JP2002093247A - Dc power cable - Google Patents

Dc power cable

Info

Publication number
JP2002093247A
JP2002093247A JP2000282617A JP2000282617A JP2002093247A JP 2002093247 A JP2002093247 A JP 2002093247A JP 2000282617 A JP2000282617 A JP 2000282617A JP 2000282617 A JP2000282617 A JP 2000282617A JP 2002093247 A JP2002093247 A JP 2002093247A
Authority
JP
Japan
Prior art keywords
insulator
cable
layer
density polyethylene
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000282617A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
享 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000282617A priority Critical patent/JP2002093247A/en
Publication of JP2002093247A publication Critical patent/JP2002093247A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Graft Or Block Polymers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a plastic insulated DC power cable capable of reducing the finished outside diameter of a cable, and holding down the cost, and having favorable heat dissipation. SOLUTION: As an insulator 13, used is maleic anhydride graft high density polyethylene having a density of 0.94 g/cm3 or more. Accordingly, even if the insulator 13 is as thick as 15 to 25 mm, thermal expansion of the insulator 13 is small so that a cushion layer is not needed, and enough water barrier performance can be obtained by a simple water barrier layer 15 formed by a metal foil-plastic laminate. Accordingly, heat dissipation can be improved and cable finished outside diameter can be made small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、ポリエチレンか
らなる絶縁体を有する直流電力ケーブルに関し、絶縁体
の熱膨張を抑えて、簡易な構造の遮水層でも十分な遮水
性が得られるようにし、これによってケーブルの仕上が
り外径を縮小し、熱放散性を良好にしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power cable having an insulator made of polyethylene, which suppresses thermal expansion of the insulator so that sufficient water shielding can be obtained even with a simple structure of a water shielding layer. As a result, the finished outer diameter of the cable is reduced, and the heat dissipation is improved.

【0002】[0002]

【従来の技術】直流電力ケーブルは、交流電力ケーブル
に比べて、誘電損失がなく、充電電流に対する無効分を
補償するための設備が不要であるなどの長所を持つ。ま
た、一般に、絶縁物の絶縁耐圧は、交流より直流のほう
が大きく、安定度を考慮する必要がないことから、送電
距離が長く、かつ大容量送電になればなるほど直流電力
ケーブルのメリットがでてくることが知られている。
2. Description of the Related Art Compared with an AC power cable, a DC power cable has advantages that it has no dielectric loss and does not require a facility for compensating for an ineffective component with respect to a charging current. Also, in general, the insulation withstand voltage of insulators is larger in DC than in AC, and there is no need to consider stability.Therefore, the longer the transmission distance and the larger the capacity of transmission, the more the merit of a DC power cable appears. Is known to come.

【0003】また、直流電力ケーブルは、海底ケーブル
として用いられることが多い。このため、現在実用化さ
れているOFケーブルやソリッドケーブルなどの油浸絶
縁ケーブルでは、油圧の維持や油漏れを防ぐためなどに
鉛被などの金属被が施されている。また、現在開発され
ているプラスチック絶縁直流ケーブルにおいても、架橋
ポリエチレンや変性架橋ポリエチレンなどから固体状の
絶縁体を使用するにもかかわらず、浸水防止の目的でや
はり鉛被などの金属被が施されている。
[0003] DC power cables are often used as submarine cables. For this reason, oil-immersed insulated cables, such as OF cables and solid cables, which are currently in practical use, are coated with a metal coating such as a lead coating in order to maintain oil pressure and prevent oil leakage. In addition, despite the use of solid insulators made of cross-linked polyethylene or modified cross-linked polyethylene, metal coatings such as lead coatings are also applied to prevent inundation even in plastic insulated DC cables currently being developed. ing.

【0004】図2は、このようなプラスチック絶縁直流
電力ケーブルを示すもので、図中符号1は導体を示す。
この導体1上には内部半導電層2、絶縁体3、外部半導
電層4、クッション層5、鉛被6および外装7が順次設
けられている。絶縁体3は、架橋低密度ポリエチレンか
らなり、その厚みが15〜25mm程度となっている。
また、クッション層5は、発泡ゴムなどからなる厚み2
〜3mmのものである。さらに、鉛被6は、その厚みが
3〜5mmとなっている。
FIG. 2 shows such a plastic insulated DC power cable, wherein reference numeral 1 denotes a conductor.
On the conductor 1, an inner semiconductive layer 2, an insulator 3, an outer semiconductive layer 4, a cushion layer 5, a lead coating 6, and an exterior 7 are sequentially provided. The insulator 3 is made of a crosslinked low-density polyethylene, and has a thickness of about 15 to 25 mm.
The cushion layer 5 has a thickness 2 made of foam rubber or the like.
33 mm. Further, the lead sheath 6 has a thickness of 3 to 5 mm.

【0005】このようなプラスチック絶縁直流電力ケー
ブルでは、絶縁体3の厚みが厚く、また架橋低密度ポリ
エチレンの熱膨張率が比較的大きいため、絶縁体3の半
径方向の熱膨張を吸収する必要があるため、クッション
層5が設けられている。ところが、クッション層5は、
発泡体から形成されているため、断熱性が良好で、導体
1からの発熱の放散が妨げられると言う欠点がある。ま
た、クッション層5は、発泡体からなるため、水を吸い
込みやすく、このため厚い鉛被6を施して遮水性を高め
ておく必要がある。さらに、クッション層5を設けるこ
とでケーブルの仕上がり外径が太くなる欠点もある。
In such a plastic insulated DC power cable, since the thickness of the insulator 3 is large and the coefficient of thermal expansion of the crosslinked low-density polyethylene is relatively large, it is necessary to absorb the thermal expansion of the insulator 3 in the radial direction. Therefore, the cushion layer 5 is provided. However, the cushion layer 5
Since it is formed from a foam, there is a defect that heat insulation is good and heat dissipation from the conductor 1 is prevented. In addition, since the cushion layer 5 is made of a foam, it is easy to absorb water. Therefore, it is necessary to apply a thick lead cover 6 to increase the water shielding. Further, the provision of the cushion layer 5 has a disadvantage that the finished outer diameter of the cable is increased.

【0006】このように、架橋低密度ポリエチレンから
なり、かつ厚肉の絶縁体3を有するプラスチック絶縁直
流電力ケーブルでは、仕上がり外径が太く、コストが嵩
み、熱放散性にも劣るという問題があった。
As described above, the plastic insulated DC power cable made of crosslinked low-density polyethylene and having the thick insulator 3 has a problem that the finished outer diameter is large, the cost is increased, and the heat dissipation is poor. there were.

【0007】[0007]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、ケーブルの仕上がり外径を小さくでき、コス
トを抑えることが可能で、しかも熱放散性が良好なプラ
スチック絶縁直流電力ケーブルを得ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a plastic insulated DC power cable that can reduce the finished outer diameter of the cable, can reduce the cost, and has good heat dissipation. is there.

【0008】[0008]

【課題を解決するための手段】かかる課題は、絶縁体と
して密度0.94g/cm3以上の無水マレイン酸グラ
フト高密度ポリエチレンからなるものを用いることによ
り解決される。これにより、絶縁体の厚みが15〜25
mmと厚くなっても、絶縁体の熱膨張が小さいので、ク
ッション層が不要となり、金属箔ープラスチックラミネ
ートからなる簡易な遮水層で十分な遮水性が得られ、熱
放散性が良好となり、ケーブル仕上がり外径も細くでき
る。
This problem can be solved by using an insulator made of maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more as an insulator. Thereby, the thickness of the insulator is 15 to 25.
Even if it becomes thicker, the thermal expansion of the insulator is small, so a cushion layer is not required, sufficient water shielding is obtained with a simple water shielding layer made of metal foil-plastic laminate, heat dissipation is good, The outer diameter of the finished cable can be reduced.

【0009】[0009]

【発明の実施の態様】以下、本発明を詳しく説明する。
図1は、本発明の直流電力ケーブルの一例を示すもの
で、海底ケーブル用の仕様のものである。図1中符号1
1は導体を示す。この導体11上には、内部半導電層1
2、絶縁体13、外部半導電層14、遮水層15、防食
層16および外装17が順次設けられている。内部半導
電層12および外部半導電層14は、エチレンー酢酸ビ
ニル共重合体、エチレンーエチルアクリレート共重合体
などにカーボンブラックを配合した半導電性樹脂組成物
からなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
FIG. 1 shows an example of a DC power cable of the present invention, which is a specification for a submarine cable. 1 in FIG.
1 indicates a conductor. On this conductor 11, the inner semiconductive layer 1
2, an insulator 13, an external semiconductive layer 14, a water barrier layer 15, an anticorrosion layer 16, and an exterior 17 are sequentially provided. The inner semiconductive layer 12 and the outer semiconductive layer 14 are made of a semiconductive resin composition obtained by blending carbon black with an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, or the like.

