JP2002083727A - Method of manufacturing sintered rare earth magnet - Google Patents

Method of manufacturing sintered rare earth magnet

Info

Publication number
JP2002083727A
JP2002083727A JP2000272665A JP2000272665A JP2002083727A JP 2002083727 A JP2002083727 A JP 2002083727A JP 2000272665 A JP2000272665 A JP 2000272665A JP 2000272665 A JP2000272665 A JP 2000272665A JP 2002083727 A JP2002083727 A JP 2002083727A
Authority
JP
Japan
Prior art keywords
alloy
weight
magnet
rare earth
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000272665A
Other languages
Japanese (ja)
Inventor
Kazuaki Sakaki
一晃 榊
Hajime Nakamura
中村  元
Koji Sato
孝治 佐藤
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000272665A priority Critical patent/JP2002083727A/en
Priority to EP05023912A priority patent/EP1626418A3/en
Priority to DE60140783T priority patent/DE60140783D1/en
Priority to EP01307596A priority patent/EP1187147B1/en
Priority to US09/948,914 priority patent/US6773517B2/en
Publication of JP2002083727A publication Critical patent/JP2002083727A/en
Priority to US10/864,427 priority patent/US7211157B2/en
Priority to US11/591,547 priority patent/US20070051431A1/en
Priority to US12/044,101 priority patent/US7691323B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a sintered Sm2Co17 magnet with which superior magnetic characteristics can be obtained. SOLUTION: An alloy, that is cast by a strip casting method and comprises 20-30 wt.% of R (R is Sm or two or more kinds of rare earth elements, containing 50% by weight or more of Sm), 10-45% by weight of Fe, 1-10 wt.% of Cu and 0.5-5 wt.% of Zr with the remaining being Co and inevitable impurities is subjected to thermal treatment at 1,000-1,300 deg.C for 0.5-20 hours in a non-acidic atmosphere to obtain a rare earth magnet alloy, having an average grain size of 20-30 μm. Then, this rare earth magnet alloy is pulverized, compressed and molded into magnetic field, sintered, subjected to solution annealing and then subjected to aging treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Sm2Co17系焼
結磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Sm 2 Co 17 based sintered magnet.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
Sm2Co17系永久磁石における焼結磁石の製造方法
は、組成調整した合金鋳塊を1〜10μmに微粉砕し、
磁場中において加圧成形した後、アルゴン雰囲気中で1
100〜1300℃、通常1200℃程度において、1
時間〜5時間の条件で焼結、溶体化する。次いで、70
0〜900℃、通常800℃程度の温度において約10
時間程度保持し、−1.0℃/分の降温速度で400℃
以下まで徐冷する時効処理を施すのが一般的である。通
常工程において、焼結、溶体化処理は、設定温度に対し
±3℃という最適温度範囲があり、厳密な制御が必要と
なる。これは、焼結、溶体化処理の際、多種の構成相が
存在することで、部分による結晶粒の成長、相変化の熱
処理温度によるばらつきが生じるためであり、そして、
高特性Sm2Co17系焼結磁石になればなるほど、焼
結、溶体化処理の温度制御は厳密となる傾向にある。そ
の最適温度範囲を維持し、良好な磁気特性を得るために
は、できるだけ偏析のない均一な合金組織が不可欠とな
る。
2. Description of the Related Art
The method for producing a sintered magnet in a Sm 2 Co 17 permanent magnet is to finely pulverize a composition-adjusted alloy ingot to 1 to 10 μm,
After pressure molding in a magnetic field, the
At 100-1300 ° C, usually around 1200 ° C, 1
Sinter and solution under conditions of time to 5 hours. Then 70
About 10 at a temperature of about 0 to 900 ° C, usually about 800 ° C.
Hold for about an hour at 400 ° C at a temperature drop rate of -1.0 ° C / min.
It is common to apply an aging treatment of gradually cooling to the following. In a normal process, sintering and solution treatment have an optimum temperature range of ± 3 ° C. with respect to a set temperature, and strict control is required. This is because, during sintering and solution treatment, the presence of various types of constituent phases causes the growth of crystal grains due to portions, and variations due to the heat treatment temperature of the phase change, and
The temperature control of the sintering and solution treatment tends to be stricter as the Sm 2 Co 17 based sintered magnet has higher characteristics. In order to maintain the optimum temperature range and obtain good magnetic properties, a uniform alloy structure with as little segregation as possible is indispensable.

【0003】均一な組織をもつSm2Co17系磁石用合
金を得るための鋳造法としては、そのマクロ組織が柱状
結晶となるように、箱形等の鋳型に合金溶湯を鋳造する
方法が採用されている。ここで、柱状結晶を得るために
は、合金溶湯の冷却速度をある程度速めなければならな
いが、箱形の鋳型を用いた鋳造法では、インゴット中央
部分において、柱状結晶が生成する冷却速度より遅くな
る傾向にあり、組織の粗大化そして等軸晶が発生するこ
ととなる。インゴットの厚みを薄くすること等の方法に
よりこの問題は解消できるが、効率的な生産性が低下す
る。このことから、ある程度の厚みのインゴットを製造
することになり、組織の粗大化そして等軸晶が生じる場
合が多い。組織の粗大化そして等軸晶の発生が、インゴ
ット中の偏析となり、焼結、溶体化の後の磁石組織にも
悪影響を及ぼし、良好な磁気特性が得られない原因とな
る。
[0003] As a casting method for obtaining an Sm 2 Co 17- based magnet alloy having a uniform structure, a method of casting a molten alloy in a box-shaped mold or the like is adopted so that the macro structure becomes a columnar crystal. Have been. Here, in order to obtain columnar crystals, the cooling rate of the molten alloy must be increased to some extent, but in the casting method using a box-shaped mold, in the center of the ingot, the cooling rate is lower than the cooling rate at which the columnar crystals are generated. This tends to cause coarsening of the structure and generation of equiaxed crystals. Although this problem can be solved by a method such as reducing the thickness of the ingot, efficient productivity is reduced. For this reason, an ingot having a certain thickness is produced, and the structure is coarsened and an equiaxed crystal is often generated. The coarsening of the structure and the generation of equiaxed crystals result in segregation in the ingot, which has an adverse effect on the magnet structure after sintering and solution treatment, and causes no good magnetic properties to be obtained.

【0004】この問題を解決する方法として、単ロール
による鋳造法(ストリップキャスティング法)が提案さ
れている(特開平8−260083号公報)。この鋳造
方法により作製されたインゴットは、微細結晶構造を有
し、偏析のない均一な合金組織が得られる。しかし、微
細な結晶構造をもつインゴットを原料として用いて焼結
磁石を製造したところ、箱型鋳型で鋳造されたインゴッ
トを原料として用いた焼結磁石に比べ、保磁力は向上す
るものの、残留磁束密度、最大エネルギー積は、むしろ
低下することが確認されている(特開平9−11138
3号公報)。微細な結晶構造を有するインゴットは、箱
型鋳型で鋳造されたインゴットに比べ、平均結晶粒径が
非常に小さい。そのため、それぞれのインゴットを焼結
磁石を製造する工程上、平均微粉末粒径5μmに微粉砕
すると、微細な結晶構造を有するインゴットは、平均結
晶粒径と平均微粉末粒径の値が近くなってしまい、微粉
砕粒子が単結晶でなくなり、多結晶の微粉砕粒子の割合
が増えることとなり、磁場中成形した際の配向度も低く
なる。結果的に、熱処理後の焼結磁石の配向度が低くな
り、残留磁束密度、最大エネルギー積の低下につながる
と考えられている。このことより、Sm2Co17系焼結
磁石において、ストリップキャスティング法により鋳造
されたインゴットは、原料インゴットとして用いられて
いない。
As a method for solving this problem, a casting method using a single roll (strip casting method) has been proposed (JP-A-8-260083). The ingot produced by this casting method has a fine crystal structure and can obtain a uniform alloy structure without segregation. However, when a sintered magnet was manufactured using an ingot having a fine crystal structure as a raw material, the coercive force was improved as compared with a sintered magnet using an ingot cast in a box mold as a raw material, but the residual magnetic flux was increased. It has been confirmed that the density and the maximum energy product are rather lowered (Japanese Patent Laid-Open No. 9-11138).
No. 3). An ingot having a fine crystal structure has a much smaller average crystal grain size than an ingot cast with a box mold. Therefore, when each ingot is finely pulverized to an average fine powder particle size of 5 μm in the process of manufacturing a sintered magnet, the ingot having a fine crystal structure has a value close to the average crystal particle size and the average fine powder particle size. As a result, the finely pulverized particles are no longer a single crystal, the proportion of the polycrystalline finely pulverized particles increases, and the degree of orientation when molded in a magnetic field also decreases. As a result, it is considered that the degree of orientation of the sintered magnet after the heat treatment decreases, leading to a decrease in the residual magnetic flux density and the maximum energy product. For this reason, in the Sm 2 Co 17 sintered magnet, the ingot cast by the strip casting method is not used as a raw material ingot.

【0005】本発明は、上記問題を解決したもので、優
れた磁気特性を有する希土類焼結磁石の製造方法を提供
することを目的とする。
An object of the present invention is to solve the above problems and to provide a method for producing a rare earth sintered magnet having excellent magnetic properties.

【0006】[0006]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため、Sm2Co17系焼
結磁石において、合金組織と磁気特性の関係を検討した
ところ、微細組織を持つSm2Co17系磁石合金、すな
わち、ストリップキャスティング法により得られたSm
2Co17系磁石合金を非酸化性雰囲気中において最適な
熱処理をし、平均結晶粒径を成長させることで、従来の
鋳造インゴットを用いて焼結磁石を製造した場合より、
優れた磁気特性が得られることが見いだされた。
Means for Solving the Problems and Embodiments of the Invention The present inventor studied the relationship between the alloy structure and the magnetic characteristics of the Sm 2 Co 17 based sintered magnet in order to achieve the above object. Sm 2 Co 17- based magnet alloy having a structure, that is, Sm 2 obtained by strip casting.
2 Co 17- based magnet alloy is subjected to optimal heat treatment in a non-oxidizing atmosphere to grow the average crystal grain size, so that compared to the case of manufacturing a sintered magnet using a conventional cast ingot,
It has been found that excellent magnetic properties can be obtained.

【0007】従って、本発明は、R(但し、RはSm又
はSmを50重量%以上含む2種以上の希土類元素)2
0〜30重量%、Fe10〜45重量%、Cu1〜10
重量%、Zr0.5〜5重量%、残部Co及び不可避的
不純物からなるストリップキャスティング法により鋳造
された合金を、非酸化性雰囲気中において1000〜1
300℃、0.5〜20時間の熱処理を施して平均結晶
粒径20〜300μmの希土類磁石合金を得た後、該希
土類磁石合金を微粉砕し、これを磁場中で圧縮成形し、
焼結、溶体化し、次いで、時効処理をすることを特徴と
する希土類永久磁石の製造方法を提供する。
Accordingly, the present invention provides a method for producing R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm) 2
0 to 30% by weight, Fe 10 to 45% by weight, Cu 1 to 10
% Of Zr, 0.5 to 5% by weight of Zr, balance of Co and unavoidable impurities, cast by an alloy cast by a strip casting method in a non-oxidizing atmosphere at 1000 to 1%.
After performing a heat treatment at 300 ° C. for 0.5 to 20 hours to obtain a rare earth magnet alloy having an average crystal grain size of 20 to 300 μm, the rare earth magnet alloy is finely pulverized and compression-molded in a magnetic field.
A method for producing a rare-earth permanent magnet, comprising sintering, solution-treating and then aging.

【0008】本発明は、従来の箱型鋳型で鋳造されたイ
ンゴットのように、中央部分において組織の粗大化そし
て等軸晶の発生により生じる組成の偏析等の問題による
磁気特性の劣化を解決するものであり、また、単ロール
による鋳造法(ストリップキャスティング法)で作製さ
れた微細な結晶構造を有するインゴットのように、微粉
砕することで微粉が多結晶となり、磁場中成形した際の
配向度も低くなり、結果的に熱処理後の焼結磁石の配向
度も低く、残留磁束密度、最大エネルギー積が低下する
ということなく、優れた磁気特性をもつSm2Co17
焼結磁石を製造することができる。
[0008] The present invention solves the deterioration of magnetic properties due to problems such as coarsening of the structure and segregation of the composition caused by the generation of equiaxed crystals in the central part, as in an ingot cast with a conventional box mold. Also, as in an ingot having a fine crystal structure produced by a single roll casting method (strip casting method), the fine powder becomes polycrystalline by pulverization, and the orientation degree when molded in a magnetic field As a result, the degree of orientation of the sintered magnet after the heat treatment is low, and the Sm 2 Co 17- based sintered magnet having excellent magnetic properties is produced without lowering the residual magnetic flux density and the maximum energy product. be able to.

【0009】以下、本発明につき更に詳しく説明する。
本発明では、微細結晶を持つSm2Co17系焼結磁石用
鋳造インゴットを、非酸化性雰囲気中において1000
〜1300℃、0.5〜20時間の熱処理を施すことに
より、合金組織内の結晶粒の大きさを20〜300μm
となるよう調整した磁石合金を用い、これを微粉砕し、
磁場中で成形し、焼結、溶体化、次いで、時効処理する
ことによりSm2Co17系焼結磁石を製造する。
Hereinafter, the present invention will be described in more detail.
According to the present invention, a cast ingot for a Sm 2 Co 17 based sintered magnet having fine crystals is produced in a non-oxidizing atmosphere at 1000
By performing a heat treatment for 0.5 to 20 hours at 11300 ° C., the size of crystal grains in the alloy structure is reduced to 20 to 300 μm.
Using a magnet alloy adjusted to become, this is finely pulverized,
The Sm 2 Co 17 sintered magnet is manufactured by molding in a magnetic field, sintering, solution treatment, and then aging treatment.

【0010】本発明におけるSm2Co17系永久磁石合
金組成の主成分は、Sm又はSmを50重量%以上含む
2種以上の希土類元素20〜30重量%、Fe10〜4
5重量%、Cu1〜10重量%、Zr0.5〜5重量
%、残部Co及び不可避的不純物からなる。前記Sm以
外の希土類金属としては、特に限定されるものではな
く、Nd、Ce、Pr、Gdなどを挙げることができ
る。希土類元素中のSmの含有量が50重量%未満の場
合や、希土類元素量が20重量%未満、30重量%を越
える場合は、有効な磁気特性をもつことはできない。
The main components of the Sm 2 Co 17 permanent magnet alloy composition in the present invention are Sm or 20 to 30% by weight of two or more rare earth elements containing 50% by weight or more of Sm, and 10 to 4% by weight of Fe.
5% by weight, 1 to 10% by weight of Cu, 0.5 to 5% by weight of Zr, the balance being Co and unavoidable impurities. The rare earth metal other than Sm is not particularly limited, and examples thereof include Nd, Ce, Pr, and Gd. When the content of Sm in the rare earth element is less than 50% by weight, or when the amount of the rare earth element is less than 20% by weight or more than 30% by weight, it is impossible to have effective magnetic properties.

【0011】本発明のSm2Co17系磁石合金は、上記
組成範囲の原料を非酸化性雰囲気中において、高周波溶
解により溶融し、更に、その合金溶湯をストリップキャ
スティング法により鋳造したインゴットを非酸化性雰囲
気中において、1000℃〜1300℃、0.5〜20
時間、熱処理を施し、平均結晶粒径20〜300μm、
好ましくは50〜300μm、更に好ましくは100〜
300μmとしたものである。
The Sm 2 Co 17 magnet alloy of the present invention is obtained by melting a raw material having the above composition range by high frequency melting in a non-oxidizing atmosphere, and further casting an ingot obtained by casting the molten alloy by a strip casting method. 1000 ° C to 1300 ° C, 0.5 to 20
Time, heat treatment, average crystal grain size 20 ~ 300μm,
Preferably 50 to 300 μm, more preferably 100 to 300 μm
The thickness was 300 μm.

【0012】本発明における合金は、上記のような組成
でストリップキャスティング法により得られるが、具体
的には、単ロール又は双ロールに合金溶湯を流しこみ、
急冷して得られるものであり、該ロールの周速度は0.
5〜10m/s、冷却速度100〜10000℃/sの
もと冷却される。このようにして得られた合金は、リボ
ン状の薄帯となって厚さ100〜1000μmとなって
いる。このようにして得られた合金を更に熱処理する。
The alloy of the present invention is obtained by the strip casting method with the above composition. Specifically, the alloy is poured into a single roll or twin rolls,
It is obtained by quenching, and the peripheral speed of the roll is 0.1.
It is cooled under a cooling rate of 5 to 10 m / s and a cooling rate of 100 to 10000 ° C./s. The alloy thus obtained has a ribbon-like ribbon with a thickness of 100 to 1000 μm. The alloy thus obtained is further heat-treated.

【0013】前記熱処理温度は、1000℃〜1300
℃であり、1000℃未満では、インゴットの結晶粒の
成長が十分に得られず、1300℃を越える温度では、
結晶粒は十分に成長するものの、インゴットが融点に達
してしまい、均一な組織が得られない。前記熱処理時間
は、0.5〜20時間であり、0.5時間未満の場合、
結晶粒の成長にばらつきがあり、更に、結晶粒の成長が
十分に得られない。また、20時間を越えて熱処理を施
すと、熱処理炉のリークによるインゴットの劣化、更
に、インゴット中のSmが蒸発する等のことで良好な磁
気特性が得られなくなってしまう。また、前記平均結晶
粒径が20μm未満の場合、先に述べたように、インゴ
ット中の平均結晶粒径と焼結磁石製造工程における微粉
粒径とが近い値になるため、微粉粒子が多結晶となり、
磁石の配向度を乱し、残留磁束密度、最大エネルギー積
の劣化を招くこととなる。300μmを越える平均結晶
粒径を得るには、長時間、あるいは、高温での熱処理が
必要となり、合金組織の劣化、あるいは、組織の均一性
が損なわれる等の原因により焼結磁石の磁気特性に悪影
響を与える。
The heat treatment temperature is from 1000 ° C. to 1300
If the temperature is lower than 1000 ° C., sufficient growth of crystal grains of the ingot cannot be obtained.
Although the crystal grains grow sufficiently, the ingot reaches the melting point and a uniform structure cannot be obtained. The heat treatment time is 0.5 to 20 hours, and when less than 0.5 hour,
There is variation in the growth of the crystal grains, and further, the growth of the crystal grains cannot be sufficiently obtained. If the heat treatment is performed for more than 20 hours, good magnetic properties cannot be obtained due to deterioration of the ingot due to the leak of the heat treatment furnace and further evaporation of Sm in the ingot. When the average crystal grain size is less than 20 μm, as described above, the average crystal grain size in the ingot and the fine powder particle size in the sintered magnet manufacturing process are close to each other. Becomes
The degree of orientation of the magnet is disturbed, and the residual magnetic flux density and the maximum energy product are deteriorated. In order to obtain an average crystal grain size exceeding 300 μm, heat treatment at a long time or at a high temperature is required, and the magnetic properties of the sintered magnet may be deteriorated due to deterioration of the alloy structure or loss of the uniformity of the structure. Has a negative effect.

【0014】次に、前記Sm2Co17系磁石合金を粗粉
砕し、平均粒径1〜10μm、好ましくは、約5μmに
微粉砕する。この粗粉砕は、例えば、不活性ガス雰囲気
中で、ジョークラッシャー、ブラウンミル、ピンミル、
水素吸蔵等により行うことができる。また、前記微粉砕
は、アルコール、ヘキサン等を溶媒に用いた湿式ボール
ミル、不活性ガス雰囲気中による乾式ボールミル、不活
性ガス気流によるジェットミル等により行うことができ
る。
Next, the Sm 2 Co 17- based magnet alloy is coarsely pulverized and finely pulverized to an average particle size of 1 to 10 μm, preferably about 5 μm. This coarse grinding is, for example, in an inert gas atmosphere, jaw crusher, brown mill, pin mill,
It can be performed by hydrogen storage or the like. The pulverization can be performed by a wet ball mill using alcohol, hexane or the like as a solvent, a dry ball mill in an inert gas atmosphere, a jet mill by an inert gas stream, or the like.

【0015】次いで、前記微粉砕粉を、好ましくは10
kOe以上の磁場を印加することが可能な磁場中プレス
機等により、好ましくは500kg/cm2以上200
0kg/cm2未満の圧力により圧縮成形する。続い
て、得られた圧縮成形体を、熱処理炉により、アルゴン
などの非酸化性雰囲気ガス中で、1100℃〜1300
℃、好ましくは1150℃〜1250℃において、0.
5〜5時間、焼結、溶体化し、終了後、急冷を行う。続
いて、700℃〜900℃、好ましくは750℃〜85
0℃の温度で、5〜40時間保持し、−1.0℃/分の
降温速度で400℃以下まで徐冷する時効処理を施す。
Next, the above-mentioned finely pulverized powder is preferably
A pressing machine in a magnetic field capable of applying a magnetic field of kOe or more is preferably 500 kg / cm 2 to 200 kg / cm 2.
Compression molding is performed under a pressure of less than 0 kg / cm 2 . Subsequently, the obtained compression molded body is heated in a non-oxidizing atmosphere gas such as argon in a heat treatment furnace at a temperature of 1100 ° C. to 1300 ° C.
At 0 ° C, preferably 1150 ° C to 1250 ° C.
After sintering and solution treatment for 5 to 5 hours, quenching is performed after completion. Subsequently, 700 ° C to 900 ° C, preferably 750 ° C to 85 ° C
Aging treatment is performed at a temperature of 0 ° C. for 5 to 40 hours, and gradually cooled to 400 ° C. or less at a temperature lowering rate of −1.0 ° C./min.

【0016】[0016]

【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。
EXAMPLES Next, the present invention will be described specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0017】[実施例1〜2]Sm2Co17系磁石イン
ゴットは、Sm:25.5重量%、Fe:14.0重量
%、Cu:4.5重量%、Zr:2.8重量%、残部C
oの組成になるように配合し、アルゴンガス雰囲気中
で、アルミナルツボを使用して高周波溶解炉で溶解し、
ストリップキャスティング法(水冷単ロールを使用し、
1m/sのロール周速度、冷却速度―2000℃/s)
で鋳造することにより作製した。次に、前記Sm2Co
17系磁石インゴットを、熱処理炉を用い、アルゴン雰囲
気中で、1200℃、2時間の熱処理を行い、終了後、
急冷した。ここで得られたSm2Co17系磁石合金を、
偏光顕微鏡及び走査型電子顕微鏡により組織観察し、更
に、平均結晶粒径の測定を行った。ここで平均結晶粒径
とは体積を球に換算したときの粒径を示したものである
(以後、平均粒径はこの方法により得たものとする)。
[Examples 1 and 2] The Sm 2 Co 17 based magnet ingot was composed of 25.5% by weight of Sm, 14.0% by weight of Fe, 4.5% by weight of Cu, and 2.8% by weight of Zr. , The rest C
o, and melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere,
Strip casting method (using a water-cooled single roll,
Roll peripheral speed of 1m / s, cooling speed-2000 ° C / s)
It was produced by casting. Next, the Sm 2 Co
The 17 system magnet ingot was heat-treated at 1200 ° C. for 2 hours in an argon atmosphere using a heat treatment furnace.
Quenched. The Sm 2 Co 17- based magnet alloy obtained here is
The structure was observed with a polarizing microscope and a scanning electron microscope, and the average crystal grain size was measured. Here, the average crystal grain size indicates the particle size when the volume is converted into a sphere (hereinafter, the average grain size is obtained by this method).

【0018】次に、前記Sm2Co17系磁石合金を、ジ
ョークラッシャー、ブラウンミルで約500μm以下に
粗粉砕後、窒素気流によるジェットミルにより平均粒径
約5μmに微粉砕を行った。得られた微粉砕粉を、磁場
中プレス機により15kOeの磁場中にて1.5t/c
2の圧力で成形した。得られた成形体を熱処理炉を用
い、アルゴン雰囲気中で、1220℃、2時間焼結した
後、アルゴン雰囲気中、1200℃、1時間溶体化処理
を行った。溶体化処理終了後、急冷し、得られたそれぞ
れの焼結体を、アルゴン雰囲気中、800℃、10時間
保持し、400℃まで−1.0℃/分の降温速度で徐冷
を行い、焼結磁石を作製した。得られたそれぞれの焼結
磁石につき、B―Hトレーサーにより磁気特性の測定を
行なった。
Next, the Sm 2 Co 17- based magnet alloy was roughly pulverized to about 500 μm or less by a jaw crusher or a brown mill, and then finely pulverized to a mean particle size of about 5 μm by a jet mill using a nitrogen stream. The obtained finely pulverized powder is 1.5 t / c in a magnetic field of 15 kOe by a press machine in a magnetic field.
Molded at a pressure of m 2 . The obtained compact was sintered in an argon atmosphere at 1220 ° C. for 2 hours using a heat treatment furnace, and then subjected to a solution treatment in an argon atmosphere at 1200 ° C. for 1 hour. After the solution treatment, the mixture was rapidly cooled, and each of the obtained sintered bodies was kept in an argon atmosphere at 800 ° C. for 10 hours, and gradually cooled to 400 ° C. at a temperature lowering rate of −1.0 ° C./min. A sintered magnet was produced. The magnetic properties of each of the obtained sintered magnets were measured by a BH tracer.

【0019】[比較例1]実施例1と同じ組成の合金を
実施例1と同様な鋳造方法で作製した。但し、鋳造後の
熱処理は行わなかった。ここで得られたSm2Co17
磁石合金を、実施例1と同様に組織観察し、平均粒径の
測定を行った。
Comparative Example 1 An alloy having the same composition as in Example 1 was produced by the same casting method as in Example 1. However, heat treatment after casting was not performed. The structure of the obtained Sm 2 Co 17- based magnet alloy was observed in the same manner as in Example 1, and the average particle size was measured.

【0020】得られた前記Sm2Co17系磁石合金を、
実施例1と同様な製造方法で、粗粉砕、微粉砕、磁場中
成形、焼結、溶体化、次いで、時効処理を行い、焼結磁
石を作製した。得られた焼結磁石につき、実施例1と同
様に磁気特性の測定を行なった。
The obtained Sm 2 Co 17- based magnet alloy is
In the same production method as in Example 1, coarse pulverization, fine pulverization, molding in a magnetic field, sintering, solution treatment, and then aging treatment were performed to produce a sintered magnet. The magnetic properties of the obtained sintered magnet were measured in the same manner as in Example 1.

【0021】[比較例2]実施例1と同じ組成となるよ
うに、アルゴンガス雰囲気中で、アルミナルツボを使用
して高周波溶解炉で溶解し、得られるSm2Co17系磁
石合金の厚さが15mmとなるように銅製箱型鋳型に鋳
造した。ここで得られたSm2Co17系磁石合金を実施
例1と同じように組織観察し、更に、平均結晶粒径の測
定を行った。
Comparative Example 2 Thickness of Sm 2 Co 17- based magnet alloy obtained by melting in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere so as to have the same composition as in Example 1. Was cast to a copper box-type mold so that the diameter was 15 mm. The structure of the obtained Sm 2 Co 17- based magnet alloy was observed in the same manner as in Example 1, and the average crystal grain size was measured.

【0022】得られた前記Sm2Co17系磁石合金を、
実施例1と同様な製造方法で、粗粉砕、微粉砕、磁場中
成形、焼結、溶体化、次いで、時効処理を行い、焼結磁
石を作製した。得られた焼結磁石につき、実施例1と同
様に磁気特性の測定を行なった。
The obtained Sm 2 Co 17- based magnet alloy is
In the same production method as in Example 1, coarse pulverization, fine pulverization, molding in a magnetic field, sintering, solution treatment, and then aging treatment were performed to produce a sintered magnet. The magnetic properties of the obtained sintered magnet were measured in the same manner as in Example 1.

【0023】表1に実施例1,2及び比較例1,2にお
けるSm2Co17系磁石合金の熱処理条件、前記磁石合
金の平均結晶粒径、及び、前記磁石合金より得られた焼
結磁石の磁気特性を示す。このことより、実施例は、比
較例に比べ、残留磁束密度、最大エネルギー積において
優れていることは明らかである。
Table 1 shows the heat treatment conditions of the Sm 2 Co 17- based magnet alloys in Examples 1 and 2 and Comparative Examples 1 and 2 , the average crystal grain size of the magnet alloy, and the sintered magnet obtained from the magnet alloy. Shows the magnetic properties of From this, it is clear that the example is superior in the residual magnetic flux density and the maximum energy product as compared with the comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明のSm2Co17系焼結磁石の製造
方法により、優れた磁気特性を得ることが可能となる。
According to the method for producing a sintered Sm 2 Co 17 magnet of the present invention, excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 1 is a polarization image photograph of a magnet material of Example 1 taken by a polarization microscope.

【図2】実施例1における磁石材料の走査型電子顕微鏡
による反射電子像写真である。
FIG. 2 is a backscattered electron image photograph of a magnet material by a scanning electron microscope in Example 1.

【図3】実施例2における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 3 is a polarization image photograph of a magnet material in Example 2 taken by a polarization microscope.

【図4】実施例2における磁石材料の走査型電子顕微鏡
による反射電子像写真である。
FIG. 4 is a backscattered electron image photograph of a magnet material by a scanning electron microscope in Example 2.

【図5】比較例1における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 5 is a polarization image photograph of a magnet material in Comparative Example 1 taken by a polarization microscope.

【図6】比較例1における磁石材料の走査型電子顕微鏡
による反射電子像写真である。
FIG. 6 is a backscattered electron image photograph of a magnet material in Comparative Example 1 taken by a scanning electron microscope.

【図7】比較例2における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 7 is a polarization image photograph of a magnet material in Comparative Example 2 taken by a polarization microscope.

【図8】比較例2における磁石材料の走査型電子顕微鏡
による反射電子像写真である。
FIG. 8 is a backscattered electron image photograph of a magnet material in Comparative Example 2 taken by a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 1/08 B 1/08 1/04 B (72)発明者 佐藤 孝治 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 (72)発明者 美濃輪 武久 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 Fターム(参考) 4K017 AA04 BA03 BB06 BB12 CA07 DA04 EA01 EA02 EA03 FA03 4K018 AA11 BA05 CA04 DA11 FA08 KA45 5E040 AA08 AA19 BD01 CA01 HB11 NN01 NN06 NN17 NN18 5E062 CD04 CF01 CG03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/053 H01F 1/08 B 1/08 1/04 B (72) Inventor Koji Sato Takefu-shi, Fukui 2-1-5 Kitafu Chemical Industry Co., Ltd. Magnetic Materials Research Laboratories (72) Inventor Takehisa Minowa 2-1-5 Kitafu, Takefu-shi, Fukui Prefecture Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratories F term (reference) 4K017 AA04 BA03 BB06 BB12 CA07 DA04 EA01 EA02 EA03 FA03 4K018 AA11 BA05 CA04 DA11 FA08 KA45 5E040 AA08 AA19 BD01 CA01 HB11 NN01 NN06 NN17 NN18 5E062 CD04 CF01 CG03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R(但し、RはSm又はSmを50重量
%以上含む2種以上の希土類元素)20〜30重量%、
Fe10〜45重量%、Cu1〜10重量%、Zr0.
5〜5重量%、残部Co及び不可避的不純物からなるス
トリップキャスティング法により鋳造された合金を、非
酸化性雰囲気中において1000℃〜1300℃、0.
5〜20時間の熱処理を施して平均結晶粒径20〜30
0μmの希土類磁石合金を得た後、該希土類磁石合金を
微粉砕し、これを磁場中で圧縮成形し、焼結、溶体化
し、次いで、時効処理をすることを特徴とする希土類永
久磁石の製造方法。
1. 20 to 30% by weight of R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm)
Fe10 to 45% by weight, Cu1 to 10% by weight, Zr0.
An alloy cast by a strip casting method comprising 5 to 5% by weight, the balance being Co and unavoidable impurities, was subjected to heat treatment at 1000 ° C. to 1300 ° C. in a non-oxidizing atmosphere.
Heat treatment for 5-20 hours to give an average crystal grain size of 20-30
After obtaining a rare-earth magnet alloy of 0 μm, the rare-earth magnet alloy is finely pulverized, compression-molded in a magnetic field, sintered, solution-processed, and then subjected to aging treatment, thereby producing a rare-earth permanent magnet. Method.
JP2000272665A 2000-09-08 2000-09-08 Method of manufacturing sintered rare earth magnet Pending JP2002083727A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000272665A JP2002083727A (en) 2000-09-08 2000-09-08 Method of manufacturing sintered rare earth magnet
EP05023912A EP1626418A3 (en) 2000-09-08 2001-09-07 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
DE60140783T DE60140783D1 (en) 2000-09-08 2001-09-07 Rare earth alloy, rare earth sintered magnet and manufacturing process
EP01307596A EP1187147B1 (en) 2000-09-08 2001-09-07 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US09/948,914 US6773517B2 (en) 2000-09-08 2001-09-10 Rare-earth alloy, rate-earth sintered magnet, and methods of manufacturing
US10/864,427 US7211157B2 (en) 2000-09-08 2004-06-10 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US11/591,547 US20070051431A1 (en) 2000-09-08 2006-11-02 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US12/044,101 US7691323B2 (en) 2000-09-08 2008-03-07 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272665A JP2002083727A (en) 2000-09-08 2000-09-08 Method of manufacturing sintered rare earth magnet

Publications (1)

Publication Number Publication Date
JP2002083727A true JP2002083727A (en) 2002-03-22

Family

ID=18758739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272665A Pending JP2002083727A (en) 2000-09-08 2000-09-08 Method of manufacturing sintered rare earth magnet

Country Status (1)

Country Link
JP (1) JP2002083727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528070B1 (en) * 2013-12-24 2015-06-10 주식회사 포스코 Rare-earth permanent sintered magnet and method for manufacturing the same
US10497496B2 (en) 2014-03-11 2019-12-03 Tokin Corporation Rare earth-cobalt permanent magnet
US11380465B2 (en) 2015-10-08 2022-07-05 Kyushu Institute Of Technology Rare earth cobalt-based permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528070B1 (en) * 2013-12-24 2015-06-10 주식회사 포스코 Rare-earth permanent sintered magnet and method for manufacturing the same
US10497496B2 (en) 2014-03-11 2019-12-03 Tokin Corporation Rare earth-cobalt permanent magnet
US11380465B2 (en) 2015-10-08 2022-07-05 Kyushu Institute Of Technology Rare earth cobalt-based permanent magnet

Similar Documents

Publication Publication Date Title
US7691323B2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
CN111655891B (en) Permanent magnet
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP2002083707A (en) Method for manufacturing rare earth sintered magnet
JP2003188006A (en) Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP2002083727A (en) Method of manufacturing sintered rare earth magnet
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP7192069B1 (en) permanent magnets and devices
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP2691034B2 (en) Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPS6347301A (en) Production of permanent magnet powder
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JPH05320832A (en) Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet
JP2013207008A (en) Method of producing r-t-b-based permanent magnet
JPS61143553A (en) Production of material for permanent magnet
CN115458266A (en) Samarium cobalt magnet, preparation method thereof and application of nickel
JPS61217540A (en) Manufacture of permanent magnet alloy
JPH03247703A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051026