JP2002100358A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2002100358A
JP2002100358A JP2000289767A JP2000289767A JP2002100358A JP 2002100358 A JP2002100358 A JP 2002100358A JP 2000289767 A JP2000289767 A JP 2000289767A JP 2000289767 A JP2000289767 A JP 2000289767A JP 2002100358 A JP2002100358 A JP 2002100358A
Authority
JP
Japan
Prior art keywords
lithium
manganese
nickel
capacity
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000289767A
Other languages
Japanese (ja)
Other versions
JP4092064B2 (en
Inventor
Manabu Kazuhara
学 数原
Kazuo Sunahara
一夫 砂原
Takashi Kimura
貴志 木村
Takuya Mihara
卓也 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2000289767A priority Critical patent/JP4092064B2/en
Publication of JP2002100358A publication Critical patent/JP2002100358A/en
Application granted granted Critical
Publication of JP4092064B2 publication Critical patent/JP4092064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a positive electrode material for non-aqueous electrolyte secondary batteries which makes charge/discharge electricity in a high rate possible, has high capacity, has excellent durability in charge/discharge- electricity cycle, and has high safety. SOLUTION: In the lithium secondary battery equipped with the positive electrode active material layer which has a lithium transition metal complex oxide as a principal component, the above lithium transition metal complex oxide is constituted of a mixture with a lithium-nickel-manganese-M complex having R-3m rhomb structure expressed by LixNiyMn1-y-zMzO2 (however, x is 0.9<=x<=1.2, y is 0.40<=y<=0.60, and z is 0<=z<=0.2, and M is chosen from either of Fe, Co, Cr, or Al), and a lithium-manganese spinel complex oxide having a Fd-3m spinel structure and expressed with LipMn2O4 (however, p is 1<=p<=1.3).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改良された正極活
物質層を備えたリチウム二次電池に関する。
[0001] The present invention relates to a lithium secondary battery provided with an improved positive electrode active material layer.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むにつれ、小型、軽量でかつ高エネルギー密度を
有する非水電解液二次電池に対する期待が高まってい
る。非水電解液二次電池用の活物質には、LiCo
、LiNiO、LiMn、LiMnO
どのリチウムと遷移金属の複合酸化物が知られている。
2. Description of the Related Art In recent years, as devices have become more portable and cordless, expectations for small, lightweight, non-aqueous electrolyte secondary batteries having high energy density have increased. The active material for the non-aqueous electrolyte secondary battery is LiCo.
Composite oxides of lithium and a transition metal such as O 2 , LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 are known.

【0003】その中で特に最近では、安全性が高くかつ
安価な材料として、リチウムとマンガンの複合酸化物の
研究が盛んに行なわれており、これらを正極活物質に用
いて、リチウムを吸蔵、放出することができる炭素材料
等の負極活物質とを組み合わせることによる、高電圧、
高エネルギー密度の非水電解液二次電池の開発が進めら
れている。
Among them, particularly recently, a complex oxide of lithium and manganese has been actively studied as a highly safe and inexpensive material. Using these as a positive electrode active material, lithium can be stored and absorbed. High voltage by combining with a negative electrode active material such as a carbon material that can be released,
Development of a non-aqueous electrolyte secondary battery with a high energy density is underway.

【0004】一般に、非水電解液二次電池に用いられる
正極活物質は、主活物質であるリチウムにコバルト、ニ
ッケル、マンガンをはじめとする遷移金属を固溶させた
複合酸化物からなる。その用いられる遷移金属の種類に
よって、電気容量、可逆性、作動電圧、安全性などの電
極特性が異なる。例えば、LiCoO、LiNi
.8Co0.2のようにコバルトやニッケルを固溶
させたR−3m菱面体岩塩層状複合酸化物を正極活物質
に用いた非水電解液二次電池は、それぞれ140〜16
0mAh/gおよび180〜200mAh/gと比較的
高い容量密度を達成できるとともに、2.5〜4.3V
といった高い電圧域では良好な可逆性を示す。
In general, a positive electrode active material used for a non-aqueous electrolyte secondary battery is composed of a composite oxide in which a transition metal such as cobalt, nickel, and manganese is dissolved in lithium as a main active material. Electrode characteristics such as electric capacity, reversibility, operating voltage, and safety vary depending on the type of the transition metal used. For example, LiCoO 2 , LiNi 0
. Non-aqueous electrolyte secondary batteries using an R-3m rhombohedral rock-salt layer composite oxide in which cobalt or nickel is dissolved as in 8 Co 0.2 O 2 as a positive electrode active material are 140 to 16 respectively.
Relatively high capacity densities of 0 mAh / g and 180-200 mAh / g can be achieved, and 2.5-4.3 V
In such a high voltage range, good reversibility is exhibited.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電池を
加温した際に、充電時の正極活物質と電解液溶媒との反
応により電池が発熱し易い問題や、原料となるコバルト
やニッケルが高価であるので活物質のコストが高くなる
問題がある。
However, when the battery is heated, the battery tends to generate heat due to the reaction between the positive electrode active material and the electrolyte solvent at the time of charging, and cobalt and nickel as raw materials are expensive. Therefore, there is a problem that the cost of the active material increases.

【0006】一方、比較的安価なマンガンを原料とする
LiMnからなるスピネル型複合酸化物を活物質
に用いた非水電解液二次電池は、充電時の正極活物質と
電解液溶媒との反応により電池が比較的発熱しにくいも
のの、容量が上述のコバルト系およびニッケル系活物質
にくらべ100〜120mAh/gと低く、充放電サイ
クル耐久性が乏しいという課題がある。
On the other hand, a nonaqueous electrolyte secondary battery using a spinel-type composite oxide made of LiMn 2 O 4 made of relatively inexpensive manganese as an active material has a positive electrode active material and an electrolyte solvent at the time of charging. Although the battery is relatively unlikely to generate heat due to the reaction with, the capacity is as low as 100 to 120 mAh / g as compared with the above-mentioned cobalt-based and nickel-based active materials, and there is a problem that the charge / discharge cycle durability is poor.

【0007】これらの単独のリチウム−遷移金属複合酸
化物を正極活物質として使用する代わりに、斜方晶系の
LiMnOと、LiNiO、LiCoOおよびL
iMnからなる群より選択される少なくとも一種
のリチウム−遷移金属複合酸化物を混合することが特開
平9−180718号公報に提案されている。かかる混
合物を用いた電池はLiMnOに起因して、充放電サ
イクル耐久性が不足する問題がある。また、LiMnO
はハイレートでの充放電容量が低い問題もある。
Instead of using these single lithium-transition metal composite oxides as the positive electrode active material, orthorhombic LiMnO 2 , LiNiO 2 , LiCoO 2 and L
JP-A-9-180718 proposes mixing at least one lithium-transition metal composite oxide selected from the group consisting of iMn 2 O 4 . A battery using such a mixture has a problem of insufficient charge / discharge cycle durability due to LiMnO 2 . LiMnO
No. 2 has a problem that the charge / discharge capacity at a high rate is low.

【0008】また、特開平11−3698号公報には、
LiMn、LiNiOおよびLiCoOの3
種混合物からなるリチウム二次電池が提案されている。
かかるLiMn、LiNiOおよびLiCoO
の3種混合物を用いた電池はLiNiOおよびLi
CoOの使用に起因して、安全性が十分ではない問題
がある。
[0008] Japanese Patent Application Laid-Open No. 11-3698 discloses that
LiMn 2 O 4 , LiNiO 2 and LiCoO 2
A lithium secondary battery comprising a seed mixture has been proposed.
Such LiMn 2 O 4 , LiNiO 2 and LiCoO
The battery using the three kinds of mixture of LiNiO 2 and LiNiO 2
There is a problem that the safety is not sufficient due to the use of CoO 2 .

