JP2002104822A - Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method - Google Patents

Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method

Info

Publication number
JP2002104822A
JP2002104822A JP2000299216A JP2000299216A JP2002104822A JP 2002104822 A JP2002104822 A JP 2002104822A JP 2000299216 A JP2000299216 A JP 2000299216A JP 2000299216 A JP2000299216 A JP 2000299216A JP 2002104822 A JP2002104822 A JP 2002104822A
Authority
JP
Japan
Prior art keywords
zinc oxide
ultrafine
aqueous dispersion
particles
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000299216A
Other languages
Japanese (ja)
Inventor
Munenori Yamada
宗紀 山田
Masashi Okamoto
昌司 岡本
Katsuyuki Tanabe
克行 田辺
Akifumi Yamada
昌文 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2000299216A priority Critical patent/JP2002104822A/en
Publication of JP2002104822A publication Critical patent/JP2002104822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous dispersion of zinc oxide ultra-fine particles having good dispersibility almost free from inclusion of an impurity, and its simple manufacturing method. SOLUTION: In manufacturing an aqueous dispersion of zinc oxide ultra-fine particles being composed of zinc oxide ultra-fine particles, a dispersing agent and water, zinc oxide ultra-fine particles are first produced in an electrolytic cell. The electrolytic cell is divided with an ion exchange membrane into an anode chamber and a cathode chamber. In the anode chamber, an electrolyte containing a zinc ion, as a raw material of zinc oxide ultra-fine particles, and/or a zinc metal anode are installed. In the cathode chamber, an alkaline electrolyte is installed. With voltage applied between the anode and the cathode the zinc ion is transferred through the ion exchange membrane from the anode side to the cathode side to deposit the zinc oxide in the cathode chamber. The resultant zinc oxide particles are dispersed substantially to primary particles in the aqueous dispersion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光線の透過性
および紫外線の遮蔽性に優れているため無機系透明紫外
線遮蔽剤として用いられる他、抗菌、脱臭等の効果も有
している酸化亜鉛超微粒子の水分散液に関するものであ
る。詳しくは、酸化亜鉛超微粒子の上記特性を十分引き
出すために、粒子を1次粒子レベルまで分散し、各産業
分野で原材料や前駆体として非常に有用な酸化亜鉛超微
粒子水分散液に関するものである。
TECHNICAL FIELD The present invention is used as an inorganic transparent ultraviolet ray shielding agent because of its excellent transparency to visible light and ultraviolet ray shielding property, and also has an antibacterial and deodorizing effect. It relates to an aqueous dispersion of ultrafine particles. More specifically, the present invention relates to an aqueous dispersion of ultrafine zinc oxide particles in which particles are dispersed to the level of primary particles in order to sufficiently extract the above properties of the ultrafine zinc oxide particles, and which is very useful as a raw material or precursor in various industrial fields. .

【0002】[0002]

【従来の技術】従来、酸化亜鉛超微粒子は、金属亜鉛を
蒸気化し、酸素を有するガスと混合する各種気相法(特
開平01-286919号公報など)、噴霧熱分解法(特開平06-
199502号公報)、もしくは化学反応を応用した方法等に
よって製造されている。また、その水分散液は、上記方
法で得られた酸化亜鉛超微粒子をビーズミル、ボールミ
ル、ペイントシェーカー、サンドミル等のメディア媒体
型分散処理装置、ホモミキサー、コロイドミルなどの撹
拌型分散処理装置、湿式ジェットミルなどの高圧分散処
理装置、さらには超音波分散処理装置などの各種分散処
理装置により分散させて製造されている。
2. Description of the Related Art Conventionally, ultrafine zinc oxide particles have been produced by vaporizing metal zinc and mixing it with a gas containing oxygen (Japanese Patent Application Laid-Open No. 01-286919), a spray pyrolysis method (Japanese Patent Application Laid-Open No. 06-286919).
199502) or a method utilizing a chemical reaction. The aqueous dispersion is obtained by mixing the zinc oxide ultrafine particles obtained by the above method with a bead mill, a ball mill, a paint shaker, a sand mill or other media medium-type dispersion processing apparatus, a homomixer, a colloid mill or other stirring type dispersion processing apparatus, or a wet dispersion. It is manufactured by being dispersed by a high-pressure dispersion processing device such as a jet mill, and further various dispersion processing devices such as an ultrasonic dispersion processing device.

