JP2002083628A - Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery - Google Patents

Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery

Info

Publication number
JP2002083628A
JP2002083628A JP2000272077A JP2000272077A JP2002083628A JP 2002083628 A JP2002083628 A JP 2002083628A JP 2000272077 A JP2000272077 A JP 2000272077A JP 2000272077 A JP2000272077 A JP 2000272077A JP 2002083628 A JP2002083628 A JP 2002083628A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
phosphazene derivative
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000272077A
Other languages
Japanese (ja)
Other versions
JP5095883B2 (en
Inventor
Masami Ootsuki
正珠 大月
Shigeki Endo
茂樹 遠藤
Takao Ogino
隆夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000272077A priority Critical patent/JP5095883B2/en
Publication of JP2002083628A publication Critical patent/JP2002083628A/en
Application granted granted Critical
Publication of JP5095883B2 publication Critical patent/JP5095883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To provide an additive for a nonaqueous electrolytic solution secondary battery, where the nonaqueous electrolytic solution secondary battery is possible to fabricate which is superior in a self-extinction property or flame-resistance, superior in an deterioration resistance property, low in interface resistance to a nonaqueous electrolytic solution, superior in low-temperature discharge characteristics, and superior also in high-temperature characteristics, while maintaining necessary battery characteristics or the like as a battery, and to provide the nonaqueous electrolytic solution secondary battery, containing the additive for nopnaqueous electrolytic solution secondary battery. SOLUTION: This contains a phosphagen derivative expressed in a formula (1) or a formula (2) (PNR42)n. R1 to R3 represent a monovalent substituent or halogen, and at least either of them contains fluorine. R4 represents a monovalent substituent or halogen element, and at least one of all the R4 contains an allyloxyl group, and n is 3 to 4. Furthermore, this is the nonaqueous electrolytic solution secondary battery characterizing to have a positive electrode, a negative electrode and the nonaqueous electrolytic solution containing the additive and a supporting salt for the nonaqueous electrolytic solution secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来の非水電解液
二次電池と同様の電池容量等の電池特性を維持しつつ、
自己消火性ないし難燃性に優れ、耐劣化性に優れ、か
つ、高温特性に優れた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a conventional non-aqueous electrolyte secondary battery while maintaining battery characteristics such as battery capacity.
The present invention relates to a non-aqueous electrolyte secondary battery having excellent self-extinguishing properties or flame retardancy, excellent resistance to deterioration, and excellent high-temperature characteristics.

【0002】[0002]

【従来の技術】従来、特に、パソコン・VTR等のAV
・情報機器のメモリーバックアップやそれらの駆動電源
用の二次電池としては、ニカド電池が主流であった。近
年、高電圧・高エネルギー密度という利点を有し、か
つ、優れた自己放電性を示すことから、ニカド電池に代
替するものとして非水電解液二次電池が非常に注目さ
れ、種々の開発が試みられて、その一部は商品化されて
いる。例えば、ノート型パソコンや携帯電話等は、その
半数以上が非水電解液二次電池によって駆動している。
2. Description of the Related Art Conventionally, in particular, AVs of personal computers, VTRs, etc.
・ Ni-Cd batteries have been the mainstream for memory backup of information devices and secondary batteries for their driving power supply. In recent years, non-aqueous electrolyte secondary batteries have attracted much attention as an alternative to nickel-cadmium batteries because they have the advantages of high voltage and high energy density and exhibit excellent self-discharge properties. Attempts have been made, some of which have been commercialized. For example, more than half of notebook computers and mobile phones are driven by non-aqueous electrolyte secondary batteries.

【0003】これらの非水電解液二次電池においては、
負極を形成する材料として、カーボンが多用されている
が、その表面にリチウムが生成した場合の危険性の低減
及び高駆動電圧化を目的として、各種有機溶媒が電解液
として使用されている。又、カメラ用の非水電解液二次
電池としては、負極材料としてアルカリ金属(特に、リ
チウム金属やリチウム合金)等が用いられているため、
その電解液としては、通常エステル系有機溶媒等の非プ
ロトン性有機溶媒が使用されている。
In these non-aqueous electrolyte secondary batteries,
Carbon is often used as a material for forming the negative electrode, but various organic solvents are used as an electrolyte for the purpose of reducing the risk of lithium being generated on the surface and increasing the driving voltage. Also, since non-aqueous electrolyte secondary batteries for cameras use an alkali metal (particularly, lithium metal or lithium alloy) as a negative electrode material,
As the electrolyte, an aprotic organic solvent such as an ester organic solvent is usually used.

【0004】しかし、これらの非水電解液二次電池は、
高性能ではあるものの、安全性において以下のように問
題があった。先ず、非水電解液二次電池の負極材料とし
て用いられるアルカリ金属(特にリチウム金属やリチウ
ム合金等)を用いた場合には、該アルカリ金属は、水分
に対して非常に高活性であるため、例えば電池の封口が
不完全で水分が侵入した際等には、負極材料と水とが反
応して水素が発生したり、発火する等の危険性が高いと
いう問題があった。
However, these non-aqueous electrolyte secondary batteries are:
Although having high performance, there were the following problems in safety. First, when an alkali metal (particularly, lithium metal or lithium alloy) used as a negative electrode material of a non-aqueous electrolyte secondary battery is used, the alkali metal has a very high activity against moisture, For example, when moisture enters due to incomplete sealing of the battery or the like, there is a problem in that there is a high risk that the anode material and water react with each other to generate hydrogen or ignite.

【0005】また、リチウム金属は低融点(約170
℃)であるため、短絡時等に大電流が急激に流れると、
電池が異常に発熱して電池が溶融する等の非常に危険な
状況を引き起こすという問題があった。更に、電池の発
熱につれ前述の有機溶媒をベースとする電解液が気化・
分解してガスを発生したり、発生したガスによって電池
の破裂・発火が起こるという問題があった。
Also, lithium metal has a low melting point (about 170
° C), so if a large current suddenly flows, such as during a short circuit,
There is a problem in that a very dangerous situation such as abnormal heat generation of the battery and melting of the battery is caused. Furthermore, as the battery generates heat, the electrolyte based on the above-mentioned organic solvent is vaporized.
There has been a problem that the gas is decomposed to generate gas, and the generated gas causes the battery to burst or ignite.

【0006】前記問題を解決するため、例えば、筒形電
池において、電池の短絡時・過充電時に温度が上がって
電池内部の圧力が上昇した際に、安全弁が作動すると同
時に電極端子を破断させることにより、該筒型電池に、
所定量以上の過大電流が流れることを抑止する機構を電
池に設けた技術が提案されている(日刊工業新聞社、
「電子技術」1997年39巻9号)。
In order to solve the above problem, for example, in a cylindrical battery, when the battery temperature rises when the battery is short-circuited or overcharged and the internal pressure of the battery rises, the safety valve is activated and the electrode terminals are simultaneously broken. Thereby, in the cylindrical battery,
A technique has been proposed in which a battery is provided with a mechanism for suppressing the flow of an excessive current of a predetermined amount or more (Nikkan Kogyo Shimbun,
"Electronic Technology", Vol. 39, No. 9, 1997).

【0007】しかし、前記機構が常に正常に作動すると
信頼できるわけではなく、正常に作動しない場合には、
過大電流による発熱が大きくなり、発火等の危険な状態
となることが懸念されるため問題が残る。
However, it is not reliable that the mechanism always operates normally. If the mechanism does not operate normally,
There is a concern that heat generation due to an excessive current may increase and a dangerous state such as ignition may be caused.

【0008】前記問題を解決するためには、前述のよう
に安全弁等の付帯的部品を設けることによる安全対策で
はなく、根本的に高い安全性を有する非水電解液二次電
池の開発が要求されている。
In order to solve the above-mentioned problem, it is necessary to develop a non-aqueous electrolyte secondary battery having a fundamentally high safety, not a safety measure by providing ancillary parts such as a safety valve as described above. Have been.

【0009】また、特に気温の高い地方や時期において
は、高温条件下でも長時間に亘って優れた電池特性を維
持する必要があり、高温特性に優れた非水電解液二次電
池が要求されている。
[0009] In particular, in a high temperature region or time, it is necessary to maintain excellent battery characteristics for a long time even under high temperature conditions, and a non-aqueous electrolyte secondary battery excellent in high temperature characteristics is required. ing.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前記従来に
おける諸問題を解決し、諸要求に応え、以下の目的を達
成することを課題とする。即ち、本発明は、非水電解液
二次電池に添加することにより、電池として必要な電池
特性等を維持しつつ、自己消火性ないし難燃性に優れ、
耐劣化性に優れ、非水電解液の界面抵抗が低く、低温特
性に優れ、かつ、高温特性に優れた非水電解液二次電池
を作製可能な非水電解液二次電池用添加剤、及び、該非
水電解液二次電池用添加剤を含有し、自己消火性ないし
難燃性に優れ、耐劣化性に優れ、非水電解液の界面抵抗
が低く、低温特性に優れ、かつ、高温特性に優れた非水
電解液二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, meet various demands, and achieve the following objects. That is, the present invention, by adding to a non-aqueous electrolyte secondary battery, while maintaining the battery characteristics and the like required as a battery, excellent in self-extinguishing or flame retardant,
Excellent non-aqueous electrolyte secondary battery additive with excellent resistance to deterioration, low interfacial resistance of non-aqueous electrolyte, excellent low-temperature characteristics, and high-temperature characteristics. And containing the additive for a non-aqueous electrolyte secondary battery, excellent in self-extinguishing properties or flame retardancy, excellent in deterioration resistance, low in non-aqueous electrolyte interfacial resistance, excellent in low-temperature characteristics, and high in temperature. An object is to provide a non-aqueous electrolyte secondary battery having excellent characteristics.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
の手段としては、以下の通りである。即ち、 <1> 下記一般式(1)又は(2)で表されるホスフ
ァゼン誘導体を少なくとも含有することを特徴とする非
水電解液二次電池用添加剤である。 一般式(1)
Means for solving the above problems are as follows. That is, <1> an additive for a non-aqueous electrolyte secondary battery, comprising at least a phosphazene derivative represented by the following general formula (1) or (2). General formula (1)

【0012】[0012]

【化2】 Embedded image

【0013】但し、一般式(1)において、R1、R2
及び、R3は、一価の置換基又はハロゲン元素を表し、
少なくともいずれかはフッ素を含む。Xは、炭素、ケイ
素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモ
ン、ビスマス、酸素、イオウ、セレン、テルル、及び、
ポロニウムからなる群より選ばれる元素の少なくとも1
種を含む置換基を表す。Y1、Y2、及び、Y3は、2価
の連結基、2価の元素、又は、単結合を表す。 一般式(2) (PNR4 2n 但し、一般式(2)において、R4は、一価の置換基又
はハロゲン元素を表す。該一般式(2)における全R4
のうち少なくとも1つはアリロキシル基を含む。nは3
〜4である。
However, in the general formula (1), R 1 , R 2 ,
And R 3 represents a monovalent substituent or a halogen element,
At least one contains fluorine. X is carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium, and
At least one element selected from the group consisting of polonium
Represents a substituent containing a species. Y 1 , Y 2 , and Y 3 represent a divalent linking group, a divalent element, or a single bond. Formula (2) (PNR 4 2) n where in the general formula (2), R 4 represents a monovalent substituent or a halogen element. All R 4 in the general formula (2)
At least one of them comprises an allyloxyl group. n is 3
~ 4.

【0014】<2> 正極と、負極と、前記<1>に記
載の非水電解液二次電池用添加剤及び支持塩を含有する
非水電解液と、を有することを特徴とする非水電解液二
次電池である。 <3> 非水電解液におけるホスファゼン誘導体の含有
量が、1〜70体積%である前記<2>に記載の非水電
解液二次電池である。 <4> 非水電解液におけるホスファゼン誘導体の含有
量が、2体積%以上である前記<2>に記載の非水電解
液二次電池である。
<2> A non-aqueous electrolyte comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing the additive for non-aqueous electrolyte secondary battery described in <1> and a supporting salt. It is an electrolyte secondary battery. <3> The nonaqueous electrolyte secondary battery according to <2>, wherein the content of the phosphazene derivative in the nonaqueous electrolyte is 1 to 70% by volume. <4> The nonaqueous electrolyte secondary battery according to <2>, wherein the content of the phosphazene derivative in the nonaqueous electrolyte is 2% by volume or more.