【0009】本発明は、このような課題を解決するため
になされたもので、その目的は、ハイレートでの充放電
が可能で、容量が高く、充放電サイクル耐久性に優れた
高安全性の非水電解液二次電池用正極材料を用いた高エ
ネルギー密度かつ高電流放電特性の良い非水電解液二次
電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a high safety device capable of charging and discharging at a high rate, having a high capacity, and having excellent charge and discharge cycle durability. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having high energy density and high current discharge characteristics using a positive electrode material for a non-aqueous electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、リチウム遷移金属複合酸化物を主成分と
する正極活物質層を備えたリチウム二次電池において、
上記リチウム遷移金属複合酸化物が、LiNiMn
1−y−z(ただし、xは0.9≦x≦1.
2、yは0.40≦y≦0.60、zは0≦z≦0.2
であり、MはFe,Co,Cr,Al原子のいずれかか
ら選択される。)で表されるリチウム−ニッケル−マン
ガン−M複合酸化物と、Fd3mスピネル構造を有し、
LiMn(ただし、pは1≦p≦1.3であ
る。)で表されるリチウム−マンガンスピネル複合酸化
物との混合物からなることを特徴としている。
Means for Solving the Problems To achieve the above object, the present invention provides a lithium secondary battery having a positive electrode active material layer containing a lithium transition metal composite oxide as a main component.
The lithium transition metal composite oxide is Li x Ni y Mn
1-y-z M z O 2 ( here, x is 0.9 ≦ x ≦ 1.
2, y is 0.40 ≦ y ≦ 0.60, z is 0 ≦ z ≦ 0.2
And M is selected from any of Fe, Co, Cr, and Al atoms. And a lithium-nickel-manganese-M composite oxide represented by the formula:
Li p Mn 2 O 4 (Here, p is 1 is ≦ p ≦ 1.3.) Lithium represented by - is characterized by comprising a mixture of manganese spinel complex oxide.

【0011】本発明において、上記リチウム−ニッケル
−マンガン−M複合酸化物はR3−m菱面体構造である
ことが好ましい。なお、yが0.40未満であると安定
なR−3m菱面体構造をとりにくくなるので好ましくな
い。また、yが0.60を超えると安全性が低下するの
で好ましくない。yは特に好ましくは0.45〜0.5
5が採用される。xは容量発現のため、0.9≦x≦
1.2が採用される。
In the present invention, the lithium-nickel-manganese-M composite oxide preferably has an R3-m rhombohedral structure. If y is less than 0.40, it is difficult to obtain a stable R-3m rhombohedral structure, which is not preferable. On the other hand, if y exceeds 0.60, safety is undesirably reduced. y is particularly preferably 0.45 to 0.5
5 is adopted. x is 0.9 ≦ x ≦
1.2 is adopted.

【0012】上記リチウム−ニッケル−マンガンM複合
酸化物に対し、さらにFe,Co,Cr,Alのいずれ
かの原子を加えることにより、充放電サイクル耐久性、
安全性、容量等の向上が図れる。M原子の添加量zは0
〜0.2で、好ましくは0.01〜0.18、特に好ま
しくは0.05〜0.16である。
[0012] The lithium-nickel-manganese M composite oxide is further added with any atom of Fe, Co, Cr, or Al to provide a charge / discharge cycle durability,
Safety and capacity can be improved. The added amount z of M atoms is 0
To 0.2, preferably 0.01 to 0.18, particularly preferably 0.05 to 0.16.

【0013】本発明で用いるもう一方の上記リチウム複
合酸化物は、Fd3mスピネル構造を有し、LiMn
(ただし、pは、1≦p≦1.3である。)で表
されるリチウム−マンガンスピネル複合酸化物である
が、このマンガンスピネル中のマンガン元素を、マンガ
ン以外のアルカリ土類金属元素や遷移金属元素をもって
2〜10モル%置換することにより、充放電サイクル耐
久性を向上させることができる。マンガンスピネル中の
マンガンの好ましい置換元素としては、マグネシウム、
アルミニウム、鉄、クロムが選択される。
The other lithium composite oxide used in the present invention has an Fd3m spinel structure, and is composed of Li p Mn.
2 O 4 (where p is 1 ≦ p ≦ 1.3), which is a lithium-manganese spinel composite oxide, wherein the manganese element in the manganese spinel is replaced by an alkaline earth element other than manganese. By substituting 2 to 10 mol% with a metal element or transition metal element, the charge / discharge cycle durability can be improved. Preferred replacement elements for manganese in the manganese spinel include magnesium,
Aluminum, iron and chrome are selected.

【0014】本発明において、上記混合物中の上記リチ
ウム−ニッケル−マンガン−M複合酸化物の含有量は3
0〜70重量%であることが好ましい。上記含有量が3
0重量%未満であるとリチウム電池の容量が低下した
り、充放電サイクル耐久性が低下するので好ましくな
い。また、上記含有量が70重量%を超えるとハイレー
トでの放電容量が低下したり、放電平均電圧が低下する
ので好ましくない。特に好ましい上記含有量は40〜6
0重量%である。
In the present invention, the content of the lithium-nickel-manganese-M composite oxide in the mixture is 3
It is preferably from 0 to 70% by weight. The above content is 3
If the content is less than 0% by weight, the capacity of the lithium battery is reduced, and the charge / discharge cycle durability is undesirably reduced. On the other hand, if the content exceeds 70% by weight, the discharge capacity at a high rate is reduced, and the average discharge voltage is undesirably reduced. Particularly preferred content is 40 to 6
0% by weight.

【0015】本発明において、上記複合酸化物の混合物
粉末は、粉末のみを1t/cmの圧力でプレス充填し
たときの粉体プレス密度が2.7g/cm以上である
ことが好ましい。これによれば、混合物をスラリーとな
して集電体アルミ箔に塗工・乾燥・プレスした際に体積
当たりの容量を高くすることができる。特に好ましい粉
体プレス密度は2.9g/cm以上である。2.7g
/cm以上の粉体プレス密度は、混合物粉体の粒径分
布を適正化することにより達成される。すなわち、粒径
分布に幅があり、少粒径の体積分率が20〜50%であ
り、大粒径の粒径分布を狭くすること等により高密度化
が図れる。
In the present invention, it is preferable that the powder mixture of the composite oxide has a powder press density of 2.7 g / cm 3 or more when only the powder is press-filled at a pressure of 1 t / cm 2 . According to this, the capacity per volume can be increased when the mixture is formed into a slurry, applied to the current collector aluminum foil, dried, and pressed. Particularly preferred powder press density is 2.9 g / cm 3 or more. 2.7g
The powder press density of / cm 3 or more is achieved by optimizing the particle size distribution of the mixture powder. That is, the particle size distribution has a range, the volume fraction of the small particle size is 20 to 50%, and the density can be increased by narrowing the particle size distribution of the large particle size.

【0016】本発明の混合物を用いると、混合に用いた
それぞれの単独のリチウム遷移金属複合酸化物を用いた
場合より、ハイレートでの充放電が可能で、容量、安全
性のバランスが向上した電池性能が発現できる。また、
単独のリチウム遷移金属化合物からなり、かつ、混合に
用いた遷移金属元素含量と同じである正極活物質を用い
た場合より、容量と安全性並びに充放電サイクル安定性
の優れた電池性能を得ることができる。かかる、物理的
混合物の方が単独物質より優れる原因は明らかではない
が、リチウム−ニッケル−マンガン−M複合酸化物(N
i/Mn=0.6/0.4〜0.4/0.6)が特段に
安全性が高く、容量の発現性が比較的良いため、混合に
より相乗効果が発現したものと考えられる。
When the mixture of the present invention is used, the battery can be charged and discharged at a higher rate than in the case of using each of the single lithium transition metal composite oxides used for the mixing, and the balance between capacity and safety is improved. Performance can be exhibited. Also,
To obtain a battery performance superior in capacity, safety and charge / discharge cycle stability compared to the case of using a positive electrode active material composed of a single lithium transition metal compound and having the same transition metal element content used for mixing. Can be. Although it is not clear why such a physical mixture is superior to a single substance, a lithium-nickel-manganese-M composite oxide (N
(i / Mn = 0.6 / 0.4 to 0.4 / 0.6) is particularly high in safety and has relatively good capacity development, so it is considered that the synergistic effect is realized by mixing.

