JP2002075456A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JP2002075456A
JP2002075456A JP2000261724A JP2000261724A JP2002075456A JP 2002075456 A JP2002075456 A JP 2002075456A JP 2000261724 A JP2000261724 A JP 2000261724A JP 2000261724 A JP2000261724 A JP 2000261724A JP 2002075456 A JP2002075456 A JP 2002075456A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000261724A
Other languages
Japanese (ja)
Inventor
Naoki Imachi
直希 井町
Hiroshi Watanabe
浩志 渡辺
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000261724A priority Critical patent/JP2002075456A/en
Publication of JP2002075456A publication Critical patent/JP2002075456A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte cell formed into flat shape while preventing a lowering of the strength of both current collectors, shortening the excessive part of a negative pole activator, enabled to remarkably improve an energy density per volume and per weight by shortening the length of a separator in the direction of winding. SOLUTION: The nonaqueous electrolyte cell, composed of an electricity generating element with such a structure that a positive pole activator 15 and a negative pole activator 16 are wound through a separator 17, has a both poles current collector 11 with three-layered structure composed of an insulation film 13, a positive pole current collector 12 fixer to one side of the insulation film 13, and a negative pole current collector 14 fixed to the other side of the insulation film 13, here, the positive pole activator 15 is applied on the positive pole current collector 12 and the negative pole activator 16 is applied on the negative pole current collector 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質と負極
活物質とが、セパレータを介して巻回される構造の発電
要素を備えた非水電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte battery provided with a power generating element having a structure in which a positive electrode active material and a negative electrode active material are wound via a separator.

【0002】[0002]

【従来の技術】近年、コバルト酸リチウム、マンガン酸
リチウム、ニッケル酸リチウム等を正極活物質とする一
方、リチウムイオンを吸蔵、放出し得る炭素材料等を負
極活物質とする非水電解質電池が、注目されている。
2. Description of the Related Art In recent years, nonaqueous electrolyte batteries using lithium cobaltate, lithium manganate, lithium nickelate or the like as a positive electrode active material and a carbon material or the like capable of occluding and releasing lithium ions as a negative electrode active material have been developed. Attention has been paid.

【0003】従来、上記非水電解質電池においては、ア
ルミニウム箔から成る正極集電体の両面に正極活物質を
塗着した正極と、銅箔から成る負極集電体の両面に負極
活物質を塗着した負極とを、セパレータを介して巻回し
た発電要素を外装体内に収納する構造が一般的である。
ここで、上記両集電体は両活物質から集電することを目
的としており、電池反応には直接寄与するものではない
ため、集電能力を十分に確保できる範囲で薄くし、体積
エネルギー密度や重量エネルギー密度の向上を図ること
が望ましい。
Conventionally, in the above nonaqueous electrolyte battery, a positive electrode in which a positive electrode active material is coated on both surfaces of a positive electrode current collector made of aluminum foil, and a negative electrode active material is coated on both surfaces of a negative electrode current collector made of copper foil. In general, a structure in which the attached negative electrode and a power generation element wound around a separator are housed in an exterior body.
Here, the two current collectors are intended to collect current from both active materials, and do not directly contribute to the battery reaction. It is desirable to improve the weight and energy density.

【0004】ところが、上記正負両極とセパレータとを
巻回する際には、ロール巻き取り方式により連続的に行
われるため、正極集電体と負極集電体とには十分な強度
(引っ張り強度、曲げ強度等)が要求され、このため、
強度面から両集電体を薄くすることが出来ないのが現状
である。この結果、体積エネルギー密度や重量エネルギ
ー密度を向上させることができないという課題を有して
いた。
However, since the winding of the positive and negative electrodes and the separator is performed continuously by a roll winding method, the positive electrode current collector and the negative electrode current collector have sufficient strength (tensile strength, Bending strength).
At present, both current collectors cannot be made thin from the viewpoint of strength. As a result, there is a problem that the volume energy density and the weight energy density cannot be improved.