【0015】<5> 非水電解液におけるホスファゼン
誘導体の含有量が、20体積%以上である前記<2>又
は<4>に記載の非水電解液二次電池である。 <6> 非水電解液におけるホスファゼン誘導体の含有
量が、30体積%以上である前記<2>、<4>、及
び、<5>のいずれかに記載の非水電解液二次電池であ
る。 <7> 非水電解液が、非プロトン性有機溶媒を含む前
記<2>から<6>のいずれかに記載の非水電解液二次
電池である。
<5> The nonaqueous electrolyte secondary battery according to <2> or <4>, wherein the content of the phosphazene derivative in the nonaqueous electrolyte is 20% by volume or more. <6> The nonaqueous electrolyte secondary battery according to any one of <2>, <4>, and <5>, wherein the content of the phosphazene derivative in the nonaqueous electrolyte is 30% by volume or more. . <7> The non-aqueous electrolyte secondary battery according to any one of <2> to <6>, wherein the non-aqueous electrolyte contains an aprotic organic solvent.

【0016】<8> 非プロトン性有機溶媒が、環状又
は鎖状のエステル化合物を含有する前記<7>に記載の
非水電解液二次電池である。 <9> 非水電解液が、支持塩としてLiPF6を含
み、非プロトン性有機溶媒としてエチレンカーボネート
及び/又はプロピレンカーボネートを含み、ホスファゼ
ン誘導体を1.5〜2.5体積%含む前記<2>又は<
3>に記載の非水電解液二次電池である。 <10> 非水電解液が、支持塩としてLiPF6を含
み、非プロトン性有機溶媒としてエチレンカーボネート
及び/又はプロピレンカーボネートを含み、ホスファゼ
ン誘導体を2.5体積%を超える量含む前記<2>又は
<4>に記載の非水電解液二次電池である。
<8> The non-aqueous electrolyte secondary battery according to <7>, wherein the aprotic organic solvent contains a cyclic or chain ester compound. <9> The above-mentioned <2>, wherein the non-aqueous electrolyte contains LiPF 6 as a supporting salt, contains ethylene carbonate and / or propylene carbonate as an aprotic organic solvent, and contains 1.5 to 2.5% by volume of a phosphazene derivative. Or <
3> The non-aqueous electrolyte secondary battery described in <3>. <10> The non-aqueous electrolyte contains LiPF 6 as a supporting salt, contains ethylene carbonate and / or propylene carbonate as an aprotic organic solvent, and contains the phosphazene derivative in an amount exceeding 2.5% by volume. The nonaqueous electrolyte secondary battery according to <4>.

【0017】<11> 非水電解液が、支持塩としてL
iCF3SO3を含み、非プロトン性有機溶媒としてプロ
ピレンカーボネートを含み、ホスファゼン誘導体を1.
5〜2.5体積%含む前記<2>又は<3>に記載の非
水電解液二次電池である。 <12> 非水電解液が、支持塩としてLiCF3SO3
を含み、非プロトン性有機溶媒としてプロピレンカーボ
ネートを含み、ホスファゼン誘導体を2.5体積%を超
える量含む前記<2>又は<4>に記載の非水電解液二
次電池である。
<11> The non-aqueous electrolytic solution contains L as a supporting salt.
It contains iCF 3 SO 3 , propylene carbonate as an aprotic organic solvent, and phosphazene derivative.
The nonaqueous electrolyte secondary battery according to <2> or <3>, which contains 5 to 2.5% by volume. <12> The non-aqueous electrolyte is LiCF 3 SO 3 as a supporting salt.
The non-aqueous electrolyte secondary battery according to the above <2> or <4>, comprising propylene carbonate as an aprotic organic solvent and containing a phosphazene derivative in an amount exceeding 2.5% by volume.

【0018】[0018]

【発明の実施の形態】以下、本発明を詳細に説明する。 [非水電解液二次電池用添加剤]前記本発明の非水電解
液二次電池用添加剤は、ホスファゼン誘導体を含有し、
必要に応じてその他の成分を含有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. [Non-aqueous electrolyte secondary battery additive] The non-aqueous electrolyte secondary battery additive of the present invention contains a phosphazene derivative,
Contains other components as needed.

【0019】−ホスファゼン誘導体− 前記ホスファゼン誘導体が、本発明の非水電解液二次電
池用添加剤に含有される理由としては、以下の通りであ
る。従来、非水電解液二次電池に用いられている非プロ
トン性有機溶媒をべースとした非水電解液においては、
短絡時等に大電流が急激に流れ、電池が異常に発熱した
際に、気化・分解してガスが発生したり、発生したガス
及び熱により電池の破裂・発火が起こることがあるため
危険性が高い。一方、これら従来の非水電解液に、ホス
ファゼン誘導体を含有する本発明の非水電解液二次電池
用添加剤を添加することにより、ホスファゼン誘導体か
ら誘導される窒素ガス及びハロゲンガス等の作用によっ
て、前記非水電解液に優れた自己消火性ないし難燃性が
付与され、前述のような危険性を低減することが可能と
なる。また、リンには、電池を構成する高分子材料の連
鎖分解を抑制する作用があるため、効果的に自己消火性
ないし難燃性を付与することができる。
-Phosphazene derivative- The reason why the phosphazene derivative is contained in the additive for a non-aqueous electrolyte secondary battery of the present invention is as follows. Conventionally, in non-aqueous electrolytes based on aprotic organic solvents used in non-aqueous electrolyte secondary batteries,
When a large current suddenly flows during a short circuit, etc., and the battery heats up abnormally, it may vaporize and decompose to generate gas, or the generated gas and heat may cause the battery to burst or ignite, which is dangerous. Is high. On the other hand, by adding the additive for a non-aqueous electrolyte secondary battery of the present invention containing a phosphazene derivative to these conventional non-aqueous electrolytes, the action of nitrogen gas, halogen gas, and the like derived from the phosphazene derivative. In addition, excellent self-extinguishing property or flame retardancy is imparted to the non-aqueous electrolyte, and the above-described danger can be reduced. Further, phosphorus has an effect of suppressing chain decomposition of a polymer material constituting a battery, and thus can effectively impart self-extinguishing properties or flame retardancy.

【0020】更に、従来の非水電解液二次電池におい
て、電解液として用いられているエステル系等の電解液
においては、例えば、支持塩であるLiPF6塩等のリ
チウムイオン源等が、経時と共にLiF及びPF5に分
解し発生するPF5ガスや、該発生したPF5ガスが更に
水等と反応して発生する弗化水素ガス等により、腐蝕が
進行して劣化すると考えられる。つまり、非水電解液の
導電性が低下する上に、発生する弗化水素ガスで極材が
劣化する現象が起こる。一方、ホスファゼン誘導体は、
例えば、前記LiPF6等のリチウムイオン源の分解を
抑制し安定化に寄与する。したがって、従来の非水電解
液にホスファゼン誘導体を添加することにより、前記非
水電解液の分解反応が抑制され、腐蝕、劣化を抑制する
ことが可能となる。
Further, in a conventional non-aqueous electrolyte secondary battery, in the case of an ester-based electrolytic solution used as an electrolytic solution, for example, a lithium ion source such as a LiPF 6 salt as a supporting salt is used over time. At the same time, it is considered that PF 5 gas generated by decomposition into LiF and PF 5 and hydrogen fluoride gas generated by the generated PF 5 gas reacting with water or the like further deteriorate corrosion due to progress. In other words, the conductivity of the non-aqueous electrolyte is reduced, and the electrode material is deteriorated by the generated hydrogen fluoride gas. On the other hand, phosphazene derivatives
For example, it suppresses decomposition of the lithium ion source such as LiPF 6 and contributes to stabilization. Therefore, by adding the phosphazene derivative to the conventional non-aqueous electrolyte, the decomposition reaction of the non-aqueous electrolyte is suppressed, and corrosion and deterioration can be suppressed.

【0021】更にまた、非水電解液に優れた高温特性を
付与することが可能となり、高温で使用した際の非水電
解液の分解が防止される。このため、高温で長期間使用
しても、非水電解液の液量が減少せず放電特性の劣化が
なく、また分解に伴うガスの発生等もないことから非水
電解液二次電池の破裂等の危険性もない。
Furthermore, it is possible to impart excellent high-temperature characteristics to the non-aqueous electrolyte, and to prevent decomposition of the non-aqueous electrolyte when used at a high temperature. Therefore, even when used for a long time at a high temperature, the amount of the non-aqueous electrolyte does not decrease and the discharge characteristics do not deteriorate. There is no danger of rupture.

【0022】前記ホスファゼン誘導体は、下記一般式
(1)又は(2)で表される。 一般式(1)
The phosphazene derivative is represented by the following general formula (1) or (2). General formula (1)

【0023】[0023]

【化3】 但し、一般式(1)において、R1、R2、及び、R
3は、一価の置換基又はハロゲン元素を表し、少なくと
もいずれかはフッ素を含む。Xは、炭素、ケイ素、ゲル
マニウム、スズ、窒素、リン、ヒ素、アンチモン、ビス
マス、酸素、イオウ、セレン、テルル、及び、ポロニウ
ムからなる群より選ばれる元素の少なくとも1種を含む
置換基を表す。Y1、Y2、及び、Y3は、2価の連結
基、2価の元素、又は、単結合を表す。
Embedded image However, in the general formula (1), R 1 , R 2 , and R
3 represents a monovalent substituent or a halogen element, at least one of which contains fluorine. X represents a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium, and polonium. Y 1 , Y 2 , and Y 3 represent a divalent linking group, a divalent element, or a single bond.

【0024】一般式(2) (PNR4 2n 但し、一般式(2)において、R4は、一価の置換基又
はハロゲン元素を表す。該一般式(2)における全R4
のうち少なくとも1つはアリロキシル基を含む。nは3
〜4である。
Formula (2) (PNR 4 2 ) n In the formula (2), R 4 represents a monovalent substituent or a halogen element. All R 4 in the general formula (2)
At least one of them comprises an allyloxyl group. n is 3
~ 4.

【0025】前記一般式(1)において、R1、R2、及
び、R3としては、高温特性の観点から、一価の置換基
又はハロゲン元素であって、少なくともいずれかがフッ
素を含む必要がある。R1、R2、及び、R3で表される
一価の置換基としては、アルコキシ基、アルキル基、カ
ルボキシル基、アシル基、アリール基、アリロキシル基
等が挙げられ、高温特性及び低粘度化の点で、アルコキ
シ基、アリロキシル基が好ましい。これらの置換基は、
フッ素のほか、塩素等のハロゲン元素を含んでいてもよ
い。
In the general formula (1), R 1 , R 2 and R 3 are each a monovalent substituent or a halogen element from the viewpoint of high-temperature characteristics, and at least one of them must contain fluorine. There is. Examples of the monovalent substituent represented by R 1 , R 2 , and R 3 include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, an aryl group, an allyloxyl group, and the like. In this respect, an alkoxy group and an allyloxyl group are preferred. These substituents are
It may contain a halogen element such as chlorine in addition to fluorine.

【0026】前記アルコキシ基としては、例えばメトキ
シ基、エトキシ基、プロポキシ基、ブトキシ基、フェノ
キシ基等や、メトキシエトキシ基、メトキシエトキシエ
トキシ基等のアルコキシ置換アルコキシ基等が挙げられ
る。これらの中でも、R1〜R3としては、総てがメトキ
シ基、エトキシ基、メトキシエトキシ基、メトキシエト
キシエトキシ基等が好適である。又、低粘度・高誘電率
の観点からは、総てがメトキシ基又はエトキシ基が特に
好適であり、高温特性の観点からは、メトキシ基が特に
好適である。
Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a phenoxy group and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group. Among them, R 1 to R 3 are preferably all methoxy, ethoxy, methoxyethoxy, methoxyethoxyethoxy and the like. From the viewpoint of low viscosity and high dielectric constant, all are particularly preferably methoxy groups or ethoxy groups, and from the viewpoint of high-temperature properties, methoxy groups are particularly preferred.

