JP2002088257A - Thermally conductive molded product and its manufacturing method - Google Patents

Thermally conductive molded product and its manufacturing method

Info

Publication number
JP2002088257A
JP2002088257A JP2000281703A JP2000281703A JP2002088257A JP 2002088257 A JP2002088257 A JP 2002088257A JP 2000281703 A JP2000281703 A JP 2000281703A JP 2000281703 A JP2000281703 A JP 2000281703A JP 2002088257 A JP2002088257 A JP 2002088257A
Authority
JP
Japan
Prior art keywords
thermally conductive
graphitized carbon
carbon fiber
conductive molded
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000281703A
Other languages
Japanese (ja)
Other versions
JP4833398B2 (en
Inventor
Masayuki Hida
雅之 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000281703A priority Critical patent/JP4833398B2/en
Publication of JP2002088257A publication Critical patent/JP2002088257A/en
Application granted granted Critical
Publication of JP4833398B2 publication Critical patent/JP4833398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PROBLEM TO BE SOLVED: To provide a thermally conductive molded product which has excellent thermal conductivity and is suitable for heat-dissipating members, heat transfer members or materials for constituting them in electronic equipment and the like, and a method for manufacturing the same. SOLUTION: The thermally conductive molded product is obtained by molding a thermally conductive polymeric composition containing graphitized carbon fibers into a specified shape and the graphitized carbon fibers have been oriented by utilizing a magnetic field. The graphitized carbon fibers have a spacing (d002) of graphite layers, measured by the X-ray diffraction method, of <0.3370 nm and, at the same time, a peak intensity ratio (P101/P100) of the (101) diffraction peak to the (100) diffraction peak of >=1.15. These graphitized carbon fibers can be obtained by conducting each treatment of spinning with the use of a mesophase pitch as the raw material, rendering the resulting fibers infusible, and carbonization in the order named, then effecting pulverization and subsequent graphitization, and have a fiber diameter of 5-20 μm and an average particle diameter of 5-500 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた熱伝導性を
有する熱伝導性成形体に関するものである。さらに詳し
くは、電子機器等において半導体素子や電源、光源など
の電子部品が発生する熱を効果的に外部へ放散させるた
めの放熱部材、伝熱部材あるいはそれらの構成材料とし
て好適な熱伝導性成形体及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive molded article having excellent thermal conductivity. More specifically, a heat conductive member suitable for effectively dissipating heat generated by electronic components such as a semiconductor element, a power supply, and a light source to the outside in an electronic device or the like, or a heat conductive member suitable as a constituent material thereof. The present invention relates to a body and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器においては、高性能化、
小型化及び軽量化に伴う半導体パッケージの高密度実装
化、LSIの高集積化及び高速化によって、各種の電子
部品で発生する熱を効果的に外部へ放散させる熱対策が
非常に重要な課題になっている。従来、この熱対策とし
て、プリント配線基板、半導体パッケージ、放熱板、筐
体等を熱伝導性に優れる材料(熱伝導性高分子組成物)
で形成すること、放熱板等の放熱部材と発熱源との間に
熱伝導性を有する高分子グリスや前記熱伝導性高分子組
成物よりなるシート材(熱伝導性成形体)を介在させる
ことなどが実施されている。
2. Description of the Related Art In recent years, in electronic equipment, high performance,
Due to the high-density mounting of semiconductor packages along with the miniaturization and weight reduction, and the high integration and high speed of LSI, heat measures to effectively dissipate the heat generated by various electronic components to the outside have become very important issues. Has become. Conventionally, as a countermeasure against this heat, printed wiring boards, semiconductor packages, heat sinks, housings, etc. are made of materials with excellent thermal conductivity (thermal conductive polymer composition)
And forming a sheet material (heat-conductive molded body) made of heat-conductive polymer grease or the heat-conductive polymer composition between a heat-dissipating member such as a heat-dissipating plate and a heat-generating source. And so on.

【0003】従来の熱伝導性高分子組成物及び熱伝導性
成形体としては、高分子材料に熱伝導性充填剤として、
酸化アルミニウムや窒化ホウ素、窒化アルミニウム、酸
化マグネシウム、酸化亜鉛、炭化ケイ素、石英、水酸化
アルミニウムなどの金属酸化物、金属窒化物、金属炭化
物、金属水酸化物などを充填したものが知られている。
[0003] Conventional heat conductive polymer compositions and heat conductive molded articles are prepared by adding a heat conductive filler to a polymer material.
Filled with metal oxides such as aluminum oxide, boron nitride, aluminum nitride, magnesium oxide, zinc oxide, silicon carbide, quartz, aluminum hydroxide, metal nitrides, metal carbides, metal hydroxides and the like are known. .

【0004】また、炭素繊維や黒鉛粉末を熱伝導性充填
剤として配合した熱伝導性高分子組成物及び熱伝導性成
形体も知られている。具体的には、黒鉛粉末を熱可塑性
樹脂に充填した熱伝導性樹脂成形品(特開昭62−13
1033号公報)、カーボンブラックや黒鉛などを含有
するポリエステル樹脂組成物(特開平4−246456
号公報)、一方向に引揃えた炭素繊維に黒鉛粉末と熱硬
化性樹脂を含浸した機械的強度の高い熱伝導性成形品
(特開平5−17593号公報)、断面構造を特定した
ピッチ系炭素繊維を利用した熱伝導性材料(特開平5−
222620号公報)、粒径1〜20μmの人造黒鉛を
配合したゴム組成物(特開平5−247268号公
報)、特定のアスペクト比の黒鉛化炭素繊維をシリコー
ンゴムなどの高分子に分散した熱伝導性シート(特開平
9−283955号公報)、結晶面間隔が0.330〜
0.340nmの球状黒鉛粉末をシリコーンゴムに配合
した組成物及び放熱シート(特開平10−298433
号公報)、特定の加熱処理を施した黒鉛微粒子をシリコ
ーンゴムに配合した導電性と熱伝導性とを有するシリコ
ーンゴム組成物(特開平11−158378号公報)、
特定長さの炭素繊維をシリコーンゴムに配合した導電性
と熱伝導性に優れる組成物(特開平11−279406
号公報)等である。
[0004] Further, a thermally conductive polymer composition and a thermally conductive molded product in which carbon fiber or graphite powder is blended as a thermally conductive filler are also known. Specifically, a thermally conductive resin molded product in which graphite powder is filled in a thermoplastic resin (JP-A-62-13)
No. 1033), a polyester resin composition containing carbon black, graphite and the like (JP-A-4-246456).
JP-A-5-17593), a thermally conductive molded article having high mechanical strength in which carbon fibers aligned in one direction are impregnated with graphite powder and a thermosetting resin (JP-A-5-17593). Thermal conductive material using carbon fiber
No. 222620), a rubber composition containing artificial graphite having a particle size of 1 to 20 μm (Japanese Patent Application Laid-Open No. 5-247268), and heat conduction in which graphitized carbon fibers having a specific aspect ratio are dispersed in a polymer such as silicone rubber. Sheet (Japanese Patent Application Laid-Open No. 9-283955), with a crystal plane spacing of 0.330 to
A composition in which 0.340 nm spheroidal graphite powder is blended with silicone rubber and a heat dissipation sheet (Japanese Patent Laid-Open No. 10-298433)
Japanese Patent Application Laid-Open No. H11-158378), a silicone rubber composition having conductivity and heat conductivity obtained by blending graphite fine particles subjected to a specific heat treatment into silicone rubber;
A composition having excellent conductivity and heat conductivity obtained by blending a specific length of carbon fiber with silicone rubber (Japanese Patent Laid-Open No. 11-279406).
Publication).

【0005】[0005]

【発明が解決しようとする課題】ところが、発熱量が一
段と増大し続ける最近の電子機器においては、熱対策と
して適用される熱伝導性高分子組成物及び熱伝導性成形
体に、より一層優れた熱伝導性が要求されており、上述
した従来の熱伝導性高分子組成物及び熱伝導性成形体で
は、そのニーズに十分応えることができないという問題
があった。
However, in recent electronic devices in which the calorific value continues to increase, the heat conductive polymer composition and the heat conductive molded body which are applied as a measure against heat are more excellent. There has been a problem that thermal conductivity is required, and the conventional thermal conductive polymer composition and the thermally conductive molded article described above cannot sufficiently meet the needs.

【0006】本発明は、上記のような従来技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、優れた熱伝導性を有し、電子機器等におけ
る放熱部材、伝熱部材あるいはそれらの構成材料として
好適な熱伝導性成形体及びその製造方法を提供すること
にある。
The present invention has been made by focusing on the problems existing in the prior art as described above. An object of the present invention is to provide a thermally conductive molded article having excellent thermal conductivity and suitable as a heat radiating member, a heat transfer member, or a constituent material thereof in an electronic device and the like, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明は、高分子材料と、熱伝導
性充填剤として黒鉛化炭素繊維とを含有する熱伝導性高
分子組成物を所定の形状に成形してなる熱伝導性成形体
であって、X線回折法による前記黒鉛化炭素繊維の黒鉛
層間の面間隔(d002)が0.3370nm未満で、
かつ、(101)回折ピークと(100)回折ピークの
ピーク強度比(P101/P100)が1.15以上で
あり、さらに黒鉛化炭素繊維が一定方向に配向している
ことを要旨とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is directed to a high heat conductive material containing a polymer material and graphitized carbon fibers as a heat conductive filler. A thermally conductive molded article obtained by molding a molecular composition into a predetermined shape, wherein a plane distance (d002) between graphite layers of the graphitized carbon fiber by X-ray diffraction is less than 0.3370 nm,
The gist is that the peak intensity ratio (P101 / P100) between the (101) diffraction peak and the (100) diffraction peak is 1.15 or more, and the graphitized carbon fibers are oriented in a certain direction.

【0008】請求項2に記載の発明は、請求項1に記載
の熱伝導性成形体において、前記黒鉛化炭素繊維は、メ
ソフェーズピッチを原料に用いて紡糸、不融化及び炭化
の各処理を順次行った後に粉砕し、その後黒鉛化して得
られるものであり、その繊維直径が5〜20μm、平均
粒径が5〜500μmであることを要旨とする。
According to a second aspect of the present invention, there is provided the thermally conductive molded article according to the first aspect, wherein the graphitized carbon fibers are subjected to spinning, infusibilization and carbonization sequentially using a mesophase pitch as a raw material. It is obtained by pulverizing after performing and then graphitizing, and its gist is that the fiber diameter is 5 to 20 μm and the average particle size is 5 to 500 μm.

【0009】請求項3に記載の発明は、X線回折法によ
る黒鉛層間の面間隔(d002)が0.3370nm未
満で、かつ、(101)回折ピークと(100)回折ピ
ークのピーク強度比(P101/P100)が1.15
以上である黒鉛化炭素繊維と、高分子材料とを含有する
熱伝導性高分子組成物に対して磁場を印加し、前記黒鉛
化炭素繊維を一定方向に配向させた状態で前記熱伝導性
高分子組成物を固化させることを要旨とする。
According to a third aspect of the present invention, the interplanar spacing (d002) between graphite layers by X-ray diffraction is less than 0.3370 nm, and the peak intensity ratio between the (101) diffraction peak and the (100) diffraction peak ( P101 / P100) is 1.15
A magnetic field is applied to the thermally conductive polymer composition containing the above graphitized carbon fibers and a polymer material, and the thermally conductive polymer fibers are oriented in a certain direction to increase the thermal conductivity. The gist is to solidify the molecular composition.

【0010】[0010]

【発明の実施の形態】以下、本発明を具体化した実施形
態を詳細に説明する。本実施形態における熱伝導性成形
体は、高分子材料と、熱伝導性充填剤として黒鉛化炭素
繊維とを含有する熱伝導性高分子組成物を所定の形状に
成形したものであり、その熱伝導性成形体中における黒
鉛化炭素繊維は一定方向に配向している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail. The thermally conductive molded body in the present embodiment is obtained by molding a thermally conductive polymer composition containing a polymer material and a graphitized carbon fiber as a thermally conductive filler into a predetermined shape. The graphitized carbon fibers in the conductive molded body are oriented in a certain direction.

【0011】まず、熱伝導性充填剤として用いられる黒
鉛化炭素繊維について説明する。ここで用いられる黒鉛
化炭素繊維は、X線回折法による黒鉛層間の面間隔(d
002)が0.3370nm未満で、かつ、(101)
回折ピークと(100)回折ピークのピーク強度比(P
101/P100)が1.15以上である。面間隔(d
002)が0.3370nm以上又はピーク強度比(P
101/P100)が1.15未満の場合は、得られる
熱伝導性成形体に十分な熱伝導性を持たせることができ
ず不適当である。尚、黒鉛層間の面間隔(d002)の
下限値は、理論値として算出される0.3354nmで
あり、ピーク強度比(P101/P100)の上限値
は、3である。
First, a graphitized carbon fiber used as a thermally conductive filler will be described. The graphitized carbon fiber used here has an interplanar spacing (d) between graphite layers by X-ray diffraction.
002) is less than 0.3370 nm and (101)
The peak intensity ratio of the diffraction peak and the (100) diffraction peak (P
101 / P100) is 1.15 or more. Surface spacing (d
002) is at least 0.3370 nm or the peak intensity ratio (P
If (101 / P100) is less than 1.15, the resulting thermally conductive molded article cannot have sufficient thermal conductivity and is not suitable. Note that the lower limit of the interplanar spacing (d002) between the graphite layers is 0.3354 nm calculated as a theoretical value, and the upper limit of the peak intensity ratio (P101 / P100) is 3.

【0012】ここで、X線回折法とは、X線源にCuK
α、標準物質に高純度シリコンを使用して回折パターン
を測定するものである。面間隔(d002)は、(00
2)回折パターンのピーク位置と半値幅から求められ
る。また、ピーク強度比(P101/P100)は、得
られた回折線図にベースラインを引き、このベースライ
ンから(101)(2θ≒44.5度)、(100)
(2θ≒42.5度)の各ピークの高さ(P101)、
(P100)を測定し、(P101)を(P100)で
除して求められる。
Here, the X-ray diffraction method means that an X-ray source is CuK
α, a diffraction pattern is measured using high-purity silicon as a standard substance. The surface interval (d002) is (00
2) It is determined from the peak position and the half width of the diffraction pattern. The peak intensity ratio (P101 / P100) is obtained by subtracting a base line from the obtained diffraction diagram, and (101) (2θ ≒ 44.5 degrees) and (100) from the base line.
(2θ ≒ 42.5 degrees) height of each peak (P101),
It is obtained by measuring (P100) and dividing (P101) by (P100).

【0013】黒鉛化炭素繊維の原料としては、例えば、
ナフタレンやフェナントレン等の縮合多環炭化水素化合
物、石油系ピッチや石炭系ピッチ等の縮合複素環化合物
等が挙げられる。その中でも石油系ピッチ又は石炭系ピ
ッチが好ましく、特に光学的異方性ピッチ、すなわちメ
ソフェーズピッチが好ましい。これらは、一種を単独で
用いても、二種以上を適宜組み合わせて用いてもよい
が、メソフェーズピッチを単独で用いること、すなわち
メソフェーズピッチ含有量100%の黒鉛化炭素繊維が
最も好ましい。
As a raw material of the graphitized carbon fiber, for example,
Examples include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum pitch and coal pitch. Among them, a petroleum pitch or a coal pitch is preferable, and an optically anisotropic pitch, that is, a mesophase pitch is particularly preferable. These may be used alone or in an appropriate combination of two or more. However, it is most preferable to use mesophase pitch alone, that is, graphitized carbon fiber having a mesophase pitch content of 100%.

【0014】黒鉛化炭素繊維の形態としては、繊維状
(繊維状の形態が維持された粉砕品や切断品も含む)、
ウィスカー状、マイクロコイル状、ナノチューブ状等が
挙げられるが、特に限定されない。
[0014] Graphitized carbon fibers may be in the form of fibrous (including pulverized or cut products in which the fibrous form is maintained),
Whisker shape, microcoil shape, nanotube shape and the like can be mentioned, but there is no particular limitation.

【0015】黒鉛化炭素繊維の繊維直径は、好ましくは
5〜20μm、より好ましくは5〜15μm、特に好ま
しくは8〜12μmである。繊維直径が5μmよりも小
さかったり20μmよりも大きいと、生産性が低下する
ため好ましくない。
The fiber diameter of the graphitized carbon fibers is preferably 5 to 20 μm, more preferably 5 to 15 μm, and particularly preferably 8 to 12 μm. If the fiber diameter is smaller than 5 μm or larger than 20 μm, productivity is undesirably reduced.

【0016】黒鉛化炭素繊維の平均粒径は、好ましくは
5〜500μm、より好ましくは15〜100μm、特
に好ましくは15〜45μmである。平均粒径が5μm
よりも小さいと、黒鉛化炭素繊維同士の接触が少なくな
って熱の伝導経路が不十分になるために、熱伝導性成形
体の熱伝導性が低下する。逆に平均粒径が500μmよ
りも大きいと、黒鉛化炭素繊維が嵩高くなるために高分
子材料中に高濃度で充填させることが困難となる。尚、
黒鉛化炭素繊維の平均粒径の値は、レーザー回折方式に
よる粒度分布から算出することができる。
The average particle size of the graphitized carbon fibers is preferably 5 to 500 μm, more preferably 15 to 100 μm, and particularly preferably 15 to 45 μm. Average particle size is 5μm
If it is smaller than the above, the contact between the graphitized carbon fibers is reduced and the heat conduction path becomes insufficient, so that the thermal conductivity of the thermally conductive molded body is reduced. Conversely, if the average particle size is larger than 500 μm, the graphitized carbon fibers become bulky, and it becomes difficult to fill the polymer material with a high concentration. still,
The value of the average particle size of the graphitized carbon fiber can be calculated from the particle size distribution by a laser diffraction method.

【0017】黒鉛化炭素繊維の熱伝導率は特に限定され
ないが、繊維の長さ方向における熱伝導率で400W/
m・K以上が好ましく、800W/m・K以上がより好
ましく、1000W/m・K以上が特に好ましい。
Although the thermal conductivity of the graphitized carbon fiber is not particularly limited, the thermal conductivity in the longitudinal direction of the fiber is 400 W /
m · K or more is preferable, 800 W / m · K or more is more preferable, and 1000 W / m · K or more is particularly preferable.

【0018】黒鉛化炭素繊維は、電解酸化などによる酸
化処理によって、あるいはカップリング剤やサイジング
剤で処理することによって表面を改質させたものでもよ
い。この場合には、高分子材料との濡れ性や充填性を向
上させたり、界面の剥離強度を改良したりすることがで
きる。また、無電解メッキ法、電解メッキ法、真空蒸
着、スパッタリング、イオンプレーティングなどの物理
的蒸着法、化学的蒸着法、塗装、浸漬、微細粒子を機械
的に固着させるメカノケミカル法などの方法によって金
属やセラミックスを表面に被覆させたものでもよい。
The surface of the graphitized carbon fiber may be modified by oxidation treatment such as electrolytic oxidation or by treatment with a coupling agent or a sizing agent. In this case, it is possible to improve the wettability and the filling property with the polymer material and to improve the peel strength at the interface. In addition, electroless plating, electrolytic plating, vacuum evaporation, sputtering, physical plating such as ion plating, chemical vapor deposition, painting, dipping, mechanochemical method of mechanically fixing fine particles, etc. A metal or ceramic whose surface is coated may be used.

【0019】次に、高分子材料について説明する。高分
子材料としては、例えば、熱可塑性樹脂、熱可塑性エラ
ストマー、熱硬化性樹脂、架橋ゴム等が挙げられる。
Next, the polymer material will be described. Examples of the polymer material include a thermoplastic resin, a thermoplastic elastomer, a thermosetting resin, a crosslinked rubber, and the like.

【0020】熱可塑性樹脂としては、ポリエチレン、ポ
リプロピレン、エチレン−プロピレン共重合体等のエチ
レン−α−オレフィン共重合体、ポリメチルペンテン、
ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニ
ル、エチレン−酢酸ビニル共重合体、ポリビニルアルコ
ール、ポリアセタール、フッ素樹脂(ポリフッ化ビニリ
デン、ポリテトラフルオロエチレン等)、ポリエチレン
テレフタレート、ポリブチレンテレフタレート、ポリエ
チレンナフタレート、ポリスチレン、ポリアクリロニト
リル、スチレン−アクリロニトリル共重合体、ABS樹
脂、ポリフェニレンエーテル(PPE)樹脂、変性PP
E樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポ
リイミド、ポリアミドイミド、ポリメタクリル酸類(ポ
リメタクリル酸メチル等のポリメタクリル酸エステ
ル)、ポリアクリル酸類、ポリカーボネート、ポリフェ
ニレンスルフィド、ポリサルホン、ポリエーテルサルホ
ン、ポリエーテルニトリル、ポリエーテルケトン、ポリ
ケトン、液晶ポリマー、アイオノマー等が挙げられる。
Examples of the thermoplastic resin include ethylene-α-olefin copolymers such as polyethylene, polypropylene and ethylene-propylene copolymer, polymethylpentene,
Polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyacetal, fluororesin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, Polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether (PPE) resin, modified PP
E resin, aliphatic polyamides, aromatic polyamides, polyimide, polyamideimide, polymethacrylic acids (polymethacrylic acid esters such as polymethyl methacrylate), polyacrylic acids, polycarbonate, polyphenylene sulfide, polysulfone, polyether sulfone, Examples thereof include polyether nitrile, polyether ketone, polyketone, liquid crystal polymer, and ionomer.

【0021】熱可塑性エラストマーとしては、スチレン
−ブタジエン共重合体及びスチレン−イソプレンブロッ
ク共重合体とそれらの水添物、スチレン系熱可塑性エラ
ストマー、オレフィン系熱可塑性エラストマー、塩化ビ
ニル系熱可塑性エラストマー、ポリエステル系熱可塑性
エラストマー、ポリウレタン系熱可塑性エラストマー、
ポリアミド系熱可塑性エラストマー等が挙げられる。
Examples of the thermoplastic elastomer include styrene-butadiene copolymer and styrene-isoprene block copolymer and hydrogenated products thereof, styrene-based thermoplastic elastomer, olefin-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, polyester -Based thermoplastic elastomer, polyurethane-based thermoplastic elastomer,
Polyamide-based thermoplastic elastomers and the like can be mentioned.

【0022】熱硬化性樹脂としては、エポキシ樹脂、ポ
リイミド樹脂、ビスマレイミド、ベンゾシクロブテン、
フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフ
タレート、シリコーン樹脂、ポリウレタン、ポリイミド
シリコーン、熱硬化型PPE樹脂、熱硬化型変性PPE
樹脂等が挙げられる。
As the thermosetting resin, epoxy resin, polyimide resin, bismaleimide, benzocyclobutene,
Phenol resin, unsaturated polyester resin, diallyl phthalate, silicone resin, polyurethane, polyimide silicone, thermosetting PPE resin, thermosetting modified PPE
Resins.

【0023】架橋ゴムとしては、天然ゴム、ブタジエン
ゴム、イソプレンゴム、スチレン−ブタジエン共重合ゴ
ム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴ
ム、エチレン−プロピレン共重合ゴム、塩素化ポリエチ
レン、クロロスルホン化ポリエチレン、ブチルゴム、ハ
ロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、シリ
コーンゴム等が挙げられる。
Examples of the crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene, and chlorosulfonated polyethylene. Butyl rubber, halogenated butyl rubber, fluorine rubber, urethane rubber, silicone rubber and the like.

【0024】これらの高分子材料の中でも耐熱性などの
温度特性及び電気的信頼性の点から、シリコーンゴム、
エポキシ樹脂、ポリウレタン、不飽和ポリエステル、ポ
リイミド、ビスマレイミド樹脂、ベンゾシクロブテン樹
脂、フッ素樹脂、PPE樹脂及び熱可塑性エラストマー
より選ばれる少なくとも一種が好ましい。これらの高分
子材料は、一種を単独で用いても、二種以上を適宜組み
合わせて用いてもよく、二種以上の高分子材料からなる
ポリマーアロイを使用してもよい。また、高分子材料の
架橋方法については特に限定されず、熱硬化、光硬化、
湿気硬化等、公知の架橋方法を採用することができる。
Among these polymer materials, silicone rubber, from the viewpoint of temperature characteristics such as heat resistance and electrical reliability,
At least one selected from epoxy resin, polyurethane, unsaturated polyester, polyimide, bismaleimide resin, benzocyclobutene resin, fluororesin, PPE resin and thermoplastic elastomer is preferable. One of these polymer materials may be used alone, or two or more thereof may be appropriately used in combination, or a polymer alloy composed of two or more polymer materials may be used. Further, the method for crosslinking the polymer material is not particularly limited, and heat curing, light curing,
A known crosslinking method such as moisture curing can be employed.

【0025】尚、これらの高分子材料は用途や要求性能
に応じて適宜選択して用いられる。例えば誘電率、誘電
正接が小さく、かつ高周波領域での周波数特性を要求さ
れる配線基板用途には、フッ素樹脂、熱硬化型PPE樹
脂、熱硬化型変性PPE樹脂及びポリオレフィン系樹脂
が好ましい。また、接着剤用途には、エポキシ樹脂、ポ
リイミド、アクリル樹脂等の接着性高分子が好ましい。
These polymer materials are appropriately selected and used according to the application and required performance. For example, for a wiring board application requiring a small dielectric constant and a low dielectric loss tangent and requiring frequency characteristics in a high frequency region, a fluororesin, a thermosetting PPE resin, a thermosetting modified PPE resin, and a polyolefin resin are preferable. For adhesive applications, adhesive polymers such as epoxy resins, polyimides, and acrylic resins are preferred.

【0026】続いて、上記の黒鉛化炭素繊維と高分子材
料とを含有する熱伝導性高分子組成物、及びその熱伝導
性高分子組成物を所定の形状に成形した熱伝導性成形体
について説明する。
Next, a heat conductive polymer composition containing the above graphitized carbon fiber and a polymer material, and a heat conductive molded article formed by molding the heat conductive polymer composition into a predetermined shape explain.

【0027】熱伝導性高分子組成物に含まれる高分子材
料と黒鉛化炭素繊維の比は、目的とする最終製品の要求
性能によって適宜決定されるが、100重量部の高分子
材料に対して黒鉛化炭素繊維を5〜500重量部とする
のが好ましく、40〜300重量部がより好ましい。黒
鉛化炭素繊維の配合量が5重量部よりも少ないと、得ら
れる熱伝導性成形体の熱伝導率が小さくなって放熱特性
が低下する。逆に500重量部を超えると、配合組成物
の粘度が増大して黒鉛化炭素繊維を均一に分散させるこ
とが困難になり、また気泡の混入が避けられず好ましく
ない。
The ratio of the polymer material contained in the thermally conductive polymer composition to the graphitized carbon fiber is appropriately determined depending on the required performance of the target final product. The amount of the graphitized carbon fiber is preferably 5 to 500 parts by weight, more preferably 40 to 300 parts by weight. When the compounding amount of the graphitized carbon fiber is less than 5 parts by weight, the heat conductivity of the obtained heat conductive molded article becomes small, and the heat radiation property is lowered. On the other hand, if it exceeds 500 parts by weight, the viscosity of the blended composition increases, making it difficult to uniformly disperse the graphitized carbon fibers.

【0028】さらに熱伝導性高分子組成物には、上述の
黒鉛化炭素繊維の他に、その他の熱伝導性充填剤、難燃
材、軟化剤、着色材、安定剤等を必要に応じて配合して
もよい。その他の熱伝導性充填剤としては、金属やセラ
ミックス、具体的には、銀、銅、金、酸化アルミニウ
ム、酸化マグネシウム、窒化ホウ素、窒化アルミニウ
ム、窒化ケイ素、炭化ケイ素、水酸化アルミニウムのほ
か、金属被覆樹脂、上述の黒鉛化炭素繊維以外の黒鉛化
炭素繊維、黒鉛化されていない炭素繊維、天然黒鉛、人
造黒鉛、メソカーボンマイクロビーズ等が挙げられる。
また、その形態としては、球状、粉状、繊維状、針状、
鱗片状、ウィスカー状、マイクロコイル状、単層ナノチ
ューブ、多層ナノチューブ状等が挙げられる。尚、最終
製品として特に電気絶縁性が要求される用途において
は、酸化アルミニウム、酸化マグネシウム、窒化ホウ
素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、水酸
化アルミニウム等の電気絶縁性の充填剤が好ましい。ま
た、揮発性の有機溶剤や低粘度の軟化剤、反応性可塑剤
を添加してもよく、これらを添加した場合には熱伝導性
高分子組成物の粘度を低下させることができ、黒鉛化炭
素繊維を一定方向に配向させやすくすることができる。
Further, in addition to the above-mentioned graphitized carbon fiber, other heat conductive fillers, flame retardants, softeners, coloring agents, stabilizers, etc. may be added to the heat conductive polymer composition as required. You may mix. Other heat conductive fillers include metals and ceramics, specifically, silver, copper, gold, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum hydroxide, and metals. Examples include coating resins, graphitized carbon fibers other than the above-described graphitized carbon fibers, non-graphitized carbon fibers, natural graphite, artificial graphite, mesocarbon microbeads, and the like.
In addition, the form is spherical, powdery, fibrous, acicular,
Examples include flakes, whiskers, microcoils, single-walled nanotubes, and multi-walled nanotubes. In particular, in applications where electrical insulation is required as a final product, an electrically insulating filler such as aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, and aluminum hydroxide is preferred. In addition, volatile organic solvents, low-viscosity softeners, and reactive plasticizers may be added, and when these are added, the viscosity of the thermally conductive polymer composition can be reduced, and graphitization can be performed. The carbon fibers can be easily oriented in a certain direction.

【0029】シート状に成形した熱伝導性成形体(熱伝
導性シート)場合、その硬度は、用途に応じて適宜決定
されるが、使用時の応力緩和性と追随性に関しては柔軟
なほど、すなわち低硬度ほど有利である。具体的な硬度
としては、ショアA硬度で70以下が好ましく、40以
下がより好ましく、アスカーC硬度で30以下のゲル状
のシリコーンゴムや熱可塑性エラストマーを高分子材料
として使用したものが特に好ましい。また、厚みも特に
限定されないが、好ましくは50μm〜10mm、より
好ましくは200μm〜5mmである。50μmよりも
薄いと製造しにくく、また取り扱いにくい。10mmよ
りも厚くなると熱抵抗が大きくなるので好ましくない。
In the case of a heat-conductive molded article (heat-conductive sheet) formed in a sheet shape, its hardness is appropriately determined according to the application. That is, a lower hardness is more advantageous. Specific hardness is preferably 70 or less in Shore A hardness, more preferably 40 or less, and particularly preferably a material using gel-like silicone rubber or thermoplastic elastomer having an Asker C hardness of 30 or less as a polymer material. The thickness is also not particularly limited, but is preferably 50 μm to 10 mm, more preferably 200 μm to 5 mm. If it is thinner than 50 μm, it is difficult to manufacture and it is difficult to handle. If the thickness is more than 10 mm, the thermal resistance increases, which is not preferable.

【0030】次に、熱伝導性成形体の使用方法を説明す
る。熱伝導性成形体は、電子機器等において半導体素子
や電源、光源などの電子部品が発生する熱を効果的に外
部へ放散させるための放熱部材、伝熱部材あるいはそれ
らの構成材料等として用いられる。具体的には、シート
状に加工して半導体素子等の発熱部材と放熱器等の放熱
部材との間に介在させて用いたり、放熱板、半導体パッ
ケージ用部品、ヒートシンク、ヒートスプレッダー、ダ
イパッド、プリント配線基板、冷却ファン用部品、ヒー
トパイプ、筐体等に成形加工して用いたりする。
Next, a method of using the thermally conductive molded body will be described. BACKGROUND ART A thermally conductive molded body is used as a heat radiating member, a heat transfer member, or a constituent material thereof for effectively dissipating heat generated by an electronic component such as a semiconductor element, a power supply, and a light source in an electronic device or the like. . Specifically, it is processed into a sheet shape and used by being interposed between a heat generating member such as a semiconductor element and a heat radiating member such as a radiator, or a heat radiating plate, a component for a semiconductor package, a heat sink, a heat spreader, a die pad, and a print. Molded and used for wiring boards, cooling fan parts, heat pipes, housings, etc.

【0031】図1は、シート状の熱伝導性成形体を伝熱
部材として用いた例を示す図である。図1(a)に示す
例では、半導体素子11(ボールグリッドアレイ型半導
体パッケージ)と放熱板12との間に熱伝導性成形体1
3が介在されている。図1(b)に示す例では、半導体
素子11(チップサイズ型半導体パッケージ)とプリン
ト配線基板14との間に熱伝導性成形体13が介在され
ている。図1(c)に示す例では、半導体素子11(ピ
ングリッドアレイ型半導体パッケージ)とヒートシンク
15との間に熱伝導性成形体13が介在されている。図
1(d)に示す例では、複数の半導体素子11と筐体1
6との間に熱伝導性成形体13が介在されている。また
図2は、プリント配線基板14を熱伝導性成形体で構成
した例を示す図である。同図に示すプリント配線基板1
4は、熱伝導性高分子組成物を板状に成形した基板17
を備え、その基板17上には銅箔などからなる導電層1
8が形成されている。
FIG. 1 is a view showing an example in which a sheet-like heat conductive molded body is used as a heat transfer member. In the example shown in FIG. 1A, a thermally conductive molded body 1 is provided between a semiconductor element 11 (ball grid array type semiconductor package) and a heat sink 12.
3 are interposed. In the example shown in FIG. 1B, a thermally conductive molded body 13 is interposed between the semiconductor element 11 (chip size semiconductor package) and the printed wiring board 14. In the example shown in FIG. 1C, a thermally conductive molded body 13 is interposed between a semiconductor element 11 (pin grid array type semiconductor package) and a heat sink 15. In the example shown in FIG. 1D, the plurality of semiconductor elements 11 and the housing 1
6, a thermally conductive molded body 13 is interposed. FIG. 2 is a diagram illustrating an example in which the printed wiring board 14 is formed of a thermally conductive molded body. Printed wiring board 1 shown in FIG.
4 is a substrate 17 formed of a thermally conductive polymer composition in a plate shape.
And a conductive layer 1 made of copper foil or the like on the substrate 17.
8 are formed.

【0032】次に、熱伝導性成形体の製造方法を説明す
る。ピッチを原料とする繊維状(繊維状の形態が維持さ
れた粉砕品や切断品)の黒鉛化炭素繊維は、紡糸、不融
化及び炭化の各処理を順次行った後に粉砕又は切断し、
その後黒鉛化して製造される。尚、粉砕又は切断は、炭
化の後に限定されるものでなく、不融化の後に行って
も、黒鉛化の後に行ってもよいが、炭化の後が最も好ま
しい。黒鉛化後に粉砕又は切断した場合には、繊維軸方
向に発達した黒鉛層面に沿って開裂が生じやすく、破断
面表面積の割合が大きくなって熱伝導性が低下するため
好ましくない。
Next, a method for producing a thermally conductive molded body will be described. The fibrous (pulverized product or cut product in which the fibrous form is maintained) graphitized carbon fiber using the pitch as a raw material is crushed or cut after sequentially performing spinning, infusibilization, and carbonization,
After that, it is manufactured by graphitization. The pulverization or cutting is not limited after carbonization, and may be performed after infusibilization or graphitization, but most preferably after carbonization. If pulverized or cut after graphitization, cleavage is apt to occur along the surface of the graphite layer developed in the fiber axis direction, and the ratio of the fracture surface area is increased, which is not preferable because thermal conductivity is reduced.

【0033】紡糸工程における紡糸方法としては、メル
トスピニング法、メルトブロー法、遠心紡糸法、渦流紡
糸法等が挙げられるが、紡糸時の生産性や得られる黒鉛
化炭素繊維の品質の観点からメルトブロー法が好まし
い。またメルトブロー法の場合、数十ポイズ以下の低粘
度で紡糸し、かつ高速冷却することによって、黒鉛層面
が繊維軸に平行に配列しやすくなるという利点もある。
Examples of the spinning method in the spinning step include a melt spinning method, a melt blow method, a centrifugal spinning method, and a vortex spinning method. From the viewpoint of productivity at the time of spinning and the quality of the graphitized carbon fiber obtained, the melt blowing method Is preferred. In the case of the melt blow method, there is an advantage that the graphite layer surface can be easily arranged in parallel to the fiber axis by spinning at a low viscosity of several tens poise or less and cooling at a high speed.

【0034】メルトブロー法の場合、紡糸孔の直径は
0.1〜0.5mmが好ましく、0.15〜0.3mm
がより好ましい。紡糸孔の直径が0.1mmよりも小さ
いと目詰まりが生じやすく、また紡糸ノズルの製作が困
難になるため好ましくない。逆に0.5mmを超える
と、繊維直径が25μm以上と大きくなりやすく、また
繊維直径がばらつきやすくなり品質管理上も好ましくな
い。紡糸速度は、生産性の面から毎分500m以上が好
ましく、毎分1500mm以上がより好ましく、毎分2
000m以上が特に好ましい。紡糸温度は、原料ピッチ
の軟化点以上でピッチが変質しない温度以下であればよ
いが、通常は300〜400℃、好ましくは300〜3
80℃である。前記紡糸温度との関係から、原料ピッチ
の軟化点は230〜350℃が好ましく、250〜31
0℃がより好ましい。
In the case of the melt blow method, the diameter of the spinning hole is preferably 0.1 to 0.5 mm, and 0.15 to 0.3 mm.
Is more preferred. If the diameter of the spinning hole is smaller than 0.1 mm, clogging is liable to occur, and it becomes difficult to manufacture a spinning nozzle. Conversely, if it exceeds 0.5 mm, the fiber diameter tends to be as large as 25 μm or more, and the fiber diameter tends to vary, which is not preferable in quality control. The spinning speed is preferably 500 m / min or more, more preferably 1500 mm / min or more, from the viewpoint of productivity.
It is particularly preferably at least 000 m. The spinning temperature may be at or above the softening point of the raw material pitch and at or below the temperature at which the pitch does not deteriorate, but is usually 300 to 400 ° C., preferably 300 to 3 ° C.
80 ° C. From the relationship with the spinning temperature, the softening point of the raw material pitch is preferably 230 to 350 ° C, and 250 to 31 ° C.
0 ° C. is more preferred.

【0035】不融化工程における不融化処理の方法とし
ては、二酸化窒素や酸素等の酸化性ガス雰囲気中で加熱
処理する方法、硝酸やクロム酸等の酸化性水溶液中で処
理する方法、光やγ線等により重合処理する方法等が挙
げられるが、空気中で加熱処理する方法が簡便なことか
ら好ましい。空気中で加熱処理する方法を採る場合、好
ましくは3℃/分以上、より好ましくは5℃/分以上の
平均昇温速度で、350℃程度まで昇温させながら加熱
処理することが望ましい。
The infusibilizing step in the infusibilizing step includes a method of heating in an oxidizing gas atmosphere such as nitrogen dioxide or oxygen, a method of treating in an oxidizing aqueous solution such as nitric acid or chromic acid, light or γ. A method of performing a polymerization treatment with a wire or the like may be mentioned, but a method of performing a heat treatment in the air is preferred because it is simple. In the case of adopting a method of performing heat treatment in air, it is desirable to perform heat treatment while raising the temperature to about 350 ° C. at an average temperature rising rate of preferably 3 ° C./min or more, more preferably 5 ° C./min or more.

【0036】続く炭化工程における炭化処理及び黒鉛化
工程における黒鉛化処理は、不活性ガス雰囲気中で加熱
処理することによって行われる。炭化処理の際の処理温
度は好ましくは250〜1500℃、より好ましくは5
00〜900℃である。また黒鉛化処理の際の処理温度
は好ましくは2500℃以上、より好ましくは3000
℃以上である。
The carbonization in the subsequent carbonization step and the graphitization in the graphitization step are performed by heat treatment in an inert gas atmosphere. The treatment temperature during the carbonization treatment is preferably from 250 to 1500 ° C., and more preferably from 5 to
00 to 900 ° C. The processing temperature during the graphitization treatment is preferably 2500 ° C. or higher, more preferably 3000 ° C.
° C or higher.

【0037】粉砕又は切断処理には、ビクトリーミル、
ジェットミル、高速回転ミル等の粉砕機、又はチョップ
ド繊維で用いられる切断機等が使用される。粉砕又は切
断を効率よく行うためには、ブレードを取付けたロータ
を高速に回転させることにより、繊維軸に対して直角方
向に繊維を寸断する方法が適切である。この粉砕又は切
断処理によって生じる黒鉛化炭素繊維の平均粒径は、ロ
ータの回転数、ブレードの角度等を調整することにより
制御される。尚、繊維の粉砕方法としてはボールミル等
の磨砕機による方法もあるが、この方法の場合、繊維の
直角方向への加圧力が働いて繊維軸方向への縦割れの発
生が多くなるので不適当である。
For grinding or cutting, a Victory mill,
A pulverizer such as a jet mill or a high-speed rotary mill, or a cutter used for chopped fibers is used. In order to efficiently perform pulverization or cutting, it is appropriate to use a method in which the rotor to which the blade is attached is rotated at high speed to cut the fibers in a direction perpendicular to the fiber axis. The average particle size of the graphitized carbon fibers generated by this pulverization or cutting treatment is controlled by adjusting the number of rotations of the rotor, the angle of the blade, and the like. As a method of crushing the fiber, there is also a method using a grinder such as a ball mill. It is.

【0038】上記のようにして得られた黒鉛化炭素繊維
と高分子材料とを混合し、必要に応じて脱泡操作などを
行うことで、熱伝導性高分子組成物が得られる。この混
合の際には、ブレンダー、ミキサー、ロール、押出機な
どの混合装置又は混練装置を使用してもよい。そして、
得られた熱伝導性高分子組成物を、所定の形状に成形す
ることで熱伝導性成形体が得られ、特にシート状に成形
した場合には熱伝導性シートが得られる。この成形の方
法としては、プレス成形法、押出成形法、射出成形法、
注型成形法、ブロー成形法、カレンダー成形法などが挙
げられるほか、熱伝導性高分子組成物が液状の場合に
は、塗装法、印刷法、ディスペンサー法、ポッティング
法などが挙げられる。また、シート状に成形する場合に
は、圧縮成形法、注型成形法、押出成形法、ブレード成
形法、カレンダー成形法が好ましい。
The thermally conductive polymer composition can be obtained by mixing the graphitized carbon fiber obtained as described above with a polymer material and performing a defoaming operation or the like as necessary. At the time of this mixing, a mixing device or a kneading device such as a blender, a mixer, a roll, and an extruder may be used. And
By molding the obtained thermally conductive polymer composition into a predetermined shape, a thermally conductive molded article is obtained. In particular, when the composition is molded into a sheet, a thermally conductive sheet is obtained. As a method of this molding, a press molding method, an extrusion molding method, an injection molding method,
In addition to a casting method, a blow molding method, a calendar molding method, and the like, when the heat conductive polymer composition is in a liquid state, a coating method, a printing method, a dispenser method, a potting method, and the like are exemplified. In the case of molding into a sheet, a compression molding method, a casting molding method, an extrusion molding method, a blade molding method, and a calendar molding method are preferred.

【0039】熱伝導性高分子組成物中における黒鉛化炭
素繊維を一定方向に配向させる方法としては、流動場又
はせん断場を利用する方法、磁場を利用する方法、電場
を利用する方法等が挙げられる。その中でも、黒鉛化炭
素繊維の比較的大きい異方性磁化率を利用して、熱伝導
性高分子組成物に外部から強磁場を印加して黒鉛化炭素
繊維を磁力線と平行に配向させる方法が、効率的で、な
おかつ配向方向を任意に設定できることから好ましい。
Examples of the method for orienting the graphitized carbon fibers in the thermally conductive polymer composition in a certain direction include a method using a flow field or a shear field, a method using a magnetic field, and a method using an electric field. Can be Among them, a method of using a relatively large anisotropic magnetic susceptibility of the graphitized carbon fiber to apply a strong magnetic field to the thermally conductive polymer composition from the outside to orient the graphitized carbon fiber in parallel with the magnetic field lines. It is preferable because it is efficient and the orientation direction can be set arbitrarily.

【0040】磁場配向を利用して熱伝導性成形体を製造
する場合には、金型のキャビティ内に注入された前記熱
伝導性高分子組成物に対して磁場を印加し、その熱伝導
性高分子組成物中に含まれる黒鉛化炭素繊維を一定方向
に配向させた状態で熱伝導性高分子組成物を固化させ
る。
In the case of producing a thermally conductive molded article by utilizing the magnetic field orientation, a magnetic field is applied to the thermally conductive polymer composition injected into the cavity of the mold, and the thermal conductivity of the composition is increased. The heat conductive polymer composition is solidified in a state where the graphitized carbon fibers contained in the polymer composition are oriented in a certain direction.

【0041】例えば図3に示すような板状の熱伝導性成
形体21において黒鉛化炭素繊維を厚み方向(図3にお
けるZ軸方向)に配向させる場合には、図4(a)に示
すように、磁力線Mの向きが熱伝導性成形体21(図3
参照)の厚み方向に一致するように磁場発生手段22を
配置して、金型23のキャビティ23a内に注入された
熱伝導性高分子組成物24に対して磁場を印加する。ま
た、熱伝導性成形体21の面内方向(図3におけるX軸
方向、Y軸方向等)に黒鉛化炭素繊維を配向させる場合
には、図4(b)に示すように、磁力線Mの向きが熱伝
導性成形体21(図3参照)の面内方向に一致するよう
に磁場発生手段22を配置して、金型23のキャビティ
23a内に注入された熱伝導性高分子組成物24に対し
て磁場を印加する。
For example, when the graphitized carbon fibers are oriented in the thickness direction (the Z-axis direction in FIG. 3) in the plate-shaped thermally conductive molded body 21 as shown in FIG. 3, as shown in FIG. The direction of the lines of magnetic force M is the direction of the thermally conductive molded body 21 (FIG.
The magnetic field generating means 22 is arranged so as to coincide with the thickness direction of the mold (see FIG. 2), and a magnetic field is applied to the thermally conductive polymer composition 24 injected into the cavity 23a of the mold 23. When the graphitized carbon fibers are oriented in the in-plane direction (the X-axis direction, the Y-axis direction, and the like in FIG. 3) of the thermally conductive molded body 21, as shown in FIG. The magnetic field generating means 22 is arranged so that the direction matches the in-plane direction of the thermally conductive molded body 21 (see FIG. 3), and the thermally conductive polymer composition 24 injected into the cavity 23a of the mold 23 is provided. A magnetic field is applied to.

【0042】尚、図4(a),(b)に示す例では、一
対の磁場発生手段22を金型23を間に挟んで配置させ
るようにしたが、各例において一方の磁場発生手段22
を省略してもよい。また、図4(a),(b)に示す例
では、互いのS極とN極とが対向するように一対の磁場
発生手段22を配置したが、S極同士又はN極同士が対
向するように一対の磁場発生手段22を配置してもよ
い。さらに、磁力線Mは必ずしも直線状でなくてもよ
く、曲線状や矩形状でもよい。また、磁力線Mが一方向
だけでなく2方向以上に延びるように磁場発生手段22
を配置してもよい。
In the examples shown in FIGS. 4A and 4B, the pair of magnetic field generating means 22 are arranged with the mold 23 interposed therebetween.
May be omitted. Further, in the example shown in FIGS. 4A and 4B, the pair of magnetic field generating means 22 is arranged so that the S pole and the N pole face each other, but the S poles or the N poles face each other. A pair of magnetic field generating means 22 may be arranged as described above. Further, the lines of magnetic force M do not necessarily have to be linear, but may be curved or rectangular. Further, the magnetic field generating means 22 is arranged so that the magnetic field lines M extend not only in one direction but also in two or more directions.
May be arranged.

【0043】前記磁場発生手段22としては、永久磁
石、電磁石等が挙げられる。磁場発生手段22によって
形成される磁場の磁束密度は、0.05〜30テスラの
範囲が好ましく、0.5テスラ以上がより好ましく、2
テスラ以上が特に好ましい。
The magnetic field generating means 22 includes a permanent magnet, an electromagnet and the like. The magnetic flux density of the magnetic field formed by the magnetic field generating means 22 is preferably in the range of 0.05 to 30 Tesla, more preferably 0.5 Tesla or more, and
Tesla or higher is particularly preferred.

【0044】以上詳述した本実施形態によれば次のよう
な効果が発揮される。 ・ 熱伝導性成形体に含まれる黒鉛化炭素繊維のX線回
折法による黒鉛層間の面間隔(d002)を0.337
0nm未満とし、さらにピーク強度比(P101/P1
00)を1.15以上とすることにより、熱伝導性成形
体の熱伝導性を大幅に改善させることができる。このた
め、本実施形態における熱伝導性成形体は優れた熱伝導
性を発揮することができ、電子機器等における放熱部
材、伝熱部材あるいはそれらの構成材料として好適に用
いることができる。熱伝導性が大幅に改善される理由は
定かではないが、黒鉛化炭素繊維を高分子材料中に分散
させた場合、熱の伝達経路が黒鉛化炭素繊維のミクロ構
造と非常に強く相関しているものと考えられる。
According to the above-described embodiment, the following effects are exhibited. The surface spacing (d002) between the graphite layers of the graphitized carbon fibers contained in the thermally conductive molded body by X-ray diffraction is 0.337.
0 nm, and the peak intensity ratio (P101 / P1
By setting (00) to 1.15 or more, the thermal conductivity of the thermally conductive molded article can be significantly improved. For this reason, the thermally conductive molded article according to the present embodiment can exhibit excellent thermal conductivity, and can be suitably used as a heat dissipation member, a heat transfer member, or a constituent material thereof in an electronic device or the like. It is not clear why the thermal conductivity is significantly improved, but when graphitized carbon fibers are dispersed in a polymer material, the heat transfer path is very strongly correlated with the microstructure of the graphitized carbon fibers. It is thought that there is.

【0045】・ 黒鉛化炭素繊維は繊維の長さ方向にお
ける熱伝導性が非常に優れている。従って、黒鉛化炭素
繊維が配合された熱伝導性成形体では、黒鉛化炭素繊維
を一定方向に配向させることによってその配向方向にお
ける熱伝導性を著しく向上させることができ、熱伝導性
に異方性を有する熱伝導性成形体を得ることができる。
The graphitized carbon fiber has extremely excellent thermal conductivity in the length direction of the fiber. Therefore, in the thermally conductive molded article in which the graphitized carbon fibers are blended, the thermal conductivity in the orientation direction can be remarkably improved by orienting the graphitized carbon fibers in a certain direction. Thus, a thermally conductive molded article having a property can be obtained.

【0046】・ 黒鉛化炭素繊維の原料としてメソフェ
ーズピッチを用いることにより、得られる熱伝導性成形
体の熱伝導性をさらに向上させることができる。また、
メソフェーズピッチ含有量100%の黒鉛化炭素繊維、
すなわち黒鉛化炭素繊維の原料としてメソフェーズピッ
チのみを用いた場合には、紡糸性、品質の安定性をも向
上させることができる。
The use of mesophase pitch as a raw material for the graphitized carbon fibers can further improve the thermal conductivity of the obtained thermally conductive molded article. Also,
Graphitized carbon fiber with 100% mesophase pitch content,
That is, when only mesophase pitch is used as a raw material of the graphitized carbon fiber, spinnability and stability of quality can be improved.

【0047】・ 黒鉛化炭素繊維の繊維直径は5〜20
μm、平均粒径は5〜500μmとすることにより、高
分子材料に高濃度で充填させることできるとともに、得
られる熱伝導性成形体の熱伝導性を向上させることがで
きる。また工業的に生産も容易である。
The fiber diameter of the graphitized carbon fiber is 5 to 20.
When the average particle diameter is 5 μm and the average particle diameter is 5 to 500 μm, the polymer material can be filled at a high concentration, and the thermal conductivity of the obtained thermally conductive molded body can be improved. It is also easy to produce industrially.

【0048】・ 粉砕又は切断を紡糸、不融化及び炭化
の各処理を順次行った後に行うようにすることで、繊維
の縦割れを抑制することができる。さらには、黒鉛化処
理の際、粉砕又は切断して新たに露出した面において縮
重合反応、環化反応が進みやすい傾向にあることから、
熱伝導性に優れた黒鉛化炭素繊維を得やすいという利点
もある。
By performing the pulverization or cutting after the spinning, infusibilization, and carbonization processes are sequentially performed, longitudinal cracking of the fiber can be suppressed. Furthermore, during the graphitization treatment, the condensation polymerization reaction and the cyclization reaction tend to proceed easily on the newly exposed surface that has been pulverized or cut,
Another advantage is that graphitized carbon fibers having excellent thermal conductivity can be easily obtained.

【0049】・ 熱伝導性高分子組成物に対して外部か
ら磁場を印加して、その熱伝導性高分子組成物中に含ま
れる黒鉛化炭素繊維を一定方向に配向させ、その状態で
熱伝導性高分子組成物を固化させるようにしたため、黒
鉛化炭素繊維を効率的に配向させることができるととも
に、その配向方向を任意に設定することができる。
A magnetic field is applied to the thermally conductive polymer composition from the outside to orient the graphitized carbon fibers contained in the thermally conductive polymer composition in a certain direction. Since the conductive polymer composition is solidified, the graphitized carbon fibers can be efficiently oriented, and the orientation direction can be arbitrarily set.

【0050】[0050]

【実施例】次に、実施例及び比較例を挙げて前記実施形
態をさらに具体的に説明する。 (黒鉛化炭素繊維の試作例1)光学異方性で比重1.2
5の石油系メソフェーズピッチを原料として、幅3mm
のスリットの中に直径0.2mmφの紡糸孔を有するダ
イスを使用し、スリットから加熱空気を噴出させて、紡
糸温度360℃で溶融ピッチを牽引して平均直径13μ
mのピッチ系繊維を製造した。紡出された繊維をベルト
上に捕集してマットとし、空気中で室温から300℃ま
で平均昇温速度6℃/分で昇温して不融化処理した。引
続き、この不融化処理繊維を700℃で軽度に炭化処理
した後、高速回転ミルで粉砕して炭素繊維粉砕品を得
た。この炭素繊維粉砕品を、アルゴン雰囲気下で、23
00℃まで昇温後、2300℃で40分間保持し、次い
で3℃/分の速度で3000℃まで昇温し、さらに30
00℃で1時間保持してから降温し、黒鉛化された炭素
繊維粉砕品を製造した。この黒鉛化炭素繊維粉砕品(試
作例1)の密度、繊維直径、平均粒径、X線回折パラメ
ータ及び繊維の長さ方向における熱伝導率について測定
した結果を表1に示す。尚、繊維の長さ方向における熱
伝導率は、粉砕せずマット形状のまま同様の条件で黒鉛
化したものを用いて測定した。
Next, the embodiment will be described more specifically with reference to examples and comparative examples. (Prototype Example 1 of Graphitized Carbon Fiber) Specific Gravity in Optical Anisotropy of 1.2
5 petroleum-based mesophase pitch as raw material, width 3mm
Using a die having a spinning hole with a diameter of 0.2 mmφ in the slit of the above, heated air is blown out of the slit, and the molten pitch is pulled at a spinning temperature of 360 ° C., and the average diameter is 13 μm.
m pitch-based fibers were produced. The spun fibers were collected on a belt to form a mat, which was heated from room temperature to 300 ° C. in air at an average heating rate of 6 ° C./min to perform infusibility treatment. Subsequently, the infusibilized fiber was lightly carbonized at 700 ° C., and then pulverized by a high-speed rotating mill to obtain a pulverized carbon fiber. This carbon fiber pulverized product is subjected to 23
After the temperature was raised to 00 ° C., the temperature was maintained at 2300 ° C. for 40 minutes, and then the temperature was raised to 3000 ° C. at a rate of 3 ° C./min.
After maintaining at 00 ° C. for 1 hour, the temperature was lowered to produce a graphitized carbon fiber pulverized product. Table 1 shows the measurement results of the density, fiber diameter, average particle diameter, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the graphitized carbon fiber pulverized product (prototype example 1). The thermal conductivity in the length direction of the fiber was measured using a material which was graphitized under the same conditions in a mat shape without pulverization.

【0051】(黒鉛化炭素繊維の試作例2)光学異方性
で比重1.25の石油系メソフェーズピッチを原料とし
て、幅3mmのスリットの中に直径0.2mmφの紡糸
孔を有するダイスを使用し、スリットから加熱空気を噴
出させて、紡糸温度360℃で溶融ピッチを牽引して平
均直径15μmのピッチ系繊維を製造した。紡出された
繊維をベルト上に捕集してマットとし、空気中で室温か
ら300℃まで平均昇温速度6℃/分で昇温して不融化
処理した。引続き、この不融化処理繊維を700℃で軽
度に炭化処理した後、高速回転ミルで粉砕して炭素繊維
粉砕品を得た。この炭素繊維粉砕品をアルゴン雰囲気下
で、2300℃まで昇温後、2300℃で40分間保持
し、次いで3℃/分の速度で3100℃まで昇温し、さ
らに3100℃で1時間保持してから降温し、黒鉛化さ
れた炭素繊維粉砕品を製造した。この黒鉛化炭素繊維粉
砕品(試作例2)の密度、繊維直径、平均粒径、X線回
折パラメータ及び繊維の長さ方向における熱伝導率につ
いて測定した結果を表1に示す。尚、繊維の長さ方向に
おける熱伝導率は、粉砕せずマット形状のまま同様の条
件で黒鉛化したものを用いて測定した。
(Trial Production Example 2 of Graphitized Carbon Fiber) Using a petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 as a raw material, a die having a spinning hole of 0.2 mm in diameter in a slit of 3 mm in width was used. Then, heated air was blown out from the slit, and the molten pitch was drawn at a spinning temperature of 360 ° C. to produce a pitch-based fiber having an average diameter of 15 μm. The spun fibers were collected on a belt to form a mat, which was heated from room temperature to 300 ° C. in air at an average heating rate of 6 ° C./min to perform infusibility treatment. Subsequently, the infusibilized fiber was lightly carbonized at 700 ° C., and then pulverized by a high-speed rotating mill to obtain a pulverized carbon fiber. The carbon fiber pulverized product was heated to 2300 ° C. in an argon atmosphere, kept at 2300 ° C. for 40 minutes, then heated to 3100 ° C. at a rate of 3 ° C./min, and further kept at 3100 ° C. for 1 hour. , To produce a graphitized carbon fiber pulverized product. Table 1 shows the measurement results of the density, fiber diameter, average particle size, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the graphitized carbon fiber pulverized product (Trial Production Example 2). The thermal conductivity in the length direction of the fiber was measured using a material which was graphitized under the same conditions in a mat shape without pulverization.

【0052】(黒鉛化炭素繊維の試作例3)三菱化学株
式会社製の超高弾性率ピッチ系黒鉛化炭素繊維を高速回
転ミルで粉砕して黒鉛化炭素繊維粉砕品(試作例3)を
製造した。この黒鉛化炭素繊維粉砕品の密度、繊維直
径、平均粒径、X線回折パラメータ及び繊維の長さ方向
における熱伝導率について測定した結果を表1に示す。
(Prototype Example 3 of Graphitized Carbon Fiber) An ultrahigh modulus pitch type graphitized carbon fiber manufactured by Mitsubishi Chemical Corporation is pulverized with a high-speed rotating mill to produce a pulverized graphitized carbon fiber product (prototype example 3). did. Table 1 shows the measurement results of the density, fiber diameter, average particle diameter, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the graphitized carbon fiber pulverized product.

【0053】(黒鉛化炭素繊維の試作例4)日本グラフ
ァイトファイバー株式会社製の超高弾性率ピッチ系黒鉛
化炭素繊維を高速回転ミルで粉砕して黒鉛化炭素繊維粉
砕品(試作例4)を製造した。この黒鉛化炭素繊維粉砕
品の密度、繊維直径、平均粒径、X線回折パラメータ及
び繊維の長さ方向における熱伝導率について測定した結
果を表1に示す。
(Example 4 of Graphitized Carbon Fiber Prototype) A graphitized carbon fiber pulverized product (prototype example 4) was obtained by pulverizing an ultrahigh modulus pitch-based graphitized carbon fiber manufactured by Nippon Graphite Fiber Co., Ltd. with a high-speed rotating mill. Manufactured. Table 1 shows the measurement results of the density, fiber diameter, average particle diameter, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the graphitized carbon fiber pulverized product.

【0054】[0054]

【表1】 (実施例1)試作例1の黒鉛化炭素繊維をシランカップ
リング剤で表面処理し、その処理後の黒鉛化炭素繊維1
25重量部を不飽和ポリエステル樹脂(株式会社日本触
媒製エポラック)100重量部に混合し真空脱泡して熱
伝導性高分子組成物を調製した。続いて、その熱伝導性
高分子組成物を所定の金型のキャビティ内に注入し、磁
力線の向きが熱伝導性成形体の厚み方向に一致する磁場
(磁束密度10テスラ)を印加して熱伝導性高分子組成
物中の黒鉛化炭素繊維を十分に配向させた後に加熱硬化
させて、厚み1.5mm×縦20mm×横20mmの板
状の熱伝導性成形体を得た。
[Table 1] (Example 1) Graphitized carbon fiber of trial production example 1 was surface-treated with a silane coupling agent, and graphitized carbon fiber 1 after the treatment.
25 parts by weight was mixed with 100 parts by weight of an unsaturated polyester resin (Epolac, manufactured by Nippon Shokubai Co., Ltd.), followed by degassing under vacuum to prepare a heat conductive polymer composition. Subsequently, the thermally conductive polymer composition is injected into a cavity of a predetermined mold, and a magnetic field (magnetic flux density of 10 Tesla) is applied by applying a magnetic field whose direction of the magnetic field line matches the thickness direction of the thermally conductive molded body. After the graphitized carbon fibers in the conductive polymer composition were sufficiently oriented, they were cured by heating to obtain a plate-shaped thermally conductive molded article having a thickness of 1.5 mm × 20 mm × 20 mm.

【0055】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向(Z軸方向)に揃って配向していた。熱伝導性
成形体の厚み方向及び面内方向における熱伝導率を測定
したところ、それぞれ11.5W/m・K、2.7W/
m・Kであった。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the thickness direction (Z-axis direction). When the thermal conductivity in the thickness direction and the in-plane direction of the thermally conductive molded body was measured, they were 11.5 W / m · K and 2.7 W /, respectively.
m · K.

【0056】(実施例2)実施例1において、磁力線の
向きが熱伝導性成形体の面内方向(X軸方向)に一致す
る磁場をキャビティ内の熱伝導性高分子組成物に印加す
るように変更した。それ以外は実施例1と同様にして板
状の熱伝導性成形体を作製した。
(Example 2) In Example 1, a magnetic field in which the direction of the line of magnetic force coincides with the in-plane direction (X-axis direction) of the thermally conductive molded body was applied to the thermally conductive polymer composition in the cavity. Changed to Otherwise in the same manner as in Example 1, a plate-like thermally conductive molded body was produced.

【0057】この熱伝導性成形体中の黒鉛化炭素繊維は
面内方向(X軸方向)に揃って配向していた。熱伝導性
成形体の厚み方向、面内方向(X軸方向)及び面内方向
(Y軸方向)における熱伝導率を測定したところ、それ
ぞれ2.8W/m・K、12.6W/m・K、2.8W
/m・Kであった。
The graphitized carbon fibers in the thermally conductive molded article were aligned in the in-plane direction (X-axis direction). When the thermal conductivity in the thickness direction, the in-plane direction (X-axis direction), and the in-plane direction (Y-axis direction) of the thermally conductive molded body were measured, they were 2.8 W / m · K and 12.6 W / m ·, respectively. K, 2.8W
/ M · K.

【0058】(実施例3)試作例2の黒鉛化炭素繊維を
シランカップリング剤で表面処理し、その処理後の黒鉛
化炭素繊維100重量部を液状エポキシ樹脂(スリーボ
ンド株式会社製TB2280C)100重量部に混合し
真空脱泡して熱伝導性高分子組成物を調製した。続い
て、その熱伝導性高分子組成物を所定の金型のキャビテ
ィ内に注入し、磁力線の向きが熱伝導性成形体の厚み方
向に一致する磁場(磁束密度8テスラ)を印加して熱伝
導性高分子組成物中の黒鉛化炭素繊維を十分に配向させ
た後に加熱硬化させて、厚み3mm×縦20mm×横2
0mmの板状の熱伝導性成形体を得た。
(Example 3) The graphitized carbon fiber of Prototype Example 2 was surface-treated with a silane coupling agent, and 100 parts by weight of the treated graphitized carbon fiber was 100 parts by weight of a liquid epoxy resin (TB2280C manufactured by Three Bond Co., Ltd.). Then, the mixture was mixed and vacuum degassed to prepare a heat conductive polymer composition. Subsequently, the thermally conductive polymer composition is injected into a cavity of a predetermined mold, and a magnetic field (magnetic flux density of 8 Tesla) is applied by applying a magnetic field whose magnetic field lines coincide with the thickness direction of the thermally conductive molded body. After sufficiently orienting the graphitized carbon fibers in the conductive polymer composition, they are cured by heating, and the thickness is 3 mm × 20 mm × 2 mm.
A 0 mm plate-shaped thermally conductive molded body was obtained.

【0059】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向に揃って配向していた。熱伝導性成形体の厚み
方向及び面内方向における熱伝導率を測定したところ、
それぞれ8.2W/m・K、2.5W/m・Kであっ
た。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the thickness direction. When measuring the thermal conductivity in the thickness direction and in-plane direction of the thermally conductive molded body,
They were 8.2 W / m · K and 2.5 W / m · K, respectively.

【0060】(実施例4)実施例3において、磁力線の
向きが熱伝導性成形体の面内方向(X軸方向)に一致す
る磁場をキャビティ内の熱伝導性高分子組成物に印加す
るように変更した。それ以外は実施例3と同様にして板
状の熱伝導性成形体を作製した。
(Example 4) In Example 3, a magnetic field in which the direction of the line of magnetic force coincides with the in-plane direction (X-axis direction) of the thermally conductive molded body is applied to the thermally conductive polymer composition in the cavity. Changed to Otherwise in the same manner as in Example 3, a plate-shaped thermally conductive molded body was produced.

【0061】この熱伝導性成形体中の黒鉛化炭素繊維は
面内方向(X軸方向)に揃って配向していた。熱伝導性
成形体の厚み方向、面内方向(X軸方向)及び面内方向
(Y軸方向)における熱伝導率を測定したところ、それ
ぞれ2.6W/m・K、9.2W/m・K、2.7W/
m・Kであった。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the in-plane direction (X-axis direction). When the thermal conductivity in the thickness direction, the in-plane direction (X-axis direction), and the in-plane direction (Y-axis direction) of the thermally conductive molded body were measured, 2.6 W / m · K and 9.2 W / m · K, 2.7W /
m · K.

【0062】(実施例5)試作例1の黒鉛化炭素繊維を
シランカップリング剤で表面処理し、その処理後の黒鉛
化炭素繊維110重量部と酸化アルミニウム粉末(昭和
電工株式会社製AS−20)60重量部とを、液状シリ
コーンゴム(GE東芝シリコーン株式会社製 TSE3
070)100重量部に混合し真空脱泡して熱伝導性高
分子組成物を調製した。続いて、その熱伝導性高分子組
成物を所定の金型のキャビティ内に注入し、磁力線の向
きが熱伝導性成形体の厚み方向に一致する磁場(磁束密
度12テスラ)を印加して熱伝導性高分子組成物中の黒
鉛化炭素繊維を十分に配向させた後に加熱硬化させて、
厚み0.5mm×縦20mm×横20mmの板状の熱伝
導性成形体(アスカーC硬度17)を得た。
(Example 5) The graphitized carbon fiber of prototype example 1 was surface-treated with a silane coupling agent, and 110 parts by weight of the graphitized carbon fiber after the treatment and aluminum oxide powder (AS-20 manufactured by Showa Denko KK) ) And 60 parts by weight of liquid silicone rubber (TSE3 manufactured by GE Toshiba Silicone Co., Ltd.).
070) was mixed with 100 parts by weight and degassed under vacuum to prepare a thermally conductive polymer composition. Subsequently, the thermally conductive polymer composition is injected into a cavity of a predetermined mold, and a magnetic field (magnetic flux density of 12 Tesla) in which the direction of the line of magnetic force coincides with the thickness direction of the thermally conductive molded body is applied to heat the polymer. Heat-cured after sufficiently orienting the graphitized carbon fibers in the conductive polymer composition,
A plate-shaped thermally conductive molded body (Asker C hardness: 17) having a thickness of 0.5 mm × 20 mm × 20 mm was obtained.

【0063】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向に揃って配向していた。熱伝導性成形体の厚み
方向及び面内方向における熱伝導率を測定したところ、
それぞれ11.6W/m・K、2.9W/m・Kであっ
た。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the thickness direction. When measuring the thermal conductivity in the thickness direction and in-plane direction of the thermally conductive molded body,
They were 11.6 W / m · K and 2.9 W / m · K, respectively.

【0064】(実施例6)実施例5において、磁力線の
向きが熱伝導性成形体の面内方向(X軸方向)に一致す
る磁場をキャビティ内の熱伝導性高分子組成物に印加す
るように変更した。それ以外は実施例5と同様にして板
状の熱伝導性成形体(アスカーC硬度17)を作製し
た。
(Example 6) In Example 5, a magnetic field in which the direction of the lines of magnetic force coincides with the in-plane direction (X-axis direction) of the thermally conductive molded body is applied to the thermally conductive polymer composition in the cavity. Changed to Otherwise in the same manner as in Example 5, a plate-shaped thermally conductive molded body (Asker C hardness 17) was produced.

【0065】この熱伝導性成形体中の黒鉛化炭素繊維は
面内方向(X軸方向)に揃って配向していた。熱伝導性
成形体の厚み方向における熱伝導率、面内方向(X軸方
向)、面内方向(Y軸方向)における熱伝導率を測定し
たところ、それぞれ2.1W/m・K、10.8W/m
・K、2.5W/m・Kであった。
The graphitized carbon fibers in the thermally conductive molded article were aligned in the in-plane direction (X-axis direction). When the thermal conductivity in the thickness direction, the in-plane direction (X-axis direction), and the in-plane direction (Y-axis direction) of the thermally conductive molded body were measured, the thermal conductivity was 2.1 W / m · K, respectively. 8W / m
K, 2.5 W / m · K.

【0066】(実施例7)スチレン系熱可塑性エラスト
マー(旭化成工業株式会社製 タフテックH1053)
100重量部に溶剤としてトルエン2000重量部を加
えて溶解し、そこに試作例1の黒鉛化炭素繊維60重量
部を混合して熱伝導性高分子組成物を調製した。続い
て、その熱伝導性高分子組成物を所定の金型のキャビテ
ィ内に注入し、磁力線の向きが熱伝導性成形体の高さ方
向に一致する磁場(磁束密度6テスラ)を印加して熱伝
導性高分子組成物中の黒鉛化炭素繊維を十分に配向させ
た後にトルエンを揮発させて加熱乾燥し、高さ40mm
×縦20mm×横20mmの熱伝導性成形体を得た。
Example 7 Styrenic thermoplastic elastomer (ToughTech H1053 manufactured by Asahi Kasei Kogyo Co., Ltd.)
To 100 parts by weight, 2000 parts by weight of toluene as a solvent was added and dissolved, and 60 parts by weight of the graphitized carbon fiber of Prototype Example 1 was mixed therewith to prepare a heat conductive polymer composition. Subsequently, the thermally conductive polymer composition is injected into the cavity of a predetermined mold, and a magnetic field (magnetic flux density of 6 Tesla) is applied in which the direction of the line of magnetic force matches the height direction of the thermally conductive molded body. After sufficiently orienting the graphitized carbon fibers in the thermally conductive polymer composition, the toluene is volatilized and dried by heating to a height of 40 mm.
A 20 mm long by 20 mm wide thermally conductive molded body was obtained.

【0067】この熱伝導性成形体中の黒鉛化炭素繊維は
高さ方向に揃って配向していた。熱伝導性成形体の高さ
方向及び面内方向における熱伝導率を測定したところ、
それぞれ7.4W/m・K、2.2W/m・Kであっ
た。
The graphitized carbon fibers in the thermally conductive molded article were aligned in the height direction. When measuring the thermal conductivity in the height direction and in-plane direction of the thermally conductive molded body,
They were 7.4 W / m · K and 2.2 W / m · K, respectively.

【0068】(比較例1)実施例1において、熱伝導性
高分子組成物を硬化させる際の磁場の印加を省略した。
それ以外は実施例1と同様にして板状の熱伝導性成形体
を作製した。
Comparative Example 1 In Example 1, the application of a magnetic field when curing the thermally conductive polymer composition was omitted.
Otherwise in the same manner as in Example 1, a plate-like thermally conductive molded body was produced.

【0069】この熱伝導性成形体中の黒鉛化炭素繊維は
一定方向に配向せずランダムに分散していた。熱伝導性
成形体の厚み方向及び面内方向における熱伝導率を測定
したところ、それぞれ1.4W/m・K、4.2W/m
・Kであった。
The graphitized carbon fibers in this thermally conductive compact were not oriented in a certain direction but were randomly dispersed. When the thermal conductivity in the thickness direction and the in-plane direction of the thermally conductive molded body was measured, they were 1.4 W / m · K and 4.2 W / m, respectively.
-It was K.

【0070】(比較例2)実施例3において、試作例2
の黒鉛化炭素繊維に代えて試作例4の黒鉛化炭素繊維を
使用するように変更した。それ以外は実施例3と同様に
して板状の熱伝導性成形体を作製した。
(Comparative Example 2)
Was changed to use the graphitized carbon fiber of Prototype Example 4 instead of the graphitized carbon fiber. Otherwise in the same manner as in Example 3, a plate-shaped thermally conductive molded body was produced.

【0071】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向に揃って配向していた。熱伝導性成形体の厚み
方向及び面内方向における熱伝導率を測定したところ、
それぞれ5.1W/m・K、2.3W/m・Kであっ
た。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the thickness direction. When measuring the thermal conductivity in the thickness direction and in-plane direction of the thermally conductive molded body,
It was 5.1 W / m · K and 2.3 W / m · K, respectively.

【0072】(比較例3)実施例5において、熱伝導性
高分子組成物を硬化させる際に印加する磁場の磁束密度
を1.5テスラに変更した。それ以外は実施例5と同様
にして板状の熱伝導性成形体を作製した。
Comparative Example 3 In Example 5, the magnetic flux density of the magnetic field applied when curing the thermally conductive polymer composition was changed to 1.5 Tesla. Otherwise in the same manner as in Example 5, a plate-shaped thermally conductive molded body was produced.

【0073】この熱伝導性成形体中の黒鉛化炭素繊維は
充分に配向しておらず、厚み方向及び面内方向における
熱伝導率を測定したところ、それぞれ2.7W/m・
K、3.1W/m・Kであった。
The graphitized carbon fibers in the thermally conductive molded article were not sufficiently oriented, and the thermal conductivity in the thickness direction and the in-plane direction were measured to be 2.7 W / m ·
K and 3.1 W / m · K.

【0074】(比較例4)実施例5において、試作例1
の黒鉛化炭素繊維に代えて試作例3の黒鉛化炭素繊維を
使用するように変更するとともに、熱伝導性高分子組成
物を硬化させる際に印加する磁場の磁束密度を10テス
ラに変更した。それ以外は実施例5と同様にして板状の
熱伝導性成形体(アスカーC硬度17)を作製した。
(Comparative Example 4) In Prototype Example 1 in Example 5,
Was changed to use the graphitized carbon fiber of Prototype Example 3 instead of the graphitized carbon fiber, and the magnetic flux density of the magnetic field applied when curing the thermally conductive polymer composition was changed to 10 Tesla. Otherwise in the same manner as in Example 5, a plate-shaped thermally conductive molded body (Asker C hardness 17) was produced.

【0075】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向に揃って配向していた。熱伝導性成形体の厚み
方向及び面内方向における熱伝導率を測定したところ、
それぞれ8.7W/m・K、2.7W/m・Kであっ
た。
The graphitized carbon fibers in the thermally conductive molded article were oriented uniformly in the thickness direction. When measuring the thermal conductivity in the thickness direction and in-plane direction of the thermally conductive molded body,
They were 8.7 W / m · K and 2.7 W / m · K, respectively.

【0076】(比較例5)比較例4において、試作例3
の黒鉛化炭素繊維に代えて試作例4の黒鉛化炭素繊維を
使用するように変更した。それ以外は比較例4と同様に
して板状の熱伝導性成形体(アスカーC硬度17)を作
成した。
(Comparative Example 5) In Comparative Example 4, a prototype example 3
Was changed to use the graphitized carbon fiber of Prototype Example 4 instead of the graphitized carbon fiber. Otherwise in the same manner as in Comparative Example 4, a plate-like heat-conductive molded body (Asker C hardness 17) was prepared.

【0077】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向に揃って配向していた。熱伝導性成形体の厚み
方向及び面内方向における熱伝導率を測定したところ、
それぞれ9.3W/m・K、2.8W/m・Kであっ
た。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the thickness direction. When measuring the thermal conductivity in the thickness direction and in-plane direction of the thermally conductive molded body,
The values were 9.3 W / m · K and 2.8 W / m · K, respectively.

【0078】(比較例6)実施例7において、試作例1
の黒鉛化炭素繊維に代えて試作例4の黒鉛化炭素繊維を
使用するように変更した。それ以外は実施例7と同様に
して板状の熱伝導性成形体を作成した。
(Comparative Example 6) Prototype Example 1 in Example 7
Was changed to use the graphitized carbon fiber of Prototype Example 4 instead of the graphitized carbon fiber. Otherwise in the same manner as in Example 7, a plate-shaped thermally conductive molded body was prepared.

【0079】この熱伝導性成形体中の黒鉛化炭素繊維は
厚み方向に揃って配向していた。熱伝導性成形体の厚み
方向及び面内方向における熱伝導率を測定したところ、
それぞれ5.3W/m・K、2.5W/m・Kであっ
た。上記の結果より、実施例1〜7並びに比較例2及び
比較例4〜6の熱伝導性成形体は、黒鉛化炭素繊維の配
向方向における熱伝導率の値が、その他の方向における
熱伝導率の値に比べて著しく大きく、熱伝導性に異方性
があることが示された。また、その配向方向における熱
伝導率の値は、試作例1又は試作例2の黒鉛化炭素繊維
を使用した実施例1〜7のほうが、試作例3又は試作例
4の黒鉛化炭素繊維を使用した比較例2及び比較例4〜
6に比べて大きく、優れた熱伝導性を有することが示さ
れた。さらに、磁場を印加しなかった比較例1及び磁場
を印加したが磁束密度の小さい比較例3の場合は、黒鉛
化炭素繊維が配向していないために熱伝導性に異方性が
なく、熱伝導率の値も小さいことが示された。
The graphitized carbon fibers in the thermally conductive compact were oriented uniformly in the thickness direction. When measuring the thermal conductivity in the thickness direction and in-plane direction of the thermally conductive molded body,
They were 5.3 W / m · K and 2.5 W / m · K, respectively. From the above results, in the thermally conductive molded articles of Examples 1 to 7 and Comparative Examples 2 and 4 to 6, the values of the thermal conductivity in the orientation direction of the graphitized carbon fibers were different from those in the other directions. Is significantly larger than the value of the above, indicating that the thermal conductivity is anisotropic. In addition, the values of the thermal conductivity in the orientation direction of Examples 1 to 7 using the graphitized carbon fiber of Prototype Example 1 or 2 are more similar to those of Graphite Carbon Fiber of Prototype Example 3 or Prototype Example 4. Comparative Example 2 and Comparative Examples 4 to
6 compared to No. 6 and had excellent thermal conductivity. Further, in Comparative Example 1 in which no magnetic field was applied and in Comparative Example 3 in which a magnetic field was applied but the magnetic flux density was small, there was no anisotropy in thermal conductivity because the graphitized carbon fibers were not oriented, and the thermal conductivity was low. The conductivity values were also shown to be small.

【0080】(実施例8)実施例3の板状の熱伝導性成
形体を使って配線基板を作製した。すなわち、実施例3
の熱伝導性成形体を基板とし、その基板上に電気絶縁性
エポキシ系接着剤を塗布し、厚さ35μmの銅箔をプレ
スで加圧接着した後、銅箔をエッチングすることによ
り、基板上に導体回路を形成した。この配線基板上にト
ランジスタ(株式会社東芝製 TO−220)を半田付
けし、反対面を冷却ファンで冷却しながら通電し、トラ
ンジスタと配線基板の温度差より熱抵抗を求めたとこ
ろ、0.18℃/Wであった。
(Embodiment 8) A wiring board was manufactured using the plate-shaped thermally conductive molded body of Embodiment 3. That is, the third embodiment
The thermally conductive molded body of the above is used as a substrate, an electrically insulating epoxy-based adhesive is applied on the substrate, and a copper foil having a thickness of 35 μm is press-bonded with a press, and then the copper foil is etched to form a substrate. A conductor circuit was formed on the substrate. A transistor (TO-220, manufactured by Toshiba Corporation) was soldered on this wiring board, and the opposite surface was energized while being cooled by a cooling fan, and the thermal resistance was determined from the temperature difference between the transistor and the wiring board. ° C / W.

【0081】(比較例5)比較例2の板状の熱伝導性成
形体を使って実施例8と同様にして配線基板を作製し
た。この配線基板上にトランジスタ(株式会社東芝製
TO−220)を半田付けし、反対面を冷却ファンで冷
却しながら通電し、トランジスタと配線基板の温度差よ
り熱抵抗を求めたところ、0.25℃/Wであった。
(Comparative Example 5) A wiring board was manufactured in the same manner as in Example 8 using the plate-shaped thermally conductive molded body of Comparative Example 2. Transistors (made by Toshiba Corporation)
TO-220) was soldered, and the opposite surface was energized while being cooled by a cooling fan, and the thermal resistance was determined from the temperature difference between the transistor and the wiring board to be 0.25 ° C./W.

【0082】なお、前記実施形態を次のように変更して
構成することもできる。 ・ 図1(a)〜(d)に示すプリント配線基板14、
図1(c)に示すヒートシンク15及び図1(d)に示
す筐体16を熱伝導性成形体で構成してもよい。この場
合、熱の放散効果を高めることができる。
The above embodiment can be modified as follows. A printed wiring board 14 shown in FIGS.
The heat sink 15 shown in FIG. 1 (c) and the housing 16 shown in FIG. 1 (d) may be made of a thermally conductive molded body. In this case, the heat dissipation effect can be enhanced.

【0083】・ 前記実施形態における黒鉛化炭素繊維
に加えて、下記の(A)と(B)の2種の黒鉛化炭素繊
維うちの少なくとも一方をさらに熱伝導性充填剤として
含有させて熱伝導性高分子組成物を構成するように変更
してもよい。
In addition to the graphitized carbon fibers in the above-described embodiment, at least one of the following two types of graphitized carbon fibers (A) and (B) is further contained as a thermally conductive filler to provide heat conduction. It may be changed so as to constitute the conductive polymer composition.

【0084】(A)メソフェーズピッチを原料に用いて
紡糸、不融化及び炭化の各処理を順次行った後に粉砕
し、その後黒鉛化して得られる黒鉛化炭素繊維。 (B)平均粒径が500μm以下であり、かつ下記
(1)及び(2)の物性を備えた黒鉛化炭素繊維。
(A) Graphitized carbon fibers obtained by sequentially performing spinning, infusibilization and carbonization processes using a mesophase pitch as a raw material, followed by pulverization and then graphitization. (B) Graphitized carbon fibers having an average particle size of 500 μm or less and having the following physical properties (1) and (2).

【0085】(1)レーザー回折法で測定される粒度分
布 10%累積径(μm): 6〜 20 50%累積径(μm):15〜 40 90%累積径(μm):40〜150 (2)タップ密度(g/cm3):0.6〜1.5 (A)に示す黒鉛化炭素繊維を含ませた場合には、熱伝
導性成形体の熱伝導性を相乗的に向上させることができ
る。また、(B)に示す黒鉛化炭素繊維を含ませた場合
には、熱伝導性成形体の熱伝導性を相乗的に向上させる
とともに加工性も向上させることができる。
(1) Particle size distribution measured by laser diffraction method 10% cumulative diameter (μm): 6 to 20 50% cumulative diameter (μm): 15 to 40 90% cumulative diameter (μm): 40 to 150 (2) ) Tap density (g / cm 3 ): 0.6 to 1.5 When the graphitized carbon fibers shown in (A) are included, the thermal conductivity of the thermally conductive molded body is synergistically improved. Can be. When the graphitized carbon fibers shown in (B) are included, the heat conductivity of the heat conductive molded body can be synergistically improved and the processability can be improved.

【0086】次に、前記実施形態から把握できる技術的
思想について以下に記載する。 ・ 前記熱伝導性高分子組成物が、メソフェーズピッチ
を原料に用いて紡糸、不融化及び炭化の各処理を順次行
った後に粉砕し、その後黒鉛化して得られる黒鉛化炭素
繊維をさらに含有していることを特徴とする請求項1又
は請求項2に記載の熱伝導性成形体。
Next, the technical ideas that can be grasped from the above embodiment will be described below. The heat conductive polymer composition further contains graphitized carbon fibers obtained by spinning, infusibilizing and carbonizing sequentially using mesophase pitch as a raw material, and then pulverizing, and then graphitizing. The thermally conductive molded article according to claim 1 or 2, wherein

【0087】・ 前記熱伝導性高分子組成物が、平均粒
径が500μm以下であり、かつ下記(1)及び(2)
の物性を備えた黒鉛化炭素繊維をさらに含有しているこ
とを特徴とする請求項1又は請求項2に記載の熱伝導性
成形体。
The heat conductive polymer composition has an average particle size of 500 μm or less and the following (1) and (2)
The thermally conductive molded article according to claim 1, further comprising a graphitized carbon fiber having the following physical properties.

【0088】(1)レーザー回折法で測定される粒度分
布 10%累積径(μm): 6〜 20 50%累積径(μm):15〜 40 90%累積径(μm):40〜150 (2)タップ密度(g/cm3):0.6〜1.5 ・ 前記熱伝導性高分子組成物が、メソフェーズピッチ
を原料に用いて紡糸、不融化及び炭化の各処理を順次行
った後に粉砕し、その後黒鉛化して得られる黒鉛化炭素
繊維と、平均粒径が500μm以下であり、かつ下記
(1)及び(2)の物性を備えた黒鉛化炭素繊維とをさ
らに含有していることを特徴とする請求項1又は請求項
2に記載の熱伝導性成形体。
(1) Particle size distribution measured by laser diffraction method 10% cumulative diameter (μm): 6 to 20 50% cumulative diameter (μm): 15 to 40 90% cumulative diameter (μm): 40 to 150 (2) ) Tap density (g / cm 3 ): 0.6 to 1.5 ・ The heat conductive polymer composition is subjected to spinning, infusibilization, and carbonization using mesophase pitch as a raw material, and then pulverized. Then, the graphitized carbon fiber obtained by graphitization and the graphitized carbon fiber having an average particle diameter of 500 μm or less and having the following physical properties (1) and (2) are further contained. The thermally conductive molded article according to claim 1 or 2, wherein

【0089】(1)レーザー回折法で測定される粒度分
布 10%累積径(μm): 6〜 20 50%累積径(μm):15〜 40 90%累積径(μm):40〜150 (2)タップ密度(g/cm3):0.6〜1.5
(1) Particle size distribution measured by laser diffraction method 10% cumulative diameter (μm): 6 to 20 50% cumulative diameter (μm): 15 to 40 90% cumulative diameter (μm): 40 to 150 (2) ) Tap density (g / cm 3 ): 0.6 to 1.5

【0090】[0090]

【発明の効果】本発明は、以上のように構成されている
ため、次のような効果を奏する。請求項1に記載の発明
によれば、優れた熱伝導性を発揮することができ、電子
機器等における放熱部材、伝熱部材あるいはそれらの構
成材料として好適に用いることができる。
Since the present invention is configured as described above, it has the following effects. According to the first aspect of the present invention, excellent heat conductivity can be exhibited, and it can be suitably used as a heat dissipating member, a heat conducting member, or a constituent material thereof in an electronic device or the like.

【0091】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、熱伝導性をさらに向上させ
ることができる。請求項3に記載の発明によれば、優れ
た熱伝導性を有する熱伝導性成形体を効率的に製造する
ことができる。
According to the invention described in claim 2, according to claim 1
And the thermal conductivity can be further improved. According to the third aspect of the present invention, it is possible to efficiently manufacture a thermally conductive molded body having excellent thermal conductivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)〜(d)は熱伝導性成形体の適用例を
示す側面図。
FIGS. 1A to 1D are side views showing application examples of a thermally conductive molded body.

【図2】 同じく熱伝導性成形体の適用例を示す断面
図。
FIG. 2 is a cross-sectional view showing an application example of the thermally conductive molded body.

【図3】 四角板状の熱伝導性成形体を示す斜視図。FIG. 3 is a perspective view showing a square plate-shaped thermally conductive molded body.

【図4】 (a),(b)は熱伝導性成形体の製造方法
を示す概念図。
FIGS. 4A and 4B are conceptual diagrams showing a method for manufacturing a thermally conductive molded body.

【符号の説明】[Explanation of symbols]

13,21…熱伝導性成形体、17…熱伝導性成形体と
しての基板。
13, 21: thermally conductive molded body; 17: substrate as thermally conductive molded body.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 5/08 D01F 9/145 H01L 23/36 C09K 5/00 D 23/373 H01L 23/36 D // D01F 9/145 M Fターム(参考) 4F071 AA01 AA02 AA03 AA11 AA12 AA12X AA13 AA15 AA15X AA20 AA20X AA21 AA22 AA22X AA24 AA25 AA26 AA27 AA28 AA28X AA29 AA32 AA33 AA34 AA34X AA40 AA41 AA42 AA45 AA46 AA49 AA50 AA51 AA53 AA54 AA55 AA60 AA62 AA64 AA67 AA78 AA79 AB03 AD01 AF44 AG13 AH12 BB01 BB02 BB03 BB04 BB05 BB06 BC01 BC07 4J002 AA001 AA011 AA021 AC031 AC061 AC071 AC081 AC091 AC111 BB031 BB061 BB121 BB151 BB171 BB181 BB231 BB241 BB271 BC031 BC061 BD031 BD041 BD101 BD141 BD151 BE021 BF021 BF031 BF051 BG041 BG061 BG101 BH021 BN151 BP011 CB001 CC031 CD001 CF061 CF071 CF081 CF101 CF211 CG001 CH051 CH071 CH091 CJ001 CK021 CL011 CL021 CL031 CL071 CM041 CN011 CN031 CP031 CP171 DA016 FA046 FD010 4L037 CS04 FA02 FA05 PA63 PP39 UA06 5F036 AA01 BB21 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C09K 5/08 D01F 9/145 H01L 23/36 C09K 5/00 D 23/373 H01L 23/36 D // D01F 9 / 145 MF term (reference) 4F071 AA01 AA02 AA03 AA11 AA12 AA12X AA13 AA15 AA15X AA20 AA20X AA21 AA22 AA22X AA24 AA25 AA26 AA27 AAA AA AA AA AA AA AA AA AA AA AB03 AD01 AF44 AG13 AH12 BB01 BB02 BB03 BB04 BB05 BB06 BC01 BC07 4J002 AA001 AA011 AA021 AC031 AC061 AC071 AC081 AC091 AC111 BB031 BB061 BB121 BB151 BB171 BB181 BB231 BB241 BB271 BC031 BC061 BD031 BD041 BD101 BD141 BD151 BE021 BF021 BF031 BF051 BG041 BG061 BG101 BH021 BN151 BP011 CB001 CC031 CD001 CF061 CF071 CF081 CF101 CF211 CG001 CH051 CH071 CH091 CJ001 CK021 CL011 CL021 CL031 CL071 CM041 CN011 CN031 CP031 CP171 DA016 FA046 FD010 4L037 CS04 FA02 FA05 PA63 PP39 UA06 5F036 AA01 BB

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料と、熱伝導性充填剤として黒
鉛化炭素繊維とを含有する熱伝導性高分子組成物を所定
の形状に成形してなる熱伝導性成形体であって、X線回
折法による前記黒鉛化炭素繊維の黒鉛層間の面間隔(d
002)が0.3370nm未満で、かつ、(101)
回折ピークと(100)回折ピークのピーク強度比(P
101/P100)が1.15以上であり、さらに黒鉛
化炭素繊維が一定方向に配向していることを特徴とする
熱伝導性成形体。
1. A thermally conductive molded article formed by molding a thermally conductive polymer composition containing a polymer material and a graphitized carbon fiber as a thermally conductive filler into a predetermined shape, Spacing between the graphite layers of the graphitized carbon fiber (d
002) is less than 0.3370 nm and (101)
The peak intensity ratio of the diffraction peak and the (100) diffraction peak (P
101 / P100) is 1.15 or more, and the graphitized carbon fibers are oriented in a certain direction.
【請求項2】 前記黒鉛化炭素繊維は、メソフェーズピ
ッチを原料に用いて紡糸、不融化及び炭化の各処理を順
次行った後に粉砕し、その後黒鉛化して得られるもので
あり、その繊維直径が5〜20μm、平均粒径が5〜5
00μmである請求項1に記載の熱伝導性成形体。
2. The graphitized carbon fiber is obtained by sequentially performing spinning, infusibilization, and carbonization treatments using a mesophase pitch as a raw material, followed by pulverization, and then graphitization. 5-20 μm, average particle size 5-5
The thermally conductive molded article according to claim 1, which has a thickness of 00 µm.
【請求項3】 X線回折法による黒鉛層間の面間隔(d
002)が0.3370nm未満で、かつ、(101)
回折ピークと(100)回折ピークのピーク強度比(P
101/P100)が1.15以上である黒鉛化炭素繊
維と、高分子材料とを含有する熱伝導性高分子組成物に
対して磁場を印加し、前記黒鉛化炭素繊維を一定方向に
配向させた状態で前記熱伝導性高分子組成物を固化させ
ることを特徴とする熱伝導性成形体の製造方法。
3. The interplanar spacing (d) between graphite layers determined by an X-ray diffraction method.
002) is less than 0.3370 nm and (101)
The peak intensity ratio of the diffraction peak and the (100) diffraction peak (P
A magnetic field is applied to a thermally conductive polymer composition containing a graphitized carbon fiber having (101 / P100) of 1.15 or more and a polymer material to orient the graphitized carbon fiber in a certain direction. A method for producing a thermally conductive molded article, comprising solidifying the thermally conductive polymer composition in a state where the thermally conductive polymer composition is cured.
JP2000281703A 2000-09-18 2000-09-18 Method for producing thermally conductive molded body Expired - Lifetime JP4833398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281703A JP4833398B2 (en) 2000-09-18 2000-09-18 Method for producing thermally conductive molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281703A JP4833398B2 (en) 2000-09-18 2000-09-18 Method for producing thermally conductive molded body

Publications (2)

Publication Number Publication Date
JP2002088257A true JP2002088257A (en) 2002-03-27
JP4833398B2 JP4833398B2 (en) 2011-12-07

Family

ID=18766320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281703A Expired - Lifetime JP4833398B2 (en) 2000-09-18 2000-09-18 Method for producing thermally conductive molded body

Country Status (1)

Country Link
JP (1) JP4833398B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140289A (en) * 2002-10-21 2004-05-13 Funai Electric Co Ltd Heat radiation structure of electronic component and disk drive device comprising it
JP2004360160A (en) * 2003-05-09 2004-12-24 Showa Denko Kk Linear fine carbon fiber and resin composite material given by using the same
EP1352922A3 (en) * 2002-04-10 2005-11-02 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
JP2006113126A (en) * 2004-10-12 2006-04-27 Sony Corp Frame body of liquid crystal display panel and liquid crystal display
JP2006315893A (en) * 2005-05-11 2006-11-24 Sumitomo Precision Prod Co Ltd Method for producing carbon nanotube-dispersed composite material
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
JP2007012911A (en) * 2005-06-30 2007-01-18 Polymatech Co Ltd Heat dissipation component and manufacturing method thereof
JP2007016071A (en) * 2005-07-05 2007-01-25 Nippon Oil Corp Wholly aromatic liquid crystal polyester resin composition and optical pickup lens holder
US7189778B2 (en) 2002-07-22 2007-03-13 Polymatech Co., Ltd. Thermally conductive polymer molded article and method for producing the same
JP2007165357A (en) * 2005-12-09 2007-06-28 Kyoto Univ Wiring board
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
US7347955B2 (en) 2002-10-31 2008-03-25 Polymatech Co., Ltd. Heat conducting polymer mold products
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP2008205453A (en) * 2007-01-26 2008-09-04 Teijin Ltd Heat-dissipating mounting board and method of manufacturing the same
JP2008208490A (en) * 2007-02-27 2008-09-11 Teijin Ltd Pitch-based carbon fiber and carbon fiber-reinforced composite material
JP2008248083A (en) * 2007-03-30 2008-10-16 Asahi Organic Chem Ind Co Ltd Thermosetting resin composition, fiber reinforced molding compound, and molded article
JPWO2008013252A1 (en) * 2006-07-28 2009-12-17 帝人株式会社 Thermally conductive adhesive
WO2010144838A1 (en) * 2009-06-12 2010-12-16 Graftech International Holdings Inc. Highly oriented graphite product
CN103555085A (en) * 2013-10-10 2014-02-05 浙江川科防保材料发展有限公司 Fireproof and light-shielding fluorine-containing functional coating specialized for steel structure, and preparation process thereof
WO2018047828A1 (en) * 2016-09-12 2018-03-15 デクセリアルズ株式会社 Heat-conductive sheet and semiconductor device
KR20180048612A (en) * 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
KR20200025499A (en) * 2018-08-30 2020-03-10 엘지이노텍 주식회사 Converter
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit
US11676880B2 (en) 2016-11-26 2023-06-13 Texas Instruments Incorporated High thermal conductivity vias by additive processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302545A (en) * 1998-02-18 1999-11-02 Nippon Mitsubishi Oil Corp Silicone rubber composite
JP2000164215A (en) * 1998-11-25 2000-06-16 Petoca Ltd Graphite material for negative electrode of lithium ion secondary battery
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302545A (en) * 1998-02-18 1999-11-02 Nippon Mitsubishi Oil Corp Silicone rubber composite
JP2000164215A (en) * 1998-11-25 2000-06-16 Petoca Ltd Graphite material for negative electrode of lithium ion secondary battery
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1352922A3 (en) * 2002-04-10 2005-11-02 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
KR100954768B1 (en) * 2002-04-10 2010-04-28 폴리마테크 컴퍼니 리미티드 Thermally conductive formed article and method of manufacturing the same
US7291381B2 (en) 2002-04-10 2007-11-06 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
US7189778B2 (en) 2002-07-22 2007-03-13 Polymatech Co., Ltd. Thermally conductive polymer molded article and method for producing the same
JP2004140289A (en) * 2002-10-21 2004-05-13 Funai Electric Co Ltd Heat radiation structure of electronic component and disk drive device comprising it
US7347955B2 (en) 2002-10-31 2008-03-25 Polymatech Co., Ltd. Heat conducting polymer mold products
KR100975613B1 (en) * 2002-10-31 2010-08-17 폴리마테크 컴퍼니 리미티드 Heat conducting polymer mold products
JP2004360160A (en) * 2003-05-09 2004-12-24 Showa Denko Kk Linear fine carbon fiber and resin composite material given by using the same
US8372511B2 (en) 2003-05-09 2013-02-12 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
JP2006113126A (en) * 2004-10-12 2006-04-27 Sony Corp Frame body of liquid crystal display panel and liquid crystal display
JP2006315893A (en) * 2005-05-11 2006-11-24 Sumitomo Precision Prod Co Ltd Method for producing carbon nanotube-dispersed composite material
JP4686274B2 (en) * 2005-06-30 2011-05-25 ポリマテック株式会社 Heat dissipation component and manufacturing method thereof
JP2007012911A (en) * 2005-06-30 2007-01-18 Polymatech Co Ltd Heat dissipation component and manufacturing method thereof
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
US8029900B2 (en) 2005-07-01 2011-10-04 Tsinghua University Thermal interface material and method for manufacturing same
JP4653029B2 (en) * 2005-07-01 2011-03-16 鴻富錦精密工業(深▲セン▼)有限公司 Thermally conductive material and method for producing the same
JP2007016071A (en) * 2005-07-05 2007-01-25 Nippon Oil Corp Wholly aromatic liquid crystal polyester resin composition and optical pickup lens holder
JP2007165357A (en) * 2005-12-09 2007-06-28 Kyoto Univ Wiring board
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JP4723529B2 (en) * 2006-04-14 2011-07-13 鴻富錦精密工業(深▲セン▼)有限公司 Composite material including carbon nanotube and method for producing the same
JPWO2008013252A1 (en) * 2006-07-28 2009-12-17 帝人株式会社 Thermally conductive adhesive
JP5381102B2 (en) * 2006-11-01 2014-01-08 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP2014001388A (en) * 2006-11-01 2014-01-09 Hitachi Chemical Co Ltd Thermally conductive sheet, method for producing the same, and heat radiation device using thermally conductive sheet
JP2008205453A (en) * 2007-01-26 2008-09-04 Teijin Ltd Heat-dissipating mounting board and method of manufacturing the same
JP2008208490A (en) * 2007-02-27 2008-09-11 Teijin Ltd Pitch-based carbon fiber and carbon fiber-reinforced composite material
JP2008248083A (en) * 2007-03-30 2008-10-16 Asahi Organic Chem Ind Co Ltd Thermosetting resin composition, fiber reinforced molding compound, and molded article
CN102803138A (en) * 2009-06-12 2012-11-28 格拉弗技术国际控股有限公司 Highly oriented graphite product
JP2012530030A (en) * 2009-06-12 2012-11-29 グラフテック インターナショナル ホールディングス インコーポレーテッド Highly oriented graphite products
WO2010144838A1 (en) * 2009-06-12 2010-12-16 Graftech International Holdings Inc. Highly oriented graphite product
CN103555085A (en) * 2013-10-10 2014-02-05 浙江川科防保材料发展有限公司 Fireproof and light-shielding fluorine-containing functional coating specialized for steel structure, and preparation process thereof
CN103555085B (en) * 2013-10-10 2015-12-09 浙江川科防保材料发展有限公司 A kind of steel construction special fireproof Lacquer finish functional fluoropolymer coating and preparation technology thereof
KR102560615B1 (en) 2015-08-26 2023-07-27 덴카 주식회사 Thermally conductive resin composition
KR20180048612A (en) * 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
WO2018047828A1 (en) * 2016-09-12 2018-03-15 デクセリアルズ株式会社 Heat-conductive sheet and semiconductor device
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US10790228B2 (en) 2016-11-26 2020-09-29 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit
US11676880B2 (en) 2016-11-26 2023-06-13 Texas Instruments Incorporated High thermal conductivity vias by additive processing
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
KR20200025499A (en) * 2018-08-30 2020-03-10 엘지이노텍 주식회사 Converter
KR102641305B1 (en) * 2018-08-30 2024-02-28 엘지이노텍 주식회사 Converter

Also Published As

Publication number Publication date
JP4833398B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4833398B2 (en) Method for producing thermally conductive molded body
US7264869B2 (en) Thermally conductive molded article and method of making the same
EP1199328B1 (en) Thermally conductive polymer sheet
JP4759122B2 (en) Thermally conductive sheet and thermally conductive grease
JP4772239B2 (en) Graphitized carbon powder and thermally conductive composite composition
JP4950994B2 (en) Thermally conductive adhesive
JP4663153B2 (en) Thermally conductive composite composition
JP5015366B2 (en) Thermally conductive molded body and method for producing the same
JP2003321554A (en) Heat-conductive molding and method for producing the same
JP2008069474A (en) Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
JP2002097372A (en) Heat-conductive polymer composition and heat-conductive molding
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
JP2008208316A5 (en)
JP2008208316A (en) Carbon fiber composite material
JP2008049607A (en) Heat-conductive laminate with bonded thin film of electrical insulation
JP2002088249A (en) Thermoconductive polymer composition and thermoconductive molded body
JP2008248462A (en) Pitch based carbon fiber filler and molded article using the same
JP5015490B2 (en) Thermally conductive filler and composite molded body using the same
JP2009108424A (en) Thermally conductive filler and molded product using the same
JP2002097371A (en) Heat-conductive polymer composition and heat-conductive molding
JP2009108425A (en) Carbon fiber and composite material using the same
JP2002088256A (en) Thermally conductive polymeric composition and thermally conductive molded product
JP2009030215A (en) Carbon fiber and molded article using the same
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Ref document number: 4833398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term