【0003】しかしながら、各種気相法や噴霧熱分解法
では、操作性や生産性に問題がある上に、得られた酸化
亜鉛超微粒子は、製造過程において300℃以上での熱処
理工程を経ているため粒子同士の凝集力が強く、分散性
が低く、良好な分散性の酸化亜鉛超微粒子水分散液を得
るには、長時間もしくは/および高効率の分散処理を行
う必要があった。また、化学反応を応用した方法では、
出発原料が不純物として生成物中に混入するため、得ら
れる酸化亜鉛超微粒子水分散液にも不純物が混入し、水
分散液から不純物を除去することは非常に困難であると
いう問題があった。
However, in the various gas phase methods and spray pyrolysis methods, there are problems in operability and productivity, and the obtained zinc oxide ultrafine particles have undergone a heat treatment step at 300 ° C. or higher in the production process. Therefore, in order to obtain an aqueous dispersion of zinc oxide ultrafine particles having a strong cohesive force between particles, a low dispersibility, and a good dispersibility, it was necessary to perform a long-time and / or highly efficient dispersion treatment. Also, in the method using chemical reaction,
Since the starting materials are mixed into the product as impurities, the impurities are also mixed in the resulting aqueous dispersion of ultrafine zinc oxide particles, and there is a problem that it is very difficult to remove the impurities from the aqueous dispersion.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、分散
性が良好で、不純物の混入がほとんどない酸化亜鉛超微
粒子水分散液、及び酸化亜鉛超微粒子水分散液の製造過
程が非常に簡便である製造方法を提供することを目的と
したものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an aqueous dispersion of ultrafine zinc oxide particles having good dispersibility and containing almost no impurities, and a very simple process for producing an aqueous dispersion of ultrafine zinc oxide particles. It is intended to provide a certain manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明者らは、特定の酸
化亜鉛超微粒子を使用し、それを分散剤および水と混合
して簡単な分散処理を行うことで、分散性の良好な、不
純物の混入のほとんど見られない酸化亜鉛超微粒子水分
散液を得ることが可能であることを見出し本発明を完成
した。すなわち、本発明は、酸化亜鉛超微粒子と分散剤
と水とからなる酸化亜鉛超微粒子水分散液であって、酸
化亜鉛超微粒子が、電解槽をイオン交換膜で仕切り、陽
極室と陰極室を設け、陽極室側に酸化亜鉛超微粒子の原
料となる亜鉛イオンを含む電解液もしくは/および金属
亜鉛陽極を入れ、陰極室側にアルカリ性の電解液を入れ
た電解槽において、陽極と陰極間に電圧を印加すること
により、イオン交換膜を通して亜鉛イオンを陽極側から
陰極側に移動させ、陰極室中で酸化亜鉛を析出させる方
法により製造した平均粒子径が100nm以下かつ最大粒子
径が500nm以下の酸化亜鉛超微粒子であり、かつ該水分
散液において、酸化亜鉛超微粒子が実質的に1次粒子に
まで分散されていることを特徴とする酸化亜鉛超微粒子
水分散液を要旨とするものである。
Means for Solving the Problems The present inventors use specific zinc oxide ultrafine particles, mix them with a dispersant and water, and perform a simple dispersion treatment to obtain a good dispersibility. The present inventors have found that it is possible to obtain an aqueous dispersion of ultrafine zinc oxide particles in which impurities are hardly mixed, and have completed the present invention. That is, the present invention is an aqueous dispersion of zinc oxide ultrafine particles comprising zinc oxide ultrafine particles, a dispersant, and water, wherein the zinc oxide ultrafine particles partition an electrolytic cell with an ion exchange membrane, and form an anode chamber and a cathode chamber. An electrolytic solution containing zinc ions as a raw material of zinc oxide ultrafine particles and / or a metallic zinc anode is placed in the anode compartment, and an alkaline electrolytic solution is placed in the cathode compartment, and a voltage is applied between the anode and the cathode. Is applied, the zinc ions are moved from the anode side to the cathode side through the ion exchange membrane, and the average particle diameter produced by the method of depositing zinc oxide in the cathode chamber is 100 nm or less and the maximum particle diameter is 500 nm or less. It is an ultra-fine zinc oxide particle, and the aqueous dispersion of the zinc oxide ultra-fine particle is characterized in that the ultra-fine zinc oxide particle is substantially dispersed to primary particles in the aqueous dispersion. .

【0006】[0006]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の酸化亜鉛超微粒子水分散液は、酸化亜鉛
またはその水和物の超微粒子と分散剤と水とからなる
が、酸化亜鉛超微粒子は、特開2000−080487号公報記載
の下記の方法で製造されることが必要である。すなわ
ち、本発明において、酸化亜鉛超微粒子は、電解槽をイ
オン交換膜で仕切り、陽極室と陰極室を設け、陽極側に
酸化亜鉛超微粒子の原料となる亜鉛イオンを含む電解液
もしくは/および金属亜鉛陽極を入れ、陰極側にアルカ
リ性の電解液を入れた電解槽において、陽極と陰極間に
電圧を印加して、イオン交換膜を通して亜鉛イオンを陽
極側から陰極側に移動させ、陰極室中で酸化亜鉛を析出
させる方法(以下電解法という。)によって製造され
る。上記製造方法により、平均粒子径が100nm以下かつ
最大粒子径が500nm以下である酸化亜鉛超微粒子を得る
ことができる。本発明において平均粒子径が20〜60nm、
最大粒子径が200nm以下のシャープな粒度分布を持つ酸
化亜鉛超微粒子を用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The aqueous dispersion of ultrafine zinc oxide particles of the present invention is composed of ultrafine particles of zinc oxide or a hydrate thereof, a dispersant and water, and the ultrafine zinc oxide particles are prepared by the following method described in JP-A-2000-080487. It is necessary to be manufactured in. That is, in the present invention, the zinc oxide ultrafine particles are obtained by partitioning the electrolytic cell with an ion exchange membrane, providing an anode chamber and a cathode chamber, and providing, on the anode side, an electrolytic solution containing zinc ions as a raw material of the zinc oxide ultrafine particles and / or a metal. In the electrolytic cell containing the zinc anode and the alkaline electrolyte on the cathode side, a voltage is applied between the anode and the cathode to move zinc ions from the anode side to the cathode side through the ion exchange membrane. It is manufactured by a method of depositing zinc oxide (hereinafter referred to as an electrolytic method). By the above production method, ultrafine zinc oxide particles having an average particle diameter of 100 nm or less and a maximum particle diameter of 500 nm or less can be obtained. In the present invention, the average particle size is 20 to 60 nm,
It is preferable to use ultrafine zinc oxide particles having a sharp particle size distribution having a maximum particle size of 200 nm or less.

【0007】上記方法により製造した酸化亜鉛超微粒子
を使用し、それを分散剤および水と混合して簡単な分散
処理を行うことで、分散性の良好な、不純物の混入のほ
とんど見られない酸化亜鉛超微粒子水分散液が得られ
る。
[0007] The ultrafine zinc oxide particles produced by the above method are used, mixed with a dispersant and water and subjected to a simple dispersing treatment to obtain an oxidized material having good dispersibility and containing almost no impurities. An aqueous dispersion of ultrafine zinc particles is obtained.

【0008】本発明の酸化亜鉛超微粒子水分散液におけ
る酸化亜鉛超微粒子濃度は、60質量%以下であることが
好ましく、1〜40質量%以下であることがさらに好まし
い。濃度が60質量%以下であれば、分散性の良好な、安
定性の高い水分散液が得られるが、60質量%超えると、
分散性が悪化し、安定性が低下する傾向が見られる。ま
た1質量%未満であると、目的とする性能が得られなく
なることがあるので好ましくない。
The concentration of ultrafine zinc oxide particles in the aqueous dispersion of ultrafine zinc oxide particles of the present invention is preferably 60% by mass or less, more preferably 1 to 40% by mass or less. If the concentration is 60% by mass or less, an aqueous dispersion having good dispersibility and high stability can be obtained.
Dispersibility tends to deteriorate and stability tends to decrease. If the amount is less than 1% by mass, the desired performance may not be obtained, which is not preferable.

【0009】本発明に使用される分散剤としては、メタ
リン酸塩、ポリカルボン酸型高分子界面活性剤など各種
の分散剤が挙げられる。具体的には、メタリン酸塩とし
ては、ヘキサメタリン酸ナトリウム、メタリン酸ナトリ
ウム、メタリン酸カリウムなどが挙げられ、またポリカ
ルボン酸型高分子界面活性剤としては、「キャリボン
B」、「キャリボンL-400」、「キャリボンAR-33」、
「サンスパールPS-8」、「グランアップPC-121」(以上
三洋化成工業社製)、「ポイズ520」、「ホモゲノールL
-18」(以上花王社製)、「UTC-124」(竹本油脂社
製)、「シャロールAN-103P」、「シャロールAN-144P」
(以上第一工業製薬社製)などの市販品が挙げられる。
ポリカルボン酸型高分子界面活性剤が分散性良好である
ため、特に好ましい。これら分散剤の添加量は分散剤の
種類によって異なり、添加量が少なすぎると添加効果が
ほとんど無く、添加量が多すぎると凝集作用が生じる場
合も見られるが、いずれの分散剤についても、酸化亜鉛
に対して0.1〜15質量%の範囲内が好ましく、特に、本
発明における酸化亜鉛超微粒子水分散液は分散性が良好
であるために、0.1〜5質量%の範囲内がより好ましい。
Examples of the dispersant used in the present invention include various dispersants such as metaphosphate and polycarboxylic acid type polymer surfactant. Specifically, examples of the metaphosphate include sodium hexametaphosphate, sodium metaphosphate, potassium metaphosphate, and the like. Examples of the polycarboxylic acid type polymer surfactant include “Caribbean”
B, Carribbon L-400, Carribbon AR-33,
"Sunspearl PS-8", "Grand Up PC-121" (manufactured by Sanyo Chemical Industries), "Poise 520", "Homogenol L"
-18 "(manufactured by Kao Corporation)," UTC-124 "(manufactured by Takemoto Yushi)," Sharoll AN-103P "," Sharoll AN-144P "
(These products are manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
Polycarboxylic acid type polymer surfactants are particularly preferred because of their good dispersibility. The addition amount of these dispersants varies depending on the type of the dispersant. If the addition amount is too small, there is almost no effect of addition, and if the addition amount is too large, agglomeration may occur. The content is preferably in the range of 0.1 to 15% by mass with respect to zinc, and particularly preferably in the range of 0.1 to 5% by mass, because the aqueous dispersion of ultrafine zinc oxide particles in the present invention has good dispersibility.

【0010】次に、本発明の酸化亜鉛超微粒子水分散液
の製造方法について述べる。本発明の酸化亜鉛超微粒子
水分散液は、上記電解法によって製造された酸化亜鉛超
微粒子を含水分状態のまま、もしくは300℃以下の温度
で乾燥、水分を除去したものを、水と各種分散剤との混
合液とし、各種分散処理方法によって分散させることに
よって得られる。分散方法としては、メディア媒体型分
散処理装置、撹拌型分散処理装置、超音波分散処理装
置、高圧分散処理装置などを用いることが可能である
が、特に、より短時間の処理で分散性の良好な酸化亜鉛
超微粒子水分散液が得られること、また分散処理の過程
での不純物の混入が見られない酸化亜鉛超微粒子水分散
液を得られることから、高圧分散処理装置を用いること
が好ましい。高圧分散処理装置を用いる場合は、上記混
合液を、50〜200MPaの処理圧力で、1〜数回の処理を行
うことによって分散性の良好な酸化亜鉛超微粒子水分散
液を得ることが可能である。
Next, a method for producing the aqueous dispersion of ultrafine zinc oxide particles of the present invention will be described. The aqueous dispersion of ultrafine zinc oxide particles of the present invention is prepared by dispersing the ultrafine zinc oxide particles produced by the above-mentioned electrolysis method in a water-containing state or by drying at a temperature of 300 ° C. or less to remove water, and dispersing them in water. It is obtained by dispersing the mixture with various agents by various dispersion treatment methods. As the dispersing method, it is possible to use a media medium type dispersing device, a stirring type dispersing device, an ultrasonic dispersing device, a high-pressure dispersing device, etc. It is preferable to use a high-pressure dispersion treatment apparatus because a zinc oxide ultrafine particle aqueous dispersion can be obtained, and an zinc oxide ultrafine particle aqueous dispersion in which impurities are not mixed during the dispersion treatment can be obtained. In the case of using a high-pressure dispersion treatment device, the mixed solution can be obtained at a treatment pressure of 50 to 200 MPa, a treatment dispersion of one to several times to obtain a zinc oxide ultrafine particle aqueous dispersion having good dispersibility. is there.

【0011】本発明の酸化亜鉛超微粒子水分散液は、用
途に応じて、一部高粒子径側の粒子を除去するために遠
心分離処理を行うことも可能である。例えば、冷却遠心
機(クボタ社製、型式7930)を用い、3000〜6000rpmで
数分以上の遠心分離処理することにより、粒子径100nm
以上の粒子をほぼ全量除去することができる。
The aqueous dispersion of ultrafine zinc oxide particles of the present invention can be subjected to a centrifugal separation treatment in order to partially remove particles having a high particle diameter, depending on the application. For example, by using a cooling centrifuge (manufactured by Kubota, Model 7930), by centrifuging at 3000 to 6000 rpm for several minutes or more, the particle diameter is 100 nm.
Almost all of the above particles can be removed.

【0012】[0012]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、酸化亜鉛超微粒子水分散液の数平均粒子径、
最大粒子径の評価は、日機装社製 Microtrac UPA粒度
分布測定装置 型式9340を用いて行った。
The present invention will be described below in detail with reference to examples. The number average particle diameter of the zinc oxide ultrafine particle aqueous dispersion,
The evaluation of the maximum particle diameter was performed using a Microtrac UPA particle size distribution analyzer model 9340 manufactured by Nikkiso Co., Ltd.

【0013】酸化亜鉛超微粒子の製造 陽極として金属亜鉛平板電極を、陰極としてチタン平板
電極を用い、電解槽(容量300mL)は陽イオン交換膜ナ
フィオン(デュポン社製)1枚で2槽に区分した。陽極
室には、1mol/L 硫酸亜鉛水溶液100mL を、陰極室には
1mol/L 硫酸ナトリウム水溶液に水酸化ナトリウムを少
量添加してpHを10としたアルカリ性の電解液100mL
を入れ、整流器で電極間に10Vの電圧を与え、電気分
解を6時間行った。その結果、陰極室には白色の平均粒
子径30nmの酸化亜鉛超微粒子5.2gが得られた。
Production of Ultrafine Zinc Oxide Particles A metal zinc plate electrode was used as the anode, a titanium plate electrode was used as the cathode, and the electrolytic cell (capacity: 300 mL) was divided into two cells with one cation exchange membrane Nafion (manufactured by DuPont). . 100 mL of 1 mol / L aqueous solution of zinc sulfate in the anode chamber, 100 mL of alkaline electrolyte adjusted to pH 10 by adding a small amount of sodium hydroxide to 1 mol / L aqueous solution of sodium sulfate in the cathode chamber
And a voltage of 10 V was applied between the electrodes with a rectifier, and electrolysis was performed for 6 hours. As a result, 5.2 g of ultrafine zinc oxide particles having an average particle diameter of 30 nm were obtained in the cathode chamber.

【0014】実施例1 電解法によって得られた45質量%含水酸化亜鉛超微粒子
(酸化亜鉛/水=55/45)(酸化亜鉛超微粒子の1次粒
子径30nm)を酸化亜鉛濃度が20質量%となるように水を
添加し、さらに分散剤としてポリカルボン酸型高分子界
面活性剤(竹本油脂社製 UTC-124)を酸化亜鉛に対し
て1.3質量%添加した。得られた混合液を高圧分散処理
装置(みづほ工業社製 マイクロフルイダイザー)を用
いて、150MPaの処理圧力で2回の処理を行うことによっ
て、酸化亜鉛超微粒子水分散液を得た。得られた分散液
の数平均粒子径は36nm、最大粒子径は150nmであり、実
質的に1次粒子まで分散しており、7日静置後も沈降物は
見られなかった。数平均粒度分布評価結果を図1に記載
した。
Example 1 45% by mass of zinc oxide-containing ultrafine particles (zinc oxide / water = 55/45) (primary particle diameter of zinc oxide ultrafine particles: 30 nm) obtained by the electrolysis method were used at a zinc oxide concentration of 20% by mass. Was added, and a polycarboxylic acid-type polymer surfactant (UTC-124 manufactured by Takemoto Yushi Co., Ltd.) as a dispersant was added at 1.3% by mass based on zinc oxide. The obtained mixture was subjected to treatment twice at a treatment pressure of 150 MPa using a high-pressure dispersion treatment device (Microfluidizer manufactured by Mizuho Industry Co., Ltd.) to obtain an aqueous dispersion of ultrafine zinc oxide particles. The obtained dispersion had a number average particle size of 36 nm and a maximum particle size of 150 nm, and was substantially dispersed to the primary particles. No sediment was observed even after standing for 7 days. FIG. 1 shows the number average particle size distribution evaluation results.

【0015】実施例2 実施例1で得られた酸化亜鉛超微粒子水分散液につい
て、冷却遠心機を用いて5000rpmで20分間の遠心分離処
理を行った。得られた分散液の数平均粒子径は35nm、最
大粒子径は110nmであり、遠心分離処理により100nm以上
の粒子がほとんど除去されており、7日静置後も沈降物
は見られなかった。
Example 2 The aqueous dispersion of ultrafine zinc oxide particles obtained in Example 1 was subjected to centrifugation at 5,000 rpm for 20 minutes using a cooling centrifuge. The obtained dispersion had a number average particle size of 35 nm and a maximum particle size of 110 nm. Most particles having a size of 100 nm or more were removed by centrifugation, and no sediment was observed even after standing for 7 days.

【0016】実施例3 酸化亜鉛超微粒子として、電解法によって得られた45質
量%含水酸化亜鉛超微粒子を110℃で乾燥、水分を除去
して得られた酸化亜鉛超微粒子を20質量%となるように
水を添加し、さらに分散剤として「UTC-124」を酸化亜
鉛に対して1.3質量%添加した。得られた混合液を高圧
分散処理装置「マイクロフルイダイザー」を用いて、15
0MPaの処理圧力で2回の処理を行うことによって、酸化
亜鉛超微粒子水分散液を得た。得られた分散液の数平均
粒子径は42nm、最大粒子径は200nmであり、実質的に1次
粒子まで分散しており、7日静置後も沈降物は見られな
かった。
Example 3 As zinc oxide ultrafine particles, 45 mass% ultrafine zinc oxide particles obtained by an electrolytic method were dried at 110 ° C. to remove water, and the zinc oxide ultrafine particles obtained became 20 mass%. Water was added as described above, and “UTC-124” was further added as a dispersant at 1.3% by mass with respect to zinc oxide. Using a high-pressure dispersion processing device "Microfluidizer", the obtained mixed solution was
By performing the treatment twice at a treatment pressure of 0 MPa, an aqueous dispersion of ultrafine zinc oxide particles was obtained. The obtained dispersion had a number average particle size of 42 nm and a maximum particle size of 200 nm, and was substantially dispersed up to the primary particles. No sediment was observed even after standing for 7 days.

【0017】比較例1、2 酸化亜鉛超微粒子として、気相法(プラズマ法)で作製
された酸化亜鉛超微粒子(シーアイ化成社製 NanoTe
k、1次粒子径31nm)および気相法(フランス法)で作製
された酸化亜鉛超微粒子(堺化学工業社製 FINEX-50、
1次粒子径20nm)を用いる以外は、実施例1と同様の方法
により、酸化亜鉛超微粒子水分散液を得た。得られた分
散液の数平均粒子径はそれぞれ71nm、72nm、最大粒子径
はそれぞれ400nm、800nmであり、実質的に1次粒子まで
分散しておらず、いずれについても1日静置後に沈降物
が見られた。
Comparative Examples 1 and 2 Zinc oxide ultrafine particles (NanoTe manufactured by CI Kasei Co., Ltd.) prepared by a gas phase method (plasma method)
k, primary particle size 31 nm) and zinc oxide ultrafine particles (FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd.)
An aqueous dispersion of ultrafine zinc oxide particles was obtained in the same manner as in Example 1 except that the primary particle diameter was 20 nm). The number average particle diameter of the obtained dispersion is 71 nm, 72 nm, respectively, and the maximum particle diameter is 400 nm, 800 nm, respectively.They are not substantially dispersed to the primary particles, and all of them are sedimented after standing for 1 day. It was observed.

【0018】以上の実験結果から、本発明によれば、非
常に簡便な製造方法で、実質的に1次粒子まで分散して
おり安定性の高い、分散性の良好な酸化亜鉛超微粒子水
分散液を得られることが明らかになった。
From the above experimental results, according to the present invention, an aqueous dispersion of zinc oxide ultrafine particles having a high stability and a good dispersibility, which is substantially dispersed to primary particles, is obtained by a very simple production method. It became clear that a liquid could be obtained.

【0019】[0019]

【発明の効果】本発明において、電解法で作製した酸化
亜鉛超微粒子を使用することにより、他製法で作製した
酸化亜鉛超微粒子よりも、簡便な方法で、分散性の良好
な酸化亜鉛超微粒子水分散液を得ることが可能となる。
According to the present invention, ultrafine zinc oxide particles having good dispersibility can be obtained by a simpler method by using ultrafine zinc oxide particles produced by an electrolytic method than by using ultrafine zinc oxide particles produced by another method. An aqueous dispersion can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の水分散液について数平均粒度分布評
価結果を示す図である。
FIG. 1 is a view showing the number average particle size distribution evaluation results of an aqueous dispersion of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 昌文 京都府宇治市宇治小桜23 ユニチカ株式会 社中央研究所内 Fターム(参考) 4G047 AA02 AB02 AC02 AD03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masafumi Yamada 23 Uji Kozakura, Uji City, Kyoto Prefecture F-term in Unitika Central Research Laboratories (reference) 4G047 AA02 AB02 AC02 AD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が100nm以下かつ最大粒子径が
500nm以下である酸化亜鉛超微粒子と分散剤と水とから
なる酸化亜鉛超微粒子水分散液であって、酸化亜鉛超微
粒子が、下記の製法Aで製造した酸化亜鉛超微粒子であ
り、かつ該水分散液において、酸化亜鉛超微粒子が実質
的に1次粒子にまで分散されていることを特徴とする酸
化亜鉛超微粒子水分散液。製法A:電解槽をイオン交換
膜で仕切り、陽極室と陰極室を設け、陽極側に酸化亜鉛
超微粒子の原料となる亜鉛イオンを含む電解液もしくは
/および金属亜鉛陽極を入れ、陰極側にアルカリ性の電
解液を入れた電解槽において、陽極と陰極間に電圧を印
加することにより、イオン交換膜を通して亜鉛イオンを
陽極側から陰極側に移動させ、陰極室中で酸化亜鉛を析
出させる方法。
Claims: 1. An average particle diameter of 100 nm or less and a maximum particle diameter of
An aqueous dispersion of zinc oxide ultrafine particles having a particle size of 500 nm or less, a dispersant, and water, wherein the zinc oxide ultrafine particles are zinc oxide ultrafine particles produced by the following production method A, and the water An aqueous dispersion of ultrafine zinc oxide particles, wherein the ultrafine zinc oxide particles are substantially dispersed into primary particles in the dispersion. Production method A: an electrolytic cell is partitioned by an ion exchange membrane, an anode chamber and a cathode chamber are provided, and an electrolyte containing zinc ions, which is a raw material of zinc oxide ultrafine particles, and / or a metal zinc anode are placed on the anode side, and alkaline is placed on the cathode side. A method in which zinc ions are moved from the anode side to the cathode side through the ion exchange membrane by applying a voltage between the anode and the cathode in the electrolytic cell containing the electrolytic solution, thereby depositing zinc oxide in the cathode chamber.
【請求項2】 酸化亜鉛超微粒子濃度が60質量%以下で
あることを特徴とする請求項1記載の酸化亜鉛超微粒子
水分散液。
2. The aqueous dispersion of ultrafine zinc oxide particles according to claim 1, wherein the concentration of the ultrafine zinc oxide particles is 60% by mass or less.
【請求項3】 分散剤がポリカルボン酸型高分子界面活
性剤であることを特徴とする請求項1または2記載の酸化
亜鉛超微粒子水分散液。
3. The aqueous dispersion of ultrafine zinc oxide particles according to claim 1, wherein the dispersant is a polycarboxylic acid type polymer surfactant.
【請求項4】 分散剤の添加濃度が酸化亜鉛に対して0.1
〜15質量%であることを特徴とする請求項1から3のいず
れかに記載の酸化亜鉛超微粒子水分散液。
4. The dispersant addition concentration is 0.1% with respect to zinc oxide.
The aqueous dispersion of ultrafine zinc oxide particles according to any one of claims 1 to 3, wherein the aqueous dispersion is from 1 to 15% by mass.
【請求項5】 酸化亜鉛超微粒子と分散剤と水との混合
液を高圧分散処理装置で分散処理を行うことを特徴とす
る請求項1から4のいずれかに記載の酸化亜鉛超微粒子水
分散液の製造方法。
5. The aqueous dispersion of ultrafine zinc oxide particles according to claim 1, wherein the mixed liquid of the ultrafine zinc oxide particles, the dispersant, and water is subjected to a dispersion treatment using a high-pressure dispersion treatment device. Liquid production method.
JP2000299216A 2000-09-29 2000-09-29 Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method Pending JP2002104822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299216A JP2002104822A (en) 2000-09-29 2000-09-29 Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299216A JP2002104822A (en) 2000-09-29 2000-09-29 Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002104822A true JP2002104822A (en) 2002-04-10

Family

ID=18781059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299216A Pending JP2002104822A (en) 2000-09-29 2000-09-29 Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002104822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527160A (en) * 2003-06-11 2006-11-30 インペリアル・ケミカル・インダストリーズ・ピーエルシー Zinc oxide
JP2008273767A (en) * 2007-04-26 2008-11-13 Sakai Chem Ind Co Ltd Method for producing zinc oxide and zinc oxide
JP2010030836A (en) * 2008-07-29 2010-02-12 Nippon Soda Co Ltd Aqueous inorganic-particle dispersion liquid and its production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527160A (en) * 2003-06-11 2006-11-30 インペリアル・ケミカル・インダストリーズ・ピーエルシー Zinc oxide
JP4709142B2 (en) * 2003-06-11 2011-06-22 クローダ インターナショナル パブリック リミティド カンパニー Zinc oxide
JP2008273767A (en) * 2007-04-26 2008-11-13 Sakai Chem Ind Co Ltd Method for producing zinc oxide and zinc oxide
JP4569597B2 (en) * 2007-04-26 2010-10-27 堺化学工業株式会社 Zinc oxide production method and zinc oxide
JP2010030836A (en) * 2008-07-29 2010-02-12 Nippon Soda Co Ltd Aqueous inorganic-particle dispersion liquid and its production method

Similar Documents

Publication Publication Date Title
JPS59145047A (en) Production of catalytically active catalyst for oxygen consumption electrode
KR20210075092A (en) Battery recycling to remove copper impurities by electrolyzing leachate
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
US20220160634A1 (en) Nanoparticle composition with reduced contaminant and production method thereof
CN112408362B (en) Carbon quantum dot and preparation method and application thereof
JPH10204669A (en) Production of indium oxide powder
CN111630701A (en) Synthesis of lithium titanate
JP2002104822A (en) Aqueous dispersion of zinc oxide ultra-fine particles with good dispersibility and its manufacturing method
KR100850011B1 (en) Method for manufacturing tin oxide powder by ultrasonic chemistry reaction and method for manufacturing ito target
JP2005146387A (en) Dendrite-shaped fine silver powder, and its production method
WO1989004736A1 (en) Process for producing particulate metal powder
JPH07330337A (en) Dispersion of electro-conductive fine powder and its production
Santos et al. Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles
ALIMOHAMMADY et al. Synthesis of MnO2 nanowires adsorbent for gold recovery from electroplating wastewater using Taguchi method
CN113697843A (en) Preparation method of superfine silver chloride powder
JP5644877B2 (en) Method for producing dispersion of photocatalyst particles
CN112850862A (en) Novel chloride ion removing material Ti3C2TxBiOCl, preparation method and application
JP5407549B2 (en) Photocatalyst particle dispersion and process for producing the same
WO2014087707A1 (en) Copper (ii) oxide fine powder and method for producing same
Wang et al. Iron Shell Formation by Electrolyzing Self-Assembled Nano-Particles
WO2018145747A1 (en) Redispersible particles based on silicon particles and polymers
RU2790845C1 (en) Method for obtaining dispersions of submicron and nanosized particles of alkali metals
JP5751047B2 (en) Method for producing core-shell type polymer fine particles containing sodium sulfonate group
JPH10310898A (en) Production of micelle dispersion and production of thin film
RU2731977C1 (en) Method of zinc-containing ore mincing