【0027】前記アリロキシル基としては、フェノキシ
基、ナフチロキシ基、アントラセノキシ基等の芳香族置
換基が挙げられ、これらの中でも、高温特性の点で、フ
ェノキシ基等が好適である。
Examples of the allyloxyl group include aromatic substituents such as a phenoxy group, a naphthyloxy group, and an anthracenoxy group. Of these, a phenoxy group and the like are preferable in view of high-temperature characteristics.

【0028】前記アルキル基としては、メチル基、エチ
ル基、プロピル基、ブチル基、ペンチル基等が挙げられ
る。前記アシル基としては、ホルミル基、アセチル基、
プロピオニル基、ブチリル基、イソブチリル基、バレリ
ル基等が挙げられる。前記アリール基としては、フェニ
ル基、トリル基、ナフチル基等が挙げられる。前記一価
の置換基としては、高温特性の点で、特にトリフルオロ
メトキシ基、フェノキシ基等が好ましい。R1とR2
は、R1とR3とは、及び、R2とR3とは、互いに結合し
て環を形成していてもよい。
Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group. As the acyl group, a formyl group, an acetyl group,
Examples include a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. As the monovalent substituent, a trifluoromethoxy group, a phenoxy group, and the like are particularly preferable from the viewpoint of high-temperature characteristics. R 1 and R 2 , R 1 and R 3 , and R 2 and R 3 may combine with each other to form a ring.

【0029】R1、R2、及び、R3で表されるハロゲン
元素としては、例えば、フッ素、塩素等が好適に挙げら
れ、特に高温特性の点でフッ素が好ましい。
As the halogen element represented by R 1 , R 2 and R 3 , for example, fluorine, chlorine and the like are preferably mentioned, and fluorine is particularly preferable in view of high temperature characteristics.

【0030】一般式(1)において、Y1、Y2、及び、
3で表される基としては、例えば、CH2基のほか、酸
素、硫黄、セレン、窒素、ホウ素、アルミニウム、スカ
ンジウム、ガリウム、イットリウム、インジウム、ラン
タン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマ
ニウム、ジルコニウム、鉛、リン、バナジウム、ヒ素、
ニオブ、アンチモン、タンタル、ビスマス、クロム、モ
リブデン、テルル、ポロニウム、タングステン、鉄、コ
バルト、ニッケル等の元素を含む基が挙げられ、これら
の中でも、CH2基、及び、酸素、硫黄、セレン、窒素
の元素を含む基等が好ましく、硫黄、セレンの元素を含
むのが特に好ましい。Y1〜Y3は、総て同一種類でもよ
く、いくつかが互いに異なる種類でもよい。
In the general formula (1), Y 1 , Y 2 and
The group represented by Y 3, for example, addition of CH 2 group, oxygen, sulfur, selenium, nitrogen, boron, aluminum, scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, Germanium, zirconium, lead, phosphorus, vanadium, arsenic,
Groups including elements such as niobium, antimony, tantalum, bismuth, chromium, molybdenum, tellurium, polonium, tungsten, iron, cobalt, nickel and the like are included. Among these, a CH 2 group, and oxygen, sulfur, selenium, nitrogen And the like, and particularly preferably contain a sulfur or selenium element. Y 1 to Y 3 may be all the same type or some may be different types.

【0031】一般式(1)において、Xとしては、有害
性、環境等への配慮の観点からは、炭素、ケイ素、窒
素、リン、酸素、及び、イオウからなる群から選ばれる
元素の少なくとも1種を含む置換基が好ましく、以下の
一般式(3)で表される構造を有する置換基がより好ま
しい。
In the general formula (1), X represents at least one of elements selected from the group consisting of carbon, silicon, nitrogen, phosphorus, oxygen and sulfur from the viewpoint of harmfulness, environment and the like. A substituent containing a species is preferred, and a substituent having a structure represented by the following general formula (3) is more preferred.

【0032】一般式(3)Formula (3)

【化4】 Embedded image

【0033】但し、一般式(3)において、R5〜R
9は、一価の置換基又はハロゲン元素を表す。Y5〜Y9
は、2価の連結基、2価の元素、又は単結合を表し、Z
は2価の基又は2価の元素を表す。
However, in the general formula (3), R 5 to R 5
9 represents a monovalent substituent or a halogen element. Y 5 ~Y 9
Represents a divalent linking group, a divalent element, or a single bond;
Represents a divalent group or a divalent element.

【0034】一般式(3)において、R5〜R9として
は、一般式(1)におけるR1〜R3で述べたのと同様の
一価の置換基又はハロゲン元素がいずれも好適に挙げら
れ、少なくともいずれかがフッ素を含むのが好ましい。
又、これらは、同一置換基内において、それぞれ同一の
種類でもよく、いくつかが互いに異なる種類でもよい。
5とR6とは、及び、R8とR9とは、互いに結合して環
を形成していてもよい。一般式(3)において、Y5
9で表される基としては、一般式(1)におけるY1
3で述べたのと同様の2価の連結基又は2価の基等が
挙げられ、同様に、硫黄、セレンの元素を含む基である
場合には、非水電解液の発火・引火の危険性が低減する
ため特に好ましい。これらは、同一置換基内において、
それぞれ同一の種類でもよく、いくつかが互いに異なる
種類でもよい。
In the general formula (3), R 5 to R 9 are preferably the same monovalent substituents or halogen elements as described for R 1 to R 3 in the general formula (1). Preferably, at least one of them contains fluorine.
Further, they may be of the same type within the same substituent, or may be of different types.
R 5 and R 6 , and R 8 and R 9 may combine with each other to form a ring. In the general formula (3), Y 5 to
Examples of the group represented by Y 9 include Y 1 to Y 1 in general formula (1).
Y 3 in the like such similar divalent linking group or a divalent group as that described is likewise sulfur and is a group containing an element of selenium, the fire or ignition of the non-aqueous electrolyte It is particularly preferable because the risk is reduced. These are, within the same substituent,
Each may be of the same type, or some may be of different types.

【0035】一般式(3)において、Zとしては、例え
ば、CH2基、CHR(Rは、アルキル基、アルコキシ
ル基、フェニル基等を表す。以下同様。)基、NR基の
ほか、酸素、硫黄、セレン、ホウ素、アルミニウム、ス
カンジウム、ガリウム、イットリウム、インジウム、ラ
ンタン、タリウム、炭素、ケイ素、チタン、スズ、ゲル
マニウム、ジルコニウム、鉛、リン、バナジウム、ヒ
素、ニオブ、アンチモン、タンタル、ビスマス、クロ
ム、モリブデン、テルル、ポロニウム、タングステン、
鉄、コバルト、ニッケル等の元素を含む基等が挙げら
れ、これらの中でも、CH2基、CHR基、NR基のほ
か、酸素、硫黄、セレンの元素を含むのが好ましい。特
に、硫黄、セレンの元素を含む場合には、非水電解液の
発火・引火の危険性が低減するため好ましい。
In the general formula (3), Z represents, for example, a CH 2 group, a CHR (R represents an alkyl group, an alkoxyl group, a phenyl group, etc .; the same applies hereinafter), an NR group, oxygen, Sulfur, selenium, boron, aluminum, scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, niobium, antimony, tantalum, bismuth, chromium, Molybdenum, tellurium, polonium, tungsten,
Examples thereof include groups containing elements such as iron, cobalt, and nickel. Among these, it is preferable to include oxygen, sulfur, and selenium in addition to CH 2 , CHR, and NR groups. In particular, it is preferable to include elements of sulfur and selenium because the risk of ignition and ignition of the nonaqueous electrolyte is reduced.

【0036】一般式(3)において、置換基としては、
特に効果的に発火・引火の危険性を低減し得る点で、置
換基(A)で表されるようなリンを含む置換基が特に好
ましい。また、置換基が、置換基(B)で表されるよう
なイオウを含む置換基である場合には、非水電解液の小
界面抵抗化の点で特に好ましい。
In the general formula (3), the substituent is
In particular, a phosphorus-containing substituent represented by the substituent (A) is particularly preferable in that the risk of ignition and ignition can be reduced effectively. In addition, when the substituent is a substituent containing sulfur as represented by the substituent (B), it is particularly preferable in terms of reducing the interface resistance of the non-aqueous electrolyte.

【0037】前記一般式(2)において、R4として
は、高温特性の観点から、一価の置換基又はハロゲン元
素であって、該一般式(2)における全R4のうちの少
なくとも1つはアリロキシル基である必要がある。
In the general formula (2), R 4 is a monovalent substituent or a halogen element from the viewpoint of high-temperature characteristics, and at least one of all R 4 in the general formula (2) Must be an allyloxyl group.

【0038】R4で表される一価の置換基としては、ア
リロキシル基、アルコキシ基、アルキル基、カルボキシ
ル基、アシル基、アリール基等が挙げられ、高温特性及
び低粘度化の点で、アリロキシル基等が特に好ましい。
4で表される一価の置換基は、更に他の置換基(フッ
素を除く)で置換されていてもよく、又、互いに結合し
て環を形成していてもよい。前記アリロキシル基、アル
コキシ基、アルキル基、カルボキシル基、アシル基、ア
リール基としては、前記一般式(1)におけるR1〜R3
で述べたのと同様のものがいずれも好適に挙げられる。
4で表されるハロゲン元素としては、例えば、フッ
素、塩素等が好適に挙げられ、特に高温特性の点でフッ
素が好ましい。前記一般式(2)において、nとして
は、特に3が好ましい。nが、4を超えると、非水電解
液の粘度が上昇し、良好な高温特性が得られないことが
多い。
Examples of the monovalent substituent represented by R 4 include an allyloxyl group, an alkoxy group, an alkyl group, a carboxyl group, an acyl group, and an aryl group. From the viewpoint of high-temperature characteristics and low viscosity, allyloxyl is preferred. Groups and the like are particularly preferred.
The monovalent substituent represented by R 4 may be further substituted with another substituent (excluding fluorine), or may be bonded to each other to form a ring. The aryloxy group, alkoxy group, alkyl group, carboxyl group, acyl group, and aryl group include R 1 to R 3 in the general formula (1).
Any of those similar to those described in (1) are preferably mentioned.
As the halogen element represented by R 4 , for example, fluorine, chlorine and the like are suitably mentioned, and fluorine is particularly preferable in terms of high-temperature characteristics. In the general formula (2), n is particularly preferably 3. When n exceeds 4, the viscosity of the non-aqueous electrolyte increases, and good high-temperature characteristics cannot often be obtained.

【0039】前記一般式(1)又は(2)における各置
換基を適宜選択することにより、より好適な粘度、混合
に適する溶解性等を有する非水電解液の合成が可能とな
る。これらのホスファゼン誘導体は、1種単独で使用し
てもよく、2種以上を併用してもよい。
By appropriately selecting the substituents in the general formula (1) or (2), it becomes possible to synthesize a non-aqueous electrolyte having more suitable viscosity, solubility suitable for mixing, and the like. These phosphazene derivatives may be used alone or in combination of two or more.