【0017】[0017]

【発明の実施の形態】本発明に用いる結晶構造が菱面体
のR−3mからなる、LiNiMn1− y−z
(リチウム−ニッケル−マンガン−M複合酸化物)
の製法としては、例えばマンガン化合物とリチウム化合
物とニッケル化合物の混合物を不活性ガス雰囲気下ある
いは大気中で固相法500〜1000℃焼成すること、
500〜850℃での溶融塩法が挙げられる。
Crystal structure used in the present invention PREFERRED EMBODIMENTS consists rhombohedral R-3m, Li x Ni y Mn 1- y-z M z
O 2 (lithium-nickel-manganese-M composite oxide)
As a manufacturing method, for example, baking a mixture of a manganese compound, a lithium compound and a nickel compound in an inert gas atmosphere or in the air by a solid phase method at 500 to 1000 ° C.,
The molten salt method at 500 to 850 ° C. is exemplified.

【0018】また、本発明に用いる結晶構造が菱面体層
状岩塩型構造からなる、リチウム−ニッケル−マンガン
−M複合酸化物は、例えばニッケル−マンガン−金属元
素からなる複合酸化物あるいは複合水酸化物とマンガン
化合物とリチウム化合物の混合物を酸素ガス含有雰囲気
下で固相法500〜1000℃焼成すること、500〜
850℃のリチウム含有溶融塩中にニッケル−マンガン
−金属元素M含有化合物を添加する溶融塩法により得る
ことができる。
The lithium-nickel-manganese-M composite oxide having a rhombohedral layered rock salt type crystal structure used in the present invention is, for example, a composite oxide or a composite hydroxide composed of a nickel-manganese-metal element. And baking a mixture of a manganese compound and a lithium compound in an atmosphere containing oxygen gas at 500 to 1000 ° C.,
It can be obtained by a molten salt method in which a nickel-manganese-metal element M-containing compound is added to a lithium-containing molten salt at 850 ° C.

【0019】ニッケル源原料としては、酸化物(NiO
など)、水酸化物(NiOH)、オキシ水酸化物(Ni
OOH)などが挙げられる。マンガン源原料としては、
酸化物(Mn,MnO,MnOなど)、これら
酸化物の水和物、オキシ水酸化物などが挙げられる。マ
ンガン源原料としては、3価のマンガンの化合物がより
好ましい。これらのマンガン源原料は、単独で使用して
もよく、2種以上を併用してもよい。
As a nickel source material, an oxide (NiO
Etc.), hydroxide (NiOH), oxyhydroxide (Ni
OOH). As a manganese source material,
Oxides (Mn 2 O 3 , MnO, MnO 2, etc.), hydrates of these oxides, oxyhydroxides and the like can be mentioned. As the manganese source material, a trivalent manganese compound is more preferable. These manganese source materials may be used alone or in combination of two or more.

【0020】金属元素(M)源原料としては、単体金
属、水酸化物、酸化物、オキシ水酸化物、塩化物、硝酸
塩等が使用される。これらの金属元素(M)源原料は、
単独で使用してもよく、2種以上を併用してもよい。
As the metal element (M) source raw material, simple metals, hydroxides, oxides, oxyhydroxides, chlorides, nitrates and the like are used. These metal element (M) source materials are:
They may be used alone or in combination of two or more.

【0021】本発明の混合物の粉末に、アセチレンブラ
ック、黒鉛、ケッチエンブラック等のカーボン系導電材
と結合材を混合することにより正極合剤が形成される。
結合材には、ポリフッ化ビニリデン、ポリテトラフルオ
ロエチレン、ポリアミド、カルボキシメチルセルロー
ス、アクリル樹脂等が用いられる。本発明の混合物の粉
末と導電材と結合材ならびに結合材の溶媒または分散媒
からなるスラリーをアルミニウム箔等の正極集電体に塗
工・乾燥およびプレス圧延せしめて正極活物質層を正極
集電体上に形成する。
A positive electrode mixture is formed by mixing a powder of the mixture of the present invention with a carbon-based conductive material such as acetylene black, graphite, Ketchen black and a binder.
As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used. A slurry comprising the powder of the mixture of the present invention, a conductive material, a binder, and a solvent or a dispersion medium for the binder is applied to a positive electrode current collector such as an aluminum foil, dried and press-rolled to form a positive electrode active material layer. Form on the body.

【0022】本発明のリチウム電池において、電解質溶
液の溶媒としては炭酸エステルが好ましい。炭酸エステ
ルは環状、鎖状いずれも使用できる。環状炭酸エステル
としてはプロピレンカーボネート、エチレンカーボネー
ト等が例示される。鎖状炭酸エステルとしてはジメチル
カーボネート、ジエチルカーボネート、エチルメチルカ
ーボネート、メチルプロピルカーボネート、メチルイソ
プロピルカーボネート等が例示される。
In the lithium battery of the present invention, the solvent for the electrolyte solution is preferably a carbonate ester. Carbonate can be used either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.

【0023】本発明では上記炭酸エステルを単独でまた
は2種以上を混合して使用できる。また、他の溶媒と混
合して使用してもよい。また、負極活物質の材料によっ
ては、鎖状炭酸エステルと環状炭酸エステルを併用する
と、放電特性、サイクル耐久性、充放電効率が改良でき
る場合がある。また、これらの有機溶媒にフッ化ビニリ
デン−ヘキサフルオロプロピレン共重合体(例えばアト
ケム社カイナー)、フッ化ビニリデン−パーフルオロプ
ロピルビニルエーテル共重合体を添加し、下記の溶質を
加えることによりゲルポリマー電解質としてもよい。
In the present invention, the above-mentioned carbonates can be used alone or in combination of two or more. Moreover, you may mix and use it with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate and a cyclic carbonate may improve the discharge characteristics, cycle durability, and charge / discharge efficiency. Further, a vinylidene fluoride-hexafluoropropylene copolymer (eg, Aychem Corp. Kynar) and a vinylidene fluoride-perfluoropropyl vinyl ether copolymer are added to these organic solvents, and the following solutes are added to form a gel polymer electrolyte. Is also good.

【0024】溶質としては、ClO−、CFSO
−、BF−、PF−、AsF−、SbF−、C
CO−、(CFSON−等をアニオンと
するリチウム塩のいずれか1種以上を使用することが好
ましい。上記の電解質溶液またはポリマー電解質は、リ
チウム塩からなる電解質を上記溶媒または溶媒含有ポリ
マーに0.2〜2.0mol/lの濃度で添加するのが
好ましい。この範囲を逸脱すると、イオン伝導度が低下
し、電解質の電気伝導度が低下する。より好ましくは
0.5〜1.5mol/lが選定される。セパレータに
は多孔質ポリエチレン、多孔質ポリプロピレンフィルム
が使用される。
As the solute, ClO 4 —, CF 3 SO 3
−, BF 4 −, PF 6 −, AsF 6 −, SbF 6 −, C
It is preferable to use at least one of lithium salts having an anion such as F 3 CO 2 — or (CF 3 SO 2 ) 2 N—. It is preferable that the electrolyte solution or the polymer electrolyte is prepared by adding an electrolyte composed of a lithium salt to the solvent or the solvent-containing polymer at a concentration of 0.2 to 2.0 mol / l. Outside of this range, the ionic conductivity decreases and the electrical conductivity of the electrolyte decreases. More preferably, 0.5 to 1.5 mol / l is selected. As the separator, a porous polyethylene or a porous polypropylene film is used.

【0025】本発明における負極活物質は、リチウムイ
オンを吸蔵、放出可能な材料である。これらの負極活物
質を形成する材料は特に限定されないが、例えばリチウ
ム金属、リチウム合金、炭素材料、周期表14、15族
の金属を主体とした酸化物、炭素化合物、炭化ケイ素化
合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合
物等が挙げられる。
The negative electrode active material in the present invention is a material capable of inserting and extracting lithium ions. Although the material forming these negative electrode active materials is not particularly limited, for example, lithium metal, lithium alloy, carbon material, oxides mainly composed of metals of Groups 14 and 15 of the periodic table, carbon compounds, silicon carbide compounds, silicon oxide compounds , Titanium sulfide, boron carbide compounds and the like.

【0026】炭素材料としては、様々な熱分解条件で有
機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒
鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化
物としては、酸化スズを主体とする化合物が使用でき
る。負極集電体としては、銅箔、ニッケル箔等が用いら
れる。
As the carbon material, those obtained by thermally decomposing organic substances under various thermal decomposition conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flaky graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used.

【0027】本発明における正極及び負極は、活物質を
有機溶媒と混練してスラリとし、該スラリを金属箔集電
体に塗布、乾燥、プレスして得ることが好ましい。本発
明のリチウム電池の形状には特に制約はない。シート状
(いわゆるフイルム状)、折り畳み状、巻回型有底円筒
形、ボタン形等が用途に応じて選択される。
The positive and negative electrodes of the present invention are preferably obtained by kneading an active material with an organic solvent to form a slurry, applying the slurry to a metal foil current collector, drying and pressing. There is no particular limitation on the shape of the lithium battery of the present invention. A sheet shape (a so-called film shape), a folded shape, a wound-type cylindrical shape with a bottom, a button shape, and the like are selected according to the application.

【0028】[0028]

【実施例】次に、本発明を具体的な実施例1〜8および
比較例1〜4について説明するが、本発明はこれらの実
施例に限定されない。
EXAMPLES Next, the present invention will be described with reference to Examples 1 to 8 and Comparative Examples 1 to 4, but the present invention is not limited to these Examples.

【0029】《実施例1》硫酸ニッケルと硫酸マンガン
(モル比1:1)混合水溶液に、アンモニア水と水酸化
ナトリウム水溶液を加えて共沈させ、150℃で加熱・
乾燥により、ニッケル−マンガン共沈水酸化物(ニッケ
ル:マンガン原子比=1:1)を得た。このニッケル−
マンガン共沈水酸化物を550℃で大気中で焼成・粉砕
し、ニッケル−マンガン酸化物粉末を得た。このニッケ
ル−マンガン酸化物粉末と炭酸リチウム粉末を混合し、
800℃で窒素ガス雰囲気中で焼成・粉砕して平均粒径
4μmのLiNi0.5Mn0.5を合成した。こ
の粉末のCuKαによるX線回折分析の結果、R−3m
菱面体層状岩塩型構造であることが判った。また、電解
二酸化マンガン粉末と炭酸リチウム粉末を乾式混合し、
大気中で800℃15時間焼成して粉砕・分級して平均
粒径7μmのLi1.05Mn 粉末を得た。この
粉末のCuKαによるX線回折分析の結果、Fd3mス
ピネル構造であることが判った。LiNi0.5Mn
0.5と、Li1.05Mnとを重量比で5
0:50の割合で混合し、この混合物粉末を1t/cm
の圧力で油圧プレスして体積と重量から粉体プレス密
度を求めたところ、2.90g/cmであった。この
混合物粉末とアセチレンブラックとポリフッ化ビニリデ
ンとを83/10/7の重量比でN−メチルピロリドン
加えつつボールミル混合し、スラリーとした。このスラ
リーを厚さ20μのアルミニウム箔正極集電体上に塗布
し、150℃にて乾燥してN−メチルピロリドンを除去
した。しかる後にロールプレス圧延をして正極体を得
た。セパレータには厚さ25μの多孔質ポリエチレンを
用い、厚さ300μの金属リチウム箔を負極に用い負極
集電体にニッケル箔を使用し、電解液には1M LiP
/EC+DEC(1:1)を用いてコインセル20
30型をアルゴングローブボックス内で組立た。そし
て、25℃の温度雰囲気下において、1mAで終止電圧
4.3Vで充電し、定電流5mA(放電率1C)にて
3.0Vまで放電して高電流放電特性を調べる一方、1
mAで終止電圧4.3Vで充電し、定電流1mA(放電
率0.2C)にて3.0Vまで放電する充放電サイクル
試験を20回行ない、2回充放電後の初期放電容量と2
0回充放電後の放電容量との比率から容量維持率を求め
た。また、電池安全性評価のため、4.3V充電後のセ
ルを解体し、正極を電解液溶媒とともに密閉容器に入れ
て試料となし、示差走査熱量測定装置を用い、昇温せし
めた時の発熱開始温度を求めた。その結果、初期容量は
124mAh/g、1C容量/0.2C容量は92%、
容量維持率は93%、発熱開始温度は227℃であっ
た。
Example 1 Nickel sulfate and manganese sulfate
(Mole ratio 1: 1) Aqueous ammonia and hydroxylated
Add sodium aqueous solution to coprecipitate and heat at 150 ° C
By drying, nickel-manganese coprecipitated hydroxide (nickel
Manganese atomic ratio = 1: 1). This nickel
Manganese coprecipitated hydroxide fired and pulverized in air at 550 ℃
Thus, a nickel-manganese oxide powder was obtained. This nicke
Manganese oxide powder and lithium carbonate powder,
Fired and crushed in a nitrogen gas atmosphere at 800 ° C, average particle size
4 μm LiNi0.5Mn0.5O2Was synthesized. This
As a result of X-ray diffraction analysis of the powder of
It turned out to be a rhombohedral layered rock salt type structure. Also, electrolysis
Dry mixing manganese dioxide powder and lithium carbonate powder,
Bake in air at 800 ° C for 15 hours, crush and classify and average
Li with a particle size of 7 μm1.05Mn2O 4A powder was obtained. this
As a result of X-ray diffraction analysis of the powder with CuKα, Fd3m
It turned out to be a pinel structure. LiNi0.5Mn
0.5O2And Li1.05Mn2O4And 5 by weight
The mixture was mixed at a ratio of 0:50.
2Hydraulic press with the pressure of powder press from volume and weight
When the degree was determined, 2.90 g / cm3Met. this
Mixture powder, acetylene black and polyvinylidene fluoride
And N-methylpyrrolidone in a weight ratio of 83/10/7.
The mixture was mixed with a ball mill to form a slurry. This sla
On a 20μ thick aluminum foil cathode current collector
And dried at 150 ° C to remove N-methylpyrrolidone
did. Thereafter, roll press rolling is performed to obtain a positive electrode body.
Was. 25μ thick porous polyethylene for the separator
Negative electrode using 300μ thick metallic lithium foil
Nickel foil is used for the current collector, and 1M LiP
F6/ EC + DEC (1: 1) using coin cell 20
Type 30 was assembled in an argon glove box. Soshi
And a cut-off voltage of 1 mA in a temperature atmosphere of 25 ° C.
Charged at 4.3V, at a constant current of 5mA (discharge rate 1C)
While discharging to 3.0 V and examining high current discharge characteristics,
Charged at a final voltage of 4.3 V at mA, and a constant current of 1 mA (discharged)
Charge / discharge cycle to discharge to 3.0 V at a rate of 0.2 C)
The test was performed 20 times, and the initial discharge capacity after two charge / discharge cycles and 2
Calculate the capacity retention ratio from the ratio with the discharge capacity after zero charge / discharge.
Was. Also, for battery safety evaluation, the cell after 4.3V charging was
Disassembled and put the positive electrode together with the electrolyte solvent into a closed container.
And heat it up using a differential scanning calorimeter.
The exothermic onset temperature was determined. As a result, the initial capacity is
124 mAh / g, 1C capacity / 0.2C capacity is 92%,
The capacity retention rate was 93%, and the heat generation starting temperature was 227 ° C.
Was.