【0010】絶縁体13は、密度0.94g/cm3
上の無水マレイン酸グラフト高密度ポリエチレンからな
り、その厚みが15〜25mmとなっている。一般に、
ポリエチレンは、その密度が大きくなると結晶化度が高
くなり、その熱膨張率が小さくなる特性を有している。
例えば、密度0.95g/cm3の高密度ポリエチレン
の熱膨張は、密度0.92g/cm3の低密度ポリエチ
レンの熱膨張に比較して、室温から80℃の間で、30
〜40%程度となる。このため、密度0.94g/cm
3以上の無水マレイン酸グラフト高密度ポリエチレンで
もその熱膨張は小さいものとなる。
The insulator 13 is made of maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more, and has a thickness of 15 to 25 mm. In general,
Polyethylene has the property that as its density increases, the degree of crystallinity increases and its coefficient of thermal expansion decreases.
For example, the thermal expansion of high-density polyethylene having a density of 0.95 g / cm 3 is 30 ° C. between room temperature and 80 ° C. as compared with the thermal expansion of low-density polyethylene having a density of 0.92 g / cm 3.
About 40%. Therefore, the density is 0.94 g / cm
Even with maleic anhydride-grafted high-density polyethylene of 3 or more, its thermal expansion is small.

【0011】また、密度0.94g/cm3以上の無水
マレイン酸グラフト高密度ポリエチレンは、荷電時の空
間電荷の蓄積が少なく、直流絶縁性能が極めて優れてい
ることが知られている(特公平6ー16366号公報参
照)。これは、無水マレイン酸グラフト高密度ポリエチ
レンの分子内に存在するカルボニル基が、電子親和性あ
るいは電子共鳴性に富み、このカルボニル基が適量存在
することで、注入される空間電荷のトラップを低減させ
るためである。したがって、この絶縁体13は、熱膨張
が小さく、しかも優れた直流絶縁特性を有するものとな
る。
Further, it is known that maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more has a small accumulation of space charge at the time of charging, and has extremely excellent direct-current insulation performance (Japanese Patent Publication No. Hei 10-222). 6-16366). This is because the carbonyl group present in the molecule of the maleic anhydride-grafted high-density polyethylene has high electron affinity or electron resonance, and the presence of an appropriate amount of this carbonyl group reduces trapping of injected space charges. That's why. Therefore, the insulator 13 has a small thermal expansion and excellent DC insulation characteristics.

【0012】この絶縁体13をなす無水マレイン酸グラ
フト高密度ポリエチレンにおける無水マレイン酸のグラ
フト量は、0.02〜5重量%、好ましくは0.2〜1
重量%がよく、0.02重量%未満では直流絶縁特性の
向上がなく、5重量%を越えると結晶化度の低下を招い
て、絶縁破壊強度の低下を引き起こす。また、メルトフ
ローレイトは、ケーブルへの押出加工性を考慮すると、
0.05〜10g/分とすることが好ましい。この無水
マレイン酸グラフト高密度ポリエチレンの製造は、高密
度ポリエチレンに無水マレイン酸と触媒としての有機過
酸化物などのラジカル発生剤を添加し、グラフト重合す
る方法で行われる。
The grafted amount of maleic anhydride in the maleic anhydride-grafted high-density polyethylene constituting the insulator 13 is 0.02 to 5% by weight, preferably 0.2 to 1% by weight.
If the content is less than 0.02% by weight, the DC insulation characteristics will not be improved, and if it exceeds 5% by weight, the degree of crystallinity will be reduced, and the dielectric breakdown strength will be reduced. In addition, melt flow rate, considering the extrusion processability to the cable,
It is preferably 0.05 to 10 g / min. The production of the maleic anhydride-grafted high-density polyethylene is carried out by adding maleic anhydride and a radical generator such as an organic peroxide as a catalyst to the high-density polyethylene, followed by graft polymerization.

【0013】遮水層15は、鉛箔、アルミニウム箔など
の厚み20〜200μmの金属箔の片面または両面に低
密度ポリエチレン、ポリプロピレンなどポリオレフィン
ポリマーなどからなる厚み50〜300μmのプラスチ
ック層を押出ラミネート法などにより積層して得られた
厚み100〜400μmの薄く、軽量な金属箔ープラス
チックラミネートのテープを縦添えして被覆し、その長
手方向の重ね目を熱溶着してなるものである。
The water-impervious layer 15 is formed by extrusion laminating a plastic layer having a thickness of 50 to 300 μm made of a polyolefin polymer such as low-density polyethylene or polypropylene on one or both sides of a metal foil having a thickness of 20 to 200 μm such as lead foil or aluminum foil. A thin, lightweight metal foil-plastic laminate tape having a thickness of 100 to 400 [mu] m obtained by laminating by means of, for example, is longitudinally covered and coated, and the overlap in the longitudinal direction is heat-welded.

【0014】防食層16は、この遮水層15の上に低密
度ポリエチレン、高密度ポリエチレンなどの耐食性の優
れた熱可塑性樹脂を押出被覆して形成したものである。
また、外装17は、防食層16上に亜鉛メッキ鋼線を密
に巻き回し、これにタールエポキシ樹脂系などの防食塗
料を塗布したもので、敷設の際の外傷などからケーブル
を保護するためのものある。
The anticorrosion layer 16 is formed by extrusion-coating a thermoplastic resin having excellent corrosion resistance such as low-density polyethylene and high-density polyethylene on the water-shielding layer 15.
Further, the exterior 17 is formed by densely winding a galvanized steel wire on the anticorrosion layer 16 and applying an anticorrosion paint such as a tar epoxy resin to the cable to protect the cable from external damage at the time of laying. There is something.

【0015】このような構造の直流ケーブルにあって
は、絶縁体13が、密度0.94g/cm3以上の無水
マレイン酸グラフト高密度ポリエチレンから構成されて
いるので、直流絶縁性能に優れ、かつ導体11への通電
によってその温度が上昇しても熱膨張が小さく、外径の
増加がわずかなものになる。このため、絶縁体13の厚
みが15〜25mmと厚肉であっても、従来の図2に示
すケーブルのような発泡ゴムなどからなるクッション層
が不要となる。したがって、クッション層が不要となれ
ば、鉛被などの厚肉で高価な遮水層は不要となり、厚み
が薄く、安価な金属箔ープラスチックラミネートからな
る簡易な遮水層15でも十分な遮水性能を得ることがで
きる。
In the DC cable having such a structure, since the insulator 13 is composed of maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more, it has excellent DC insulation performance and Even if the temperature of the conductor 11 is increased by energization of the conductor 11, the thermal expansion is small, and the increase in the outer diameter is small. For this reason, even if the thickness of the insulator 13 is as thick as 15 to 25 mm, a cushion layer made of foam rubber or the like like the conventional cable shown in FIG. 2 becomes unnecessary. Therefore, if a cushion layer is not required, a thick and expensive water-impervious layer such as a lead coating is not required, and even a simple water-impervious layer 15 made of a thin and inexpensive metal foil-plastic laminate can provide sufficient water-imperviousness. Performance can be obtained.

【0016】また、発泡ゴムなどからなるクッション層
が不要となるので、熱の放散性が良好となり、結果的に
絶縁体13の温度の上昇が抑えられ、絶縁体13の熱膨
張が更に小さいものとなる。さらに、クッション層が不
要であり、薄肉の遮水層15を採用できるので、ケーブ
ルの仕上がり外径も細くすることができるとともにケー
ブルを軽量にすることもできる。
Further, since a cushion layer made of foamed rubber or the like is not required, heat dissipation is improved, and as a result, a rise in the temperature of the insulator 13 is suppressed, and the thermal expansion of the insulator 13 is further reduced. Becomes Furthermore, since a cushion layer is unnecessary and a thin water-impervious layer 15 can be employed, the finished outer diameter of the cable can be reduced and the cable can be reduced in weight.

【0017】以下、具体例を示す。導体断面積1000
mm2、絶縁体の厚み10mm,15mm,25mmの
3種のケーブルコアを作成した。絶縁体には、密度0.
92g/cm3の架橋低密度ポリエチレンと密度0.9
5g/cm3の無水マレイン酸グラフト高密度ポリエチ
レン(無水マレイン酸グラフト量約0.2重量%)を用
いた。導体上に内部半導電層、絶縁体、外部半導電層を
設けてケーブルコアとした。
Hereinafter, specific examples will be described. Conductor cross-sectional area 1000
Three types of cable cores having a thickness of 2 mm and insulator thicknesses of 10 mm, 15 mm and 25 mm were prepared. The insulator has a density of 0.
92 g / cm 3 crosslinked low density polyethylene and density 0.9
5 g / cm 3 of maleic anhydride-grafted high-density polyethylene (maleic anhydride graft amount: about 0.2% by weight) was used. A cable core was formed by providing an inner semiconductive layer, an insulator, and an outer semiconductive layer on a conductor.

【0018】このケーブルコアの上に、鉛箔ープラスチ
ックラミネート(厚み 約250μm)の長尺テープを
縦添えして遮水層を設け、この上にポリエチレンの防食
層を押出被覆し、さらにこの上に亜鉛メッキ鋼線を巻き
回しタールエポキシ系防食塗料を塗布して外装を設けて
海底用ケーブルとした。これらケーブルに対し、導体通
電により、導体温度:室温〜90℃、8時間ON、16
時間OFFのヒートサイクルを行った後、絶縁体の熱膨
張に起因する遮水層のしわの発生を観察した。結果を表
1に示す。
On this cable core, a long tape of lead foil-plastic laminate (about 250 μm in thickness) is longitudinally attached to provide a water-shielding layer, and a polyethylene anticorrosive layer is extrusion-coated on the water-shielding layer. Then, a galvanized steel wire was wound around, and a tar epoxy-based anticorrosive paint was applied to provide an exterior, thereby forming a submarine cable. Conduction of conductors to these cables, conductor temperature: room temperature to 90 ° C., 8 hours ON, 16
After a heat cycle of OFF for a time period, occurrence of wrinkles in the water barrier layer due to thermal expansion of the insulator was observed. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1において、遮水層にしわが発生したも
のを×とし、発生しなかったものを○として評価した。
表1の結果から、絶縁体に密度0.95g/cm3の無
水マレイン酸グラフト高密度ポリエチレンを用いれば、
絶縁体の熱膨張が小さく、遮水層のしわが生じないこと
がわかる。
In Table 1, the case where wrinkles occurred in the impermeable layer was evaluated as x, and the case where no wrinkles occurred was evaluated as ○.
From the results shown in Table 1, if maleic anhydride-grafted high-density polyethylene having a density of 0.95 g / cm 3 is used for the insulator,
It can be seen that the thermal expansion of the insulator is small and no wrinkling of the impermeable layer occurs.

【0021】[0021]

【発明の効果】以上説明したように、本発明の直流電力
ケーブルは、密度0.94g/cm3以上の無水マレイ
ン酸グラフト高密度ポリエチレンからなる絶縁体を有す
るものであるので、直流絶縁性能が優れている。また、
絶縁体をなす密度0.94g/cm3以上の無水マレイ
ン酸グラフト高密度ポリエチレンは、低熱膨張性である
ので、絶縁体の厚みが15〜25mmと厚肉であるにも
かかわらず、その熱膨張による外径の増大が小さい。
As described above, the DC power cable of the present invention has an insulator made of maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more. Are better. Also,
Since the maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more that forms an insulator has a low thermal expansion property, its thermal expansion is high even though the thickness of the insulator is as large as 15 to 25 mm. The increase in outer diameter due to is small.

【0022】このため、発泡ゴムなどからなるクッショ
ン層が不要となり、これによって簡便な金属箔ープラス
チックラミネートからなる薄く軽量な遮水層で十分な遮
水性能が得られ、鉛被などの厚い金属被が不要となり、
ケーブルの仕上がり径を細くすることができ、かつその
重量を軽いものとできる。
This eliminates the need for a cushion layer made of foamed rubber or the like, whereby a thin and lightweight water-impervious layer made of a simple metal foil-plastic laminate provides sufficient water-impermeability, and a thick metal such as lead coating. No need to cover
The finished diameter of the cable can be reduced, and its weight can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の直流電力ケーブルの一例を示す概略断
面図である。
FIG. 1 is a schematic sectional view showing an example of a DC power cable of the present invention.

【図2】従来の直流電力ケーブルを示す概略断面図であ
る。
FIG. 2 is a schematic sectional view showing a conventional DC power cable.

【符号の説明】[Explanation of symbols]

13・・・絶縁体、15・・・遮水層。 13 ... insulator, 15 ... water barrier layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁体が密度0.94g/cm3以上の無
水マレイン酸グラフト高密度ポリエチレンからなり、そ
の厚みが15〜25mmであり、金属箔ープラスチック
ラミネートからなる遮水層を有することを特徴とする直
流電力ケーブル。
An insulator is made of maleic anhydride-grafted high-density polyethylene having a density of 0.94 g / cm 3 or more, has a thickness of 15 to 25 mm, and has a water barrier layer made of a metal foil-plastic laminate. Characteristic DC power cable.
【請求項2】絶縁体の熱膨張吸収のためのクッション層
を有しないことを特徴とする請求項1記載の直流電力ケ
ーブル。
2. The direct-current power cable according to claim 1, wherein a cushion layer for absorbing thermal expansion of the insulator is not provided.
JP2000282617A 2000-09-18 2000-09-18 Dc power cable Pending JP2002093247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282617A JP2002093247A (en) 2000-09-18 2000-09-18 Dc power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282617A JP2002093247A (en) 2000-09-18 2000-09-18 Dc power cable

Publications (1)

Publication Number Publication Date
JP2002093247A true JP2002093247A (en) 2002-03-29

Family

ID=18767100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282617A Pending JP2002093247A (en) 2000-09-18 2000-09-18 Dc power cable

Country Status (1)

Country Link
JP (1) JP2002093247A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2437272A1 (en) * 2010-09-30 2012-04-04 Nexans Power cable with a water barrier laminate
JP2018073608A (en) * 2016-10-28 2018-05-10 日立金属株式会社 Insulation wire
JP2018195596A (en) * 2018-09-18 2018-12-06 日立金属株式会社 Insulation wire
US11380459B2 (en) 2016-06-17 2022-07-05 Hitachi Metals, Ltd. Insulated wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101424U (en) * 1980-12-12 1982-06-22
JPH0210610A (en) * 1988-06-28 1990-01-16 Tokyo Electric Power Co Inc:The Dc power cable
JPH05120917A (en) * 1991-06-14 1993-05-18 Hitachi Cable Ltd Filler for direct current cable insulator
JP2000113738A (en) * 1998-10-06 2000-04-21 Sumitomo Electric Ind Ltd Power cable and its recycling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101424U (en) * 1980-12-12 1982-06-22
JPH0210610A (en) * 1988-06-28 1990-01-16 Tokyo Electric Power Co Inc:The Dc power cable
JPH05120917A (en) * 1991-06-14 1993-05-18 Hitachi Cable Ltd Filler for direct current cable insulator
JP2000113738A (en) * 1998-10-06 2000-04-21 Sumitomo Electric Ind Ltd Power cable and its recycling method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2437272A1 (en) * 2010-09-30 2012-04-04 Nexans Power cable with a water barrier laminate
US11380459B2 (en) 2016-06-17 2022-07-05 Hitachi Metals, Ltd. Insulated wire
JP2018073608A (en) * 2016-10-28 2018-05-10 日立金属株式会社 Insulation wire
JP2018195596A (en) * 2018-09-18 2018-12-06 日立金属株式会社 Insulation wire

Similar Documents

Publication Publication Date Title
US3681515A (en) Electric cables and like conductors
AU2013404756B2 (en) Process of manufacturing power cables and related power cable
JP2001525609A (en) High voltage induction device
US20180374613A1 (en) Electrical cables
US7723616B2 (en) Superconducting cable and DC transmission system incorporating the superconducting cable
JP2002093247A (en) Dc power cable
JP4668003B2 (en) Coaxial cable for bipolar DC power transmission
KR102256323B1 (en) High Voltage direct current power cable
KR102256351B1 (en) High Voltage direct current power cable
KR102499648B1 (en) High voltage DC power cable joint system
CN213483458U (en) Aluminum core crosslinked polyethylene insulation aluminum-plastic composite belt photoelectric composite power cable
JP2002251921A (en) Dc power cable
JP2001291436A (en) Water barrier tape for cable and water barrier cable
JP3811347B2 (en) Pipe type rubber or plastic insulated power cable
KR102604898B1 (en) High voltage DC power cable system
JPH0579814U (en) Cross-linked polyethylene insulated lead sheathed cable
CN112017817B (en) High-voltage power cable with smooth flatness sheath structure and manufacturing method thereof
US20230402208A1 (en) Method of manufacturing a power cable
JPH1118270A (en) Cable connection and terminal sections
WO2017052119A1 (en) Conductor compression sleeve and ultra-high-voltage direct current power cable system using same
JP2001084848A (en) Dc o.f. power cable
JPH1021758A (en) Power cable with tension member
JPH08161944A (en) High-viscosity-oil-impregnated insulated cable
JP2001325839A (en) Superconducting cable
JPS59194310A (en) Electric cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220