【0040】前記ホスファゼン誘導体としては、前記一
般式(1)においては、その分子構造中に、前記フッ素
以外にも、塩素、臭素等のハロゲン元素を含む置換基を
有するのが好ましく、前記一般式(2)においては、そ
の分子構造中に、フッ素を除くハロゲン元素(塩素、臭
素等)を含む置換基を有するのが好ましい。これらの場
合には、前記ホスファゼン誘導体から誘導されるハロゲ
ンガスによって、ホスファゼン誘導体の含有量が少量で
も、より効果的に自己消火性ないし難燃性を発現させる
ことが可能となる。尚、置換基にハロゲン元素を含む化
合物においては、ハロゲンラジカルの発生が問題となる
ことがあるが、これらのホスファゼン誘導体は、分子構
造中のリン元素がハロゲンラジカルを捕促し、安定なハ
ロゲン化リンを形成するため、このような問題は発生し
ない。
In the general formula (1), the phosphazene derivative preferably has a substituent containing a halogen element such as chlorine and bromine in addition to the fluorine in the molecular structure. In (2), the molecular structure preferably has a substituent containing a halogen element other than fluorine (such as chlorine or bromine). In these cases, the halogen gas derived from the phosphazene derivative enables more effective self-extinguishing or flame retardancy to be exhibited even when the content of the phosphazene derivative is small. Incidentally, in a compound containing a halogen element in the substituent, generation of a halogen radical may be a problem. However, in these phosphazene derivatives, the phosphorus element in the molecular structure promotes the halogen radical and a stable phosphorus halide is formed. Therefore, such a problem does not occur.

【0041】前記ハロゲン元素のこれらのホスファゼン
誘導体における含有量としては、2〜80重量%が好ま
しく、2〜60重量%がより好ましく、2〜50重量%
が更に好ましい。前記含有量が、2重量%未満では、前
記ハロゲン元素を含有させる効果が十分に現れないこと
がある一方、80重量%を超えると、粘度が高くなるた
め、非水電解液に添加した際にその導電率が低下するこ
とがある。
The content of the halogen element in these phosphazene derivatives is preferably 2 to 80% by weight, more preferably 2 to 60% by weight, and more preferably 2 to 50% by weight.
Is more preferred. When the content is less than 2% by weight, the effect of containing the halogen element may not be sufficiently exhibited. On the other hand, when the content is more than 80% by weight, the viscosity increases. The conductivity may decrease.

【0042】前記ホスファゼン誘導体の引火点として
は、特に制限はないが、発火の抑制等の点から、100
℃以上が好ましく、150℃以上がより好ましい。
The flash point of the phosphazene derivative is not particularly limited.
C. or higher, and more preferably 150 C. or higher.

【0043】前記本発明の非水電解液二次電池用添加剤
の添加量としては、後述の本発明の非水電解液二次電池
におけるホスファゼン誘導体の含有量の好ましい数値範
囲に相当する量が好適である。前記添加量を前記数値範
囲内の値に調整することにより、非水電解液の自己消火
性ないし難燃性、耐劣化性、高温特性等の本発明の効果
を好適に付与できる。
The additive amount of the additive for a non-aqueous electrolyte secondary battery of the present invention is an amount corresponding to a preferable numerical range of the content of a phosphazene derivative in the non-aqueous electrolyte secondary battery of the present invention described later. It is suitable. By adjusting the amount of addition to a value within the above numerical range, the effects of the present invention, such as self-extinguishing property or flame retardancy, deterioration resistance, and high temperature properties, of the nonaqueous electrolyte can be suitably imparted.

【0044】以上説明した本発明の非水電解液二次電池
用添加剤によれば、非水電解液二次電池に添加すること
により、電池として必要な電池特性等を維持しつつ、自
己消火性ないし難燃性に優れ、耐劣化性に優れ、非水電
解液の界面抵抗が低く、低温特性に優れ、かつ、高温特
性に優れた非水電解液二次電池を作製可能な非水電解液
二次電池用添加剤を提供することができる。
According to the additive for a non-aqueous electrolyte secondary battery of the present invention described above, by adding the additive to the non-aqueous electrolyte secondary battery, self-extinguishing can be performed while maintaining the battery characteristics required for the battery. Non-aqueous electrolyte that is excellent in heat resistance or flame retardancy, has excellent resistance to deterioration, has low interfacial resistance of non-aqueous electrolyte, has excellent low-temperature characteristics, and has excellent high-temperature characteristics. An additive for a liquid secondary battery can be provided.

【0045】[非水電解液二次電池]前記本発明の非水
電解液二次電池は、正極と、負極と、非水電解液と、を
有し、必要に応じてその他の部材を有する。
[Non-Aqueous Electrolyte Secondary Battery] The non-aqueous electrolyte secondary battery of the present invention has a positive electrode, a negative electrode, and a non-aqueous electrolyte, and may have other members as necessary. .

【0046】−正極− 前記正極の材料としては、特に制限はなく、公知の正極
材料から適宜選択して使用できる。例えば、V25、V
613、MnO2、MoO3、LiCoO2、LiNi
2、LiMn24等の金属酸化物、TiS2、MoS2
等の金属硫化物、ポリアニリン等の導電性ポリマー等が
好適に挙げられ、これらの中でも、高容量で安全性が高
く電解液の濡れ性に優れる点で、LiCoO2、LiN
iO2、LiMn24が特に好適である。これらの材料
は、1種単独で使用してもよく、2種以上を併用しても
よい。
-Positive electrode- The material of the positive electrode is not particularly limited, and may be appropriately selected from known positive electrode materials and used. For example, V 2 O 5 , V
6 O 13 , MnO 2 , MoO 3 , LiCoO 2 , LiNi
O 2 , metal oxides such as LiMn 2 O 4 , TiS 2 , MoS 2
Suitable examples thereof include metal sulfides such as polyaniline, and conductive polymers such as polyaniline. Among them, LiCoO 2 , LiN 2
iO 2 and LiMn 2 O 4 are particularly preferred. These materials may be used alone or in combination of two or more.

【0047】前記正極の形状としては、特に制限はな
く、電極として公知の形状の中から適宜選択することが
できる。例えば、シート状、円柱形状、板状形状、スパ
イラル形状等が挙げられる。
The shape of the positive electrode is not particularly limited, and may be appropriately selected from known shapes as electrodes. For example, a sheet shape, a column shape, a plate shape, a spiral shape, and the like can be given.

【0048】−負極− 前記負極は、例えば、リチウム又はリチウムイオン等を
吸蔵・放出可能である。従ってその材料としては、例え
ば、リチウム又はリチウムイオン等を吸蔵・放出可能で
あれば特に制限はなく、公知の負極材料から適宜選択し
て使用できる。例えばリチウムを含む材料、具体的に
は、リチウム金属自体、リチウムと、アルミニウム、イ
ンジウム、鉛、又は、亜鉛等との合金、リチウムをドー
プした黒鉛等の炭素材料等が好適に挙げられ、これらの
中でも安全性がより高い点で黒鉛等の炭素材料が好まし
い。これらの材料は、1種単独で使用してもよく、2種
以上を併用してもよい。前記負極の形状としては、特に
制限はなく、前記正極の形状と同様の公知の形状から適
宜選択することができる。
-Negative Electrode- The negative electrode can, for example, occlude and release lithium or lithium ions. Therefore, the material is not particularly limited as long as it can occlude and release lithium or lithium ions, for example, and can be appropriately selected from known negative electrode materials. For example, a material containing lithium, specifically, lithium metal itself, an alloy of lithium, aluminum, indium, lead, or zinc, a carbon material such as graphite doped with lithium, and the like are preferable. Among them, a carbon material such as graphite is preferable in terms of higher safety. These materials may be used alone or in combination of two or more. The shape of the negative electrode is not particularly limited, and may be appropriately selected from known shapes similar to the shape of the positive electrode.

【0049】−非水電解液− 前記非水電解液は、前記本発明の非水電解液二次電池用
添加剤及び支持塩を含有し、必要に応じてその他の成分
を含有する。
-Non-Aqueous Electrolyte- The non-aqueous electrolyte contains the additive for a non-aqueous electrolyte secondary battery of the present invention and a supporting salt, and further contains other components as necessary.

【0050】−−支持塩−− 前記支持塩としては、例えば、リチウムイオンのイオン
源となる支持塩等が好ましい。前記リチウムイオンのイ
オン源としては、特に制限はないが、例えば、LiCl
4、LiBF4、LiPF6、LiCF3SO3、及び、
LiAsF6、LiC4F9SO3、Li(CF3SO22
N、Li(C25SO22N等のリチウム塩が好適に挙
げられる。これらは、1種単独で使用してもよく、2種
以上を併用してもよい。
--Supporting salt-- As the supporting salt, for example, a supporting salt serving as an ion source of lithium ions is preferable. The ion source of the lithium ions is not particularly limited.
O 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , and
LiAsF 6, LiC4F 9 SO 3, Li (CF 3 SO 2) 2
Lithium salts such as N and Li (C 2 F 5 SO 2 ) 2 N are preferred. These may be used alone or in combination of two or more.

【0051】前記支持塩の前記非水電解液に対する配合
量としては、前記非水電解液(溶媒成分)1kgに対
し、0.2〜1モルが好ましく、0.5〜1モルがより
好ましい。前記配合量が、0.2モル未満の場合には、
非水電解液の充分な導電性を確保することができず、電
池の充放電特性に支障をきたすことがある一方、1モル
を超える場合には、非水電解液の粘度が上昇し、前記リ
チウムイオン等の充分な移動度が確保できないため、前
述と同様に非水電解液の充分な導電性を確保できず、電
池の充放電特性に支障をきたすことがある。
The amount of the supporting salt to be mixed with the nonaqueous electrolyte is preferably 0.2 to 1 mol, more preferably 0.5 to 1 mol, per 1 kg of the nonaqueous electrolyte (solvent component). When the amount is less than 0.2 mol,
Insufficient conductivity of the non-aqueous electrolyte cannot be ensured, which may impair the charge / discharge characteristics of the battery.On the other hand, if it exceeds 1 mol, the viscosity of the non-aqueous electrolyte increases, Since sufficient mobility of lithium ions or the like cannot be secured, sufficient conductivity of the non-aqueous electrolyte cannot be secured as described above, and the charge / discharge characteristics of the battery may be affected.

【0052】<高温特性、自己消化性ないし難燃性、耐
劣化性>前記非水電解液における前記ホスファゼン誘導
体の含有量としては、該ホスファゼン誘導体を含有する
ことにより得られる効果によって、非水電解液に好適に
「高温特性」を付与し得る第1の含有量、非水電解液に
好適に「自己消火性」を付与し得る第2の含有量、非水
電解液に好適に「難燃性」を付与し得る第3の含有量、
及び、非水電解液に好適に「耐劣化性」を付与し得る第
4の含有量の4通りの含有量が挙げられる。
<High temperature properties, self-extinguishing property or flame retardancy, deterioration resistance> The content of the phosphazene derivative in the nonaqueous electrolytic solution is determined by the effect obtained by containing the phosphazene derivative. A first content that can suitably impart “high-temperature properties” to the liquid, a second content that can suitably impart “self-extinguishing properties” to the non-aqueous electrolyte, and a “flame retardant” that is suitable for the non-aqueous electrolyte Third content that can impart "
In addition, there are four contents of a fourth content that can suitably impart “deterioration resistance” to the nonaqueous electrolyte.

【0053】前記「高温特性」の観点からは、前記ホス
ファゼン誘導体の前記非水電解液における第1の含有量
としては、1〜70体積%が好ましく、1〜50体積%
がより好ましく、3〜30体積%が更に好ましい。前記
含有量が、前記数値範囲外では、得られる非水電解液二
次電池の高温特性が良好でないことがある。尚、前記
「高温特性」は、下記の容量残存率、高温放電特性、及
び、安全性のそれぞれを評価しこれらを総合的に評価し
た。
From the viewpoint of the “high temperature characteristics”, the first content of the phosphazene derivative in the nonaqueous electrolyte is preferably 1 to 70% by volume, and 1 to 50% by volume.
Is more preferable, and 3 to 30% by volume is further preferable. When the content is out of the numerical range, the obtained nonaqueous electrolyte secondary battery may not have good high-temperature characteristics. The “high temperature characteristics” were evaluated by evaluating the following residual capacity ratio, high temperature discharge characteristics, and safety, and comprehensively evaluating them.