【0030】《実施例2》リチウム−ニッケル−マンガ
ン複合酸化物のニッケルとマンガンの原子比を0.6
0:0.40としたLiNi0.6Mn0.4と、
Li1.05Mnとを重量比で50:50の割合
で混合した他は、上記実施例1と同様に正極体および電
池を作製し特性を評価した。その結果、初期容量は13
0mAh/g、1C容量/0.2C容量は92%、容量
維持率は94%、発熱開始温度は221℃であった。
Example 2 The lithium-nickel-manganese composite oxide had an atomic ratio of nickel and manganese of 0.6.
LiNi 0.6 Mn 0.4 O 2 with 0: 0.40;
A positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 except that Li 1.05 Mn 2 O 4 was mixed at a weight ratio of 50:50. As a result, the initial capacity is 13
0 mAh / g, 1 C capacity / 0.2 C capacity was 92%, the capacity retention was 94%, and the heat generation starting temperature was 221 ° C.

【0031】《実施例3》リチウム−ニッケル−マンガ
ン複合酸化物のニッケルとマンガンの原子比が0.5
0:0.50であるLiNi0.5Mn0.5と、
Li1.05Mnとを重量比で40:60の割合
で混合した他は、上記実施例1と同様に正極体および電
池を作製し特性を評価した。その結果、初期容量は12
2mAh/g、1C容量/0.2C容量は93%、容量
維持率は94%、発熱開始温度は220℃であった。
Example 3 The lithium-nickel-manganese composite oxide had an atomic ratio of nickel to manganese of 0.5.
0: 0.50 LiNi 0.5 Mn 0.5 O 2 ;
A positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 except that Li 1.05 Mn 2 O 4 was mixed at a weight ratio of 40:60. As a result, the initial capacity is 12
The 2 mAh / g, 1 C capacity / 0.2 C capacity was 93%, the capacity retention was 94%, and the heat generation starting temperature was 220 ° C.

【0032】《実施例4》リチウム−ニッケル−マンガ
ン複合酸化物のニッケルとマンガンの原子比を0.5
5:0.45としたLiNi0.55Mn0.45
と、Li1.05Mnとを重量比で30:70の
割合で混合した他は、上記実施例1と同様に正極体およ
び電池を作製し特性を評価した。その結果、初期容量は
121mAh/g、1C容量/0.2C容量は94%、
容量維持率は94%、発熱開始温度は220℃であっ
た。
Example 4 The lithium-nickel-manganese composite oxide had an atomic ratio of nickel and manganese of 0.5.
5: LiNi 0.55 Mn 0.45 O 2 with 0.45
And Li 1.05 Mn 2 O 4 were mixed at a weight ratio of 30:70, and a positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 above. As a result, the initial capacity was 121 mAh / g, 1 C capacity / 0.2 C capacity was 94%,
The capacity retention was 94%, and the heat generation starting temperature was 220 ° C.

【0033】《実施例5》上記実施例1の硫酸ニッケル
と硫酸マンガン(モル比1:1)混合水溶液に代えて、
硫酸ニッケルと硫酸マンガンと硫酸コバルト(モル比
9:9:2)混合水溶液を用いた他は、上記実施例1と
同様にして正極活物質として平均粒径5μmのLiNi
0.45Mn0.45Co0.1を合成した。この
粉末のCuKαによるX線回折分析の結果、R−3m菱
面体層状岩塩型構造であることが判った。LiNi
0.45Mn0.45Co0.1と、Li1.05
Mnとを重量比で50:50の割合で混合し、こ
の混合物粉末を1t/cmの圧力で油圧プレスして体
積と重量から粉体プレス密度を求めたところ、2.95
g/cmであった。上記実施例1と同様にして正極体
および電池を作製し特性を評価した。その結果、初期容
量は128mAh/g、1C容量/0.2C容量は93
%、容量維持率は95%、発熱開始温度は226℃であ
った。
Example 5 Instead of the mixed aqueous solution of nickel sulfate and manganese sulfate (molar ratio 1: 1) of Example 1 described above,
LiNi having an average particle size of 5 μm was used as a positive electrode active material in the same manner as in Example 1 except that a mixed aqueous solution of nickel sulfate, manganese sulfate, and cobalt sulfate (9: 9: 2 molar ratio) was used.
0.45 Mn 0.45 Co 0.1 O 2 was synthesized. As a result of X-ray diffraction analysis of this powder with CuKα, it was found that the powder had an R-3m rhombohedral layered rock salt type structure. LiNi
0.45 Mn 0.45 Co 0.1 O 2 and Li 1.05
Mn 2 O 4 was mixed at a weight ratio of 50:50, and the powder mixture was hydraulically pressed at a pressure of 1 t / cm 2 to obtain a powder press density from the volume and weight, which was 2.95.
g / cm 3 . A positive electrode body and a battery were prepared in the same manner as in Example 1 and the characteristics were evaluated. As a result, the initial capacity was 128 mAh / g, the 1 C capacity / 0.2 C capacity was 93
%, The capacity retention rate was 95%, and the heat generation starting temperature was 226 ° C.

【0034】《実施例6》上記実施例1の硫酸ニッケル
と硫酸マンガン(モル比1:1)混合水溶液に代えて、
硫酸ニッケルと硫酸マンガンと硫酸クロム(モル比9:
9:2)混合水溶液を用いた他は、上記実施例1と同様
にして正極活物質として平均粒径5μmのLiNi
0.45Mn0.45Cr0.1を合成した。この
粉末のCuKαによるX線回折分析の結果、R−3m菱
面体層状岩塩型構造であることが判った。LiNi
0.45Mn0.45Cr0.1と、Li1.05
Mnとを重量比で50:50の割合で混合し、こ
の混合物粉末を1t/cmの圧力で油圧プレスして体
積と重量から粉体プレス密度を求めたところ、2.92
g/cmであった。上記実施例1と同様にして正極体
および電池を作製し特性を評価した。その結果、初期容
量は126mAh/g、1C容量/0.2C容量は93
%、容量維持率は95%、発熱開始温度は230℃であ
った。
Example 6 Instead of the mixed aqueous solution of nickel sulfate and manganese sulfate (molar ratio 1: 1) of Example 1 described above,
Nickel sulfate, manganese sulfate and chromium sulfate (molar ratio 9:
9: 2) LiNi having an average particle size of 5 μm was used as the positive electrode active material in the same manner as in Example 1 except that the mixed aqueous solution was used.
0.45 Mn 0.45 Cr 0.1 O 2 was synthesized. As a result of X-ray diffraction analysis of this powder with CuKα, it was found that the powder had an R-3m rhombohedral layered rock salt type structure. LiNi
0.45 Mn 0.45 Cr 0.1 O 2 and Li 1.05
Mn 2 O 4 was mixed at a weight ratio of 50:50, and the powder mixture was hydraulically pressed at a pressure of 1 t / cm 2 to determine the powder press density from the volume and the weight.
g / cm 3 . A positive electrode body and a battery were prepared in the same manner as in Example 1 and the characteristics were evaluated. As a result, the initial capacity was 126 mAh / g, the 1 C capacity / 0.2 C capacity was 93
%, The capacity retention rate was 95%, and the heat generation starting temperature was 230 ° C.

【0035】《実施例7》上記実施例1の硫酸ニッケル
と硫酸マンガン(モル比1:1)混合水溶液に代えて、
硫酸ニッケルと硫酸マンガンと硫酸鉄(モル比9:9:
2)混合水溶液を用いた他は、上記実施例1と同様にし
て正極活物質として平均粒径5μmのLiNi0.45
Mn0.45Fe0.1を合成した。この粉末のC
uKαによるX線回折分析の結果、R−3m菱面体層状
岩塩型構造であることが判った。LiNi0.45Mn
0.45Fe0.1と、Li1.05Mn
を重量比で50:50の割合で混合し、この混合物粉末
を1t/cmの圧力で油圧プレスして体積と重量から
粉体プレス密度を求めたところ、2.90g/cm
あった。上記実施例1と同様にして正極体および電池を
作製し特性を評価した。その結果、初期容量は123m
Ah/g、1C容量/0.2C容量は93%、容量維持
率は94%、発熱開始温度は231℃であった。
Example 7 Instead of the mixed aqueous solution of nickel sulfate and manganese sulfate (molar ratio 1: 1) of Example 1 described above,
Nickel sulfate, manganese sulfate and iron sulfate (9: 9 molar ratio)
2) LiNi 0.45 having an average particle size of 5 μm was used as a positive electrode active material in the same manner as in Example 1 except that a mixed aqueous solution was used.
Mn 0.45 Fe 0.1 O 2 was synthesized. C of this powder
As a result of X-ray diffraction analysis using uKα, it was found that the structure was an R-3m rhombohedral layered rock salt type structure. LiNi 0.45 Mn
0.45 Fe 0.1 O 2 and Li 1.05 Mn 2 O 4 were mixed at a weight ratio of 50:50, and the mixture powder was hydraulically pressed at a pressure of 1 t / cm 2 to reduce the volume. When the powder press density was determined from the weight, it was 2.90 g / cm 3 . A positive electrode body and a battery were prepared in the same manner as in Example 1 and the characteristics were evaluated. As a result, the initial capacity is 123m
Ah / g, 1C capacity / 0.2C capacity was 93%, capacity retention was 94%, and heat generation starting temperature was 231 ° C.

【0036】《実施例8》上記実施例1の硫酸ニッケル
と硫酸マンガン(モル比1:1)混合水溶液に代えて、
硫酸ニッケルと硫酸マンガンと硫酸アルミニウム(モル
比9:9:2)混合水溶液を用いた他は、上記実施例1
と同様にして正極活物質として平均粒径5μmのLiN
0.45Mn0.45Al0.1を合成した。こ
の粉末のCuKαによるX線回折分析の結果、R−3m
菱面体層状岩塩型構造であることが判った。LiNi
0.45Mn0.45Al0.1と、Li1.05
Mnとを重量比で50:50の割合で混合し、こ
の混合物粉末を1t/cmの圧力で油圧プレスして体
積と重量から粉体プレス密度を求めたところ、2.87
g/cmであった。上記実施例1と同様にして正極体
および電池を作製し特性を評価した。その結果、初期容
量は124mAh/g、1C容量/0.2C容量は93
%、容量維持率は94%、発熱開始温度は233℃であ
った。
Example 8 Instead of the mixed aqueous solution of nickel sulfate and manganese sulfate (molar ratio 1: 1) of Example 1 described above,
Example 1 except that a mixed aqueous solution of nickel sulfate, manganese sulfate and aluminum sulfate (molar ratio 9: 9: 2) was used.
LiN with an average particle size of 5 μm as the positive electrode active material
i 0.45 Mn 0.45 Al 0.1 O 2 was synthesized. As a result of X-ray diffraction analysis of this powder by CuKα, R-3m
It turned out to be a rhombohedral layered rock salt type structure. LiNi
0.45 Mn 0.45 Al 0.1 O 2 and Li 1.05
Mn 2 O 4 was mixed at a weight ratio of 50:50, and the powder mixture was hydraulically pressed at a pressure of 1 t / cm 2 to obtain a powder press density from the volume and weight, which was 2.87.
g / cm 3 . A positive electrode body and a battery were prepared in the same manner as in Example 1 and the characteristics were evaluated. As a result, the initial capacity was 124 mAh / g, the 1 C capacity / 0.2 C capacity was 93
%, The capacity retention rate was 94%, and the heat generation starting temperature was 233 ° C.

【0037】〈比較例1〉上記実施例1において使用し
たLiNi0.5Mn0.5を単独で使用した他
は、上記実施例1と同様に正極体および電池を作製し特
性を評価した。その結果、初期容量は128mAh/
g、1C容量/0.2C容量は85%、容量維持率は9
2%、発熱開始温度は230℃であった。
<Comparative Example 1> A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1 except that LiNi 0.5 Mn 0.5 O 2 used in Example 1 was used alone. did. As a result, the initial capacity was 128 mAh /
g, 1C capacity / 0.2C capacity is 85%, capacity maintenance rate is 9
The exothermic onset temperature was 230 ° C.

【0038】〈比較例2〉硫酸ニッケルと硫酸マンガン
(モル比0.70:0.30)混合水溶液に、アンモニ
ア水と水酸化ナトリウム水溶液を加えて共沈させ、15
0℃で加熱・乾燥により、ニッケル−マンガン共沈水酸
化物(ニッケル:マンガン原子比=0.70:0.3
0)を得た。このニッケル−マンガン共沈水酸化物を5
50℃で大気中で焼成・粉砕し、ニッケル−マンガン酸
化物粉末を得た。このニッケル−マンガン酸化物粉末と
水酸化リチウム粉末を混合し、480℃で焼成し、さら
に大気中で800℃で焼成・粉砕してLiNi0.7
0.3を合成した。このLiNi0.7Mn
0.3を単独で使用した他は、上記実施例1と同様
に正極体および電池を作製し特性を評価した。その結
果、初期容量は167mAh/g、1C容量/0.2C
容量は86%、容量維持率は91%、発熱開始温度は2
00℃であった。
Comparative Example 2 An aqueous ammonia solution and an aqueous sodium hydroxide solution were added to a mixed aqueous solution of nickel sulfate and manganese sulfate (molar ratio 0.70: 0.30) to cause coprecipitation.
By heating and drying at 0 ° C., nickel-manganese coprecipitated hydroxide (nickel: manganese atomic ratio = 0.70: 0.3
0) was obtained. This nickel-manganese coprecipitated hydroxide is
The mixture was fired and pulverized at 50 ° C. in the air to obtain a nickel-manganese oxide powder. This nickel-manganese oxide powder and lithium hydroxide powder are mixed, fired at 480 ° C., and further fired and pulverized at 800 ° C. in the air to obtain LiNi 0.7 M
n 0.3 O 2 was synthesized. This LiNi 0.7 Mn
Except that 0.3 O 2 was used alone, a positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 above. As a result, the initial capacity was 167 mAh / g, 1 C capacity / 0.2 C
The capacity is 86%, the capacity retention rate is 91%, and the heat generation starting temperature is 2
00 ° C.

【0039】〈比較例3〉上記実施例1において使用し
たLi1.05Mnを単独で使用した他は、上記
実施例1と同様に正極体および電池を作製し特性を評価
した。その結果、初期容量は117mAh/g、1C容
量/0.2C容量は94%、容量維持率は93%、発熱
開始温度は220℃であった。
<Comparative Example 3> A positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 except that Li 1.05 Mn 2 O 4 used in Example 1 was used alone. As a result, the initial capacity was 117 mAh / g, the 1C capacity / 0.2C capacity was 94%, the capacity retention rate was 93%, and the heat generation starting temperature was 220 ° C.

【0040】〈比較例4〉硫酸ニッケルと硫酸マンガン
(モル比0.25:0.75)混合水溶液に、アンモニ
ア水と水酸化ナトリウム水溶液を加えて共沈させ、15
0℃で加熱・乾燥により、ニッケル−マンガン共沈水酸
化物(ニッケル:マンガン原子比=0.25:0.7
5)を得た。このニッケル−マンガン共沈水酸化物を5
50℃で大気中で焼成・粉砕し、ニッケル−マンガン酸
化物粉末を得た。このニッケル−マンガン酸化物粉末と
水酸化リチウム粉末を混合し、480℃で焼成し、さら
に窒素雰囲気中で800℃で焼成・粉砕してLiNi
0.25Mn0.75を合成した。このLiNi
0.25Mn0.75を単独で使用した他は、上記
実施例1と同様に正極体および電池を作製し特性を評価
した。その結果、初期容量は119mAh/g、1C容
量/0.2C容量は83%、容量維持率は87%、発熱
開始温度は230℃であった。
Comparative Example 4 Aqueous ammonia and sodium hydroxide were added to a mixed aqueous solution of nickel sulfate and manganese sulfate (molar ratio: 0.25: 0.75) to cause co-precipitation.
By heating and drying at 0 ° C., nickel-manganese coprecipitated hydroxide (nickel: manganese atomic ratio = 0.25: 0.7)
5) was obtained. This nickel-manganese coprecipitated hydroxide is
The mixture was fired and pulverized at 50 ° C. in the air to obtain a nickel-manganese oxide powder. This nickel-manganese oxide powder and lithium hydroxide powder are mixed, fired at 480 ° C, and further fired and pulverized at 800 ° C in a nitrogen atmosphere to obtain LiNi.
0.25 Mn 0.75 O 2 was synthesized. This LiNi
Except that 0.25 Mn 0.75 O 2 was used alone, a positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 above. As a result, the initial capacity was 119 mAh / g, the 1C capacity / 0.2C capacity was 83%, the capacity retention rate was 87%, and the heat generation starting temperature was 230 ° C.

【0041】参考として、次表に上記実施例1〜8およ
び比較例1〜4で用いた複合酸化物と評価結果をまとめ
て示す。
For reference, the following table summarizes the composite oxides used in Examples 1 to 8 and Comparative Examples 1 to 4 and the evaluation results.

【表1】 [Table 1]

【0042】[0042]

【発明の効果】以上説明したように、リチウム遷移金属
複合酸化物を主成分とする正極活物質層を備えたリチウ
ム二次電池において、リチウム遷移金属複合酸化物に、
本発明の複合酸化物の混合物を用いることにより、ハイ
レートでの充放電が可能で、混合に用いたそれぞれの単
独のリチウム遷移金属複合酸化物を用いた場合より、容
量、安全性のバランスが向上した電池性能が発現でき
る。
As described above, in a lithium secondary battery provided with a positive electrode active material layer containing a lithium transition metal composite oxide as a main component,
By using the mixture of the composite oxide of the present invention, charge and discharge at a high rate is possible, and the balance between capacity and safety is improved as compared with the case where each single lithium transition metal composite oxide used for mixing is used. Battery performance can be achieved.

【0043】また、単独のリチウム遷移金属化合物から
なり、かつ、混合に用いた遷移金属元素含量と同じであ
る正極活物質を用いた場合より、容量と安全性並びに充
放電サイクル安定性の優れた電池性能を得ることができ
る。
Further, as compared with the case where a positive electrode active material composed of a single lithium transition metal compound and having the same content of the transition metal element used for mixing is used, the capacity, the safety and the charge / discharge cycle stability are more excellent. Battery performance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 貴志 神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号 セイミケミカル株式会社内 (72)発明者 三原 卓也 神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号 セイミケミカル株式会社内 Fターム(参考) 5H029 AJ02 AJ05 AJ12 AK03 AL06 AM03 AM05 AM07 DJ16 DJ17 HJ01 HJ02 HJ08 HJ12 5H050 AA02 AA08 AA15 BA17 CA08 CA09 CB07 CB12 EA10 EA24 HA01 HA02 HA08 HA13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Kimura 3-10-10 Chigasaki, Chigasaki City, Kanagawa Prefecture Inside Seimi Chemical Co., Ltd. (72) Inventor Takuya Mihara 2-10-10 Chigasaki, Chigasaki City, Kanagawa Prefecture Seimi Chemical F term (reference) 5H029 AJ02 AJ05 AJ12 AK03 AL06 AM03 AM05 AM07 DJ16 DJ17 HJ01 HJ02 HJ08 HJ12 5H050 AA02 AA08 AA15 BA17 CA08 CA09 CB07 CB12 EA10 EA24 HA01 HA02 HA08 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複合酸化物を主成分と
する正極活物質層を備えたリチウム二次電池において、 上記リチウム遷移金属複合酸化物が、LiNiMn
1−y−z(ただし、xは0.9≦x≦1.
2、yは0.40≦y≦0.60、zは0≦z≦0.2
であり、MはFe,Co,Cr,Al原子のいずれかか
ら選択される。)で表されるリチウム−ニッケル−マン
ガン−M複合酸化物と、Fd3mスピネル構造を有し、
LiMn(ただし、pは1≦p≦1.3であ
る。)で表されるリチウム−マンガンスピネル複合酸化
物との混合物からなることを特徴とするリチウム二次電
池。
1. A lithium secondary battery provided with a positive electrode active material layer containing a lithium transition metal composite oxide as a main component, wherein the lithium transition metal composite oxide is Li x Ni y Mn
1-y-z M z O 2 ( here, x is 0.9 ≦ x ≦ 1.
2, y is 0.40 ≦ y ≦ 0.60, z is 0 ≦ z ≦ 0.2
And M is selected from any of Fe, Co, Cr, and Al atoms. And a lithium-nickel-manganese-M composite oxide represented by the formula:
Li p Mn 2 O 4 (Here, p is 1 ≦ p ≦ 1.3.) Lithium represented by - lithium secondary battery, characterized by comprising a mixture of manganese spinel complex oxide.
【請求項2】 上記混合物中の上記リチウム−ニッケル
−マンガン−M複合酸化物の含有量が30〜70重量%
であることを特徴とする請求項1記載のリチウム二次電
池。
2. The content of the lithium-nickel-manganese-M composite oxide in the mixture is 30 to 70% by weight.
The lithium secondary battery according to claim 1, wherein:
【請求項3】 上記混合物の粉体プレス密度が2.7g
/cm以上であることを特徴とする請求項1または2
記載のリチウム二次電池。
3. The powder press density of the mixture is 2.7 g.
/ Cm 3 or more.
The lithium secondary battery according to the above.
【請求項4】 上記リチウム−ニッケル−マンガン−M
複合酸化物がR−3m菱面体構造であることを特徴とす
る請求項1,2または3に記載のリチウム二次電池。
4. The lithium-nickel-manganese-M as defined above.
4. The lithium secondary battery according to claim 1, wherein the composite oxide has an R-3m rhombohedral structure. 5.
JP2000289767A 2000-09-25 2000-09-25 Lithium secondary battery Expired - Fee Related JP4092064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000289767A JP4092064B2 (en) 2000-09-25 2000-09-25 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289767A JP4092064B2 (en) 2000-09-25 2000-09-25 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002100358A true JP2002100358A (en) 2002-04-05
JP4092064B2 JP4092064B2 (en) 2008-05-28

Family

ID=18773105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289767A Expired - Fee Related JP4092064B2 (en) 2000-09-25 2000-09-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4092064B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004055539A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and method for charging the same
JP2004087487A (en) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
FR2845823A1 (en) * 2002-10-10 2004-04-16 Sanyo Electric Co Non-aqueous electrolyte secondary battery using lithium-manganese and lithium-transition metal oxides with improved capacity and charge/discharge characteristics for elevated current mobile equipment applications
US6808848B2 (en) * 2000-09-29 2004-10-26 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells
JP2005085720A (en) * 2003-09-11 2005-03-31 Nec Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2005129492A (en) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd Charge/discharge control method of nonaqueous electrolyte secondary battery
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
JP2006216305A (en) * 2005-02-02 2006-08-17 Nissan Motor Co Ltd Secondary battery
JP2006278078A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Positive electrode and non-aqueous electrolyte secondary battery
US7659037B2 (en) 2005-12-14 2010-02-09 Hitachi, Ltd. Nonaqueous secondary cell
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7674556B2 (en) 2002-05-30 2010-03-09 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for charging the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
WO2010058993A3 (en) * 2008-11-20 2010-08-12 주식회사 엘지화학 Lithium secondary battery having improved characteristics
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
US7892679B2 (en) * 2005-12-28 2011-02-22 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8153297B2 (en) * 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
KR101141056B1 (en) * 2008-11-20 2012-05-03 주식회사 엘지화학 Lithium Secondary Battery with Improved Cell Property
KR101152639B1 (en) * 2008-11-20 2012-06-04 주식회사 엘지화학 Lithium Secondary Battery with Improved Safety
WO2013008475A1 (en) * 2011-07-13 2013-01-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2013522829A (en) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for dynamic use
EP2690699A2 (en) * 2011-09-26 2014-01-29 LG Chem, Ltd. Positive electrode active material having improved safety and lifespan characteristics, and lithium secondary battery comprising same
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
KR101459402B1 (en) * 2009-06-17 2014-11-10 주식회사 엘지화학 Electrolyte Solution for Secondary Battery with Improved Safety and Lithium Secondary Battery Containing the Same
JP6070824B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2020063371A1 (en) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 Positive electrode piece and lithium-ion secondary battery
CN114583156A (en) * 2022-01-26 2022-06-03 合肥国轩高科动力能源有限公司 Method for preparing carbon-coated lithium manganese iron phosphate material by electrolyzing manganese slag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283076A (en) * 1992-02-07 1993-10-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JP2000077072A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283076A (en) * 1992-02-07 1993-10-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JP2000077072A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808848B2 (en) * 2000-09-29 2004-10-26 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JPWO2003044881A1 (en) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4956883B2 (en) * 2001-11-22 2012-06-20 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
US7691535B2 (en) 2002-03-27 2010-04-06 Gs Yuasa Corporation Active substance of positive electrode and non-aqueous electrolyte battery containing the same
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP4583727B2 (en) * 2002-05-30 2010-11-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method
US7674556B2 (en) 2002-05-30 2010-03-09 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for charging the same
JP2004055539A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and method for charging the same
JP4594605B2 (en) * 2002-08-05 2010-12-08 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US8153297B2 (en) * 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004087487A (en) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7217475B2 (en) 2002-10-10 2007-05-15 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
FR2845823A1 (en) * 2002-10-10 2004-04-16 Sanyo Electric Co Non-aqueous electrolyte secondary battery using lithium-manganese and lithium-transition metal oxides with improved capacity and charge/discharge characteristics for elevated current mobile equipment applications
JP2005085720A (en) * 2003-09-11 2005-03-31 Nec Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2005129492A (en) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd Charge/discharge control method of nonaqueous electrolyte secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP4534559B2 (en) * 2004-04-07 2010-09-01 新神戸電機株式会社 Lithium secondary battery and positive electrode material for lithium secondary battery
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
JP2006216305A (en) * 2005-02-02 2006-08-17 Nissan Motor Co Ltd Secondary battery
JP2006278078A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Positive electrode and non-aqueous electrolyte secondary battery
JP4707430B2 (en) * 2005-03-29 2011-06-22 三洋電機株式会社 Positive electrode and non-aqueous electrolyte secondary battery
US7659037B2 (en) 2005-12-14 2010-02-09 Hitachi, Ltd. Nonaqueous secondary cell
US7892679B2 (en) * 2005-12-28 2011-02-22 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
KR101152639B1 (en) * 2008-11-20 2012-06-04 주식회사 엘지화학 Lithium Secondary Battery with Improved Safety
KR101141056B1 (en) * 2008-11-20 2012-05-03 주식회사 엘지화학 Lithium Secondary Battery with Improved Cell Property
WO2010058993A3 (en) * 2008-11-20 2010-08-12 주식회사 엘지화학 Lithium secondary battery having improved characteristics
KR101459402B1 (en) * 2009-06-17 2014-11-10 주식회사 엘지화학 Electrolyte Solution for Secondary Battery with Improved Safety and Lithium Secondary Battery Containing the Same
JP2013522829A (en) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for dynamic use
WO2013008475A1 (en) * 2011-07-13 2013-01-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JPWO2013008475A1 (en) * 2011-07-13 2015-02-23 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
EP2733776A4 (en) * 2011-07-13 2015-03-18 Gs Yuasa Int Ltd Nonaqueous electrolyte secondary battery
US9570742B2 (en) 2011-09-26 2017-02-14 Lg Chem, Ltd. Positive electrode active material having improved safety and lifetime characteristics and lithium secondary battery comprising the same
EP2690699A4 (en) * 2011-09-26 2015-02-25 Lg Chemical Ltd Positive electrode active material having improved safety and lifespan characteristics, and lithium secondary battery comprising same
EP2690699A2 (en) * 2011-09-26 2014-01-29 LG Chem, Ltd. Positive electrode active material having improved safety and lifespan characteristics, and lithium secondary battery comprising same
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
JP6070824B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JPWO2014142283A1 (en) * 2013-03-15 2017-02-16 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US9608261B2 (en) 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2020063371A1 (en) * 2018-09-28 2020-04-02 宁德时代新能源科技股份有限公司 Positive electrode piece and lithium-ion secondary battery
US11196041B2 (en) 2018-09-28 2021-12-07 Contemporary Amperex Technology Co., Limited Positive electrode plate and lithium-ion secondary battery
CN114583156A (en) * 2022-01-26 2022-06-03 合肥国轩高科动力能源有限公司 Method for preparing carbon-coated lithium manganese iron phosphate material by electrolyzing manganese slag
CN114583156B (en) * 2022-01-26 2023-03-03 合肥国轩高科动力能源有限公司 Method for preparing carbon-coated lithium manganese iron phosphate material by electrolyzing manganese slag

Also Published As

Publication number Publication date
JP4092064B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4092064B2 (en) Lithium secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP4217710B2 (en) Method for producing lithium-nickel-cobalt-manganese-containing composite oxide
US7429434B2 (en) Cathode active material powder for lithium secondary battery
Ohzuku et al. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries
JP4280012B2 (en) Lithium transition metal composite oxide
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2002358962A (en) Non-aqueous secondary battery
JP2002100356A (en) Lithium secondary battery
JP2001192210A (en) Method for manufacturing lithium-manganese multiple oxide for non-aqueous lithium secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4519220B2 (en) Lithium secondary battery
JP4777543B2 (en) Method for producing lithium cobalt composite oxide
JP4773636B2 (en) Method for producing lithium cobalt composite oxide
JP4082855B2 (en) Lithium secondary battery
JP4318270B2 (en) Method for manufacturing lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2000077072A (en) Nonaqueous electrolyte secondary battery
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001266871A (en) Manufacturing method of complex oxide for non-aqueous lithium secondary battery
JP2004091294A (en) Method for producing lithium-cobalt multiple oxide for secondary battery positive electrode
JP2003007297A (en) Positive electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees