WO2014087707A1 - Copper (ii) oxide fine powder and method for producing same - Google Patents

Copper (ii) oxide fine powder and method for producing same Download PDF

Info

Publication number
WO2014087707A1
WO2014087707A1 PCT/JP2013/072467 JP2013072467W WO2014087707A1 WO 2014087707 A1 WO2014087707 A1 WO 2014087707A1 JP 2013072467 W JP2013072467 W JP 2013072467W WO 2014087707 A1 WO2014087707 A1 WO 2014087707A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine powder
electrolytic copper
copper
powder
cupric oxide
Prior art date
Application number
PCT/JP2013/072467
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 浩
雄 山下
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2014087707A1 publication Critical patent/WO2014087707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention relates to cupric oxide fine powder and a method for producing the same.
  • cupric oxide fine powder is used for pigments, paints, catalysts, ceramic colorants, copper sources for replenishing copper plating solutions, etc., and the production methods are roughly classified into wet methods and dry methods.
  • sodium hydroxide is added to an aqueous solution of cupric chloride or copper sulfate to form copper hydroxide, and then the copper hydroxide is heated (see Patent Document 1). More specifically, the etching waste solution of the printed circuit board containing cupric chloride is neutralized with caustic (NaOH), and the neutralized copper solution and caustic aqueous solution are placed in an aqueous solution maintained at a temperature of 40 to 50 ° C. At the same time, the mixture is added dropwise to produce a copper hydrate while maintaining the pH of the mixed aqueous solution in the range of weakly acidic to weakly alkaline. Next, the pH is adjusted to 12 to 13, and kept at a temperature of 70 to 80 ° C. for 30 minutes, and then washed with water and solid-liquid separation to produce cupric oxide.
  • CaOH caustic
  • cupric oxide powder produced by a wet method has an advantage of fast solubility in a copper plating solution.
  • cupric oxide powder is produced by a wet method, there is a problem that the residual concentration of S and the like derived from sulfate ions tends to be relatively high in addition to Na. If cupric oxide powder containing a large amount of impurities is added to the plating solution, plating defects may occur due to the impurities. For example, in the method described in Patent Document 1, impurities other than copper dissolved when etching a printed circuit board are included in the etching waste liquid used, and sodium chloride (NaCl) is used as an impurity during neutralization. As a by-product, etc., a water washing step is required to remove impurities.
  • NaCl sodium chloride
  • a method of drying the slurry-like cupric oxide fine powder a method of evaporating the solvent by heating the container, a method of drying by heating the container while stirring, or a method of heating with hot air
  • a medium fluidized drying method in which slurry is put into a medium such as alumina, powder dried on the surface of the medium is peeled off, exhausted with hot air, and recovered as a dry powder with a cyclone, bag filter or the like.
  • the dry method there is a method in which copper nitrate, copper sulfate, copper carbonate, copper hydroxide or the like is heated in air to a temperature of about 600 ° C. and thermally decomposed (see Non-Patent Document 1).
  • the dry method has a higher purity of cupric oxide obtained than the wet method, and is excellent in solubility in a plating solution.
  • the obtained copper oxide powder is required to be in a fine powder state, but the cupric oxide powder obtained by the dry method has a large particle size due to sintering. It is necessary to pulverize the cupric oxide powder.
  • metallic copper when used as a raw material, it is difficult to finely grind metal copper because it is soft and ductile when ground before heat treatment. For this reason, in order to heat-treat completely to copper oxide, it is necessary to heat to a higher temperature.
  • sintering of the copper particles occurs again by the heat treatment at a high temperature, so that it is necessary to grind again after the heat treatment, etc. In this respect, the dry method was not an efficient method.
  • Patent Documents 3 to 5 In order to increase the efficiency of the dry method, it has been proposed to pulverize electrolytic copper powder prepared in a copper sulfate solution by a jet mill pulverization method (see Patent Documents 3 to 5). According to Patent Documents 3 to 5, in order to finely pulverize the electrolytic copper powder, it can be said that the particle diameter of the electrolytic copper powder as a pulverized raw material is an important factor. For example, Patent Document 3 shows that in order to obtain a copper powder of 10 ⁇ m or less, the size of the electrolytic copper powder as a raw material must be 2000 cm 2 / g or more in terms of specific surface area.
  • the formation form of the electrolytic copper powder is a resin-grown structure
  • the electrolytic copper powder which is a pulverized raw material
  • the electrolytic copper powder after pulverization becomes agglomerated or flat due to properties such as ductility of metallic copper. It is difficult to refine the copper powder.
  • the present invention has been made by focusing on reducing the electrolytic copper powder and improving the solubility in the plating solution, and the subject is high purity, which is the conventional advantage of the dry method. It is to improve the solubility in the plating solution while taking advantage of this fact.
  • the inventors of the present invention pulverized electrolytic copper powder having an oxide film on the surface in a dry manner, and oxidized the electrolytic copper fine powder obtained by this pulverization, thereby The inventors have found that the object can be achieved and have completed the present invention.
  • the present invention provides the following.
  • the present invention comprises a dry pulverization step of pulverizing electrolytic copper powder having an oxide film on the surface by a dry method, and an oxidation step of oxidizing electrolytic copper fine powder obtained by this dry pulverization step. It is a manufacturing method of a fine powder.
  • the oxide film is formed by washing electrolytic copper powder obtained by electrolysis of a copper ion-containing solution with water and then drying at 70 ° C. to 150 ° C. in an oxygen-containing atmosphere.
  • the method for producing cupric oxide fine powder according to (1) is described in detail below.
  • this invention is a manufacturing method of the cupric oxide fine powder as described in (1) or (2) with which the said dry-type grinding
  • this invention uses the copper sulfate aqueous solution in which the cupric oxide fine powder obtained by the manufacturing method in any one of (1) to (4) was melt
  • the average particle size is 5 ⁇ m or less, the maximum particle size is 15 ⁇ m or less, and 10 g of cupric oxide fine powder is 228 g / L of CuSO 4 .5H 2 at 25 ° C.
  • the dissolution time is 1 minute or less. Copper fine powder.
  • cupric oxide fine powder having high copper oxide purity and high solubility in a plating solution.
  • This cupric oxide fine powder is suitably used as a copper source for replenishing a copper plating solution used industrially.
  • the scanning electron microscope image (SEM image) of the copper oxide powder which has an oxide film on the surface is shown.
  • the SEM image of the electrolytic copper fine powder which concerns on Example 1 is shown.
  • the SEM image of the electrolytic copper fine powder which concerns on the comparative example 1 is shown.
  • the SEM image of the electrolytic copper fine powder which concerns on the comparative example 2 is shown.
  • the X-ray-diffraction pattern of the cupric oxide fine powder concerning Example 1 is shown.
  • the production method of the present invention includes a dry pulverization step S1 in which electrolytic copper powder having an oxide film on the surface is pulverized in a dry manner, and an oxidation step S2 in which electrolytic copper fine powder obtained by the dry pulverization step S1 is oxidized.
  • electrolytic copper powder in order to clearly distinguish the state of electrolytic copper or copper oxide, the electrolytic copper before dry pulverization is referred to as “electrolytic copper powder”, and the electrolytic copper after dry pulverization but before oxidation is expressed as “ It is called “electrolytic copper fine powder”, and the oxidized copper oxide is called “cupric oxide fine powder”.
  • the electrolytic copper powder used in the dry pulverization step S1 may have any method for forming an oxide film as long as it has an oxide film on its surface.
  • the electrolytic copper powder is deposited on the surface of the electrode by electrolysis of copper and collected, and then subjected to an oxide film forming step S0 for forming an oxide film on the surface of the electrolytic copper powder.
  • the electrolytic copper powder has, for example, a bath composition of CuSO 4 ⁇ 5H 2 O: 5 to 50 g / L, free H 2 SO 4 : 50 to 250 g / L, a current density of 5 to 30 A / dm 2 , and a bath temperature of 20 to 60. It can be produced by electrolysis under the condition of ° C. and electrodepositing on the cathode.
  • the obtained electrolytic copper powder is preferably washed at a temperature of 70 to 150 ° C. in an oxygen-containing atmosphere in order to remove moisture after washing with water.
  • An oxygen-containing atmosphere means a state containing oxygen at least to the extent of the atmosphere, and may be an air atmosphere or a state in which oxygen is artificially supplied. In consideration, an air atmosphere is preferable.
  • the electrolytic copper powder reacts with oxygen in the gas, and an oxide film is formed on the surface of the electrolytic copper powder.
  • an oxide film is formed on the surface of the electrolytic copper powder.
  • it is preferably 20% or more of the theoretical weight when oxidized to copper, more preferably 30% or more, and further preferably 40% or more.
  • the present invention includes a dry pulverization step S1 in which electrolytic copper powder having an oxide film on the surface is pulverized in a dry manner to obtain electrolytic copper fine powder.
  • Electrolytic copper powder is soft and ductile, so it is difficult to grind finely. Therefore, the electrolytic copper powder is preferably pulverized in an oxygen-containing atmosphere. By pulverizing in an oxygen-containing atmosphere, the metal surface appearing by pulverization can be oxidized, and as a result, a new oxide film is formed. Therefore, the ductility of the electrolytic copper powder can be suppressed, and the electrolytic copper powder can be efficiently miniaturized.
  • the pulverization method is not particularly limited, but considering the manufacturing cost and efficiency, a method of colliding electrolytic copper powders in a fluid or colliding electrolytic copper powders with a collision plate in a fluid is preferable.
  • a method of colliding electrolytic copper powders in a fluid or colliding electrolytic copper powders with a collision plate in a fluid is preferable.
  • jet mills and cyclone mills are commercially available apparatuses such as jet mills and cyclone mills.
  • electrolytic copper fine powder can be obtained more efficiently.
  • the particle diameter of the electrolytic copper fine powder is not particularly limited, but the average particle diameter is preferably 5 ⁇ m or less, so that the oxidation step S2 described below can be performed efficiently, and preferably 4 ⁇ m or less. More preferably, it is more preferably 3 ⁇ m or less.
  • the maximum particle size is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the particle diameter is based on a volume sphere equivalent diameter when measured using a laser particle size distribution measuring instrument Macrotrac (manufactured by Nikkiso Co., Ltd.).
  • the present invention includes an oxidation step S2 for oxidizing the electrolytic copper fine powder obtained by the dry pulverization step S1.
  • the oxidation step S2 is preferably performed by heating the electrolytic copper fine powder at 300 ° C to 700 ° C. If it is this temperature range, the temperature which heat-processes will not be specifically limited, However, It is preferable to set with the particle diameter of electrolytic copper fine powder. For example, when the average particle diameter of the electrolytic copper fine powder is 5 ⁇ m or less, the electrolytic copper fine powder can be made into cupric oxide fine powder by heat treatment at a relatively low temperature. On the other hand, when the average particle diameter of the electrolytic copper fine powder exceeds 5 ⁇ m, heat treatment at a relatively high temperature is required to oxidize not only the surface of the electrolytic copper fine powder but also the center.
  • the electrolytic copper powder is pulverized to obtain the electrolytic copper fine powder, but the electrolytic copper fine powder is sintered and the particle size is increased. If it does so, the melt
  • the sintered cupric oxide powder is pulverized again even if the electrolytic copper fine powder is sintered.
  • the average particle diameter of the electrolytic copper fine powder is preferably 10 ⁇ m or less, and the maximum particle diameter is preferably 15 ⁇ m or less.
  • the heat treatment time depends on the heat treatment temperature.
  • the heat treatment time is preferably 5 hours or less, and when the heat treatment temperature is 500 ° C. to 700 ° C. Is preferably 3 hours or less.
  • the particle size of the second electrolytic copper fine powder is larger than that of the electrolytic copper fine powder, but in order to increase the solubility in the copper sulfate plating solution, It is preferable to suppress as much as possible. Therefore, the particle diameter of the cupric oxide fine copper powder is preferably about the same as that of the electrolytic copper fine powder. Specifically, the average particle diameter is preferably 5 ⁇ m or less, and preferably 4 ⁇ m or less. More preferably, it is more preferably 3 ⁇ m or less. The maximum particle size is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the cupric oxide fine powder obtained by the above production method is suitably used as a raw material for the electrolytic solution of the electrolytic copper plating apparatus.
  • the cupric oxide fine powder charged into the plating solution should not produce a dissolution residue.
  • cuprous oxide does not dissolve in the plating solution and becomes a residue, so it is necessary to avoid the production of fine cuprous oxide powder. Therefore, it is preferable that the purity of the cupric oxide fine powder in the cupric oxide fine powder is high, preferably 99% or more, and more preferably 99.5% or more. Since the cupric oxide fine powder obtained by the production method of the present invention is obtained by oxidizing the pulverized electrolytic copper fine powder by heat treatment, the electrolytic copper can be completely oxidized to cupric oxide. As a result, generation of cuprous oxide can be suppressed.
  • the solubility of the cupric oxide fine powder in the plating solution is high. 10 g of the cupric oxide fine powder obtained by the above production method was mixed with 228 g / L CuSO 4 .5H 2 O, 68 g / L free H 2 SO 4 and 60 mg / L chloride ion at 25 ° C. Is dissolved within 1 minute. In this respect, the cupric oxide fine powder obtained by the above production method is suitably used as a raw material for the electrolytic solution of the electrolytic copper plating apparatus.
  • cupric oxide fine powder obtained by the above production method is suitably used as a raw material for the electrolytic solution of the electrolytic copper plating apparatus.
  • a copper plating solution (copper sulfate aqueous solution) used for electrolytic plating of copper contains copper sulfate, sulfuric acid and chloride ions, and a pH lower than 1 is often used.
  • a known additive is added to the copper plating solution to improve the quality of the copper plating.
  • a problem is how to make a mechanism for supplying copper to the plating solution.
  • the copper source copper or a compound containing copper
  • the sulfate ion in the plating solution, etc. as the copper source dissolves.
  • C It is required that the additive contained in the plating solution does not decompose.
  • the cupric oxide fine powder obtained by the above production method can comply with any of the above (a) to (c).
  • a cupric oxide dissolution tank for dissolving the cupric oxide fine powder is provided separately from the plating tank for plating the electrolytic plating apparatus.
  • An aqueous solution (plating solution) may be circulated between the plating tank and the cupric oxide dissolution tank.
  • This cupric oxide dissolution tank returns an aqueous solution formed by dissolving cupric oxide fine powder in the aqueous solution supplied from the plating tank to the plating tank. It is preferable to attach a stirring mechanism such as a propeller to the cupric oxide dissolution tank to be used. Moreover, you may provide a well-known various filter between a plating tank and a cupric oxide dissolution tank for removal of a dust, a foreign material, etc.
  • Example 1 First, using a copper sulfate aqueous solution containing 32 g / L of CuSO 4 .5H 2 O and 55 g / L of free H 2 SO 4 , electrolysis was performed under conditions of an energization current density of 10 A / dm 2 and a bath temperature of 25 ° C. Copper powder was prepared. The electrolytic copper powder was thoroughly washed with water and then dried overnight at a temperature of 105 ° C. using a dryer.
  • this copper oxide powder was dry pulverized in an air atmosphere using a jet mill (device name: Nano Grinding Mill NJ-50, manufactured by Tokuju Kogakusha Co., Ltd.). Dry pulverization was carried out under the conditions of pulverization pressure: 1 MPa and supply rate: 300 g / h.
  • the pulverized electrolytic copper powder was heated in an electric furnace under an air atmosphere at a heating temperature of 500 ° C. for 3 hours to oxidize the electrolytic copper powder to obtain a cupric oxide fine powder according to Example 1. .
  • Example 2 Other than having made the supply rate at the time of dry pulverization 500 g / h, and oxidizing the pulverized electrolytic copper powder in an electric furnace in an air atmosphere at a heating temperature of 700 ° C. for 2 hours for 2 hours Obtained the cupric oxide fine powder based on Example 2 by the same method as described in Example 1.
  • Example 3 Example 1 except that the dry pulverization was repeated three times, and the pulverized electrolytic copper fine powder was kept in an electric furnace in an air atmosphere at a heating temperature of 300 ° C. for 5 hours to oxidize the electrolytic copper powder.
  • a cupric oxide fine powder according to Example 3 was obtained in the same manner as described.
  • FIG. 2 is an SEM image of the electrolytic copper powder after drying according to Example 1.
  • FIGS. 3 is an SEM image of the electrolytic copper fine powder according to Example 1
  • FIG. 4 is an SEM image of the electrolytic copper fine powder according to Comparative Example 1
  • FIG. 5 is an electrolytic copper fine powder according to Comparative Example 2. It is a SEM image of powder. Table 2 shows the result of observing the shape.
  • the electrolytic copper fine powders in Examples 1 to 3 were pulverized in a granular state.
  • the electrolytic copper fine powder in Comparative Examples 1 and 2 contained not only granular particles but also flat particles. This is presumed to be because the electrolytic copper powder could not be finely pulverized due to the ductility of metallic copper because the surface did not have an oxide film.
  • the average particle size and the maximum particle size of the electrolytic copper fine powder were measured. These particle diameters are based on the equivalent volume sphere diameters measured using a laser particle size distribution measuring instrument Macrotrac (manufactured by Nikkiso Co., Ltd.). The results are shown in Table 2.
  • the electrolytic copper fine powders in Examples 1 to 3 had an average particle size of 3.5 ⁇ m or less and a maximum particle size of 10 ⁇ m or less. From this, it was confirmed quantitatively that the electrolytic copper fine powders in Examples 1 to 3 were pulverized in a granular state.
  • the electrolytic copper fine powders in Comparative Examples 1 and 2 had an average particle size of 5.2 ⁇ m or more and a maximum particle size of 20 ⁇ m or more. From this, it has been quantitatively confirmed that the electrolytic copper fine powder in Comparative Examples 1 and 2 contains particles that are not properly pulverized.
  • FIG. 6 An example of the results is shown in FIG. 6 is an XRD pattern of a cupric oxide fine powder according to Example 1.
  • FIG. 6 From this XRD pattern, it was confirmed that the cupric oxide fine powder according to Example 1 was a CuO single phase.
  • illustration is abbreviate
  • the solubility with respect to a plating solution was added to 1 L of a plating solution while stirring with a stirrer at 25 ° C. with 10 g of cupric oxide fine powder according to Examples and Comparative Examples. Evaluation was made by measuring the time until the fine powder was completely dissolved.
  • the plating solution was a solution containing 228 g / L of CuSO 4 .5H 2 O, 68 g / L of free H 2 SO 4 and 60 mg / L of chloride ions. The results are shown in Table 3.
  • the cupric oxide fine powder according to the example could be dissolved in the plating solution within 35 seconds.
  • cupric oxide fine powder having high solubility in the plating solution can be provided even by the dry method.
  • the cupric oxide fine powder according to the comparative example could not be completely dissolved in the plating solution even after 20 minutes.
  • fine cupric oxide produced through a dry pulverization process in which electrolytic copper powder having an oxide film on the surface is pulverized in a dry process and an oxidation process in which electrolytic copper fine powder obtained by this dry pulverization process is oxidized. It was confirmed that the powder has both high purity, which is a conventional advantage of the dry method, and high solubility in a plating solution, which is a conventional advantage of the wet method. As a result, it was confirmed that it can be used very suitably as a copper source for replenishment of industrial copper plating solutions.

Abstract

Provided is a copper (II) oxide fine powder having both excellent purity and excellent solubility in a plating solution. A production method according to the present invention involves: a dry-mode pulverization step (S1) of pulverizing an electrolytic copper powder having an oxide coating film formed on the surface of particles thereof in a dry mode; and an oxidization step (S2) of oxidizing the electrolytic copper fine powder produced in the dry-mode pulverization step. It is preferred that the oxide coating film is formed by washing an electrolytic copper powder, which is produced by the electrolysis of a solution containing copper ions, with water and then drying the washed electrolytic copper powder at a temperature of 70 to 150˚C in an oxygen-containing atmosphere. It is also preferred that the dry-mode pulverization step (S1) is carried out in an oxygen-containing atmosphere and the oxidization step (S2) is carried out by heating the electrolytic copper fine powder at 300 to 700˚C.

Description

酸化第二銅微粉末及びその製造方法Cupric oxide fine powder and method for producing the same
 本発明は、酸化第二銅微粉末及びその製造方法に関する。 The present invention relates to cupric oxide fine powder and a method for producing the same.
 酸化第二銅微粉末は、顔料、塗料、触媒、陶磁器の着色剤や銅めっき液の補給用銅源等に用いられ、その製造方法は、湿式法と乾式法に大別される。 The cupric oxide fine powder is used for pigments, paints, catalysts, ceramic colorants, copper sources for replenishing copper plating solutions, etc., and the production methods are roughly classified into wet methods and dry methods.
 湿式法の一例として、塩化第二銅や硫酸銅の水溶液に水酸化ナトリウムを加えて水酸化銅を生成させた後、この水酸化銅を加熱することが挙げられる(特許文献1参照)。より詳しくは、塩化第二銅を含むプリント基板のエッチング廃液を苛性アルカリ(NaOH)で中和し、その中和した銅溶液と苛性アルカリ水溶液とを、温度40~50℃に保持した水溶液中に同時に滴下混合して、その混合した水溶液のpHを弱酸性から弱アルカリ性の範囲に維持しながら銅の水和物を生成させる。次いで、pHを12~13に調製し、70~80℃の温度に30分間保持した後、水洗、固液分離して酸化第二銅を製造することが挙げられる。 As an example of the wet method, sodium hydroxide is added to an aqueous solution of cupric chloride or copper sulfate to form copper hydroxide, and then the copper hydroxide is heated (see Patent Document 1). More specifically, the etching waste solution of the printed circuit board containing cupric chloride is neutralized with caustic (NaOH), and the neutralized copper solution and caustic aqueous solution are placed in an aqueous solution maintained at a temperature of 40 to 50 ° C. At the same time, the mixture is added dropwise to produce a copper hydrate while maintaining the pH of the mixed aqueous solution in the range of weakly acidic to weakly alkaline. Next, the pH is adjusted to 12 to 13, and kept at a temperature of 70 to 80 ° C. for 30 minutes, and then washed with water and solid-liquid separation to produce cupric oxide.
 湿式法の他の一例として、硫酸銅水溶液と水酸化ナトリウム水溶液とを30℃以下の温度で反応させて水酸化第二銅を生成し、この水酸化第二銅を60~80℃の温度に加熱、熟成して酸化第二銅を形成することが挙げられる(特許文献2参照)。一般に、湿式法で製造された酸化第二銅粉末は、銅めっき液への溶解性が速いという利点を有する。 As another example of the wet method, a copper sulfate aqueous solution and a sodium hydroxide aqueous solution are reacted at a temperature of 30 ° C. or lower to produce cupric hydroxide, and the cupric hydroxide is brought to a temperature of 60 to 80 ° C. Heating and aging to form cupric oxide (see Patent Document 2). In general, cupric oxide powder produced by a wet method has an advantage of fast solubility in a copper plating solution.
 しかしながら、酸化第二銅粉末を湿式法で製造すると、Naのほか、硫酸イオンに由来するS等の残留濃度が比較的高くなりがちであるという課題を有する。不純物を多く含む酸化第二銅粉末をめっき液に加えると、不純物に起因してめっきの不具合を生じ得る。例えば、特許文献1に記載の方法では、使用するエッチング廃液中において、プリント基板をエッチングするときに溶解する銅以外の不純物が含まれることのほか、中和のときに不純物として塩化ナトリウム(NaCl)が副生すること等から、不純物除去のために水洗工程が必要となる。さらには水洗しても完全に除去することは困難であるといった課題もあり、引用文献1に記載の方法で製造した酸化銅は、不純物をめっき液中に添加することになるため、添加とともにめっき皮膜特性が劣化してめっき液を更新しなければならないという課題がある。 However, when cupric oxide powder is produced by a wet method, there is a problem that the residual concentration of S and the like derived from sulfate ions tends to be relatively high in addition to Na. If cupric oxide powder containing a large amount of impurities is added to the plating solution, plating defects may occur due to the impurities. For example, in the method described in Patent Document 1, impurities other than copper dissolved when etching a printed circuit board are included in the etching waste liquid used, and sodium chloride (NaCl) is used as an impurity during neutralization. As a by-product, etc., a water washing step is required to remove impurities. Furthermore, there is also a problem that it is difficult to completely remove even by washing with water, and the copper oxide produced by the method described in the cited document 1 adds impurities into the plating solution. There is a problem in that the coating properties deteriorate and the plating solution must be renewed.
 また、スラリー状の酸化第二銅微粉末を乾燥する手法として、容器を加熱することで溶媒を気化して乾燥する方法や容器内を撹拌しながら加熱して乾燥する方法や熱風によって流動しているアルミナ等の媒体中にスラリーを投入し、媒体表面で乾燥した粉がはがれて熱風とともに排気されてサイクロン、バグフィルター等で乾燥粉体として回収する媒体流動式乾燥方法等が知られている。これらの方法は、乾燥方法としては工業的に確立された効率の良い方法である。しかしながら、乾燥された酸化第二銅微粉末の2次粒子を凝集形状に制御することが難しく、溶解性やハンドリング性を一定にコントロールすることが難しいという課題がある。 In addition, as a method of drying the slurry-like cupric oxide fine powder, a method of evaporating the solvent by heating the container, a method of drying by heating the container while stirring, or a method of heating with hot air There is known a medium fluidized drying method in which slurry is put into a medium such as alumina, powder dried on the surface of the medium is peeled off, exhausted with hot air, and recovered as a dry powder with a cyclone, bag filter or the like. These methods are industrially established and efficient methods as drying methods. However, there is a problem that it is difficult to control the secondary particles of the dried cupric oxide fine powder into an agglomerated shape, and it is difficult to control the solubility and handling properties to be constant.
 一方、乾式法の一例として、硝酸銅、硫酸銅、炭酸銅、水酸化銅等を空気中で600℃程度の温度に加熱して熱分解する方法が挙げられる(非特許文献1参照)。一般に、乾式法は、湿式法に比べ、得られる酸化第二銅の純度が高く、めっき液への溶解性に優れる。 On the other hand, as an example of the dry method, there is a method in which copper nitrate, copper sulfate, copper carbonate, copper hydroxide or the like is heated in air to a temperature of about 600 ° C. and thermally decomposed (see Non-Patent Document 1). In general, the dry method has a higher purity of cupric oxide obtained than the wet method, and is excellent in solubility in a plating solution.
 しかしながら、乾式法では、酸化第二銅粉末どうしで焼結しやすく、酸化第二銅粉末が粗大化してめっき液への溶解速度が極めて遅くなることがあり得る。溶解性を向上させるためには、得られた酸化銅粉が微細な粉末状態であることが要求されるが、乾式法で得られる酸化第二銅粉は焼結によって粒子が大きくなるため、大きくなった酸化第二銅粉を粉砕することが必要となる。特に、金属銅を原料に用いた場合、熱処理前に粉砕すると、金属銅は柔らかく延性を持つため、細かく粉砕することは難しい。このため、完全に酸化銅まで熱処理を行うためには、より高温に加熱する必要があるが、高温での熱処理によって再び銅粒子の焼結が発生するため、熱処理後再度粉砕する必要が生じる等の点で乾式法が効率的な方法であるとはいえなかった。 However, in the dry method, it is easy to sinter between cupric oxide powders, and the cupric oxide powder becomes coarse and the dissolution rate in the plating solution may become extremely slow. In order to improve the solubility, the obtained copper oxide powder is required to be in a fine powder state, but the cupric oxide powder obtained by the dry method has a large particle size due to sintering. It is necessary to pulverize the cupric oxide powder. In particular, when metallic copper is used as a raw material, it is difficult to finely grind metal copper because it is soft and ductile when ground before heat treatment. For this reason, in order to heat-treat completely to copper oxide, it is necessary to heat to a higher temperature. However, sintering of the copper particles occurs again by the heat treatment at a high temperature, so that it is necessary to grind again after the heat treatment, etc. In this respect, the dry method was not an efficient method.
 乾式法の効率を高めるため、硫酸銅溶液中で作製した電解銅粉をジェットミル粉砕法で粉砕することが提案されている(特許文献3~5参照)。特許文献3~5によると、電解銅粉を微細に粉砕するためには、粉砕原料となる電解銅粉の粒子径が重要な要素であるといえる。例えば、特許文献3では、10μm以下の銅粉を得るためには、原料となる電解銅粉の大きさが比表面積で2000cm/g以上の大きさでなければならないことが示されている。また、特許文献5においても、ジェットミルでの粉砕法を、粒子相互を衝突させる方式から衝突板に衝突させる衝突板方式のジェットミルに変更しても、粉砕原料である電解銅粉の平均粒径が20~35μmであるとされる。 In order to increase the efficiency of the dry method, it has been proposed to pulverize electrolytic copper powder prepared in a copper sulfate solution by a jet mill pulverization method (see Patent Documents 3 to 5). According to Patent Documents 3 to 5, in order to finely pulverize the electrolytic copper powder, it can be said that the particle diameter of the electrolytic copper powder as a pulverized raw material is an important factor. For example, Patent Document 3 shows that in order to obtain a copper powder of 10 μm or less, the size of the electrolytic copper powder as a raw material must be 2000 cm 2 / g or more in terms of specific surface area. Also in Patent Document 5, even if the pulverization method in the jet mill is changed from a method of colliding particles to a collision plate type jet mill in which the particles collide with a collision plate, the average particle size of electrolytic copper powder as a pulverization raw material The diameter is assumed to be 20 to 35 μm.
 電解銅粉の形成形態は樹脂状に成長した構造であるため、粒子を衝突させて粉砕する場合、樹脂状の枝の部分より折れることによって細かく粉砕されるために、粉砕後の粒子を細かくするためには、粉砕原料である電解銅粉の形状を細かくしておく必要がある。樹脂状の枝よりも更に細かく粉砕するためには、ジェットミル方式では限界がある。しかしながら、別な粉砕機であるクラッシャー、ボールミル、振動ミルで粉砕すると、金属銅の延性などの特性によって、粉砕後の電解銅粉が凝集したもの、あるいは平板状のものとなるため、やはり、電解銅粉を微細化することは難しい。 Since the formation form of the electrolytic copper powder is a resin-grown structure, when pulverizing by colliding the particles, it is finely pulverized by breaking from the resin-like branches, so that the particles after pulverization are made fine For this purpose, it is necessary to make the shape of the electrolytic copper powder, which is a pulverized raw material, fine. In order to pulverize more finely than resin-like branches, there is a limit in the jet mill method. However, when pulverized by another crusher such as a crusher, a ball mill, or a vibration mill, the electrolytic copper powder after pulverization becomes agglomerated or flat due to properties such as ductility of metallic copper. It is difficult to refine the copper powder.
特開平5-319825号公報Japanese Patent Laid-Open No. 5-319855 特開平3-80116号公報Japanese Patent Laid-Open No. 3-80116 特開昭62-199705号公報JP 62-199705 A 特開平2-182809号公報Japanese Patent Laid-Open No. 2-182809 特開2000-80408号公報Japanese Patent Laid-Open No. 2000-80408
 そこで、本発明は、電解銅粉を微細化し、めっき液への溶解性を高めることに着目してなされたものであり、その課題とするところは、乾式法の従来の利点である、高純度であることを生かしつつ、めっき液への溶解性を高めることである。 Therefore, the present invention has been made by focusing on reducing the electrolytic copper powder and improving the solubility in the plating solution, and the subject is high purity, which is the conventional advantage of the dry method. It is to improve the solubility in the plating solution while taking advantage of this fact.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、表面に酸化皮膜を有する電解銅粉を乾式で粉砕し、この粉砕によって得られる電解銅微粉末を酸化することで上記の目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention pulverized electrolytic copper powder having an oxide film on the surface in a dry manner, and oxidized the electrolytic copper fine powder obtained by this pulverization, thereby The inventors have found that the object can be achieved and have completed the present invention.
 具体的には、本発明では、以下のようなものを提供する。 Specifically, the present invention provides the following.
 (1)本発明は、表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、この乾式粉砕工程によって得られる電解銅微粉末を酸化する酸化工程とを含む、酸化第二銅微粉末の製造方法である。 (1) The present invention comprises a dry pulverization step of pulverizing electrolytic copper powder having an oxide film on the surface by a dry method, and an oxidation step of oxidizing electrolytic copper fine powder obtained by this dry pulverization step. It is a manufacturing method of a fine powder.
 (2)また、本発明は、前記酸化皮膜が、銅イオン含有溶液の電気分解によって得られる電解銅粉を水洗した後、酸素含有雰囲気において70℃~150℃の温度で乾燥することによって形成される、(1)に記載の酸化第二銅微粉末の製造方法である。 (2) Further, in the present invention, the oxide film is formed by washing electrolytic copper powder obtained by electrolysis of a copper ion-containing solution with water and then drying at 70 ° C. to 150 ° C. in an oxygen-containing atmosphere. The method for producing cupric oxide fine powder according to (1).
 (3)また、本発明は、前記乾式粉砕工程が酸素含有雰囲気で行われる、(1)又は(2)に記載の酸化第二銅微粉末の製造方法である。 (3) Moreover, this invention is a manufacturing method of the cupric oxide fine powder as described in (1) or (2) with which the said dry-type grinding | pulverization process is performed by oxygen-containing atmosphere.
 (4)また、本発明は、前記酸化工程が前記電解銅微粉末を300℃~700℃で熱することによって行われる、(1)から(3)のいずれかに記載の酸化第二銅微粉末の製造方法である。 (4) Further, in the present invention, the cupric oxide fine powder according to any one of (1) to (3), wherein the oxidation step is performed by heating the electrolytic copper fine powder at 300 ° C. to 700 ° C. It is a manufacturing method of powder.
 (5)また、本発明は、(1)から(4)のいずれかに記載の製造方法によって得られる酸化第二銅微粉末が溶解された硫酸銅水溶液を電解銅めっき装置の電解液として使用する、銅めっき方法である。 (5) Moreover, this invention uses the copper sulfate aqueous solution in which the cupric oxide fine powder obtained by the manufacturing method in any one of (1) to (4) was melt | dissolved as electrolyte solution of an electrolytic copper plating apparatus. This is a copper plating method.
 (6)また、本発明は、平均粒子径が5μm以下であり、最大粒子径が15μm以下であり、10gの酸化第二銅微粉末を、25℃における、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する硫酸含有溶液1Lに浸漬して行う溶解試験において、溶解時間が1分以下である、酸化第二銅微粉末である。 (6) Further, according to the present invention, the average particle size is 5 μm or less, the maximum particle size is 15 μm or less, and 10 g of cupric oxide fine powder is 228 g / L of CuSO 4 .5H 2 at 25 ° C. In a dissolution test performed by immersing in 1 L of a sulfuric acid-containing solution containing O, 68 g / L of free H 2 SO 4 and 60 mg / L of chloride ions, the dissolution time is 1 minute or less. Copper fine powder.
 本発明によると、酸化銅の純度が高く、かつ、めっき液への溶解性が高い酸化第二銅微粉末を提供できる。この酸化第二銅微粉末は、工業的に用いる銅めっき液の補給用銅源として好適に使用される。 According to the present invention, it is possible to provide cupric oxide fine powder having high copper oxide purity and high solubility in a plating solution. This cupric oxide fine powder is suitably used as a copper source for replenishing a copper plating solution used industrially.
本発明に係る製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method which concerns on this invention. 表面に酸化皮膜を有する酸化銅粉の走査電子顕微鏡画像(SEM画像)を示す。The scanning electron microscope image (SEM image) of the copper oxide powder which has an oxide film on the surface is shown. 実施例1に係る電解銅微粉末のSEM画像を示す。The SEM image of the electrolytic copper fine powder which concerns on Example 1 is shown. 比較例1に係る電解銅微粉末のSEM画像を示す。The SEM image of the electrolytic copper fine powder which concerns on the comparative example 1 is shown. 比較例2に係る電解銅微粉末のSEM画像を示す。The SEM image of the electrolytic copper fine powder which concerns on the comparative example 2 is shown. 実施例1に係る酸化第二銅微粉末のX線回折パターンを示す。The X-ray-diffraction pattern of the cupric oxide fine powder concerning Example 1 is shown.
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. Can do.
<酸化第二銅微粉末の製造方法>
 本発明の製造方法は、表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程S1と、この乾式粉砕工程S1によって得られる電解銅微粉末を酸化する酸化工程S2とを含む。なお、本明細書では、電解銅ないし酸化銅の状態を明確に区別するため、乾式粉砕前の電解銅を「電解銅粉」といい、乾式粉砕後であるが酸化前である電解銅を「電解銅微粉末」といい、酸化後の酸化銅を「酸化第二銅微粉末」という。
<Manufacturing method of cupric oxide fine powder>
The production method of the present invention includes a dry pulverization step S1 in which electrolytic copper powder having an oxide film on the surface is pulverized in a dry manner, and an oxidation step S2 in which electrolytic copper fine powder obtained by the dry pulverization step S1 is oxidized. In this specification, in order to clearly distinguish the state of electrolytic copper or copper oxide, the electrolytic copper before dry pulverization is referred to as “electrolytic copper powder”, and the electrolytic copper after dry pulverization but before oxidation is expressed as “ It is called “electrolytic copper fine powder”, and the oxidized copper oxide is called “cupric oxide fine powder”.
〔酸化皮膜形成工程S0〕
 本発明において、乾式粉砕工程S1で用いる電解銅粉は、表面に酸化皮膜を有するものであれば、酸化皮膜の形成手法はどのようなものであってもよいが、一例として、硫酸銅溶液中で銅の電気分解を行うことによって電極表面に電解銅粉を析出させ、回収した後、この電解銅粉の表面に酸化皮膜を形成する酸化皮膜形成工程S0を経たものが挙げられる。
[Oxide film forming step S0]
In the present invention, the electrolytic copper powder used in the dry pulverization step S1 may have any method for forming an oxide film as long as it has an oxide film on its surface. The electrolytic copper powder is deposited on the surface of the electrode by electrolysis of copper and collected, and then subjected to an oxide film forming step S0 for forming an oxide film on the surface of the electrolytic copper powder.
 電解銅粉は、例えば、CuSO・5HO:5~50g/L、遊離HSO:50~250g/Lの浴組成で、電流密度5~30A/dm、浴温20~60℃の条件で電解し、陰極上に電析させることによって製造できる。 The electrolytic copper powder has, for example, a bath composition of CuSO 4 · 5H 2 O: 5 to 50 g / L, free H 2 SO 4 : 50 to 250 g / L, a current density of 5 to 30 A / dm 2 , and a bath temperature of 20 to 60. It can be produced by electrolysis under the condition of ° C. and electrodepositing on the cathode.
 得られた電解銅粉は、水洗によって洗浄した後、水分を除去するため、酸素含有雰囲気において70~150℃の温度で乾燥させることが好ましい。 The obtained electrolytic copper powder is preferably washed at a temperature of 70 to 150 ° C. in an oxygen-containing atmosphere in order to remove moisture after washing with water.
 酸素含有雰囲気とは、少なくとも大気の程度に酸素を含有する状態であることをいい、空気雰囲気であってもよいし、人工的に酸素を供給する状態下であってもよいが、量産コストを考慮すると空気雰囲気であることが好ましい。 An oxygen-containing atmosphere means a state containing oxygen at least to the extent of the atmosphere, and may be an air atmosphere or a state in which oxygen is artificially supplied. In consideration, an air atmosphere is preferable.
 上記の乾燥を行うことによって、電解銅粉と、気体中の酸素とが反応し、電解銅粉の表面に酸化皮膜が形成される。酸化皮膜の形成の程度を制御する必要は特になく、大気中において一般的な乾燥器の中で水洗後の電解銅粉を乾燥させることで足りるが、電解銅粉の全てが完全に酸化第二銅に酸化した場合の理論重量に対して20%以上酸化していることが好ましく、30%以上進行していることがより好ましく、40%以上進行していることがさらに好ましい。 By performing the above drying, the electrolytic copper powder reacts with oxygen in the gas, and an oxide film is formed on the surface of the electrolytic copper powder. There is no need to control the degree of formation of the oxide film, and it is sufficient to dry the electrolytic copper powder after washing with water in a general dryer in the atmosphere, but all of the electrolytic copper powder is completely oxidized. It is preferably 20% or more of the theoretical weight when oxidized to copper, more preferably 30% or more, and further preferably 40% or more.
〔乾式粉砕工程S1〕
 本発明は、表面に酸化皮膜を有する電解銅粉を乾式で粉砕し、電解銅微粉末を得る乾式粉砕工程S1を含む。
[Dry grinding process S1]
The present invention includes a dry pulverization step S1 in which electrolytic copper powder having an oxide film on the surface is pulverized in a dry manner to obtain electrolytic copper fine powder.
 電解銅粉は柔かく延性をもつため、細かく粉砕することは難しい。そこで、電解銅粉の粉砕は、酸素含有雰囲気で行うことが好ましい。酸素含有雰囲気で粉砕することにより、粉砕によって現れる金属表面を酸化できるため、結果として新たな酸化皮膜が形成される。そのため、電解銅粉の延性を抑えることができ、電解銅粉を効率よく微細化できる。 Electrolytic copper powder is soft and ductile, so it is difficult to grind finely. Therefore, the electrolytic copper powder is preferably pulverized in an oxygen-containing atmosphere. By pulverizing in an oxygen-containing atmosphere, the metal surface appearing by pulverization can be oxidized, and as a result, a new oxide film is formed. Therefore, the ductility of the electrolytic copper powder can be suppressed, and the electrolytic copper powder can be efficiently miniaturized.
 粉砕方法は特に限定されるものではないが、製造コストや効率を考慮すると、流体中で電解銅粉どうしを衝突、又は電解銅粉を衝突板に衝突させて粉砕させる方式が好ましく、具体的には、ジェットミル、サイクロンミル等の名称で市販されている装置が挙げられる。 The pulverization method is not particularly limited, but considering the manufacturing cost and efficiency, a method of colliding electrolytic copper powders in a fluid or colliding electrolytic copper powders with a collision plate in a fluid is preferable. Are commercially available apparatuses such as jet mills and cyclone mills.
 また、粉砕装置と分級装置とを組み合わせることにより、より効率的に電解銅微粉末を得ることができる。 Further, by combining a pulverizer and a classifier, electrolytic copper fine powder can be obtained more efficiently.
 電解銅微粉末の粒子径は特に限定されるものでないが、続いて説明する酸化工程S2を効率的に行うことができるようにするため、平均粒子径は5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下にすることがさらに好ましい。また、最大粒子径は15μm以下であることが好ましく、10μm以下であることがより好ましい。なお、本明細書では、特に断りのない限り、粒子径は、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定したときの体積球相当径によるものとする。 The particle diameter of the electrolytic copper fine powder is not particularly limited, but the average particle diameter is preferably 5 μm or less, so that the oxidation step S2 described below can be performed efficiently, and preferably 4 μm or less. More preferably, it is more preferably 3 μm or less. The maximum particle size is preferably 15 μm or less, more preferably 10 μm or less. In the present specification, unless otherwise specified, the particle diameter is based on a volume sphere equivalent diameter when measured using a laser particle size distribution measuring instrument Macrotrac (manufactured by Nikkiso Co., Ltd.).
〔酸化工程S2〕
 本発明は、乾式粉砕工程S1によって得られる電解銅微粉末を酸化する酸化工程S2を含む。
[Oxidation step S2]
The present invention includes an oxidation step S2 for oxidizing the electrolytic copper fine powder obtained by the dry pulverization step S1.
 酸化工程S2は、電解銅微粉末を300℃~700℃で熱することによって行われることが好ましい。この温度範囲であれば、熱処理する温度は特に限定されるものでないが、電解銅微粉末の粒子径によって設定することが好ましい。例えば、電解銅微粉末の平均粒子径が5μm以下である場合、比較的低温での熱処理で電解銅微粉末を酸化第二銅微粉末にすることができる。一方、電解銅微粉末の平均粒子径が5μmを超える場合、電解銅微粉末の表面のみならず、中心まで酸化するには、比較的高温での熱処理を要する。 The oxidation step S2 is preferably performed by heating the electrolytic copper fine powder at 300 ° C to 700 ° C. If it is this temperature range, the temperature which heat-processes will not be specifically limited, However, It is preferable to set with the particle diameter of electrolytic copper fine powder. For example, when the average particle diameter of the electrolytic copper fine powder is 5 μm or less, the electrolytic copper fine powder can be made into cupric oxide fine powder by heat treatment at a relatively low temperature. On the other hand, when the average particle diameter of the electrolytic copper fine powder exceeds 5 μm, heat treatment at a relatively high temperature is required to oxidize not only the surface of the electrolytic copper fine powder but also the center.
 しかしながら、熱処理を高温で行うと、せっかく電解銅粉を粉砕して電解銅微粉末を得たにもかかわらず、電解銅微粉末どうしが焼結して粒子径が大きくなってしまう。そうすると、酸化第二電解銅微粉末のめっき液への溶解特性が低くなる。 However, when the heat treatment is performed at a high temperature, the electrolytic copper powder is pulverized to obtain the electrolytic copper fine powder, but the electrolytic copper fine powder is sintered and the particle size is increased. If it does so, the melt | dissolution characteristic to the plating solution of a cupric oxide copper fine powder will become low.
 酸化第二電解銅微粉末のめっき液への溶解特性が低くなることを回避するため、たとえ電解銅微粉末どうしが焼結した場合であっても、焼結した酸化第二銅粉を再度粉砕し、酸化第二電解銅微粉末にすればよいが、再度の粉砕は製造コストの高騰につながるため、粉砕の回数は1回に留めることが好ましい。この観点から、電解銅微粉末の平均粒子径は10μm以下であることが好ましく、最大粒子径は15μm以下であることが好ましい。 In order to avoid lowering the dissolution properties of cupric oxide fine powder in the plating solution, the sintered cupric oxide powder is pulverized again even if the electrolytic copper fine powder is sintered. However, although it is sufficient to use cupric oxide copper fine powder, re-pulverization leads to an increase in manufacturing cost, so it is preferable to limit the number of pulverizations to one. From this viewpoint, the average particle diameter of the electrolytic copper fine powder is preferably 10 μm or less, and the maximum particle diameter is preferably 15 μm or less.
 また、熱処理の時間は熱処理温度に依存し、熱処理温度が300℃~500℃である場合、熱処理時間を5時間以下にすることが好ましく、熱処理温度が500℃~700℃である場合、熱処理時間を3時間以下にすることが好ましい。 The heat treatment time depends on the heat treatment temperature. When the heat treatment temperature is 300 ° C. to 500 ° C., the heat treatment time is preferably 5 hours or less, and when the heat treatment temperature is 500 ° C. to 700 ° C. Is preferably 3 hours or less.
 電解銅微粉末どうしの焼結により、酸化第二電解銅微粉末の粒子径は、電解銅微粉末のそれよりも大きくなるが、硫酸銅めっき液への溶解性を高めるため、この焼結はできるだけ抑えることが好ましい。そのため、酸化第二電解銅微粉末の粒子径は、電解銅微粉末のそれと同程度であることが好ましく、具体的に、平均粒子径は5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下にすることがさらに好ましい。また、最大粒子径は15μm以下であることが好ましく、10μm以下であることがより好ましい。 Due to the sintering of the electrolytic copper fine powders, the particle size of the second electrolytic copper fine powder is larger than that of the electrolytic copper fine powder, but in order to increase the solubility in the copper sulfate plating solution, It is preferable to suppress as much as possible. Therefore, the particle diameter of the cupric oxide fine copper powder is preferably about the same as that of the electrolytic copper fine powder. Specifically, the average particle diameter is preferably 5 μm or less, and preferably 4 μm or less. More preferably, it is more preferably 3 μm or less. The maximum particle size is preferably 15 μm or less, more preferably 10 μm or less.
 ところで、上記の製造方法によって得られる酸化第二銅微粉末は、電解銅めっき装置の電解液の原料として好適に使用される。めっき液に投入される酸化第二銅微粉末は、溶解残渣を生じるものであってはならない。特に、酸化第一銅は、めっき液に溶解せずに残渣となることから、酸化第一銅微粉末が生成することを避ける必要がある。そのため、酸化第二銅微粉末における酸化第二銅微粉末の純度は高いことが好ましく、99%以上であることが好ましく、99.5%以上であることがより好ましい。本発明の製造方法によって得られる酸化第二銅微粉末は、粉砕した電解銅微粉末を熱処理によって酸化したものであるため、電解銅を酸化第二銅にまで完全に酸化することができる。その結果、酸化第一銅が生じることを抑えることができる。 Incidentally, the cupric oxide fine powder obtained by the above production method is suitably used as a raw material for the electrolytic solution of the electrolytic copper plating apparatus. The cupric oxide fine powder charged into the plating solution should not produce a dissolution residue. In particular, cuprous oxide does not dissolve in the plating solution and becomes a residue, so it is necessary to avoid the production of fine cuprous oxide powder. Therefore, it is preferable that the purity of the cupric oxide fine powder in the cupric oxide fine powder is high, preferably 99% or more, and more preferably 99.5% or more. Since the cupric oxide fine powder obtained by the production method of the present invention is obtained by oxidizing the pulverized electrolytic copper fine powder by heat treatment, the electrolytic copper can be completely oxidized to cupric oxide. As a result, generation of cuprous oxide can be suppressed.
 また、めっき液への銅源の供給は、めっき液に含まれる銅源が減少する都度、速やかに行う必要がある。そのため、酸化第二銅微粉末のめっき液への溶解度は高いことが好ましい。上記の製造方法によって得られる酸化第二銅微粉末10gを、25℃における、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する硫酸含有溶液1Lに浸漬すると、1分以内に溶解する。この点で、上記の製造方法によって得られる酸化第二銅微粉末は、電解銅めっき装置の電解液の原料として好適に使用される。 Moreover, it is necessary to supply the copper source to the plating solution promptly every time the copper source contained in the plating solution decreases. Therefore, it is preferable that the solubility of the cupric oxide fine powder in the plating solution is high. 10 g of the cupric oxide fine powder obtained by the above production method was mixed with 228 g / L CuSO 4 .5H 2 O, 68 g / L free H 2 SO 4 and 60 mg / L chloride ion at 25 ° C. Is dissolved within 1 minute. In this respect, the cupric oxide fine powder obtained by the above production method is suitably used as a raw material for the electrolytic solution of the electrolytic copper plating apparatus.
<酸化第二銅微粉末を用いた銅めっき方法>
 上記の製造方法によって得られる酸化第二銅微粉末は、電解銅めっき装置の電解液の原料として好適に使用される。
<Copper plating method using cupric oxide fine powder>
The cupric oxide fine powder obtained by the above production method is suitably used as a raw material for the electrolytic solution of the electrolytic copper plating apparatus.
 銅を電解めっきする際に用いる銅めっき液(硫酸銅水溶液)は、硫酸銅、硫酸及び塩化物イオンを含有し、pHは1よりも低いものが用いられることが多い。そして、この銅めっき液には、銅めっきの品質向上のため公知の添加剤が加えられている。 A copper plating solution (copper sulfate aqueous solution) used for electrolytic plating of copper contains copper sulfate, sulfuric acid and chloride ions, and a pH lower than 1 is often used. A known additive is added to the copper plating solution to improve the quality of the copper plating.
 一方、銅の電解めっきを行うと、めっき液中の銅が析出し、めっき液の銅濃度が低下する。そこで、めっき液の銅濃度の低下を防ぐ為、陽極に銅を用いて陽極を溶解しながら銅電解めっきを行う方法と、陽極に導電性酸化物セラミック等で覆われたチタン等からなる不溶性陽極を用いるとともに、めっき液へ銅を供給する機構を備えた方法とが知られている。 On the other hand, when electrolytic plating of copper is performed, copper in the plating solution is precipitated, and the copper concentration of the plating solution is lowered. Therefore, in order to prevent a decrease in the copper concentration of the plating solution, a method of performing copper electroplating while dissolving the anode using copper as the anode, and an insoluble anode made of titanium or the like covered with a conductive oxide ceramic on the anode And a method having a mechanism for supplying copper to the plating solution is known.
 ところで、後者の方法である場合、めっき液に銅を供給する機構をどのようにするかが課題となる。めっき液へ銅を供給するには、(ア)めっき液に銅源(銅又は銅を含む化合物)が速やかに溶解すること、(イ)銅源が溶解することでめっき液中の硫酸イオン等の割合が大きく変化しないこと、(ウ)めっき液に含まれる添加剤が分解しないことが求められる。 By the way, in the case of the latter method, a problem is how to make a mechanism for supplying copper to the plating solution. In order to supply copper to the plating solution, (a) the copper source (copper or a compound containing copper) dissolves rapidly in the plating solution, and (b) the sulfate ion in the plating solution, etc., as the copper source dissolves. (C) It is required that the additive contained in the plating solution does not decompose.
 上記の製造方法によって得られる酸化第二銅微粉末は、上記(ア)~(ウ)のいずれにも応じることができる。 The cupric oxide fine powder obtained by the above production method can comply with any of the above (a) to (c).
 電解めっき装置を用いて酸化第二銅微粉末を硫酸銅水溶液に供給するには、電解めっき装置のめっきを行うめっき槽とは別に酸化第二銅微粉末を溶解する酸化第二銅溶解槽を設け、めっき槽と酸化第二銅溶解槽の間で水溶液(めっき液)を循環させればよい。 In order to supply the cupric oxide fine powder to the copper sulfate aqueous solution using the electrolytic plating apparatus, a cupric oxide dissolution tank for dissolving the cupric oxide fine powder is provided separately from the plating tank for plating the electrolytic plating apparatus. An aqueous solution (plating solution) may be circulated between the plating tank and the cupric oxide dissolution tank.
 この酸化第二銅溶解槽は、めっき槽から供給された水溶液に酸化第二銅微粉末を溶解させて形成した水溶液を、めっき槽へ送り返す。使用する酸化第二銅溶解槽には、プロペラなどの攪拌機構を付属させることが好ましい。また、めっき槽と酸化第二銅溶解槽の間には、ゴミや異物等の除去のため公知の各種フィルターを備えてもよい。 This cupric oxide dissolution tank returns an aqueous solution formed by dissolving cupric oxide fine powder in the aqueous solution supplied from the plating tank to the plating tank. It is preferable to attach a stirring mechanism such as a propeller to the cupric oxide dissolution tank to be used. Moreover, you may provide a well-known various filter between a plating tank and a cupric oxide dissolution tank for removal of a dust, a foreign material, etc.
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these descriptions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 まず、32g/LのCuSO・5HOと、55g/Lの遊離HSOとを含有する硫酸銅水溶液を用いて、通電電流密度10A/dm、浴温25℃の条件で電解銅粉を調製した。この電解銅粉を十分に水洗した後、乾燥器を用いて105℃の温度で一晩乾燥した。
<Example 1>
First, using a copper sulfate aqueous solution containing 32 g / L of CuSO 4 .5H 2 O and 55 g / L of free H 2 SO 4 , electrolysis was performed under conditions of an energization current density of 10 A / dm 2 and a bath temperature of 25 ° C. Copper powder was prepared. The electrolytic copper powder was thoroughly washed with water and then dried overnight at a temperature of 105 ° C. using a dryer.
 続いて、この酸化銅粉をジェットミル(装置名:ナノグラインディングミルNJ-50,徳寿工作所社製)を用いて空気雰囲気下で乾式粉砕した。乾式粉砕は、粉砕圧力:1MPa,供給速度:300g/hの条件で行った。 Subsequently, this copper oxide powder was dry pulverized in an air atmosphere using a jet mill (device name: Nano Grinding Mill NJ-50, manufactured by Tokuju Kogakusha Co., Ltd.). Dry pulverization was carried out under the conditions of pulverization pressure: 1 MPa and supply rate: 300 g / h.
 続いて、粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度500℃、3時間保持して電解銅粉を酸化し、実施例1に係る酸化第二銅微粉末を得た。 Subsequently, the pulverized electrolytic copper powder was heated in an electric furnace under an air atmosphere at a heating temperature of 500 ° C. for 3 hours to oxidize the electrolytic copper powder to obtain a cupric oxide fine powder according to Example 1. .
<実施例2>
 乾式粉砕する際の供給速度を500g/hにしたこと、及び粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度700℃、2時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で実施例2に係る酸化第二銅微粉末を得た。
<Example 2>
Other than having made the supply rate at the time of dry pulverization 500 g / h, and oxidizing the pulverized electrolytic copper powder in an electric furnace in an air atmosphere at a heating temperature of 700 ° C. for 2 hours for 2 hours Obtained the cupric oxide fine powder based on Example 2 by the same method as described in Example 1.
<実施例3>
 乾式粉砕を3回繰り返したこと、及び粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度300℃、5時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で実施例3に係る酸化第二銅微粉末を得た。
<Example 3>
Example 1 except that the dry pulverization was repeated three times, and the pulverized electrolytic copper fine powder was kept in an electric furnace in an air atmosphere at a heating temperature of 300 ° C. for 5 hours to oxidize the electrolytic copper powder. A cupric oxide fine powder according to Example 3 was obtained in the same manner as described.
<比較例1>
 市販の電解銅粉(商品名:MF-D2,三井金属鉱業(株)社製)を用いたこと、及び粉砕した電解銅粉を電気炉内で、空気雰囲気下で加熱温度700℃、3時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で比較例1に係る酸化第二銅微粉末を得た。
<Comparative Example 1>
Using commercially available electrolytic copper powder (trade name: MF-D2, manufactured by Mitsui Mining & Smelting Co., Ltd.) and heating the pulverized electrolytic copper powder in an electric furnace in an air atmosphere at 700 ° C. for 3 hours A cupric oxide fine powder according to Comparative Example 1 was obtained by the same method as that described in Example 1 except that the electrolytic copper powder was oxidized by holding.
<比較例2>
 電解銅粉の乾燥を真空で行ったこと、及び粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度700℃、3時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で比較例2に係る酸化第二銅微粉末を得た。
<Comparative Example 2>
Implemented except that the electrolytic copper powder was dried in a vacuum and that the pulverized electrolytic copper powder was oxidized in an electric furnace at a heating temperature of 700 ° C. for 3 hours in an air atmosphere. A cupric oxide fine powder according to Comparative Example 2 was obtained in the same manner as described in Example 1.
<評価>
〔電解銅粉について〕
[表面の色相]
 電解銅粉を乾燥した後における電解銅粉の表面の色相を目視で観察した。結果を表2に示す。実施例1~3における電解銅粉の表面は褐色に変色していた。その結果、表面に酸化皮膜が形成されていることが目視で確認された。一方、比較例1及び2における電解銅粉は赤色を有していた。このことから、表面に酸化皮膜がほとんど形成されていないことが目視で確認された。
<Evaluation>
[Electrolytic copper powder]
[Surface hue]
The hue of the surface of the electrolytic copper powder after the electrolytic copper powder was dried was visually observed. The results are shown in Table 2. The surface of the electrolytic copper powder in Examples 1 to 3 turned brown. As a result, it was visually confirmed that an oxide film was formed on the surface. On the other hand, the electrolytic copper powder in Comparative Examples 1 and 2 had a red color. From this, it was visually confirmed that an oxide film was hardly formed on the surface.
[酸化の程度]
 乾燥後の電解銅粉について、乾燥後の電解銅粉の重量と、電解銅粉の全てが完全に酸化第二銅に酸化した場合の理論重量とを対比することで、酸化の程度を推定した。結果を表2に示す。実施例1~3における電解銅粉は、理論重量に対して約40%の酸化が進行していた。このことから、実施例1~3における電解銅粉は、表面に酸化皮膜が形成されていることが定量的に確認された。一方、比較例1における電解銅粉は、理論重量に対して約0.4%の酸化しか進行しておらず、比較例2における電解銅粉は、理論重量に対して約0.5%の酸化しか進行していなかった。このことから、比較例1及び2における電解銅粉は、表面に酸化皮膜がほとんど形成されていないことが定量的に確認された。
[Degree of oxidation]
About the electrolytic copper powder after drying, the degree of oxidation was estimated by comparing the weight of the electrolytic copper powder after drying with the theoretical weight when all of the electrolytic copper powder was completely oxidized to cupric oxide. . The results are shown in Table 2. The electrolytic copper powders in Examples 1 to 3 were oxidized by about 40% with respect to the theoretical weight. From this, it was quantitatively confirmed that the electrolytic copper powder in Examples 1 to 3 had an oxide film formed on the surface. On the other hand, the electrolytic copper powder in Comparative Example 1 has progressed only about 0.4% of oxidation relative to the theoretical weight, and the electrolytic copper powder in Comparative Example 2 has about 0.5% of theoretical weight. Only oxidation progressed. From this, it was quantitatively confirmed that the electrolytic copper powder in Comparative Examples 1 and 2 had almost no oxide film formed on the surface.
[酸化銅粉のSEM画像]
 乾燥後の電解銅粉の走査電子顕微鏡画像(以下、「SEM画像」ともいう。)を撮影した。結果の一例を図2に示す。図2は、実施例1に係る乾燥後の電解銅粉のSEM画像である。
[SEM image of copper oxide powder]
A scanning electron microscope image (hereinafter also referred to as “SEM image”) of the dried electrolytic copper powder was taken. An example of the results is shown in FIG. FIG. 2 is an SEM image of the electrolytic copper powder after drying according to Example 1.
[平均粒子径]
 乾燥後の電解銅粉の平均粒子径(体積球相当径)を、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定した。結果を表2に示す。
[Average particle size]
The average particle diameter (volume sphere equivalent diameter) of the electrolytic copper powder after drying was measured using a laser particle size distribution measuring instrument Macrotrac (manufactured by Nikkiso Co., Ltd.). The results are shown in Table 2.
〔乾式粉砕後の電解銅微粉末について〕
[形状]
 乾式粉砕後の電解銅微粉末について、SEM画像を撮影した。そして、このSEM画像から実施例及び比較例における電解銅微粉末の形状を観察した。SEM画像の一例を図3~図5に示す。図3は、実施例1に係る電解銅微粉末のSEM画像であり、図4は、比較例1に係る電解銅微粉末のSEM画像であり、図5は、比較例2に係る電解銅微粉末のSEM画像である。また、形状を観察した結果を表2に示す。実施例1~3における電解銅微粉末は粒状の状態で粉砕されていた。一方、比較例1及び2における電解銅微粉末は粒状のものだけでなく、扁平状の粒子も含んでいた。これは、表面が酸化皮膜を有するものでないため、金属銅の延性が作用して電解銅粉を細かく粉砕できなかったためであると推測される。
[About electrolytic copper fine powder after dry grinding]
[shape]
An SEM image was taken of the electrolytic copper fine powder after dry pulverization. And the shape of the electrolytic copper fine powder in an Example and a comparative example was observed from this SEM image. Examples of SEM images are shown in FIGS. 3 is an SEM image of the electrolytic copper fine powder according to Example 1, FIG. 4 is an SEM image of the electrolytic copper fine powder according to Comparative Example 1, and FIG. 5 is an electrolytic copper fine powder according to Comparative Example 2. It is a SEM image of powder. Table 2 shows the result of observing the shape. The electrolytic copper fine powders in Examples 1 to 3 were pulverized in a granular state. On the other hand, the electrolytic copper fine powder in Comparative Examples 1 and 2 contained not only granular particles but also flat particles. This is presumed to be because the electrolytic copper powder could not be finely pulverized due to the ductility of metallic copper because the surface did not have an oxide film.
[平均粒子径及び最大粒子径]
 電解銅微粉末の平均粒子径及び最大粒子径を測定した。これらの粒子径は、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定した、体積球相当径によるものである。結果を表2に示す。実施例1~3における電解銅微粉末は、平均粒子径が3.5μm以下であり、最大粒子径が10μm以下であった。このことから、実施例1~3における電解銅微粉末が粒状の状態で粉砕されていることを定量的に確認できた。一方、比較例1及び2における電解銅微粉末は、平均粒子径が5.2μm以上であり、最大粒子径が20μm以上であった。このことから、比較例1及び2における電解銅微粉末が適切に粉砕されていない粒子を含むものであることを定量的に確認できた。
[Average particle size and maximum particle size]
The average particle size and the maximum particle size of the electrolytic copper fine powder were measured. These particle diameters are based on the equivalent volume sphere diameters measured using a laser particle size distribution measuring instrument Macrotrac (manufactured by Nikkiso Co., Ltd.). The results are shown in Table 2. The electrolytic copper fine powders in Examples 1 to 3 had an average particle size of 3.5 μm or less and a maximum particle size of 10 μm or less. From this, it was confirmed quantitatively that the electrolytic copper fine powders in Examples 1 to 3 were pulverized in a granular state. On the other hand, the electrolytic copper fine powders in Comparative Examples 1 and 2 had an average particle size of 5.2 μm or more and a maximum particle size of 20 μm or more. From this, it has been quantitatively confirmed that the electrolytic copper fine powder in Comparative Examples 1 and 2 contains particles that are not properly pulverized.
〔酸化後の酸化第二銅微粉末について〕
[形状]
 酸化後の酸化第二銅微粉末について、SEM画像を撮影して確認したが、酸化によって状態に変化が無く、図3~図5に示す酸化前の状態と同じであった。
[About cupric oxide fine powder after oxidation]
[shape]
The cupric oxide fine powder after oxidation was confirmed by taking an SEM image, but there was no change in the state due to oxidation, and it was the same as the state before oxidation shown in FIGS.
[色]
 実施例及び比較例に係る酸化第二銅微粉末の色を目視で観察した。結果を表3に示す。いずれの試料も黒色を呈していた。
[color]
The color of the cupric oxide fine powder according to Examples and Comparative Examples was visually observed. The results are shown in Table 3. All the samples were black.
[相]
 実施例及び比較例に係る酸化第二銅微粉末の相状態を確認するため、酸化第二銅微粉末に対し、X線回折を行った。結果の一例を図6及び表3に示す。図6は、実施例1に係る酸化第二銅微粉末のXRDパターンである。このXRDパターンから、実施例1に係る酸化第二銅微粉末は、CuO単一相であることが確認された。なお、図示は省略するが、他の実施例及び比較例に係る酸化第二銅微粉末も同様のXRDパターンを示し、いずれもCuO単一相であることが確認された。
[phase]
In order to confirm the phase state of the cupric oxide fine powder according to Examples and Comparative Examples, X-ray diffraction was performed on the cupric oxide fine powder. An example of the results is shown in FIG. 6 is an XRD pattern of a cupric oxide fine powder according to Example 1. FIG. From this XRD pattern, it was confirmed that the cupric oxide fine powder according to Example 1 was a CuO single phase. In addition, although illustration is abbreviate | omitted, the cupric oxide fine powder which concerns on another Example and a comparative example also showed the same XRD pattern, and it was confirmed that all are CuO single phases.
[純度]
 実施例及び比較例に係る酸化第二銅微粉末について、電解重量分析を行った。結果を表3に示す。いずれの酸化第二銅微粉末についても、酸化第二銅の濃度が99.6重量%であることが確認された。
[purity]
Electrolytic gravimetric analysis was performed on the cupric oxide fine powders according to Examples and Comparative Examples. The results are shown in Table 3. About any cupric oxide fine powder, it was confirmed that the density | concentration of cupric oxide is 99.6 weight%.
[平均粒子径及び最大粒子径]
 酸化第二銅微粉末の平均粒子径及び最大粒子径を測定した。粒子径の測定方法は、電解銅微粉末における測定方法と同じである。結果を表3に示す。粒子径の測定結果から、実施例1~3における酸化第二銅微粉末が粒状であること、及び比較例1、2における酸化第二銅微粉末が粒状以外の粒子を含むものであることを定量的に確認できた。
[Average particle size and maximum particle size]
The average particle size and the maximum particle size of cupric oxide fine powder were measured. The measuring method of a particle diameter is the same as the measuring method in electrolytic copper fine powder. The results are shown in Table 3. From the measurement results of the particle diameter, it is quantitatively determined that the cupric oxide fine powders in Examples 1 to 3 are granular and that the cupric oxide fine powders in Comparative Examples 1 and 2 contain particles other than granular. I was able to confirm.
[めっき液に対する溶解性の評価]
 めっき液に対する溶解性は、実施例及び比較例に係る酸化第二銅微粉末10gを25℃にてスターラーで撹拌しながら1Lのめっき液に添加し、この添加をしたときから上記酸化第二銅微粉末が完全に溶解するまでの時間を測定することによって評価した。めっき液は、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する溶液とした。結果を表3に示す。実施例に係る酸化第二銅微粉末は、35秒以内でめっき液に溶解することができた。このことから、乾式法であってもめっき液への高い溶解性を有する酸化第二銅微粉末を提供できることが確認された。一方、比較例に係る酸化第二銅微粉末は、20分を経過してもめっき液に完全に溶解させることはできなかった。
[Evaluation of solubility in plating solution]
The solubility with respect to a plating solution was added to 1 L of a plating solution while stirring with a stirrer at 25 ° C. with 10 g of cupric oxide fine powder according to Examples and Comparative Examples. Evaluation was made by measuring the time until the fine powder was completely dissolved. The plating solution was a solution containing 228 g / L of CuSO 4 .5H 2 O, 68 g / L of free H 2 SO 4 and 60 mg / L of chloride ions. The results are shown in Table 3. The cupric oxide fine powder according to the example could be dissolved in the plating solution within 35 seconds. From this, it was confirmed that cupric oxide fine powder having high solubility in the plating solution can be provided even by the dry method. On the other hand, the cupric oxide fine powder according to the comparative example could not be completely dissolved in the plating solution even after 20 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記のとおり、表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、この乾式粉砕工程によって得られる電解銅微粉末を酸化する酸化工程とを経て製造される酸化第二銅微粉末は、乾式法の従来の利点である、高純度であることと、湿式法の従来の利点である、めっき液への高い溶解性との両方を併せ持つことが確認された。その結果、工業的に用いる銅めっき液の補給用銅源として極めて好適に使用できることが確認された。 As described above, fine cupric oxide produced through a dry pulverization process in which electrolytic copper powder having an oxide film on the surface is pulverized in a dry process and an oxidation process in which electrolytic copper fine powder obtained by this dry pulverization process is oxidized. It was confirmed that the powder has both high purity, which is a conventional advantage of the dry method, and high solubility in a plating solution, which is a conventional advantage of the wet method. As a result, it was confirmed that it can be used very suitably as a copper source for replenishment of industrial copper plating solutions.
 一方、表面に酸化皮膜を有する電解銅粉を用いない場合、20分を経過してもめっき液に完全に溶解させることができなかった(比較例1、2)。この点で、銅めっき液の補給用銅源としては支障を生じ得ることが確認された。 On the other hand, when electrolytic copper powder having an oxide film on the surface was not used, it could not be completely dissolved in the plating solution even after 20 minutes (Comparative Examples 1 and 2). In this respect, it has been confirmed that the copper source for replenishing the copper plating solution may cause trouble.

Claims (6)

  1.  表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、
     この乾式粉砕工程によって得られる電解銅微粉末を酸化する酸化工程とを含む、酸化第二銅微粉末の製造方法。
    A dry pulverization step of dry pulverizing electrolytic copper powder having an oxide film on the surface;
    A method for producing cupric oxide fine powder, comprising an oxidation step of oxidizing the electrolytic copper fine powder obtained by the dry pulverization step.
  2.  前記酸化皮膜は、銅イオン含有溶液の電気分解によって得られる電解銅粉を水洗した後、酸素含有雰囲気において70℃~150℃の温度で乾燥することによって形成される、請求項1に記載の酸化第二銅微粉末の製造方法。 The oxidation film according to claim 1, wherein the oxide film is formed by washing electrolytic copper powder obtained by electrolysis of a copper ion-containing solution with water and then drying at 70 ° C to 150 ° C in an oxygen-containing atmosphere. A method for producing cupric fine powder.
  3.  前記乾式粉砕工程は酸素含有雰囲気で行われる、請求項1又は2に記載の酸化第二銅微粉末の製造方法。 The method for producing cupric oxide fine powder according to claim 1 or 2, wherein the dry pulverization step is performed in an oxygen-containing atmosphere.
  4.  前記酸化工程は、前記電解銅微粉末を300℃~700℃で熱することによって行われる、請求項1から3のいずれかに記載の酸化第二銅微粉末の製造方法。 The method for producing cupric oxide fine powder according to any one of claims 1 to 3, wherein the oxidation step is performed by heating the electrolytic copper fine powder at 300 ° C to 700 ° C.
  5.  請求項1から4のいずれかに記載の製造方法によって得られる酸化第二銅微粉末が溶解された硫酸銅水溶液を電解銅めっき装置の電解液として使用する、銅めっき方法。 A copper plating method using an aqueous copper sulfate solution in which the cupric oxide fine powder obtained by the production method according to any one of claims 1 to 4 is dissolved as an electrolytic solution of an electrolytic copper plating apparatus.
  6.  平均粒子径が5μm以下であり、最大粒子径が15μm以下であり、10gの酸化第二銅微粉末を、25℃における、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する硫酸含有溶液1Lに浸漬して行う溶解試験において、溶解時間が1分以下である、酸化第二銅微粉末。 The average particle size is 5 μm or less, the maximum particle size is 15 μm or less, and 10 g of cupric oxide fine powder is mixed with 228 g / L of CuSO 4 .5H 2 O and 68 g / L of free H at 25 ° C. A cupric oxide fine powder having a dissolution time of 1 minute or less in a dissolution test performed by immersing in 1 L of a sulfuric acid-containing solution containing 2 SO 4 and 60 mg / L of chloride ions.
PCT/JP2013/072467 2012-12-07 2013-08-22 Copper (ii) oxide fine powder and method for producing same WO2014087707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-268381 2012-12-07
JP2012268381A JP5817711B2 (en) 2012-12-07 2012-12-07 Cupric oxide fine powder and method for producing the same

Publications (1)

Publication Number Publication Date
WO2014087707A1 true WO2014087707A1 (en) 2014-06-12

Family

ID=50883138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072467 WO2014087707A1 (en) 2012-12-07 2013-08-22 Copper (ii) oxide fine powder and method for producing same

Country Status (3)

Country Link
JP (1) JP5817711B2 (en)
TW (1) TWI580643B (en)
WO (1) WO2014087707A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052373A1 (en) * 2014-10-03 2016-04-07 三井金属鉱業株式会社 Copper powder
TWI655042B (en) * 2016-09-29 2019-04-01 日商Jx金屬股份有限公司 Method for manufacturing surface-treated metal powder, laser sintered body, and method for manufacturing surface-treated metal powder for laser sintering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199705A (en) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk Production of fine-grained copper powder
JP2008122030A (en) * 2006-11-15 2008-05-29 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2009047383A (en) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2012193068A (en) * 2011-03-16 2012-10-11 Sumitomo Metal Mining Co Ltd Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441381A (en) * 2011-10-28 2012-05-09 昆山德泰新材料科技有限公司 Catalyst produced by using copper oxide powder and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199705A (en) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk Production of fine-grained copper powder
JP2008122030A (en) * 2006-11-15 2008-05-29 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2009047383A (en) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2012193068A (en) * 2011-03-16 2012-10-11 Sumitomo Metal Mining Co Ltd Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution

Also Published As

Publication number Publication date
TWI580643B (en) 2017-05-01
JP5817711B2 (en) 2015-11-18
TW201422535A (en) 2014-06-16
JP2014114472A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US7566357B2 (en) Method of producing fine-particle copper powders
TW202105823A (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
JP2021530838A (en) Recycling process for used lithium-ion batteries
JP2022542362A (en) How Lithium is Recovered from Waste Lithium Ion Batteries
TW202111131A (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
TW202028539A (en) Battery recycling with electrolysis of the leach to remove copper impurities
JP5648803B2 (en) Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution
JP2009298679A (en) Production method of aluminum-containing nickel hydroxide particle
WO2013021974A1 (en) Nickel oxide micropowder and method for producing same
JP6168000B2 (en) Method for producing nickel sulfate solution
JP6011992B2 (en) Method for producing electrolytic copper powder
TW202134182A (en) Process for the purification of lithium salts
JP2015183255A (en) Copper fine particle, conductive paste composition, and their production methods
JP5568977B2 (en) Method for recovering manganese from batteries
JP5817711B2 (en) Cupric oxide fine powder and method for producing the same
JP5874910B2 (en) Method for producing high-purity cupric oxide fine powder and method for supplying copper ion in aqueous copper sulfate solution
JP5622108B2 (en) High purity cupric oxide fine powder and method for producing the same, and copper ion supply method for aqueous copper sulfate solution using high purity cupric oxide fine powder
US11939221B2 (en) Method for the manufacture of reduced graphene oxide from electrode graphite scrap
WO1989004736A1 (en) Process for producing particulate metal powder
JP2015160780A (en) Method of producing nickel oxide, and nickel oxide fine powder obtainable therefrom
WO2014109088A1 (en) Cupric oxide fine powder, and production method therefor
JP2003166100A (en) Copper powder used for copper plating, and method for using copper powder
JP2012193068A (en) Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution
JP5858267B2 (en) Copper ion supply method to easily soluble cupric oxide fine powder and copper sulfate aqueous solution
JP6056709B2 (en) Method for producing cupric oxide powder and cupric oxide fine powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860671

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860671

Country of ref document: EP

Kind code of ref document: A1