【0054】<<容量残存率の測定・評価>>本発明の
非水電解液二次電池を70℃条件下で10日間放置した
後、非水電解液の容量を測定し、放置前の容量と比較し
て容量残存率を算出し評価した。 <<高温放電特性の測定・評価>>本発明の非水電解液
二次電池を70℃条件下で10日間放置後、50サイク
ルまで充放電を繰り返した際の放電容量を、放置前にお
いて測定した放電容量と比較し、下記式(1)より放電
容量残存率を算出し高温放電特性の評価とした。 式(1):放電容量残存率= 10日間放置後の放電容量/放置前の放電容量×100(%) <<安全性の評価>>本発明の非水電解液二次電池を7
0℃条件下で10日間放置し電池の破裂・発火等の有無
を目視にて観察し、又室温で充放電試験を行うことによ
って安全性の評価とした。
<< Measurement / Evaluation of Remaining Capacity Ratio >> After the non-aqueous electrolyte secondary battery of the present invention was allowed to stand at 70 ° C. for 10 days, the capacity of the non-aqueous electrolyte was measured, and the capacity before leaving was measured. The remaining capacity ratio was calculated and evaluated in comparison with. << Measurement / Evaluation of High-Temperature Discharge Characteristics >> The non-aqueous electrolyte secondary battery of the present invention was left standing at 70 ° C. for 10 days, and the discharge capacity when charging and discharging were repeated up to 50 cycles was measured before leaving. The discharge capacity remaining ratio was calculated from the following formula (1) in comparison with the discharge capacity thus obtained, and the high-temperature discharge characteristics were evaluated. Formula (1): Discharge capacity remaining rate = discharge capacity after leaving for 10 days / discharge capacity before leaving × 100 (%) << Evaluation of safety >>
The battery was left standing at 0 ° C. for 10 days, visually inspected for the presence or absence of rupture or ignition of the battery, and evaluated for safety by conducting a charge / discharge test at room temperature.

【0055】前記「自己消火性」の観点からは、前記ホ
スファゼン誘導体の非水電解液における第2の含有量と
しては、20体積%以上が好ましく、自己消火性と高温
特性とを高度に両立する観点からは、20〜70体積%
がより好ましく、20〜50体積%が更に好ましく、2
0〜30体積%が特に好ましい。前記含有量が、20体
積%未満では、非水電解液に十分な「自己消火性」を発
現させ得ないことがある。尚、本発明において、「自己
消火性」とは、下記「自己消火性の評価方法」におい
て、着火した炎が25〜100mmラインで消火し、か
つ、落下物にも着火が認められない状態となる性質をい
う。
From the viewpoint of the "self-extinguishing property", the second content of the phosphazene derivative in the non-aqueous electrolyte is preferably 20% by volume or more, and both the self-extinguishing property and high-temperature characteristics are highly compatible. From a viewpoint, 20-70 volume%
Is more preferable, and 20 to 50% by volume is more preferable.
0-30% by volume is particularly preferred. If the content is less than 20% by volume, the non-aqueous electrolyte may not be able to exhibit sufficient “self-extinguishing properties”. In the present invention, "self-extinguishing property" refers to a state in which the ignited flame is extinguished on a 25 to 100 mm line in the following "method for evaluating self-extinguishing property", and no ignition is recognized even on a falling object. It refers to the nature that becomes.

【0056】前記「難燃性」の観点からは、前記ホスフ
ァゼン誘導体の非水電解液における第3の含有量として
は、30体積%以上が好ましく、難燃性と高温特性とを
高度に両立する観点からは、30〜70体積%がより好
ましく、30〜50体積%が更に好ましい。前記含有量
が30体積%以上であれば、非水電解液に十分な「難燃
性」を発現させることが可能となる。尚、本発明におい
て、「難燃性」とは、下記「難燃性の評価方法」におい
て、着火した炎が25mmラインまで到達せず、かつ、
落下物にも着火が認められない状態となる性質をいう。
From the viewpoint of the “flame retardancy”, the third content of the phosphazene derivative in the non-aqueous electrolyte is preferably 30% by volume or more, and both the flame retardancy and the high temperature characteristics are highly compatible. From the viewpoint, 30 to 70% by volume is more preferable, and 30 to 50% by volume is more preferable. When the content is 30% by volume or more, the non-aqueous electrolyte can exhibit sufficient “flame retardancy”. In the present invention, "flame retardancy" means that in the following "flame retardancy evaluation method", the ignited flame does not reach the 25 mm line, and
It is a property in which ignition is not recognized even for falling objects.

【0057】<<自己消火性・難燃性の評価方法>>前
記自己消火性・難燃性の評価は、UL(アンダーライテ
ィングラボラトリー)規格のUL94HB法をアレンジ
した方法を用い、大気環境下において着火した炎の燃焼
挙動を測定・評価した。その際、着火性、燃焼性、炭化
物の生成、二次着火時の現象についても観察した。具体
的には、UL試験基準に基づき、不燃性石英ファイバー
に1.0mlの各種電解液を染み込ませ、127mm×
12.7mmの試験片を作製して行った。
<< Evaluation Method of Self-extinguishing / Flame Retardancy >> The self-extinguishing property / flame retardancy was evaluated by using UL94HB method of UL (Underwriting Laboratory) standard under the air environment. The combustion behavior of the ignited flame was measured and evaluated. At that time, ignitability, flammability, formation of carbides, and phenomena during secondary ignition were also observed. Specifically, based on the UL test standard, a non-combustible quartz fiber was impregnated with 1.0 ml of various electrolytic solutions, and 127 mm ×
A test piece of 12.7 mm was produced.

【0058】前記「自己消火性ないし難燃性」の観点か
ら、前記非水電解液としては、前記ホスファゼン誘導
体、LiPF6、エチレンカーボネート及び/又はプロ
ピレンカーボネートを含む場合、及び、前記ホスファゼ
ン誘導体、LiCF3SO3、プロピレンカーボネートを
含む場合、が特に好ましい。これらの場合には、前述の
記載にかかわらず、前記含有量が少量であっても、優れ
た自己消火性ないし難燃性の効果を有する。即ち、ホス
ファゼン誘導体の非水電解液における含有量としては、
自己消火性を発現させるためには、1.5〜2.5体積
%が好ましく、難燃性を発現させるためには、2.5体
積%を超える量が好ましい。また、難燃性と高温特性と
を高度に両立する観点からは、2.5体積%を超え70
体積%以下がより好ましく、2.5体積%を超え50体
積%以下が更に好ましく、2.5体積%を超え30体積
%以下が特に好ましい。
From the viewpoint of the “self-extinguishing property or flame retardancy”, the nonaqueous electrolyte contains the phosphazene derivative, LiPF 6 , ethylene carbonate and / or propylene carbonate, and the phosphazene derivative, LiCF It is particularly preferable to include 3 SO 3 and propylene carbonate. In these cases, irrespective of the above description, even if the content is small, it has an excellent self-extinguishing property or flame retardant effect. That is, as the content of the phosphazene derivative in the non-aqueous electrolyte,
In order to exhibit self-extinguishing properties, the amount is preferably 1.5 to 2.5% by volume, and in order to exhibit flame retardancy, an amount exceeding 2.5% by volume is preferred. In addition, from the viewpoint of achieving a high level of both flame retardancy and high-temperature characteristics, it is more than 2.5 vol.
% By volume or less, more preferably more than 2.5% by volume and not more than 50% by volume, and particularly preferably more than 2.5% by volume and not more than 30% by volume.

【0059】前記「耐劣化性」の観点からは、前記ホス
ファゼン誘導体の前記非水電解液における第4の含有量
としては、2体積%以上が好ましく、2.5体積%を超
えるのがより好ましく、3体積%以上75体積%未満が
更に好ましく、耐劣化性と高温特性とを高度に両立する
観点からは、第4の含有量の数値範囲のいずれかの下限
値を下限値とし、第1の含有量の数値範囲のいずれかの
上限値を上限値とする数値範囲が好ましい。前記含有量
が、前記数値範囲内であれば、好適に劣化を抑制するこ
とができる。尚、本発明において、「劣化」とは、前記
支持塩(例えば、リチウム塩)の分解をいい、該劣化防
止の効果を下記「安定性の評価方法」により評価した。
From the viewpoint of the “deterioration resistance”, the fourth content of the phosphazene derivative in the nonaqueous electrolyte is preferably 2% by volume or more, and more preferably more than 2.5% by volume. The content is more preferably 3% by volume or more and less than 75% by volume. From the viewpoint of achieving a high balance between deterioration resistance and high-temperature characteristics, the lower limit of any one of the numerical ranges of the fourth content is defined as the lower limit. Is preferably a numerical range in which one of the upper limits of the numerical range of the content is the upper limit. When the content is within the numerical range, the deterioration can be suitably suppressed. In the present invention, “deterioration” refers to the decomposition of the supporting salt (for example, lithium salt), and the effect of preventing the deterioration was evaluated by the following “stability evaluation method”.

【0060】<<安定性の評価方法>> (1)先ず、支持塩を含む非水電解液を調製後、水分率
を測定する。次に、高速液体クロマトグラフィー(イオ
ンクロマトグラフィー)により、非水電解液中の弗化水
素の濃度を測定する。更に、目視により非水電解液の色
調を観察した後、充放電試験により充放電容量を算出す
る。 (2)上記非水電解液を2ヶ月間グローブボックス内で
放置した後、再び、水分率、弗化水素の濃度を測定し、
色調を観察し、充放電容量を算出し、得られた数値の変
化により安定性を評価する。
<< Method of Evaluating Stability >> (1) First, a nonaqueous electrolytic solution containing a supporting salt is prepared, and then the water content is measured. Next, the concentration of hydrogen fluoride in the non-aqueous electrolyte is measured by high performance liquid chromatography (ion chromatography). Further, after visually observing the color tone of the nonaqueous electrolyte, the charge / discharge capacity is calculated by a charge / discharge test. (2) After leaving the non-aqueous electrolyte in the glove box for two months, the moisture content and the concentration of hydrogen fluoride were measured again,
The color tone is observed, the charge / discharge capacity is calculated, and the stability is evaluated based on the change in the obtained numerical value.

【0061】−−その他の成分−− 前記その他の成分としては、非プロトン性有機溶媒が特
に好ましい。前記非プロトン性有機溶媒は、安全性の点
から、前記非水電解液に含有させるのが好適である。即
ち、非水電解液に、非プロトン性有機溶媒が含有されて
いれば、前記負極の材料と反応することなく高い安全性
を得ることができる。また、前記非水電解液の低粘度化
が可能であり、容易に非水電解液二次電池としての最適
なイオン導電性を達成することができる。
--Other components-- As the other components, an aprotic organic solvent is particularly preferable. The aprotic organic solvent is preferably contained in the non-aqueous electrolyte from the viewpoint of safety. That is, if the nonaqueous electrolyte contains an aprotic organic solvent, high safety can be obtained without reacting with the material of the negative electrode. Further, the viscosity of the non-aqueous electrolyte can be reduced, and optimal ionic conductivity as a non-aqueous electrolyte secondary battery can be easily achieved.

【0062】前記非プロトン性有機溶媒としては、特に
制限はないが、前記非水電解液の低粘度化の点で、エー
テル化合物やエステル化合物等が挙げられる。具体的に
は、1,2−ジメトキシエタン、テトラヒドロフラン、
ジメチルカーボネート、ジエチルカーボネート、ジフェ
ニルカーボネート、エチレンカーボネート、プロピレン
カーボネート、γ−ブチロラクトン、γ−バレロラクト
ン、メチルエチルカーボネート、等が好適に挙げられ
る。これらの中でも、エチレンカーボネート、プロピレ
ンカーボネート、γ−ブチロラクトン等の環状エステル
化合物、1、2−ジメトキシエタン、ジメチルカーボネ
ート、エチルメチルカーボネート、ジエチルカーボネー
ト等の鎖状エステル化合物等が好適である。特に、環状
のエステル化合物は、比誘電率が高くリチウム塩等の溶
解性に優れる点で、鎖状のエステル化合物は、低粘度で
あるため、非水電解液の低粘度化の点で好適である。こ
れらは1種単独で使用してもよく、2種以上を併用して
もよいが、2種以上を併用するのが好適である。
The aprotic organic solvent is not particularly limited, but may be an ether compound, an ester compound or the like from the viewpoint of reducing the viscosity of the non-aqueous electrolyte. Specifically, 1,2-dimethoxyethane, tetrahydrofuran,
Preferable examples include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, and methyl ethyl carbonate. Of these, cyclic ester compounds such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, and chain ester compounds such as 1,2-dimethoxyethane, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate are preferred. In particular, a cyclic ester compound has a high relative dielectric constant and is excellent in solubility of a lithium salt or the like, and a chain ester compound has a low viscosity. Therefore, it is suitable in terms of reducing the viscosity of a nonaqueous electrolyte. is there. These may be used alone or in combination of two or more, but it is preferable to use two or more in combination.

【0063】前記非プロトン性有機溶媒の25℃におけ
る粘度としては、特に制限はないが、10mPa・s
(10cP)以下が好ましく、5mPa・s(5cP)
以下がより好ましい。
The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but may be 10 mPa · s.
(10 cP) or less, preferably 5 mPa · s (5 cP)
The following is more preferred.

【0064】−その他の部材− 前記その他の部材としては、非水電解液二次電池におい
て、正負極間に、両極の接触による電流の短絡を防止す
る役割で介在させるセパレーターが挙げられる。前記セ
パレーターの材質としては、両極の接触を確実に防止し
得、かつ、電解液を通したり含んだりできる材料、例え
ば、ポリテトラフルオロエチレン、ポリプロピレン、ポ
リエチレン等の合成樹脂製の不織布、薄層フィルム等が
好適に挙げられる。これらの中でも、厚さ20〜50μ
m程度のポリプロピレン又はポリエチレン製の微孔性フ
ィルムが特に好適である。
-Other members- As the other members, a separator interposed between the positive electrode and the negative electrode in a non-aqueous electrolyte secondary battery to prevent a short circuit of current due to contact between both electrodes can be cited. As the material of the separator, a material capable of reliably preventing contact between the two electrodes, and capable of passing or containing an electrolytic solution, for example, a nonwoven fabric made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, a thin film And the like. Among them, the thickness of 20-50μ
m or so microporous film made of polypropylene or polyethylene is particularly suitable.

【0065】前記セパレーターのほか、前記その他の部
材としては、通常電池に使用されている公知の各部材が
好適に挙げられる。
As the above-mentioned other members in addition to the above-mentioned separator, well-known members usually used for batteries are preferably exemplified.

【0066】本発明の非水電解液二次電池の形態として
は、特に制限はなく、コインタイプ、ボタンタイプ、ペ
ーパータイプ、角型又はスパイラル構造の円筒型電池
等、種々の公知の形態が好適に挙げられる。前記スパイ
ラル構造の場合、例えば、シート状の正極を作製して集
電体を挟み、これに、負極(シート状)を重ね合わせて
巻き上げる等により非水電解液二次電池を作製すること
ができる。
The form of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a prismatic type or a spiral type cylindrical battery are preferable. It is listed. In the case of the spiral structure, for example, a nonaqueous electrolyte secondary battery can be manufactured by forming a sheet-shaped positive electrode, sandwiching a current collector, and stacking and winding the negative electrode (sheet-shaped) on the current collector. .

【0067】以上説明した本発明の非水電解液二次電池
は、前記本発明の非水電解液二次電池用添加剤を含有す
るため、自己消火性ないし難燃性に優れ、耐劣化性に優
れ、非水電解液の界面抵抗が低く、低温特性に優れ、か
つ、高温特性に優れる。
Since the non-aqueous electrolyte secondary battery of the present invention described above contains the additive for a non-aqueous electrolyte secondary battery of the present invention, it has excellent self-extinguishing properties or flame retardancy, and is resistant to deterioration. , Low interface resistance of non-aqueous electrolyte, excellent low-temperature characteristics, and excellent high-temperature characteristics.

【0068】[0068]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に何ら限定され
るものではない。 (実施例1) [非水電解液の調製]ジエチルカーボネートとエチレン
カーボネートとの混合溶媒(混合比(体積比):ジエチ
ルカーボネート/エチレンカーボネート=1/1)(非
プロトン性有機溶媒)70mlに、環状ホスファゼン誘
導体(前記一般式(2)において、R 4がフェノキシ基
であり、nが3である化合物(非水電解液二次電池用添
加剤))30mlを添加(1体積%)し、更に、LiB
4(支持塩)を0.75モル/kgの濃度で溶解さ
せ、非水電解液を調製した。
The present invention will now be described with reference to Examples and Comparative Examples.
However, the present invention is not limited to the following examples.
Not something. (Example 1) [Preparation of non-aqueous electrolyte] Diethyl carbonate and ethylene
Mixed solvent with carbonate (mixing ratio (volume ratio): diethyl
(Lucarbonate / ethylene carbonate = 1/1)
Introduce cyclic phosphazene to 70 ml of protic organic solvent
A conductor (in the general formula (2), R FourIs a phenoxy group
Wherein n is 3 (a non-aqueous electrolyte secondary battery
Additive)) 30 ml (1% by volume) and LiB
FFour(Supporting salt) at a concentration of 0.75 mol / kg
To prepare a non-aqueous electrolyte.

【0069】<自己消火性ないし難燃性の評価>得られ
た非水電解液について、前述の「自己消火性・難燃性の
評価方法」と同様にして、下記に示すように評価を行っ
た。結果を表1に示す。
<Evaluation of Self-extinguishing Property or Flame Retardancy> The obtained non-aqueous electrolyte was evaluated as described below in the same manner as in the above-mentioned “Method for evaluating self-extinguishing property and flame retardancy”. Was. Table 1 shows the results.

【0070】<<難燃性の評価>>着火した炎が、装置
の25mmラインまで到達せず、かつ網からの落下物に
も着火が認められなかった場合を難燃性ありと評価し
た。 <<自己消火性の評価>>着火した炎が、25〜100
mmラインの間で消火し、かつ、網落下からの落下物に
も着火が認められなかった場合を自己消火性ありと評価
した。 <<燃焼性の評価>>着火した炎が、100mmライン
を超えた場合を燃焼性ありと評価した。
<< Evaluation of Flame Retardancy >> A case where the ignited flame did not reach the 25 mm line of the apparatus and no ignition was found even on a falling object from the net was evaluated as having flame retardancy. << Evaluation of self-extinguishing property >>
The case where the fire was extinguished between the mm lines and no ignition was found on the falling object from the net drop was evaluated as having self-extinguishing property. << Evaluation of Flammability >> When the ignited flame exceeded the 100 mm line, it was evaluated as flammable.

【0071】<劣化の評価>得られた非水電解液につい
て、前述の「安定性の評価方法」と同様に、非水電解液
調製直後及び2ヶ月間グローブボックス内で放置後の水
分率(ppm)、弗化水素濃度(ppm)、充放電容量
(mAh/g)を測定・算出し、劣化の評価を行った。
この時、充放電容量(mAh/g)は、重量既知の正極
又は前述の負極を用いて充放電曲線を測定し、得られた
充電量、放電量を用いた電極の重量で除することにより
求めた。また、非水電解液調製直後及び2ヶ月間グロー
ブボックス内で放置後の非水電解液の色調変化を目視に
より観察した。結果を表1に示す。
<Evaluation of Deterioration> The water content of the obtained nonaqueous electrolyte immediately after the preparation of the nonaqueous electrolyte and after leaving it in a glove box for two months was measured in the same manner as in the above “stability evaluation method”. ppm), hydrogen fluoride concentration (ppm) and charge / discharge capacity (mAh / g) were measured and calculated to evaluate deterioration.
At this time, the charge / discharge capacity (mAh / g) is obtained by measuring a charge / discharge curve using a positive electrode or a negative electrode having a known weight, and dividing the obtained charge amount and discharge amount by the weight of the electrode using the obtained amount. I asked. Further, the color tone change of the non-aqueous electrolyte immediately after preparation of the non-aqueous electrolyte and after leaving it in the glove box for 2 months was visually observed. Table 1 shows the results.

【0072】[非水電解液二次電池の作製]化学式Li
CoO2で表されるコバルト酸化物を正極活物質として
用い、LiCoO2100部に対して、アセチレンブラ
ック(導電助剤)を10部、テフロン(登録商標)バイ
ンダー(結着樹脂)を10部添加し、有機溶媒(酢酸エ
チルとエタノールとの50/50体積%混合溶媒)で混
練した後、ロール圧延により厚さ100μm、幅40m
mの薄層状の正極シートを作製した。その後、得られた
正極シート2枚を用いて、表面に導電性接着剤を塗布し
た、厚さ25μmのアルミニウム箔(集電体)を挟み込
み、これに厚さ25μmのセパレーター(微孔性フィル
ム:ポリプロピレン性)を介在させ、厚さ150μmの
リチウム金属箔を重ね合わせて巻き上げ、円筒型電極を
作製した。該円筒型電極の正極長さは約260mmであ
った。
[Preparation of Non-Aqueous Electrolyte Secondary Battery] Chemical Formula Li
Cobalt oxide represented by CoO 2 was used as a positive electrode active material, and 10 parts of acetylene black (conductive additive) and 10 parts of Teflon (registered trademark) binder (binder resin) were added to 100 parts of LiCoO 2. And kneaded with an organic solvent (50/50 volume% mixed solvent of ethyl acetate and ethanol), and then roll-rolled to a thickness of 100 μm and a width of 40 m.
m of a positive electrode sheet in the form of a thin layer. Thereafter, using the two obtained positive electrode sheets, a 25 μm-thick aluminum foil (current collector) coated with a conductive adhesive on its surface was sandwiched, and a 25 μm-thick separator (microporous film: A 150 μm-thick lithium metal foil was overlapped and wound up with a polypropylene electrode interposed therebetween to produce a cylindrical electrode. The length of the positive electrode of the cylindrical electrode was about 260 mm.

【0073】前記円筒型電極に、前記非水電解液を注入
して封口し、単三型リチウム電池を作製した。
The non-aqueous electrolyte was injected into the cylindrical electrode and sealed to produce an AA lithium battery.

【0074】<電池特性等の測定・評価>得られた電池
について、20℃において、初期の電池特性(電圧、内
部抵抗)を測定・評価した後、下記評価の方法により、
充放電サイクル性能を測定・評価した。これらの結果を
表1に示す。
<Measurement / Evaluation of Battery Characteristics and the Like> The obtained batteries were measured and evaluated at 20 ° C. for initial battery characteristics (voltage and internal resistance).
The charge / discharge cycle performance was measured and evaluated. Table 1 shows the results.

【0075】<<充放電サイクル性能の評価>>上限電
圧4.5V、下限電圧3.0V、放電電流100mA、
充電電流50mAの条件で、50サイクルまで充放電を
繰り返した。この時の充放電の容量を、初期における充
放電の容量と比較し、50サイクル後の容量減少率を算
出した。合計3本の電池について、同様に測定・算出
し、これらの平均値をとり、充放電サイクル性能の評価
とした。
<< Evaluation of Charge / Discharge Cycle Performance >> An upper limit voltage of 4.5 V, a lower limit voltage of 3.0 V, a discharge current of 100 mA,
Under the condition of a charging current of 50 mA, charging and discharging were repeated up to 50 cycles. The charge / discharge capacity at this time was compared with the charge / discharge capacity at the initial stage, and the capacity reduction rate after 50 cycles was calculated. The same measurement and calculation were performed for a total of three batteries, and the average value was taken to evaluate the charge / discharge cycle performance.

【0076】<低温特性の評価(低温放電容量の測定)
>得られた電池について、放電時の温度を、低温(−1
0℃、−20℃)とした外は、前記「充放電サイクル性
能の評価」と同様の条件で、50サイクルまで充放電を
繰り返した。この時の低温における放電容量を、20℃
において測定した放電容量と比較し、下記式(2)より
放電容量残存率を算出した。合計3本の電池について、
同様に測定・算出し、これらの平均値をとり、低温特性
の評価とした。結果を表1に示す。 式(2):放電容量残存率= 低温放電容量/放電容量(20℃)×100(%)
<Evaluation of low-temperature characteristics (measurement of low-temperature discharge capacity)
> For the obtained battery, set the temperature at the time of discharging to a low temperature (-1
(0 ° C., −20 ° C.), except that the charge and discharge were repeated up to 50 cycles under the same conditions as in the above “Evaluation of charge and discharge cycle performance”. At this time, the discharge capacity at a low temperature is 20 ° C.
The discharge capacity remaining rate was calculated from the following formula (2) by comparing with the discharge capacity measured in. For a total of three batteries,
Similarly, measurement and calculation were performed, and the average value of these values was taken to evaluate low-temperature characteristics. Table 1 shows the results. Formula (2): Discharge capacity remaining rate = Low-temperature discharge capacity / discharge capacity (20 ° C.) × 100 (%)

【0077】<高温特性の評価> <<容量減少率の測定・評価>>得られた電池を70℃
条件下で10日間放置した後、非水電解液の容量を測定
し、放置前の容量と比較して容量減少率を算出した。 <<高温放電特性の測定・評価>>得られた電池を70
℃条件下で10日間放置後、50サイクルまで充放電を
繰り返した際の放電容量を、放置前において測定した放
電容量と比較し、前述の式(1)より放電容量減少率を
算出した。上記と同様に、合計3本の電池について測定
・算出し、これらの平均値をとり高温放電特性の評価と
した。 <<安全性の評価>>得られた電池を70℃条件下で1
0日間放置し電池の破裂・発火等の有無を目視にて観察
し、又室温で充放電試験を行うことによって安全性の評
価とした。以上の評価結果を表1に示す。
<Evaluation of High Temperature Characteristics><< Measurement / Evaluation of Capacity Reduction Ratio >>
After leaving for 10 days under the conditions, the capacity of the non-aqueous electrolyte was measured, and the capacity reduction rate was calculated by comparing with the capacity before leaving. << Measurement and Evaluation of High-Temperature Discharge Characteristics >>
The discharge capacity when charging and discharging were repeated up to 50 cycles after standing at 10 ° C. for 10 days was compared with the discharge capacity measured before standing, and the discharge capacity reduction rate was calculated from the above equation (1). In the same manner as above, measurement and calculation were performed on a total of three batteries, and the average value was taken to evaluate high-temperature discharge characteristics. << Evaluation of safety >>
The battery was allowed to stand for 0 days, visually inspected for the presence of rupture or ignition, etc., and subjected to a charge / discharge test at room temperature to evaluate safety. Table 1 shows the evaluation results.

【0078】(実施例2)実施例1の「非水電解液の調
製」において、ジエチルカーボネートとエチレンカーボ
ネートとの混合溶媒を80mlとし、環状ホスファゼン
誘導体を20ml(20体積%)としたほかは、実施例
1と同様に非水電解液を調製し、自己消火性ないし難燃
性、耐劣化性の評価を行った。また、実施例1と同様に
して非水電解液二次電池を作製し、初期の電池特性(電
圧、内部抵抗)、充放電サイクル性能、低温特性、及
び、高温特性をそれぞれ測定・評価した。結果を表1に
示す。
(Example 2) In "Preparation of non-aqueous electrolyte" in Example 1, except that the mixed solvent of diethyl carbonate and ethylene carbonate was 80 ml and the cyclic phosphazene derivative was 20 ml (20% by volume), A non-aqueous electrolyte was prepared in the same manner as in Example 1, and self-extinguishing properties, flame retardancy, and deterioration resistance were evaluated. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, low-temperature characteristics, and high-temperature characteristics were measured and evaluated. Table 1 shows the results.

【0079】(実施例3)実施例1の「非水電解液の調
製」において、ジエチルカーボネートとエチレンカーボ
ネートとの混合溶媒を25mlとし、環状ホスファゼン
誘導体を75ml(75体積%)としたほかは、実施例
1と同様に非水電解液を調製し、自己消火性ないし難燃
性、耐劣化性の評価を行った。また、実施例1と同様に
して非水電解液二次電池を作製し、初期の電池特性(電
圧、内部抵抗)、充放電サイクル性能、低温特性、及
び、高温特性をそれぞれ測定・評価した。結果を表1に
示す。
(Example 3) In "Preparation of non-aqueous electrolyte" in Example 1, except that the mixed solvent of diethyl carbonate and ethylene carbonate was 25 ml and the cyclic phosphazene derivative was 75 ml (75% by volume), A non-aqueous electrolyte was prepared in the same manner as in Example 1, and self-extinguishing properties, flame retardancy, and deterioration resistance were evaluated. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, low-temperature characteristics, and high-temperature characteristics were measured and evaluated. Table 1 shows the results.

【0080】(実施例4)実施例1の「非水電解液の調
製」において、ジエチルカーボネートとエチレンカーボ
ネートとの混合溶媒を98mlとし、環状ホスファゼン
誘導体を2ml(2体積%)とし、支持塩をLiPF6
に代えたほかは、実施例1と同様に非水電解液を調製
し、自己消火性ないし難燃性、耐劣化性の評価を行っ
た。また、実施例1と同様にして非水電解液二次電池を
作製し、初期の電池特性(電圧、内部抵抗)、充放電サ
イクル性能、低温特性、及び、高温特性をそれぞれ測定
・評価した。結果を表1に示す。
Example 4 In “Preparation of Nonaqueous Electrolyte” in Example 1, 98 ml of a mixed solvent of diethyl carbonate and ethylene carbonate, 2 ml (2% by volume) of a cyclic phosphazene derivative, and a supporting salt were used. LiPF 6
A non-aqueous electrolyte solution was prepared in the same manner as in Example 1 except for changing to the above, and self-extinguishing properties, flame retardancy, and deterioration resistance were evaluated. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, low-temperature characteristics, and high-temperature characteristics were measured and evaluated. Table 1 shows the results.

【0081】(実施例5)実施例1の「非水電解液の調
製」において、ジエチルカーボネートとエチレンカーボ
ネートとの混合溶媒を97mlに変え、環状ホスファゼ
ン誘導体を3ml(3体積%)とし、支持塩をLiPF
6に代えたほかは、実施例1と同様に非水電解液を調製
し、実施例1と同様に自己消火性ないし難燃性の評価、
耐劣化性の評価を行った。また、実施例1と同様にして
非水電解液二次電池を作製し、初期の電池特性(電圧、
内部抵抗)、充放電サイクル性能、低温特性、及び、高
温特性をそれぞれ測定・評価した。結果を表1に示す。
(Example 5) In "Preparation of non-aqueous electrolyte" of Example 1, the mixed solvent of diethyl carbonate and ethylene carbonate was changed to 97 ml, the cyclic phosphazene derivative was changed to 3 ml (3% by volume), and the supporting salt was changed. To LiPF
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the composition was changed to 6 , and evaluation of self-extinguishing properties or flame retardancy was performed in the same manner as in Example 1.
The deterioration resistance was evaluated. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage,
(Internal resistance), charge / discharge cycle performance, low-temperature characteristics, and high-temperature characteristics were measured and evaluated. Table 1 shows the results.

【0082】(実施例6)実施例1の「非水電解液の調
製」において、環状ホスファゼン誘導体(前記一般式
(2)において、R4がフェノキシ基であり、nが3で
ある化合物(非水電解液二次電池用添加剤)を、環状ホ
スファゼン誘導体(前記一般式(2)においてnが4で
あって、R4のうちの2つがフェノキシ基であって6つ
がエトキシ基である化合物(非水電解液二次電池用添加
剤))に代えたほかは、実施例1と同様に非水電解液を
調製し、実施例1と同様に自己消火性ないし難燃性の評
価、耐劣化性の評価を行った。また、実施例1と同様に
して非水電解液二次電池を作製し、初期の電池特性(電
圧、内部抵抗)、充放電サイクル性能、低温特性、及
び、高温特性をそれぞれ測定・評価した。結果を表1に
示す。
(Example 6) In the "Preparation of non-aqueous electrolyte" in Example 1, the cyclic phosphazene derivative (the compound represented by the formula (2) wherein R 4 is a phenoxy group and n is 3 An aqueous electrolyte secondary battery additive is used as a cyclic phosphazene derivative (a compound in which n is 4 in the general formula (2), two of R 4 are phenoxy groups, and six are ethoxy groups ( A non-aqueous electrolyte was prepared in the same manner as in Example 1, except that the additive for non-aqueous electrolyte secondary battery)) was replaced. A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, low-temperature characteristics, and high-temperature characteristics were evaluated. The results are shown in Table 1.

【0083】(比較例1)実施例1の「非水電解液の調
製」において、環状ホスファゼン誘導体を環状ホスファ
ゼン誘導体(前記一般式(2)において、R4が塩素を
含むメトキシ基であり、nが5である化合物(メトキシ
基に対する塩素のモル比(メトキシ基/塩素)が2/
4、3/3及び4/2である化合物の混合物)に代えた
ほかは、実施例1と同様に非水電解液を調製し、実施例
1と同様に自己消火性ないし難燃性の評価、耐劣化性の
評価を行った。また、実施例1と同様にして非水電解液
二次電池を作製し、初期の電池特性(電圧、内部抵
抗)、充放電サイクル性能、低温特性、及び、高温特性
をそれぞれ測定・評価した。結果を表1に示す。
Comparative Example 1 In Example 1, “Preparation of Nonaqueous Electrolyte Solution”, the cyclic phosphazene derivative was replaced with a cyclic phosphazene derivative (in the general formula (2), R 4 was a methoxy group containing chlorine, and n Is 5 (the molar ratio of chlorine to methoxy group (methoxy group / chlorine) is 2 /
4, 3/3 and 4/2), a non-aqueous electrolyte was prepared in the same manner as in Example 1, and the self-extinguishing property or the flame retardancy was evaluated in the same manner as in Example 1. And the deterioration resistance were evaluated. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, low-temperature characteristics, and high-temperature characteristics were measured and evaluated. Table 1 shows the results.

【0084】[0084]

【表1】 [Table 1]

【0085】[0085]

【発明の効果】本発明によれば、非水電解液二次電池に
添加することにより、電池として必要な電池特性等を維
持しつつ、自己消火性ないし難燃性に優れ、耐劣化性に
優れ、非水電解液の界面抵抗が低く、低温特性に優れ、
かつ、高温特性に優れた非水電解液二次電池を作製可能
な非水電解液二次電池用添加剤、及び、該非水電解液二
次電池用添加剤を含有し、自己消火性ないし難燃性に優
れ、耐劣化性に優れ、非水電解液の界面抵抗が低く、低
温特性に優れ、かつ、高温特性に優れた非水電解液二次
電池を提供することができる。
According to the present invention, when added to a non-aqueous electrolyte secondary battery, the battery has excellent self-extinguishing properties or flame retardancy while maintaining the battery characteristics required for the battery, and has excellent resistance to deterioration. Excellent, low interfacial resistance of non-aqueous electrolyte, excellent low temperature characteristics,
And an additive for a non-aqueous electrolyte secondary battery capable of producing a non-aqueous electrolyte secondary battery having excellent high-temperature characteristics, and an additive for the non-aqueous electrolyte secondary battery, which contains a self-extinguishing property or is difficult. A non-aqueous electrolyte secondary battery having excellent flammability, excellent resistance to deterioration, low interfacial resistance of the non-aqueous electrolyte, excellent low-temperature characteristics, and excellent high-temperature characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ07 AJ12 AK02 AK03 AK05 AK16 AK18 AL06 AL07 AL12 AL18 AM03 AM05 AM07 DJ09 HJ01 HJ02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ07 AJ12 AK02 AK03 AK05 AK16 AK18 AL06 AL07 AL12 AL18 AM03 AM05 AM07 DJ09 HJ01 HJ02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)又は(2)で表される
ホスファゼン誘導体を少なくとも含有することを特徴と
する非水電解液二次電池用添加剤。 一般式(1) 【化1】 但し、一般式(1)において、R1、R2、及び、R
3は、一価の置換基又はハロゲン元素を表し、少なくと
もいずれかはフッ素を含む。Xは、炭素、ケイ素、ゲル
マニウム、スズ、窒素、リン、ヒ素、アンチモン、ビス
マス、酸素、イオウ、セレン、テルル、及び、ポロニウ
ムからなる群より選ばれる元素の少なくとも1種を含む
置換基を表す。Y1、Y2、及び、Y3は、2価の連結
基、2価の元素、又は、単結合を表す。 一般式(2) (PNR4 2n 但し、一般式(2)において、R4は、一価の置換基又
はハロゲン元素を表す。該一般式(2)における全R4
のうち少なくとも1つはアリロキシル基を含む。nは3
〜4である。
1. An additive for a non-aqueous electrolyte secondary battery comprising at least a phosphazene derivative represented by the following general formula (1) or (2). General formula (1) However, in the general formula (1), R 1 , R 2 , and R
3 represents a monovalent substituent or a halogen element, at least one of which contains fluorine. X represents a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium, and polonium. Y 1 , Y 2 , and Y 3 represent a divalent linking group, a divalent element, or a single bond. Formula (2) (PNR 4 2) n where in the general formula (2), R 4 represents a monovalent substituent or a halogen element. All R 4 in the general formula (2)
At least one of them comprises an allyloxyl group. n is 3
~ 4.
【請求項2】 正極と、負極と、支持塩及び請求項1に
記載の非水電解液二次電池用添加剤を含有する非水電解
液と、を有することを特徴とする非水電解液二次電池。
2. A non-aqueous electrolyte comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a supporting salt and the additive for a non-aqueous electrolyte secondary battery according to claim 1. Rechargeable battery.
【請求項3】 非水電解液におけるホスファゼン誘導体
の含有量が、1〜70体積%である請求項2に記載の非
水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the content of the phosphazene derivative in the non-aqueous electrolyte is 1 to 70% by volume.
【請求項4】 非水電解液におけるホスファゼン誘導体
の含有量が、2体積%以上である請求項2に記載の非水
電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 2, wherein the content of the phosphazene derivative in the non-aqueous electrolyte is 2% by volume or more.
【請求項5】 非水電解液におけるホスファゼン誘導体
の含有量が、20体積%以上である請求項2又は4に記
載の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 2, wherein the content of the phosphazene derivative in the non-aqueous electrolyte is 20% by volume or more.
【請求項6】 非水電解液におけるホスファゼン誘導体
の含有量が、30体積%以上である請求項2、4、及
び、5のいずれかに記載の非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 2, wherein the content of the phosphazene derivative in the non-aqueous electrolyte is 30% by volume or more.
【請求項7】 非水電解液が、非プロトン性有機溶媒を
含む請求項2から6のいずれかに記載の非水電解液二次
電池。
7. The non-aqueous electrolyte secondary battery according to claim 2, wherein the non-aqueous electrolyte contains an aprotic organic solvent.
【請求項8】 非プロトン性有機溶媒が、環状又は鎖状
のエステル化合物を含有する請求項7に記載の非水電解
液二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 7, wherein the aprotic organic solvent contains a cyclic or chain ester compound.
【請求項9】 非水電解液が、支持塩としてLiPF6
を含み、非プロトン性有機溶媒としてエチレンカーボネ
ート及び/又はプロピレンカーボネートを含み、ホスフ
ァゼン誘導体を1.5〜2.5体積%含む請求項2又は
3に記載の非水電解液二次電池。
9. A non-aqueous electrolyte comprising LiPF 6 as a supporting salt.
The non-aqueous electrolyte secondary battery according to claim 2, further comprising: ethylene carbonate and / or propylene carbonate as an aprotic organic solvent; and 1.5 to 2.5 vol% of a phosphazene derivative.
【請求項10】 非水電解液が、支持塩としてLiPF
6を含み、非プロトン性有機溶媒としてエチレンカーボ
ネート及び/又はプロピレンカーボネートを含み、ホス
ファゼン誘導体を2.5体積%を超える量含む請求項2
又は4に記載の非水電解液二次電池。
10. A non-aqueous electrolyte comprising LiPF as a supporting salt.
6. An aprotic organic solvent comprising ethylene carbonate and / or propylene carbonate, wherein the phosphazene derivative comprises more than 2.5% by volume.
Or the non-aqueous electrolyte secondary battery according to 4.
【請求項11】 非水電解液が、支持塩としてLiCF
3SO3を含み、非プロトン性有機溶媒としてプロピレン
カーボネートを含み、ホスファゼン誘導体を1.5〜
2.5体積%含む請求項2又は3に記載の非水電解液二
次電池。
11. A non-aqueous electrolyte comprising LiCF as a supporting salt.
3 SO 3 , propylene carbonate as an aprotic organic solvent, and a phosphazene derivative of 1.5 to
The non-aqueous electrolyte secondary battery according to claim 2, wherein the secondary battery contains 2.5% by volume.
【請求項12】 非水電解液が、支持塩としてLiCF
3SO3を含み、非プロトン性有機溶媒としてプロピレン
カーボネートを含み、ホスファゼン誘導体を2.5体積
%を超える量含む請求項2又は4に記載の非水電解液二
次電池。
12. A non-aqueous electrolyte containing LiCF as a supporting salt.
The non-aqueous electrolyte secondary battery according to claim 2, comprising 3 SO 3 , propylene carbonate as an aprotic organic solvent, and a phosphazene derivative in an amount exceeding 2.5% by volume.
JP2000272077A 2000-09-07 2000-09-07 Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery Expired - Fee Related JP5095883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272077A JP5095883B2 (en) 2000-09-07 2000-09-07 Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272077A JP5095883B2 (en) 2000-09-07 2000-09-07 Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002083628A true JP2002083628A (en) 2002-03-22
JP5095883B2 JP5095883B2 (en) 2012-12-12

Family

ID=18758266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272077A Expired - Fee Related JP5095883B2 (en) 2000-09-07 2000-09-07 Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5095883B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001882A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Supporting electrolyte for cell and method for production thereof, and cell
WO2004059782A1 (en) * 2002-12-26 2004-07-15 Bridgestone Corporation Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
WO2005036690A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006185829A (en) * 2004-12-28 2006-07-13 Bridgestone Corp Non-aqueous electrolyte secondary battery
WO2012105510A1 (en) 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
WO2012108270A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same
CN105655642A (en) * 2016-03-30 2016-06-08 宁德时代新能源科技股份有限公司 Electrolyte and high-nickel anode lithium ion battery containing same
CN108475824A (en) * 2015-12-22 2018-08-31 中央硝子株式会社 Battery with nonaqueous electrolyte electrolyte and use its battery with nonaqueous electrolyte
US11050284B2 (en) * 2015-05-11 2021-06-29 Eaglepicher Technologies, Llc Electrolyte, a battery including the same, and methods of reducing electrolyte flammability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301309A (en) * 2018-09-10 2019-02-01 东莞东阳光科研发有限公司 A kind of electrolyte of high pressure nickel-cobalt-manganternary ternary anode material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JPH09180721A (en) * 1995-12-28 1997-07-11 Mitsui Petrochem Ind Ltd Electrode for lithium battery, manufacturing method therefor, electrochemical apparatus, and manufacturing method therefor
WO1997044842A1 (en) * 1996-05-24 1997-11-27 Sri International Nonflammable/self-extinguishing electrolytes for batteries
WO1999019917A2 (en) * 1997-10-09 1999-04-22 Basf Aktiengesellschaft Composite suitable for use in electrochemical cells
JPH11144757A (en) * 1992-04-09 1999-05-28 Bridgestone Corp Nonaqueous electrolyte battery
JPH11191431A (en) * 1997-12-26 1999-07-13 Sony Corp Nonaqueous electrolyte battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JPH11144757A (en) * 1992-04-09 1999-05-28 Bridgestone Corp Nonaqueous electrolyte battery
JPH09180721A (en) * 1995-12-28 1997-07-11 Mitsui Petrochem Ind Ltd Electrode for lithium battery, manufacturing method therefor, electrochemical apparatus, and manufacturing method therefor
WO1997044842A1 (en) * 1996-05-24 1997-11-27 Sri International Nonflammable/self-extinguishing electrolytes for batteries
WO1999019917A2 (en) * 1997-10-09 1999-04-22 Basf Aktiengesellschaft Composite suitable for use in electrochemical cells
JPH11191431A (en) * 1997-12-26 1999-07-13 Sony Corp Nonaqueous electrolyte battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001882A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Supporting electrolyte for cell and method for production thereof, and cell
CN1300880C (en) * 2002-06-19 2007-02-14 株式会社普利司通 Supporting electrolyte for cell and method for production thereof, and cell
WO2004059782A1 (en) * 2002-12-26 2004-07-15 Bridgestone Corporation Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
EP1580832A1 (en) * 2002-12-26 2005-09-28 Bridgestone Corporation Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
JPWO2004059782A1 (en) * 2002-12-26 2006-05-11 株式会社ブリヂストン Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
EP1580832A4 (en) * 2002-12-26 2007-02-14 Bridgestone Corp Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
US7695862B2 (en) 2002-12-26 2010-04-13 Bridgestone Corporation Additive for non-aqueous electrolyte solution of secondary battery and non-aqueous electrolyte secondary battery
JP4671693B2 (en) * 2002-12-26 2011-04-20 株式会社ブリヂストン Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
WO2005036690A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4632017B2 (en) * 2003-10-07 2011-02-16 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2006185829A (en) * 2004-12-28 2006-07-13 Bridgestone Corp Non-aqueous electrolyte secondary battery
WO2012105510A1 (en) 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
KR20190025032A (en) 2011-01-31 2019-03-08 미쯔비시 케미컬 주식회사 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
US11688881B2 (en) 2011-01-31 2023-06-27 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
US9806375B2 (en) 2011-01-31 2017-10-31 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
US9923238B2 (en) 2011-02-10 2018-03-20 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
WO2012108270A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same
US10476106B2 (en) 2011-02-10 2019-11-12 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
EP3758124A1 (en) 2011-02-10 2020-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte secondary battery
US11205802B2 (en) 2011-02-10 2021-12-21 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
KR20140040285A (en) 2011-02-10 2014-04-02 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same
US11791499B2 (en) 2011-02-10 2023-10-17 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US11050284B2 (en) * 2015-05-11 2021-06-29 Eaglepicher Technologies, Llc Electrolyte, a battery including the same, and methods of reducing electrolyte flammability
CN108475824A (en) * 2015-12-22 2018-08-31 中央硝子株式会社 Battery with nonaqueous electrolyte electrolyte and use its battery with nonaqueous electrolyte
CN108475824B (en) * 2015-12-22 2021-08-24 中央硝子株式会社 Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
CN105655642A (en) * 2016-03-30 2016-06-08 宁德时代新能源科技股份有限公司 Electrolyte and high-nickel anode lithium ion battery containing same

Also Published As

Publication number Publication date
JP5095883B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP4588319B2 (en) Non-aqueous electrolyte battery and electrode stabilizer for non-aqueous electrolyte battery
JP3055358B2 (en) Non-aqueous electrolyte battery
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPWO2002021628A1 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
US6955867B1 (en) Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2008053211A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP4257725B2 (en) Non-aqueous electrolyte secondary battery
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP3055536B2 (en) Non-aqueous electrolyte battery
JPWO2002021630A1 (en) Additives for non-aqueous electrolyte secondary batteries
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2001102088A (en) Non-aqueous electrolyte cell
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP5095883B2 (en) Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2001217001A (en) Additive for non-aqueous electrolyte secondary battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
US20070183954A1 (en) Additive for non-aqueous electrolyte in battery, non-aqueous electrolyte for battery and non-aqueos electrolyte battery
JPWO2003005478A1 (en) Polymer battery and polymer electrolyte
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees