppmから30ppm
の範囲で同様の傾向が得られることは言うまでもない。
また本実施の形態では剥離溶液としてジメチルホルムア
ミドを使用したが、弗化アンモニウムであるNH4F等の
フッ素やアンモニウム、硫化物含む剥離瘡液であれば同
様の傾向が得られることは言うまでもない。
As shown on the left side of FIG. 4, in the conventional water washing process, the number of AL defects in the side wall of the Al—Cu alloy wiring is 100 at both the center and the outer periphery in the wafer surface as the substrate to be processed. This has occurred. However, in the ozone water treatment that is the high-concentration oxygen water treatment of the present invention, even if the treatment time is increased from 30 seconds to 600 seconds, the number of Al vacancies hardly changes and the number of occurrences is 10 or less. From this result, after the stripping solution treatment of the present invention, a cleaning treatment apparatus and a washing treatment method using ozone water which is high-concentration oxygen water as a removal of the separation solvent adhered to the surface of the substrate to be treated, for example, the Al-Cu alloy wiring In the substrate to be processed, a solid oxide film 211 was formed, and it was obtained that Al defects around the Cu precipitate 25 in the Al-Cu alloy wiring could be suppressed. In this embodiment, Al-C is used as the metal wiring.
Although the u-alloy wiring is used, it goes without saying that the same tendency can be obtained for the substrate to be processed including the metal wiring.
In this embodiment, ozone water is used as high-concentration oxygen water, and ozone water having a dissolved ozone concentration of 9 ppm is used, but at least a dissolved ozone concentration of 1 to 30 ppm
Needless to say, a similar tendency can be obtained in the range of.
In this embodiment, dimethylformamide is used as the stripping solution. However, needless to say, a stripping solution containing fluorine, ammonium, or sulfide, such as NH 4 F, which is an ammonium fluoride, has the same tendency.

【0042】図5は、本発明の実施の形態3における剥
離溶破処理後、被処理基板表面に付着した剥離溶剤の除
去として高濃度酸素水であるオゾン水を使用した洗浄処
理方法と従来の洗浄処理方法とのアフターコロージョン
発生数の頻度仕較を示す。図5において、縦軸はアフタ
ーコロージョン発生数(個)であり、横軸は純水/オゾ
ン水洗浄処理時間(秒)である。図5の処理条件とし
て、微細加工処理により配線ライン寸法と配線間寸法と
が0.40um間隔に仕上がったAl−Cu合金配線を
含む被処理基板であるウェーハを、ジメチルホルムアミ
ドを含む剥離溶剤で10分間剥離洗浄処理する。剥離液
除去処理として純水による水洗処理と本発明による高濃
度酸素水として溶存オゾン濃度が9ppmのオゾン水処理
とを各処理時間で0秒間から120秒間まで振り分け各
々洗浄処理する。この後、24時間大気中に放置した
後、従来技術の図10内におけるAl−Cu合金配線の
アフターコロージョン17数を測定する。図5で、線P
3が従来の技術の純水による水洗処理の測定結果を示
し、線P4が本発明のオゾン水による測定結果を示す。
FIG. 5 shows a cleaning method using ozone water, which is a high-concentration oxygen water, for removing the release solvent adhered to the surface of the substrate after the release blasting treatment in the third embodiment of the present invention, and a conventional method. The frequency comparison of the number of after-corrosion occurrences with the cleaning method is shown. In FIG. 5, the vertical axis represents the number of after-corrosion occurrences (pieces), and the horizontal axis represents the pure water / ozone water cleaning processing time (seconds). The processing conditions shown in FIG. 5 are as follows. A wafer, which is a substrate to be processed including Al—Cu alloy wiring whose wiring line dimensions and inter-wiring dimensions have been finished at intervals of 0.40 μm by fine processing, is treated with a stripping solvent containing dimethylformamide for 10 days. Peeling and cleaning for minutes. As the stripping liquid removing treatment, a washing treatment with pure water and an ozone water treatment with a dissolved ozone concentration of 9 ppm as high-concentration oxygen water according to the present invention are distributed from 0 seconds to 120 seconds in each treatment time, and the respective washing treatments are performed. Then, after leaving it in the air for 24 hours, the number of after-corrosion 17 of the Al-Cu alloy wiring in FIG. 10 of the prior art is measured. In FIG. 5, the line P
3 shows the measurement result of the water washing process using the pure water of the prior art, and the line P4 shows the measurement result of the ozone water of the present invention.

【0043】図5に示されるように、被処理基板である
ウェーハは、水洗処理、オゾン水処理を実施しない場
合、被処理基板内に残留する塩素イオンや剥離溶剤が大
気中の水分と反応しアフターコロージョンを発生する。
水洗処理、オゾン水処理ともに処理時間を増加させると
アフターコロージョンの発生は抑制できるが、本発明の
オゾン水処理P4では堅固な酸化皮膜211の形成に伴
い10秒間の処理でアフターコロージョンを抑制するこ
とができる。この結果より本発明の剥離溶液処理後、被
処理基板表面に付着した剥離溶剤の除去として高濃度酸
素水であるオゾン水を使用した洗浄処理装置及び洗浄処
理方法により、例えばAl−Cu合金配線を含む被処理
基板において、堅固な酸化皮膜211を形成し、且つA
l−Cu合金配線内に発生するアフターコロージョンを
短時間で抑制できることが得られた。尚、本実施例では
メタル配線としてAl−Cu合金配線を使用したが、メ
タル配線を含む被処理基板について同様の傾向が得られ
ることは言うまでもない。また本実施の形態では高濃度
酸素水としてオゾン水を使用し、且つ溶存オゾン濃度が
9ppmのオゾン水を使用したが、少なくとも溶存オゾン
濃度が1ppmから30ppmの範囲で同様の傾向が得
られることは言うまでもない。また本実施の形態では剥
離溶液としてジメチルホルムアミドを使用したが、弗化
アンモニウムであるNH4F等のフッ素やアンモニウム、
硫化物含む剥離溶液であれば同様の傾向が得られること
は言うまでもない。
As shown in FIG. 5, when the wafer as the substrate to be processed is not subjected to the washing process and the ozone water treatment, the chlorine ions and the stripping solvent remaining in the substrate to be processed react with the moisture in the atmosphere. Generates after-corrosion.
Although the occurrence of after-corrosion can be suppressed by increasing the treatment time in both the water washing treatment and the ozone water treatment, in the ozone water treatment P4 of the present invention, the after-corrosion is suppressed by the treatment for 10 seconds due to the formation of the solid oxide film 211. Can be. From this result, after the stripping solution treatment of the present invention, a cleaning treatment apparatus and a washing treatment method using ozone water which is high-concentration oxygen water as a removal of the separation solvent adhered to the surface of the substrate to be treated, for example, the Al-Cu alloy wiring A solid oxide film 211 is formed on the target substrate including
It was found that after-corrosion generated in the l-Cu alloy wiring could be suppressed in a short time. In this embodiment, the Al-Cu alloy wiring is used as the metal wiring, but it goes without saying that the same tendency can be obtained for the substrate to be processed including the metal wiring. In this embodiment, ozone water is used as the high-concentration oxygen water, and ozone water having a dissolved ozone concentration of 9 ppm is used. However, the same tendency can be obtained at least when the dissolved ozone concentration is in the range of 1 ppm to 30 ppm. Needless to say. In this embodiment, dimethylformamide is used as the stripping solution, but fluorine or ammonium such as NH 4 F, which is ammonium fluoride,
Needless to say, the same tendency can be obtained with a stripping solution containing sulfide.

【0044】以上より、実施の形態3によれば、剥離液
除去処理として純水による水洗処理と本発明による高濃
度酸素水として溶存オゾン濃度が9ppmのオゾン水処
理とを各処理時間で30秒間から600秒間まで振り分
け各々洗浄処理する。その後、従来技術の図10内の欠
損部(数)16を被処理基板であるウェーハ面内の中心
部と外周部とで測定する。その結果、本発明の高濃度酸
素水処理であるオゾン水処理では、処理時間を30秒間
から600秒間まで増加させても、ほとんどAl欠損数
に変化が無く、且つ発生数も10個以下であることが得
られた。したがって、例えばAl−Cu合金配線を含む
被処理基板において、堅固な酸化皮膜211を形成し、
Al−Cu合金配線内のCu析出物25周りのAl欠損
を抑制できることが得られた。少なくとも溶存オゾン濃
度が1ppmから30ppmの範囲で同様の傾向を得ること
ができる。
As described above, according to the third embodiment, as the stripping solution removing treatment, the washing treatment with pure water and the ozone water treatment with the dissolved ozone concentration of 9 ppm as the high-concentration oxygen water according to the present invention are performed for 30 seconds for each processing time. From 600 to 600 seconds. After that, the defective portion (number) 16 in FIG. 10 of the related art is measured at the center portion and the outer peripheral portion in the surface of the wafer to be processed. As a result, in the ozone water treatment which is the high-concentration oxygen water treatment of the present invention, even if the treatment time is increased from 30 seconds to 600 seconds, the number of Al vacancies hardly changes, and the number of occurrences is 10 or less. Was obtained. Therefore, for example, on the substrate to be processed including the Al-Cu alloy wiring, the solid oxide film 211 is formed,
It was found that Al defects around the Cu precipitate 25 in the Al-Cu alloy wiring could be suppressed. A similar tendency can be obtained at least when the dissolved ozone concentration is in the range of 1 to 30 ppm.

【0045】さらに、剥離液除去処理として純水による
水洗処理と本発明による高濃度酸素水として溶存オゾン
濃度が9ppmのオゾン水処理とを各処理時間で0秒間か
ら120秒間まで振り分け各々洗浄処理する。その後、
24時間大気中に放置した後、Al−Cu合金配線のア
フターコロージョン17数を測定する。その結果、本発
明のオゾン水処理では堅固な酸化皮膜211の形成に伴
い10秒間の処理でアフターコロージョンを抑制するこ
とができる。少なくとも溶存オゾン濃度が1ppmから
30ppmの範囲で同様の傾向が得ることができる。
Further, as a stripping solution removing treatment, a washing treatment with pure water and an ozone water treatment with a dissolved ozone concentration of 9 ppm as high-concentration oxygen water according to the present invention are distributed from 0 seconds to 120 seconds in each treatment time, and the respective washing treatments are performed. . afterwards,
After being left in the air for 24 hours, the number of after-corrosion 17 of the Al—Cu alloy wiring is measured. As a result, in the ozone water treatment of the present invention, after-corrosion can be suppressed by the treatment for 10 seconds with the formation of the solid oxide film 211. The same tendency can be obtained at least when the dissolved ozone concentration is in the range of 1 ppm to 30 ppm.

【0046】実施の形態4.図6は、本発明の実施の形
態4における剥離溶液処理後、被処理基板表面に付着し
た剥離溶剤の除去として高濃度酸素水であるオゾン水を
送入して洗浄する洗浄方法、純水に且つ乾燥空気を送入
した洗浄処理方法および従来の水洗処理による洗浄処理
方法によるCu析出物周りのAl欠損比較を示す。図6
において、縦軸はCu析出物周りのAl欠損数(個)で
あり、横軸は洗浄処理条件である。図6の処理条件とし
て、微細加工処理により配線ライン寸法と配線間寸法と
が0.50um間隔に仕上がったAl−Cu合金配線を
含む被処理基板であるウェーハをジメチルホルムアミド
の含まれた剥離溶剤で10分間剥離洗浄処理する。剥離
液除去処理として純水による水洗処理と本発明による高
濃度酸素水として溶存オゾン濃度が9ppmのオゾン水処
理とを各々処理時間10分で洗浄処理する。この後、従
来技術の図10内の欠損部(数)16を被処理基板であ
るウェーハ面内の中心部と外周部とで測定する。図6
で、各処理の黒い方のAl欠損数が中心部の測定結果を
示し、白い方のAl欠損数が外周部の測定結果を示す。
Embodiment 4. FIG. 6 shows that after the stripping solution treatment in Embodiment 4 of the present invention, ozone water, which is high-concentration oxygen water, is supplied to remove the stripping solvent attached to the surface of the substrate to be processed. 3 shows a comparison of Al defects around Cu precipitates by a cleaning method for cleaning, a cleaning method in which dry air is supplied into pure water, and a cleaning method using a conventional water cleaning process. FIG.
In the graph, the vertical axis represents the number (number) of Al vacancies around the Cu precipitate, and the horizontal axis represents the cleaning conditions. As a processing condition of FIG. 6, a wafer which is a substrate to be processed including an Al-Cu alloy wiring whose wiring line dimension and inter-wiring dimension are finished at an interval of 0.50 μm by fine processing is treated with a stripping solvent containing dimethylformamide. Peel and wash for 10 minutes. As the stripping solution removing treatment, a washing treatment with pure water and an ozone water treatment with a dissolved ozone concentration of 9 ppm as high-concentration oxygen water according to the present invention are each performed in a treatment time of 10 minutes. Thereafter, the missing portion (number) 16 in FIG. 10 of the prior art is measured at the center portion and the outer peripheral portion in the surface of the wafer to be processed. FIG.
In each of the treatments, the number of black Al deficiencies indicates the measurement result of the central portion, and the number of white Al deficiencies indicates the measurement result of the outer peripheral portion.

【0047】図6に示されるように、再左端の従来の純
水洗浄と比較して、中央の乾操空気を送入しパブリング
を実施した洗浄方法は、乾操空気内にある酸素の酸化力
により、被処理基板であるウェーハの表面に自然酸化膜
が形成され、Cu析出物25周りのAl欠損数に対して
若干の改善はある。しかし、ほとんど改善効果を得るこ
とができない。しかし再右端の本発明による高濃度酸素
水であるオゾン水処理では、実施の形態1で述べたよう
にオゾンの直接反応とオゾンの分解反応とによって生じ
るフリーラジカルのヒドロキシラジカルのHO、ヒドロ
バーオキシラジカルのHO2により形成された堅固な表
面酸化皮膜211によりCu析出物25周りのAl欠損
の抑制をすることができる。
As shown in FIG. 6, compared to the conventional pure water cleaning at the left end, the cleaning method in which the dry air at the center is supplied and publishing is performed is a method of oxidizing oxygen in the dry air. Due to the force, a natural oxide film is formed on the surface of the wafer to be processed, and there is a slight improvement in the number of Al vacancies around the Cu precipitate 25. However, almost no improvement effect can be obtained. However, in the treatment of ozone water, which is a high-concentration oxygen water according to the present invention at the right end, as described in Embodiment 1, HO and hydrobaroxy of free radical hydroxy radicals generated by the direct reaction of ozone and the decomposition reaction of ozone are used. Al deficiency around the Cu precipitate 25 can be suppressed by the solid surface oxide film 211 formed by the radical HO 2 .

【0048】以上より、実施の形態4によれば、剥離液
除去処理として純水による水洗処理と本発明による高濃
度酸素水として溶存オゾン濃度が9ppmのオゾン水処理
とを各々処理時間10分で洗浄処理する。この後、欠損
部(数)16を被処理基板であるウェーハ面内の中心部
と外周部とで測定する。この結果、本発明による高濃度
酸素水であるオゾン水処理では、実施の形態1で述べた
ように、堅固な表面酸化皮膜211によりCu析出物2
5周りのAl欠損の抑制をすることができる。
As described above, according to the fourth embodiment, as the stripping liquid removing treatment, the water washing treatment with pure water and the ozone water treatment with the dissolved ozone concentration of 9 ppm as the high-concentration oxygen water according to the present invention are each performed in 10 minutes. Perform cleaning. After that, the missing portion (number) 16 is measured at the central portion and the outer peripheral portion within the wafer surface as the substrate to be processed. As a result, in the treatment with ozone water, which is high-concentration oxygen water, according to the present invention, as described in the first embodiment, the solid surface oxide film 211 causes the Cu precipitate 2
Al deficiency around 5 can be suppressed.

【0049】実施の形態5.図7は、本発明の実施の形
態5における剥離溶液処理後、被処理基板表面に付着し
た剥離溶剤の除去として純水に且つ過酸化水素を送入し
た洗浄処理方法において、積層化したAl−Cu合金配
線を接続する手段として、タングステンプラグを含む処
理基板を洗浄処理した場合の断面形状を示す。図7で図
2と同じ符号を付した個所は同じ部分を示すため説明は
省略する。図7において、符号417は例えば積層化し
たAl−Cu合金配線を形成する被処理基板の上層部と
下層部とを電気接続するタングステンプラグ、418は
タングステンプラグ417を形成するため成膜、埋め込
みを行う際生じた空巣である。通常、Al−Cu合金配
線22とタングステンプラグ417とは接触している。
しかし、上記過酸化水素を送入した洗浄処理方法におい
て、処理条件としてジメチルホルムアミドが含まれた剥
離溶剤で10分間剥離洗浄処理し、剥離液除去処理とし
て過酸化水素水の濃度1%で2分間処理した際、図7の
Aに示される分だけタングステンプラグ417が溶解す
る。このため、表面に形成された酸化皮膜が破壊され、
孔食され、Al−Cu合金配線部の欠損416が発生す
る。この結果、Al−Cu合金配線22とタングステン
プラグ417とは接触していない。Cu析出部25の欠
損および配線のサイドエッチングも発生する。酸性、ア
ルカリ性、中性を示すpHでAlはpH4から8程度で
準不動態状態、CuはpH6を超える水中では、Cu 2
Oを主体とする腐食生成物皮膜の保護作用で腐食速度は
非常に小さく、準不動態状態になる。強酸性領域では準
不動態状態になるが、本発明で使用したように濃度が1
%程度の過酸化水素水は弱酸性であり溶解する可能性が
ある。過酸化水素水の濃度は1%から5%の範囲とする
ことが好適である。
Embodiment 5 FIG. 7 shows an embodiment of the present invention.
After the stripping solution treatment in the state 5, it adheres to the surface of the substrate to be treated.
To remove pure solvent and to send pure water and hydrogen peroxide
In the cleaning method, the laminated Al-Cu alloy
As a means for connecting wires, a process that includes a tungsten plug
4 shows a cross-sectional shape when a processing substrate is subjected to a cleaning process. Figure 7
Since the parts denoted by the same reference numerals as 2 indicate the same parts,
Omitted. In FIG. 7, reference numeral 417 denotes, for example,
The upper layer of the substrate to be processed to form the Al-Cu alloy wiring
Tungsten plugs 418 for electrical connection to the lower layer
Film formation and embedding to form tungsten plug 417
This is the empty nest created when performing the nesting. Usually, Al-Cu alloy distribution
The wire 22 and the tungsten plug 417 are in contact.
However, in the cleaning treatment method in which the hydrogen peroxide is fed,
Stripping containing dimethylformamide as a processing condition
Stripping and cleaning with a solvent for 10 minutes to remove the stripping solution
When treated with hydrogen peroxide solution at a concentration of 1% for 2 minutes,
The tungsten plug 417 is melted by the amount indicated by A.
You. For this reason, the oxide film formed on the surface is destroyed,
Pitting occurs, causing 416 defects in the Al-Cu alloy wiring portion.
You. As a result, the Al-Cu alloy wiring 22 and the tungsten
No contact with the plug 417. Lack of Cu deposition part 25
Loss and side etching of wiring also occur. Acidic, a
Al is pH 4 to 8 at pH that shows lukeness and neutrality
In the semi-passive state, Cu Two
Corrosion rate is reduced by the protective action of corrosion product film mainly composed of O
Very small and quasi-passive. Quasi in the strongly acidic region
It becomes passive state, but the concentration is 1 as used in the present invention.
% Hydrogen peroxide solution is weakly acidic and may dissolve
is there. The concentration of hydrogen peroxide solution should be between 1% and 5%
Is preferred.

【0050】図8は、本発明の実施の形態5における剥
離溶液処理後、被処理基板表面に付着した剥離溶剤の除
去として溶存オゾン濃度9ppmのオゾン水を送入し2
分間処理し、積層化したAl−Cu合金配線を接続する
手段として、タングステンプラグを含む処理基板を洗浄
処理した断面形状を示す。図8で図7と同じ符号を付し
た個所は同じ部分を示すため説明は省略する。図8にお
いて、オゾン水は堅固な酸化層444を形成するため、
図7に示されるようなタングステンプラグ417の溶解
により発生するサイドエッチングを抑制し、且つCu析
出物25周りのAl欠損を抑制し、且つアフターコロー
ジョンも抑制し、且つタングステンプラグの溶解の無
く、且つ多層配線形状による安定した歩留まりが得ら
れ、且つ良好な加工形状を得ることが可能となった。本
実施の形態5ではメタル配線としてAl−Cu合金配線
を使用したが、メタル配線を含む被処理基板について同
様の結果が得られることは言うまでもない。また本実施
の形態5では高濃度酸素水としてオゾン水を使用し、且
つ溶存オゾン濃度が9ppmのオゾン水を使用したが、
少なくとも溶存オゾン濃度が1ppmから30ppmの
範囲で同様の傾向が得られることは言うまでもない。ま
た本実施例では剥離溶液としてジメチルホルムアミドを
使用したが、弗化アンモニウムであるNH4F等のフッ素
やアンモニウム、硫化物を含む剥離溶液であれば同様の
傾向が得られることは言うまでもない。
FIG. 8 shows that after the stripping solution treatment according to the fifth embodiment of the present invention, ozone water having a dissolved ozone concentration of 9 ppm was supplied to remove the stripping solvent attached to the surface of the substrate.
For example, as a means for connecting stacked Al—Cu alloy wirings processed for a minute, a cross-sectional shape obtained by cleaning a processing substrate including a tungsten plug is shown. In FIG. 8, portions denoted by the same reference numerals as those in FIG. In FIG. 8, the ozone water forms a solid oxide layer 444,
The side etching generated by the dissolution of the tungsten plug 417 as shown in FIG. 7 is suppressed, the Al deficiency around the Cu precipitate 25 is suppressed, the after-corrosion is suppressed, and the tungsten plug is not dissolved, and A stable yield can be obtained by the multilayer wiring shape, and a good processed shape can be obtained. Although the Al-Cu alloy wiring is used as the metal wiring in the fifth embodiment, it is needless to say that a similar result can be obtained for the substrate to be processed including the metal wiring. In the fifth embodiment, ozone water is used as high-concentration oxygen water, and ozone water having a dissolved ozone concentration of 9 ppm is used.
Needless to say, the same tendency can be obtained at least when the dissolved ozone concentration is in the range of 1 ppm to 30 ppm. In this example, dimethylformamide was used as the stripping solution. However, needless to say, a stripping solution containing fluorine, ammonium, or sulfide, such as NH 4 F, which is ammonium fluoride, can obtain the same tendency.

【0051】以上より、実施の形態5によれば、剥離溶
液処理後、被処理基板表面に付着した剥離溶剤の除去と
して溶存オゾン濃度9ppmのオゾン水を送入し2分間
処理し、積層化したAl−Cu合金配線を接続する手段
として、タングステンプラグを含む処理基板を洗浄処理
することができる。オゾン水は堅固な酸化層444を形
成するため、タングステンプラグ417の溶解により発
生するサイドエッチングを抑制し、且つCu析出物25
周りのAl欠損を抑制し、且つアフターコロージョンも
抑制し、且つタングステンプラグの溶解の無く、且つ多
層配線形状による安定した歩留まりが得られ、且つ良好
な加工形状を得ることができる。
As described above, according to the fifth embodiment, after removing the stripping solution, ozone water having a dissolved ozone concentration of 9 ppm was supplied to remove the stripping solvent adhering to the surface of the substrate to be processed, and the stripping was performed for 2 minutes. As a means for connecting the Al-Cu alloy wiring, a processing substrate including a tungsten plug can be cleaned. The ozone water forms a solid oxide layer 444, thereby suppressing the side etching caused by the dissolution of the tungsten plug 417 and preventing the Cu precipitate 25
Al deficiency in the surroundings is suppressed, and after-corrosion is also suppressed. Further, the tungsten plug is not melted, a stable yield due to the multilayer wiring shape is obtained, and a good processed shape can be obtained.

【0052】上述された洗浄処理装置を利用して、良好
な形状等の上記特徴を有する半導体装置を製造する半導
体製造装置を得ることができ、さらに上述された洗浄処
理装置を利用して処理された良好な形状等の上記特徴を
有する半導体装置を得ることができる。
By using the above-described cleaning apparatus, it is possible to obtain a semiconductor manufacturing apparatus for manufacturing a semiconductor device having the above-mentioned characteristics such as a good shape. A semiconductor device having the above characteristics such as a good shape can be obtained.

【0053】[0053]

【発明の効果】以上説明したように、本発明の洗浄装置
または洗浄方法によれば、高濃度酸素水であるオゾン水
を導入管を経由して排出口より容器内に排出させること
により、被処理基板であるウェーハ表面上に堅固な表面
酸化皮膜を形成することができる。このため、Al−C
u間等に発生するアフターコロージョンを改善し、残留
塩素イオンまたは水洗処理の長時間化にともなうAl−
Cu間の欠損を改善し、サイドエッチングを抑制し、且
つ良好なエッチング形状を維持することができる洗浄装
置または洗浄方法を提供することができる。
As described above, according to the cleaning apparatus or the cleaning method of the present invention, the ozone water, which is high-concentration oxygen water, is discharged from the discharge port into the container through the introduction pipe, whereby A solid surface oxide film can be formed on the surface of a wafer serving as a processing substrate. For this reason, Al-C
The after-corrosion which occurs between u and the like is improved, and the residual chlorine ion or Al-
It is possible to provide a cleaning apparatus or a cleaning method capable of improving defects between Cu, suppressing side etching, and maintaining a favorable etching shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1における剥離溶液処理
後、被処理基板表面に付着した剥離溶剤を除去する高濃
度酸素水を使用した洗浄装置の全体構成を示す図であ
る。
FIG. 1 is a diagram showing an overall configuration of a cleaning apparatus using high-concentration oxygen water for removing a stripping solvent adhered to a surface of a substrate to be processed after a stripping solution treatment according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1における高濃度酸素水
としてオゾン水を送入した洗浄処理方法による、洗浄処
理後の被処理基板の断面形状を示す図である。
FIG. 2 is a diagram showing a cross-sectional shape of a substrate to be processed after a cleaning process according to a cleaning method in which ozone water is supplied as high-concentration oxygen water in Embodiment 1 of the present invention.

【図3】 本発明の本発明の実施の形態2における剥離
溶液処理後、被処理基板表面に付着した剥離溶剤の除去
として高濃度酸素水であるオゾン水を使用した洗浄処理
方法と従来の洗浄処理方法とのAl−Cu合金配線サイ
ドエッチング量の仕較を示す図である。
FIG. 3 shows a cleaning method using ozone water, which is high-concentration oxygen water, and a conventional cleaning method for removing a release solvent adhered to the surface of a substrate to be processed after the release solution processing according to the second embodiment of the present invention. It is a figure which shows the comparison of the Al-Cu alloy wiring side etching amount with the processing method.

【図4】 本発明の実施の形態3における剥離溶液処理
後、被処理基板表面に付着した剥離溶剤の除去として高
濃度酸素水であるオゾン水を使用した洗浄処理方法と従
来の洗浄処理方法とによるCu析出物周りのAl欠損比
較を示す図である。
FIG. 4 shows a cleaning method using ozone water, which is high-concentration oxygen water, and a conventional cleaning processing method for removing a release solvent adhered to the surface of a substrate to be processed after the release solution processing in Embodiment 3 of the present invention. FIG. 5 is a diagram showing a comparison of Al deficiency around a Cu precipitate by means of FIG.

【図5】 本発明の実施の形態3における剥離溶破処理
後、被処理基板表面に付着した剥離溶剤の除去として高
濃度酸素水であるオゾン水を使用した洗浄処理方法と従
来の洗浄処理方法とのアフターコロージョン発生数の頻
度仕較を示す図である。
FIG. 5 shows a cleaning method using ozone water, which is high-concentration oxygen water, and a conventional cleaning method after removal and blasting in Embodiment 3 of the present invention, in order to remove a release solvent attached to the surface of a substrate to be processed. It is a figure which shows the frequency comparison of the number of after-corrosion generation with this.

【図6】 本発明の実施の形態4における剥離溶液処理
後、被処理基板表面に付着した剥離溶剤の除去として高
濃度酸素水であるオゾン水を送入して洗浄する洗浄方
法、純水に且つ乾燥空気を送入した洗浄処理方法および
従来の水洗処理による洗浄処理方法によるCu析出物周
りのAl欠損比較を示す図である。
FIG. 6 shows a cleaning method in which ozone water, which is high-concentration oxygen water, is fed and cleaned after removal of a stripping solvent adhered to the surface of a substrate to be processed after the stripping solution treatment in Embodiment 4 of the present invention. FIG. 4 is a diagram showing a comparison of Al deficiency around a Cu precipitate by a cleaning method using dry air and a conventional cleaning method using water.

【図7】 本発明の実施の形態5における剥離溶液処理
後、被処理基板表面に付着した剥離溶剤の除去として純
水に且つ過酸化水素を送入した洗浄処理方法において、
積層化したAl−Cu合金配線を接続する手段として、
タングステンプラグを含む処理基板を洗浄処理した場合
の断面形状を示す図である。
FIG. 7 shows a cleaning treatment method in which pure water and hydrogen peroxide are fed into pure water as a removal of a release solvent adhered to the surface of a substrate to be processed after the release solution treatment in Embodiment 5 of the present invention.
As means for connecting the laminated Al-Cu alloy wiring,
FIG. 4 is a diagram showing a cross-sectional shape when a processing substrate including a tungsten plug is subjected to a cleaning process.

【図8】 本発明の実施の形態5における剥離溶液処理
後、被処理基板表面に付着した剥離溶剤の除去として溶
存オゾン濃度9ppmのオゾン水を送入し2分間処理
し、積層化したAl−Cu合金配線を接続する手段とし
て、タングステンプラグを含む処理基板を洗浄処理した
断面形状を示す図である。
FIG. 8 is a diagram illustrating a method for removing a stripping solvent attached to the surface of a substrate to be processed, feeding ozone water having a dissolved ozone concentration of 9 ppm for 2 minutes after removing the stripping solvent according to the fifth embodiment of the present invention, and treating the stacked Al— FIG. 9 is a diagram showing a cross-sectional shape obtained by cleaning a processing substrate including a tungsten plug as a means for connecting a Cu alloy wiring.

【図9】 半導体素子等のパターンを形成した処理基板
の従来における最も代表的な洗浄処理装置及び洗浄処理
方法を示す図である。
FIG. 9 is a view showing a conventional most typical cleaning apparatus and a cleaning method of a processing substrate on which a pattern of a semiconductor element or the like is formed.

【図10】 図9に示す従来の水洗処理による洗浄処理
後の被処理基板33cの断面形状を示す図である。
FIG. 10 is a view showing a cross-sectional shape of a substrate to be processed 33c after the cleaning process by the conventional water rinsing process shown in FIG.

【符号の説明】[Explanation of symbols]

16 Al欠損部、 17 アフターコロージョン、
18 後退部、 21TiN、 22 Al−Cu合金
配線、 23 TiN/Tiの合金配線、24 酸化膜
層または絶縁膜層、 25 Cuの析出物、 31a
剥離溶剤、31b 高濃度酸素水、 32a,32b,
32c ウェーハカセット、 33a,33b,33c
被処理基板、 34a,34b 剥離溶剤の導入口、
35a,35b,35c 剥離溶剤の排気口、 36
a,36b,36c 容器、 37b 純水、 38
a,38b 導入バルブ、 39a,39b 排気バル
ブ、 41b 高濃度酸素水の導入口、 42b 高濃
度酸素水の排出口、43b 高濃度酸素水の導入管、
43c 容器回転支持棒、 44c 容器回転支持受
け、 211 表面酸化皮膜、 416 欠損部、 4
17 タングステンプラグ、 418 空巣、 444
酸化層。
16 Al deficiency, 17 after corrosion,
18 Recessed part, 21 TiN, 22 Al-Cu alloy wiring, 23 TiN / Ti alloy wiring, 24 oxide film layer or insulating film layer, 25 Cu precipitate, 31 a
Stripping solvent, 31b high concentration oxygen water, 32a, 32b,
32c wafer cassette, 33a, 33b, 33c
Substrate to be treated, 34a, 34b Inlet for release solvent,
35a, 35b, 35c Exhaust port for release solvent, 36
a, 36b, 36c container, 37b pure water, 38
a, 38b introduction valve, 39a, 39b exhaust valve, 41b high concentration oxygen water inlet, 42b high concentration oxygen water outlet, 43b high concentration oxygen water introduction pipe,
43c container rotation support rod, 44c container rotation support rod, 211 surface oxide film, 416 missing part, 4
17 Tungsten plug, 418 empty nest, 444
Oxide layer.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 被処理基板に付着した剥離溶剤を除去す
る洗浄処理装置であって、 前記被処理基板を内部に有し、内部へ溶液を制御可能に
導入する導入口と外部へ溶液を制御可能に排出する排出
口とを有する容器と、 前記容器内へ高濃度酸素水を導入する高濃度酸素水導入
管とを備えたことを特徴とする洗浄処理装置。
1. A cleaning apparatus for removing a stripping solvent adhered to a substrate to be processed, comprising a substrate to be processed inside, a control port for introducing a solution into the inside in a controllable manner, and controlling the solution to the outside. A cleaning apparatus comprising: a container having a discharge port capable of discharging as much as possible; and a high-concentration oxygen water introducing pipe for introducing high-concentration oxygen water into the container.
【請求項2】 前記導入口から前記容器の内部へ導入さ
れる溶液は純水であることを特徴とする請求項1記載の
洗浄処理装置。
2. The cleaning apparatus according to claim 1, wherein the solution introduced into the container from the inlet is pure water.
【請求項3】 前記高濃度酸素水はオゾン水であること
を特徴とする請求項2記載の洗浄処理装置。
3. The cleaning apparatus according to claim 2, wherein the high-concentration oxygen water is ozone water.
【請求項4】 前記オゾン水の溶存濃度は1ppmから
30ppmの範囲であることを特徴とする請求項3記載
の洗浄処理装置。
4. The cleaning apparatus according to claim 3, wherein the dissolved concentration of the ozone water is in a range of 1 ppm to 30 ppm.
【請求項5】 前記高濃度酸素水は過酸化水素水である
ことを特徴とする請求項2記載の洗浄処理装置。
5. The cleaning apparatus according to claim 2, wherein the high-concentration oxygen water is a hydrogen peroxide solution.
【請求項6】 前記過酸化水素水の濃度は1%から5%
の範囲であることを特徴とする請求項5記載の洗浄処理
装置。
6. The concentration of the hydrogen peroxide solution is 1% to 5%.
The cleaning apparatus according to claim 5, wherein
【請求項7】 被処理基板に付着した剥離溶剤を除去す
る洗浄処理方法であって、 前記被処理基板を内部に有し、内部へ溶液を制御可能に
導入する導入口と外部へ溶液を制御可能に排出する排出
口とを有する容器の内部へ、高濃度酸素水を導入する高
濃度酸素水導入管により前記容器の内部へ高濃度酸素水
を導入することを特徴とする洗浄処理方法。
7. A cleaning method for removing a stripping solvent adhered to a substrate to be processed, wherein the substrate has the substrate to be processed therein, and a control port for introducing a solution into the inside in a controllable manner and a solution to the outside. A cleaning method characterized by introducing high-concentration oxygen water into the container through a high-concentration oxygen water introducing pipe for introducing high-concentration oxygen water into a container having a discharge port capable of discharging the high-concentration oxygen water.
【請求項8】 前記導入口から前記容器の内部へ導入さ
れる溶液は純水であることを特徴とする請求項7記載の
洗浄処理方法。
8. The cleaning method according to claim 7, wherein the solution introduced from the inlet into the container is pure water.
【請求項9】 前記高濃度酸素水はオゾン水であること
を特徴とする請求項8記載の洗浄処理方法。
9. The cleaning method according to claim 8, wherein the high-concentration oxygen water is ozone water.
【請求項10】 前記オゾン水の溶存濃度は1ppmか
ら30ppmの範囲であることを特徴とする請求項9記
載の洗浄処理方法。
10. The cleaning method according to claim 9, wherein the dissolved concentration of the ozone water is in a range of 1 ppm to 30 ppm.
【請求項11】 前記高濃度酸素水は過酸化水素水であ
ることを特徴とする請求項10記載の洗浄処理方法。
11. The cleaning method according to claim 10, wherein the high-concentration oxygen water is a hydrogen peroxide solution.
【請求項12】 前記過酸化水素水の濃度は1%から5
%の範囲であることを特徴とする請求項11記載の洗浄
処理方法。
12. The hydrogen peroxide solution has a concentration of 1% to 5%.
The cleaning treatment method according to claim 11, wherein the amount is in the range of%.
【請求項13】 請求項1ないし6記載の洗浄処理装置
を利用して半導体装置を製造することを特徴とする半導
体製造装置。
13. A semiconductor manufacturing apparatus for manufacturing a semiconductor device using the cleaning apparatus according to claim 1.
【請求項14】 請求項1ないし6記載の洗浄処理装置
を利用して処理されることを特徴とする半導体装置。
14. A semiconductor device processed using the cleaning apparatus according to claim 1. Description:
JP2000294636A 2000-09-27 2000-09-27 Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device Withdrawn JP2002110616A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000294636A JP2002110616A (en) 2000-09-27 2000-09-27 Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device
US09/755,177 US20020036001A1 (en) 2000-09-27 2001-01-08 Cleaning equipment, cleaning method, semiconductor manufacturing device, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294636A JP2002110616A (en) 2000-09-27 2000-09-27 Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002110616A true JP2002110616A (en) 2002-04-12

Family

ID=18777196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294636A Withdrawn JP2002110616A (en) 2000-09-27 2000-09-27 Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device

Country Status (2)

Country Link
US (1) US20020036001A1 (en)
JP (1) JP2002110616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106580A (en) * 2004-10-08 2006-04-20 Sumitomo Bakelite Co Ltd Method for manufacturing semiconductor device
JP2007519979A (en) * 2004-01-30 2007-07-19 アプライド マテリアルズ インコーポレイテッド Reticle manufacturing using removable hard mask
TWI713104B (en) * 2018-07-11 2020-12-11 日商Sumco股份有限公司 Cleaning method of semconductor wafer and manufacturing method of semiconductor wafer using the cleaning method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273961A (en) * 2003-03-12 2004-09-30 Ebara Corp Cleaning device of metal wiring forming substrate
US7253092B2 (en) 2003-06-24 2007-08-07 Nec Electronics America, Inc. Tungsten plug corrosion prevention method using water
US6977215B2 (en) * 2003-10-28 2005-12-20 Nec Electronics America, Inc. Tungsten plug corrosion prevention method using gas sparged water
US7052992B2 (en) 2003-10-28 2006-05-30 Nec Electronics America, Inc. Tungsten plug corrosion prevention method using ionized air
CN102820261A (en) * 2012-08-22 2012-12-12 上海宏力半导体制造有限公司 Aluminum etching method
CN109092779B (en) * 2018-07-26 2020-04-10 武汉华星光电技术有限公司 Lens soaking box
CN113351674B (en) * 2021-04-20 2022-06-17 广东新合铝业新兴有限公司 Aluminum profile die waste liquid recovery process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519979A (en) * 2004-01-30 2007-07-19 アプライド マテリアルズ インコーポレイテッド Reticle manufacturing using removable hard mask
JP2006106580A (en) * 2004-10-08 2006-04-20 Sumitomo Bakelite Co Ltd Method for manufacturing semiconductor device
JP4591028B2 (en) * 2004-10-08 2010-12-01 住友ベークライト株式会社 Manufacturing method of semiconductor device
TWI713104B (en) * 2018-07-11 2020-12-11 日商Sumco股份有限公司 Cleaning method of semconductor wafer and manufacturing method of semiconductor wafer using the cleaning method

Also Published As

Publication number Publication date
US20020036001A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
US6039815A (en) Cleaning method and apparatus for the same
JP4690512B2 (en) Method for reducing polymer deposition on etched vertical metal lines, corrosion of etched metal lines and corrosion during wet cleaning of etched metal features
JP4563340B2 (en) Manufacturing method of semiconductor device
EP1318432B1 (en) Photoresist residue removing liquid composition
KR100867287B1 (en) Detergent composition
EP0918081B1 (en) Etching composition and use
JP4252758B2 (en) Composition for removing photoresist residue
JP2002110616A (en) Cleaning treatment apparatus and method, therefor semiconductor-manufacturing apparatus, and semiconductor device
US5863834A (en) Semiconductor device and method of manufacturing the same
JP4057803B2 (en) Manufacturing method of semiconductor device
US20100099258A1 (en) Semiconductor device cleaning method and semiconductor device manufacturing method using the same
RU2313155C2 (en) Composition and method for removing residual polymers from aluminum-containing surfaces
US6043206A (en) Solutions for cleaning integrated circuit substrates
US20160099158A1 (en) Method for removing metal oxide
US20060063388A1 (en) Method for using a water vapor treatment to reduce surface charge after metal etching
US6143637A (en) Process for production of semiconductor device and cleaning device used therein
US6720271B2 (en) Process for removing polymers during the fabrication of semiconductor devices
US20040152305A1 (en) Method for preventing corrosion of tungsten plug
CN100444350C (en) Method for preventing tungsten plug corrosion
JPH09298188A (en) Manufacture of semiconductor device
KR20050017142A (en) Rinse solution and clean method for semiconductor device using the same
JP3701193B2 (en) Manufacturing method of semiconductor device
JP2005191034A (en) Method of manufacturing semiconductor device
KR100190102B1 (en) Cleaning solution and cleaning method using the same
JP2005353947A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204