【0005】また、非水電解質電池においては、リチウ
ムのデンドライド析出という問題があるが、この問題を
解決するには、正極活物質が存在する対向位置には必ず
負極活物質が存在しなければならず、このため、負極活
物質層の長さを正極活物質層の長さよりも大きくする必
要がある。この場合、図6に示すように、正極集電体5
0の両面に正極活物質51・52が塗着されているた
め、巻回時に、正極活物質51とこの正極活物質51に
対応する負極活物質53との位置ずれ、及び、正極活物
質52とこの正極活物質52に対応する負極活物質54
との位置ずれを考慮して、負極活物質53・54の過剰
分55(正極活物質51・52からはみ出た部分)を長
くしなければならない。更に、正極活物質51・52と
負極活物質53・54との位置ずれを考慮して、セパレ
ータ57の巻回方向の長さを大きくしなければならな
い。これらのことによっても、体積エネルギー密度や重
量エネルギー密度が低下するという課題を有していた。
[0005] Further, in the nonaqueous electrolyte battery, there is a problem of dendritic deposition of lithium. To solve this problem, the negative electrode active material must be present at a position facing the positive electrode active material. Therefore, it is necessary to make the length of the negative electrode active material layer larger than the length of the positive electrode active material layer. In this case, as shown in FIG.
Since the positive electrode active materials 51 and 52 are coated on both surfaces of the positive electrode active material 51, the position shift between the positive electrode active material 51 and the negative electrode active material 53 corresponding to the positive electrode active material 51 during winding and the positive electrode active material 52 And a negative electrode active material 54 corresponding to the positive electrode active material 52
In consideration of the misalignment, the excess amount 55 of the negative electrode active materials 53 and 54 (the portion protruding from the positive electrode active materials 51 and 52) must be lengthened. Further, the length of the separator 57 in the winding direction must be increased in consideration of the displacement between the positive electrode active materials 51 and 52 and the negative electrode active materials 53 and 54. These also have the problem that the volume energy density and the weight energy density decrease.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、両集電体の強度低下を防
止しつつ薄型化すると共に、負極活物質の過剰分を短く
し、且つセパレータの巻回方向の長さを小さくすること
により、体積エネルギー密度と重量エネルギー密度とを
飛躍的に向上させることができる非水電解質電池の提供
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and has been made to reduce the thickness of both current collectors while preventing the strength from being reduced. Another object of the present invention is to provide a non-aqueous electrolyte battery capable of dramatically improving the volume energy density and the weight energy density by reducing the length in the winding direction of the separator.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、正極活物質
と負極活物質とが、セパレータを介して巻回される構造
の発電要素を備えた非水電解質電池において、絶縁膜
と、この絶縁膜の一方の面に固着された正極集電体と、
上記絶縁膜の他方の面に固着された負極集電体とから成
る3層構造の両極集電部材を有し、且つ、上記正極集電
体には上記正極活物質が塗着され、上記負極集電体には
負極活物質が塗着されていることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention has a structure in which a positive electrode active material and a negative electrode active material are wound via a separator. In a non-aqueous electrolyte battery including a power generation element, an insulating film, a positive electrode current collector fixed to one surface of the insulating film,
An anode current collector having a three-layer structure including a negative electrode current collector fixed to the other surface of the insulating film, and the positive electrode active material coated on the positive electrode current collector; The current collector is coated with a negative electrode active material.

【0008】上記構成の如く、正極集電体と負極集電体
とがそれぞれ絶縁膜に固定される3層構造の両極集電部
材を用いれば、両集電体の厚みを小さくしても両集電体
の強度低下を防止することができる。また、3層構造の
両極集電部材に正負極両活物質が塗着されているので、
これら両極集電部材に塗着された正負極両活物質間での
位置ずれは考慮しなくても良い(即ち、セパレータを介
して存在する正極活物質又は負極活物質との位置ずれの
みを考慮すれば良い)。したがって、巻回時の位置ずれ
が小さくなるので、負極活物質の過剰分を短くすること
ができる。加えて、巻回時の位置ずれが小さくなること
により、セパレータの巻回方向の長さを小さくすること
もできる。これらのことから、体積エネルギー密度と重
量エネルギー密度とが飛躍的に向上する。
As described above, if a bipolar current collector having a three-layer structure in which the positive electrode current collector and the negative electrode current collector are respectively fixed to an insulating film is used, even if the thickness of both current collectors is reduced, A decrease in the strength of the current collector can be prevented. In addition, since the positive electrode and the negative electrode active material are coated on the bipolar current collector having a three-layer structure,
It is not necessary to consider the positional deviation between the positive and negative electrode active materials applied to these bipolar current collecting members (that is, only the positional deviation with the positive electrode active material or the negative electrode active material existing via the separator). Just do it). Therefore, the displacement during winding is reduced, and the excess of the negative electrode active material can be shortened. In addition, by reducing the displacement during winding, the length of the separator in the winding direction can be reduced. From these, the volume energy density and the weight energy density are dramatically improved.

【0009】また、請求項2記載の発明は、請求項1記
載の発明において、上記絶縁膜は樹脂から成ることを特
徴とする。絶縁膜として樹脂を用いると、樹脂は金属に
比べて強度が大きいということから、上記効果が一層発
揮される。
Further, the invention according to claim 2 is characterized in that, in the invention according to claim 1, the insulating film is made of a resin. When a resin is used as the insulating film, the above effect is further exerted because the resin has a higher strength than a metal.

【0010】また、請求項3記載の発明は、請求項1又
は2記載の発明において、上記正極集電体はアルミニウ
ム箔から成り、上記負極集電体は銅箔から成ることを特
徴とする。
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the positive electrode current collector is made of an aluminum foil, and the negative electrode current collector is made of a copper foil.

【0011】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、上記3層構造の両極集電
部材の厚みが10μm以上25μm以下であることを特
徴とする。このように規制するのは、両極集電部材の厚
みが10μm未満であると、両集電体の強度が不十分と
なる場合がある一方、両極集電部材の厚みが25μmを
越えると、体積エネルギー密度と重量エネルギー密度と
の向上効果を十分に発揮することができないからであ
る。
[0011] The invention described in claim 4 is based on claim 1,
4. The invention according to item 2 or 3, wherein the bipolar current collector having a three-layer structure has a thickness of 10 μm or more and 25 μm or less. The reason for this restriction is that if the thickness of the bipolar current collector is less than 10 μm, the strength of the bipolar current collector may be insufficient, while if the thickness of the bipolar current collector exceeds 25 μm, the volume may be reduced. This is because the effect of improving the energy density and the weight energy density cannot be sufficiently exhibited.

【0012】また、請求項5記載の発明は、請求項1、
2、3又は4記載の発明において、上記正極活物質がリ
チウム含有複合酸化物から成ることを特徴とする。ま
た、請求項6記載の発明は、請求項1、2、3、4又は
5記載の発明において、上記負極活物質がリチウムイオ
ンを吸蔵、放出し得る炭素材料から成ることを特徴とす
る。
[0012] The invention according to claim 5 is based on claim 1,
The invention according to 2, 3, or 4, wherein the positive electrode active material is made of a lithium-containing composite oxide. According to a sixth aspect of the present invention, in the first, second, third, fourth or fifth aspect, the negative electrode active material is made of a carbon material capable of occluding and releasing lithium ions.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、以下に説
明する。図1は本発明に係る非水電解質電池の正面図、
図2は図1のA−A線矢視断面図、図3は本発明に係る
非水電解質電池に用いられる正負極の説明図、図4は本
発明に係る非水電解質電池に用いられる発電要素の説明
図、図5はラミネート外装体の断面図である。
Embodiments of the present invention will be described below. FIG. 1 is a front view of a nonaqueous electrolyte battery according to the present invention,
FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, FIG. 3 is an explanatory view of a positive electrode and a negative electrode used in the nonaqueous electrolyte battery according to the present invention, and FIG. FIG. 5 is a cross-sectional view of a laminate exterior body.

【0014】図3に示すように、本発明の非水電解質電
池は、ポリエステルから成る絶縁膜(厚み:4μm)1
3と、この絶縁膜13の一方の面にウレタン系接着剤
(厚みは絶縁膜13等に比べて無視できる程小さい)に
より固着されアルミニウム箔から成る正極集電体(厚
み:4μm)12と、上記絶縁膜13の他方の面にウレ
タン系接着剤により固着され銅から成る負極集電体(厚
み:4μm)14とから成る3層構造の両極集電部材1
1を有している。上記正極集電体12にはLiCoO2
を主体とする正極活物質15が塗着される一方、上記負
極集電体14には炭素材料を主体とする負極活物質16
が塗着されている。図4に示すように、上記両活物質1
5(図4では15a又は15b)・16(図4では16
a又は16b)が塗着された両極集電部材11は、ポリ
エチレン製のセパレータ17を介して偏平渦巻き状に巻
回され、これによって図2に示す発電要素4を構成す
る。
As shown in FIG. 3, the nonaqueous electrolyte battery of the present invention has an insulating film (thickness: 4 μm) 1 made of polyester.
3, a positive electrode current collector (thickness: 4 μm) 12 made of an aluminum foil and fixed to one surface of the insulating film 13 with a urethane-based adhesive (the thickness is negligibly small compared to the insulating film 13 and the like); An anode current collector 1 having a three-layer structure comprising a negative electrode current collector (thickness: 4 μm) 14 made of copper and fixed to the other surface of the insulating film 13 with a urethane adhesive.
One. LiCoO 2 is used as the positive electrode current collector 12.
A negative electrode active material 16 mainly composed of a carbon material is coated on the negative electrode current collector 14 while a positive electrode active material 15 mainly composed of
Is painted. As shown in FIG.
5 (15a or 15b in FIG. 4) and 16 (16 in FIG. 4)
The bipolar current collecting member 11 coated with a or 16b) is wound in a flat spiral shape through a separator 17 made of polyethylene, thereby constituting the power generating element 4 shown in FIG.

【0015】また、図1に示すように、前記正極集電体
12にはアルミニウムから成る正極タブ8が、上記負極
集電体14にはニッケルから成る負極タブ9がそれぞれ
接続されている。
As shown in FIG. 1, a positive electrode tab 8 made of aluminum is connected to the positive electrode current collector 12, and a negative electrode tab 9 made of nickel is connected to the negative electrode current collector 14, respectively.

【0016】上記発電要素4は、収納空間5内に配置さ
れており、この収納空間5は、ラミネート外装体6の上
下端と中央部とをそれぞれ封止部7a・7b・7cで封
口することにより形成される。また、収納空間5には、
エチレンカーボネート(EC)とジエチルカーボネート
(DEC)とが体積比で3:7の割合で混合された混合
溶媒にLiPF6 が1mol/lの割合で溶解された電
解液が注入されている。
The power generating element 4 is disposed in a storage space 5, and the storage space 5 is configured such that upper and lower ends and a central portion of the laminate exterior body 6 are sealed by sealing portions 7 a, 7 b, and 7 c, respectively. Formed by In the storage space 5,
An electrolyte in which LiPF 6 is dissolved at a ratio of 1 mol / l is injected into a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7.

【0017】上記ラミネート外装体6の具体的な構造
は、図5に示すように、アルミニウム層(厚み:30μ
m)21の一方の面に、ウレタン系接着剤から成る接着
剤層(厚み:2μm)25を介してナイロン層(厚み:
25μm)22が接着され、このナイロン層22にウレ
タン系接着剤から成る接着剤層(厚み:2μm)26を
介してポリエチレンテレフタレート層(厚み:12μ
m)23が接着される一方、アルミニウム層21の他方
の面には、変性ポリプロピレンから成る接着剤層(厚
み:2μm)27を介してポリプロピレン層(厚み:4
0μm)24が接着される構造である。
As shown in FIG. 5, the specific structure of the laminate exterior body 6 is an aluminum layer (thickness: 30 μm).
m) A nylon layer (thickness: 2 μm) on one side of 21 via an adhesive layer (thickness: 2 μm) 25 made of a urethane-based adhesive.
25 μm) 22 is adhered, and a polyethylene terephthalate layer (thickness: 12 μm) is bonded to the nylon layer 22 via an adhesive layer (thickness: 2 μm) 26 made of a urethane-based adhesive.
m) 23 is adhered, and on the other surface of the aluminum layer 21 is a polypropylene layer (thickness: 4) via an adhesive layer (thickness: 2 μm) 27 made of modified polypropylene.
0 μm) 24 is bonded.

【0018】前記正極タブ8と前記負極タブ9とは、上
記ラミネート外装体6の封止部7aから突出している。
正極タブ8は正極側の外部端子を兼用する一方、負極タ
ブ9は負極側の外部端子を兼用している。尚、上記構造
の電池の容量は600mAである。
The positive electrode tab 8 and the negative electrode tab 9 protrude from the sealing portion 7a of the laminate case 6.
The positive electrode tab 8 also functions as an external terminal on the positive electrode side, while the negative electrode tab 9 also functions as an external terminal on the negative electrode side. The capacity of the battery having the above structure is 600 mA.

【0019】ここで、上記構成の如く、正極集電体12
と負極集電体14とがそれぞれ絶縁膜13に固定される
3層構造の両極集電部材11を用いれば、両集電体12
・14の厚みを小さくしても両集電体12・14の強度
低下を防止することができる。また、図4に示すよう
に、3層構造の両極集電部材11に正負極両活物質15
a又は15b・16a又は16bが塗着されているの
で、これら両極集電部材11に塗着された正負極両活物
質間(正極活物質15aと負極活物質16aとの間、又
は正極活物質15bと負極活物質16bとの間)での位
置ずれは考慮しなくても良い(即ち、セパレータ17を
介して存在する正極活物質15aと負極活物質16bと
の位置ずれのみを考慮すれば良い)。したがって、巻回
時の位置ずれが小さくなるので、負極活物質の過剰分1
8を短くすることができる。加えて、巻回時の位置ずれ
が小さくなることにより、セパレータ17の巻回方向の
長さを小さくすることもできる。これらのことから、体
積エネルギー密度と重量エネルギー密度とが向上する。
Here, as described above, the positive electrode current collector 12
When the bipolar current collector 11 having a three-layer structure in which the negative electrode current collector 14 and the negative electrode current collector 14 are respectively fixed to the insulating film 13 is used,
-Even if the thickness of 14 is reduced, the strength of both current collectors 12 and 14 can be prevented from decreasing. Further, as shown in FIG. 4, a positive / negative electrode active material 15 is provided on the bipolar current collector 11 having a three-layer structure.
a or 15b, 16a or 16b is applied between the positive and negative electrode active materials (between the positive electrode active material 15a and the negative electrode active material 16a or the positive electrode active material It is not necessary to consider the displacement between the cathode active material 15b and the anode active material 16b (that is, it is sufficient to consider only the displacement between the cathode active material 15a and the anode active material 16b that exist via the separator 17). ). Therefore, the displacement during winding is reduced, and the excess amount of the negative electrode active material is 1%.
8 can be shortened. In addition, by reducing the displacement during winding, the length of the separator 17 in the winding direction can be reduced. From these, the volume energy density and the weight energy density are improved.

【0020】上記構造の電池を、以下のようにして作製
した。先ず、絶縁膜13の一方の面に接着剤により正極
集電体12を固着する一方、絶縁膜13の他方の面に接
着剤により負極集電体14を固着して、3層構造の両極
集電部材11を作製した。次に、正極活物質としてのL
iCoO2 と炭素導電剤とグラファイトとフッ素樹脂系
結着剤とを質量比で、92:3:2:3の割合で混合し
て正極合剤を作製した後、この正極合剤を両極集電部材
11の正極集電体12の表面に塗着、乾燥させた。次い
で、負極活物質としての炭素材料とスチレン系結着剤と
を質量比で、98:2の割合で混合して負極合剤を作製
した後、この負極合剤を両極集電部材11の負極集電体
14の表面に塗着、乾燥し、更に圧延することにより正
負兼用電極を作製した。
A battery having the above structure was manufactured as follows. First, the positive electrode current collector 12 is fixed on one surface of the insulating film 13 with an adhesive, and the negative electrode current collector 14 is fixed on the other surface of the insulating film 13 with an adhesive. The electrical member 11 was produced. Next, L as a positive electrode active material
A positive electrode mixture was prepared by mixing iCoO 2 , a carbon conductive agent, graphite and a fluororesin binder at a mass ratio of 92: 3: 2: 3, and then collecting the positive electrode mixture with both electrodes. The coating was applied to the surface of the positive electrode current collector 12 of the member 11 and dried. Next, a carbon material as a negative electrode active material and a styrene-based binder were mixed at a mass ratio of 98: 2 to prepare a negative electrode mixture, and then this negative electrode mixture was mixed with the negative electrode of the bipolar current collector 11. A positive / negative electrode was prepared by applying the coating on the surface of the current collector 14, drying, and rolling.

【0021】この後、上記正極集電体12及び負極集電
体14に、それぞれ正極タブ8と負極タブ9とを取り付
けた後、正負兼用電極をセパレータ17を介して配置す
る。しかる後、正負兼用電極及びセパレータ17を偏平
渦巻状に巻回して発電要素4を作製した。
Thereafter, the positive electrode tab 8 and the negative electrode tab 9 are attached to the positive electrode current collector 12 and the negative electrode current collector 14, respectively, and then the positive / negative electrode is disposed via the separator 17. Thereafter, the positive / negative electrode and the separator 17 were wound in a flat spiral shape to produce the power generating element 4.

【0022】次いで、7層構造のラミネート材を用意し
た後、このラミネート材における両端のポリプロピレン
同士を重ね合わせ、更に、重ね合わせ部をインパルス加
熱法により溶着して、封止部7cを形成した。次に、こ
の筒状のラミネート材の収納空間5内に発電要素4を挿
入した。この際、筒状のラミネート材の一方の開口部か
ら両タブ8・9が突出するように発電要素4を配置し
た。次に、この状態で、両タブ8・9が突出している開
口部のラミネート材を溶着して封止し、封止部7aを形
成した。この際、溶着は高周波誘導加熱装置を用いて行
った。
Next, after preparing a laminated material having a seven-layer structure, the polypropylenes at both ends of the laminated material were overlapped with each other, and the overlapped portion was welded by an impulse heating method to form a sealing portion 7c. Next, the power generating element 4 was inserted into the storage space 5 of the cylindrical laminate material. At this time, the power generating element 4 was arranged so that the tabs 8 and 9 protruded from one opening of the cylindrical laminate. Next, in this state, the laminated material in the opening from which both tabs 8 and 9 protrude was welded and sealed to form a sealed portion 7a. At this time, welding was performed using a high-frequency induction heating device.

【0023】次に、この状態で、真空加熱乾燥(温度:
105℃)を2時間行い、ラミネート材及び発電要素4
の水分を除去した。この後、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)とが体積比で
3:7の割合で混合された混合溶媒に、LiPF6 が1
mol/lの割合で溶解された電解液を注入した。しか
る後、上記封止部7aとは反対側のラミネート材の端部
を高周波誘導溶着装置を用いて溶着し、封止部7bを形
成することにより、非水電解質電池を作製した。
Next, in this state, drying by heating under vacuum (temperature:
105 ° C.) for 2 hours, and the laminate material and the power generation element 4
Of water was removed. Thereafter, ethylene carbonate (E
C) and diethyl carbonate (DEC) in a mixed solvent of 3: 7 in volume ratio, and LiPF 6 in an amount of 1: 1.
The dissolved electrolytic solution was injected at a rate of mol / l. Thereafter, the end of the laminate material opposite to the sealing portion 7a was welded using a high-frequency induction welding device to form a sealing portion 7b, thereby producing a non-aqueous electrolyte battery.

【0024】なお、絶縁膜13に用いられる樹脂として
は上記ポリエステルに限定するものではなく、ポリプロ
ピレン、ポリイミド、ポリオレフィン、ポリエーテル、
エーテルケトン等を用いることができる。
The resin used for the insulating film 13 is not limited to the above polyester, but may be polypropylene, polyimide, polyolefin, polyether, or the like.
Ether ketone or the like can be used.

【0025】また、接着剤としては、上記ウレタン系接
着剤に限定するものではなく、エチレン−ブタジエン共
重合体接着剤等を用いることができる。更に、3層構造
の両極集電部材11の構造としては、上記のように両集
電体をそれぞれ絶縁膜の一方の面に接着するような方法
に限定するものではなく、絶縁膜の一方の面にアルミニ
ウムを他方の面に銅を蒸着するような構造であっても良
い。このように、蒸着法で作製すると、三者間の接着強
度が大きくなるという利点もある。
The adhesive is not limited to the urethane-based adhesive, but may be an ethylene-butadiene copolymer adhesive or the like. Further, the structure of the bipolar current collecting member 11 having a three-layer structure is not limited to the method in which the current collectors are bonded to one surface of the insulating film as described above, but may be one of the insulating films. A structure in which aluminum is deposited on one surface and copper is deposited on the other surface may be used. As described above, the production by the vapor deposition method has an advantage that the adhesive strength between the three members is increased.

【0026】加えて、正極集電体12、負極集電体1
4、及び絶縁膜13の厚みは上記の厚みに限定されるも
のではない。但し、両集電体12・14においては、正
極タブ8と負極タブ9とをそれぞれ超音波溶接する際
に、両集電体12・14に破れが発生するのを防止する
必要がある。したがって、正極集電体12は4μm以
上、負極集電体14は3μm以上であることが望まし
い。一方、両集電体12・14を余り厚くすると体積エ
ネルギー密度や重量エネルギー密度の向上を図れない。
したがって、両集電体12・14の厚みは5μm以下で
あることが望ましい。尚、正極集電体12の厚みの下限
が負極集電体14の厚みの下限よりも大きくなっている
のは、正極集電体12はアルミニウムから成るため強度
が小さく、それに対応して厚くする必要があるというこ
と、及びアルミニウムは比重が小さいため、厚くしても
重量エネルギー密度が余り低下しないという理由による
ものである。一方、絶縁膜13を余り薄くすると、両集
電体12・14間でショートが発生したり、絶縁膜13
の引っ張り強度が弱くなるという問題が発生する一方、
余り厚くすると体積エネルギー密度や重量エネルギー密
度の向上を図れない。したがって、絶縁膜13の厚みは
3〜15μmであることが望ましい。
In addition, the positive electrode current collector 12 and the negative electrode current collector 1
4, and the thickness of the insulating film 13 is not limited to the above-described thickness. However, in the current collectors 12 and 14, when the positive electrode tab 8 and the negative electrode tab 9 are each ultrasonically welded, it is necessary to prevent the current collectors 12 and 14 from being broken. Therefore, it is desirable that the positive electrode current collector 12 be 4 μm or more, and the negative electrode current collector 14 be 3 μm or more. On the other hand, if the current collectors 12 and 14 are too thick, the volume energy density and the weight energy density cannot be improved.
Therefore, it is desirable that the thickness of both current collectors 12 and 14 be 5 μm or less. In addition, the reason why the lower limit of the thickness of the positive electrode current collector 12 is larger than the lower limit of the thickness of the negative electrode current collector 14 is that the positive electrode current collector 12 is made of aluminum, so that the strength is small and the thickness is correspondingly increased. This is because aluminum has a low specific gravity, so that even if it is made thicker, the weight energy density does not decrease so much. On the other hand, if the insulating film 13 is too thin, a short circuit may occur between the current collectors 12 and 14 or the insulating film 13
While the problem that the tensile strength of
If the thickness is too large, the volume energy density and the weight energy density cannot be improved. Therefore, it is desirable that the thickness of the insulating film 13 is 3 to 15 μm.

【0027】また、本発明に用いられる電解液の溶媒と
しては上記のものに限らず、例えばエチレンカーボネー
トとジメチルカーボネート、エチルメチルカーボネー
ト、テトラヒドロフラン、1,2−ジメトキシエタン、
1,3−ジオキソラン、2−メトキシテトラヒドロフラ
ン、ジエチルエーテル等の低粘度低沸点溶媒とを適度な
比率で混合した溶媒を用いることができる。
The solvent of the electrolytic solution used in the present invention is not limited to the above-mentioned ones. For example, ethylene carbonate and dimethyl carbonate, ethyl methyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane,
A solvent obtained by mixing a low-viscosity, low-boiling solvent such as 1,3-dioxolan, 2-methoxytetrahydrofuran, diethyl ether or the like at an appropriate ratio can be used.

【0028】更に、電解液の溶質としては、上記LiP
6 に限定するものではなく、LiBF4 、LiClO
4 、LiN(SO2 2 5 2 、LiPF3 (C2
5 3 、等を用いることができ、また、その量も1mo
l/lに限定するものではない。
Further, as the solute of the electrolytic solution, the above-mentioned LiP
F6Is not limited to LiBFFour, LiClO
Four, LiN (SOTwoCTwoFFive)Two, LiPFThree(CTwoF
Five) Three, Etc. can be used, and the amount thereof is 1 mo.
It is not limited to 1 / l.

【0029】加えて、正極活物質としては、上記LiC
oO2 に限定するものではなく、LiMn2 4 、Li
NiO2 等であっても良い。また、外装体としてはアル
ミラミネート外装体に限定するものではなく、SUSか
ら成る外装缶、或いはアルミニウム又はアルミニウム合
金から成る外装缶でも良いことは勿論である。
In addition, the above-mentioned LiC
It is not limited to oO 2 , but LiMn 2 O 4 , Li
NiO 2 or the like may be used. Further, the exterior body is not limited to the aluminum laminate exterior body, but may be an exterior can made of SUS or an exterior can made of aluminum or an aluminum alloy.

【0030】[0030]

【実施例】(第1実施例) 〔実施例1〕実施例1としては、上記第1の形態に示す
両極集電部材を用いた。このような構造の両極集電部材
を、以下、本発明例A1と称する。
EXAMPLES (First Example) [Example 1] In Example 1, the bipolar current collector shown in the first embodiment was used. The bipolar current collector having such a structure is hereinafter referred to as Invention Example A1.

【0031】〔実施例2〜7〕両極集電部材11の厚み
を、それぞれ、6μm、8μm、10μm、15μm、
20μm、及び25μmとする他は、上記実施例1と同
様にして両極集電部材を作製した。このようにして作製
した両極集電部材を、以下、それぞれ本発明例A2〜A
6と称する。
[Embodiments 2 to 7] The thickness of the bipolar current collecting member 11 was 6 μm, 8 μm, 10 μm, 15 μm,
A bipolar current collector was produced in the same manner as in Example 1 except that the thickness was set to 20 μm and 25 μm. The bipolar current collectors thus produced are hereinafter referred to as Examples A2 to A of the present invention, respectively.
No. 6.

【0032】〔比較例1〜7〕両極集電部材の代わり
に、アルミニウムから成り、厚みがそれぞれ、5μm、
6μm、8μm、10μm、12μm、15μm、20
μmの正極集電体を用いた。このような正極集電体を、
以下、それぞれ比較例X1〜X7と称する。
[Comparative Examples 1 to 7] Instead of the bipolar current collecting members, each was made of aluminum and had a thickness of 5 μm.
6 μm, 8 μm, 10 μm, 12 μm, 15 μm, 20
A μm positive electrode current collector was used. Such a positive electrode current collector,
Hereinafter, these are referred to as Comparative Examples X1 to X7, respectively.

【0033】〔比較例8〜14〕両極集電部材の代わり
に、銅から成り、厚みがそれぞれ、5μm、6μm、8
μm、10μm、12μm、15μm、20μmの負極
集電体を用いた。このような負極集電体を、以下、それ
ぞれ比較例X8〜X14と称する。
[Comparative Examples 8 to 14] Instead of the bipolar current collecting members, they were made of copper and had thicknesses of 5 μm, 6 μm and 8 μm, respectively.
A negative electrode current collector of μm, 10 μm, 12 μm, 15 μm, and 20 μm was used. Such negative electrode current collectors are hereinafter referred to as Comparative Examples X8 to X14, respectively.

【0034】〔実験1〕上記本発明例A1〜A7及び比
較例X1〜X14における引っ張り強度を測定したの
で、その結果を表1〜表3に示す。尚、引っ張り強度の
試験は、正負極活物質塗布時或いは圧延時において、ロ
ール状のものを連続的に機械で処理する際に、最低限必
要とされる強度(具体的には、3.5kgf/cm)を
限界点とし、当該強度における箔切れの有無及びシワの
有無について調べた。
[Experiment 1] The tensile strengths of the inventive examples A1 to A7 and comparative examples X1 to X14 were measured, and the results are shown in Tables 1 to 3. The test of the tensile strength is the minimum required strength (specifically, 3.5 kgf) when the rolled material is continuously processed by a machine at the time of coating or rolling the positive and negative electrode active materials. / Cm) as a limit point, the presence or absence of foil breakage and the presence or absence of wrinkles at the strength were examined.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表1〜表3から明らかなように、アルミニ
ウムから成る正極集電体と銅から成る負極集電体を用い
た従来の電池においては、正極集電体(比較例X1〜X
7)の厚みが15μm未満であると箔切れやシワが生
じ、また負極集電体(比較例X8〜X14)の厚みが1
2μm未満であると箔切れやシワが生じる。したがっ
て、従来の電池では、両集電体の厚みの合計が27μm
以上必要となる。これに対して、3層構造の両極集電部
材を用いた本発明の電池では、両極集電部材の厚みが6
μmでも箔切れやシワが生じないことが認められる。
As is clear from Tables 1 to 3, in a conventional battery using a positive electrode current collector made of aluminum and a negative electrode current collector made of copper, a positive electrode current collector (Comparative Examples X1 to X
If the thickness of 7) is less than 15 μm, foil breakage or wrinkling occurs, and the thickness of the negative electrode current collector (Comparative Examples X8 to X14) is 1
If it is less than 2 μm, the foil may be broken or wrinkled. Therefore, in the conventional battery, the total thickness of both current collectors is 27 μm
This is necessary. On the other hand, in the battery of the present invention using the bipolar current collector having a three-layer structure, the thickness of the bipolar current collector is 6 mm.
It is recognized that foil breakage and wrinkles do not occur even at μm.

【0039】〔実験2〕上記本発明例A1〜A7及び比
較例X1〜X14の集電体(両極集電部材)に、実際に
正極活物質、負極活物質を塗布し、更にロール式圧縮機
を用いて圧延し、シワの有無及び箔切れの有無について
調べたので、その結果を表4〜表6に示す。
[Experiment 2] A positive electrode active material and a negative electrode active material were actually applied to the current collectors (bipolar current collectors) of Examples A1 to A7 of the present invention and Comparative Examples X1 to X14. And the presence or absence of wrinkles and the presence or absence of foil breakage were examined. The results are shown in Tables 4 to 6.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】表4〜表6から明らかなように、正極集電
体(比較例X1〜X7)の厚みが15μm未満であると
箔切れやシワが生じ、また負極集電体(比較例X8〜X
14)の厚みが12μm未満であると箔切れやシワが生
じる。したがって、従来の電池では、両集電体の厚みの
合計が27μm以上必要となる。
As is clear from Tables 4 to 6, when the thickness of the positive electrode current collector (Comparative Examples X1 to X7) is less than 15 μm, the foil is cut or wrinkled, and the negative electrode current collector (Comparative Examples X8 to X7). X
If the thickness of 14) is less than 12 μm, foil breaks and wrinkles occur. Therefore, in the conventional battery, the total thickness of both current collectors needs to be 27 μm or more.

【0044】これに対して、3層構造の両極集電部材を
用いた本発明の電池では、両極集電部材の厚みが6μm
(本発明例A2)では箔切れが生じたりシワが生じるこ
とがあり、また両極集電部材の厚みが8μm(本発明例
A3)ではシワが生じることが時々あるが、両極集電部
材の厚みが10μm以上(本発明例A1、本発明例A4
〜A7)では箔切れが生じたりシワが生じることがな
い。
On the other hand, in the battery of the present invention using the bipolar current collector having a three-layer structure, the thickness of the bipolar current collector is 6 μm.
(Example A2 of the present invention) may cause foil breakage or wrinkles. If the thickness of the bipolar current collecting member is 8 μm (example A3 of the present invention), wrinkles may occasionally occur. Is 10 μm or more (Example A1 of the invention, Example A4 of the invention)
In ~ A7), foil breakage or wrinkling does not occur.

【0045】上記実験1及び実験2から明らかなよう
に、本発明の電池では、引っ張り強度を維持しつつ、電
池反応には直接寄与しない両集電体の厚みを小さくする
ことができるので、体積エネルギー密度や重量エネルギ
ー密度の向上を図ることができる。
As is clear from the above Experiments 1 and 2, in the battery of the present invention, while maintaining the tensile strength, the thickness of both current collectors that do not directly contribute to the battery reaction can be reduced, so that the volume of the battery can be reduced. Energy density and weight energy density can be improved.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
両集電体の強度低下を防止しつつ薄型化すると共に、負
極活物質の過剰分を短くし、且つセパレータの巻回方向
の長さを小さくすることができるので、体積エネルギー
密度と重量エネルギー密度とを飛躍的に向上することが
できるといった優れた効果を奏する。
As described above, according to the present invention,
Both the current collectors can be made thin while preventing the strength from decreasing, and the excess amount of the negative electrode active material can be shortened, and the length in the winding direction of the separator can be reduced. And an excellent effect that it can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解質電池の正面図。FIG. 1 is a front view of a nonaqueous electrolyte battery according to the present invention.

【図2】図1のA−A線矢視断面図。FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】本発明に係る非水電解質電池に用いられる正負
極の説明図。
FIG. 3 is an explanatory diagram of positive and negative electrodes used in the nonaqueous electrolyte battery according to the present invention.

【図4】本発明に係る非水電解質電池に用いられる発電
要素の説明図。
FIG. 4 is an explanatory diagram of a power generation element used in the nonaqueous electrolyte battery according to the present invention.

【図5】ラミネート外装体の断面図。FIG. 5 is a cross-sectional view of a laminate exterior body.

【図6】従来例に係る非水電解質電池に用いられる発電
要素の説明図。
FIG. 6 is an explanatory diagram of a power generation element used in a nonaqueous electrolyte battery according to a conventional example.

【符号の説明】[Explanation of symbols]

11:両極集電部材 12:正極集電体 13:絶縁膜 14:負極集電体 15:正極活物質 16:負極活物質 11: Bipolar current collector 12: Positive current collector 13: Insulating film 14: Negative current collector 15: Positive active material 16: Negative active material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 AS01 CC01 EE01 EE05 5H029 AJ03 AK03 AL06 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ07 HJ04 HJ12 5H050 AA08 BA17 CA08 CA09 CB07 EA09 EA24 EA25 FA02 FA03 HA04 HA12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nori Ikukawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H017 AA03 AS01 CC01 EE01 EE05 5H029 AJ03 AK03 AL06 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ07 HJ04 HJ12 5H050 AA08 BA17 CA08 CA09 CB07 EA09 EA24 EA25 FA02 FA03 HA04 HA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質と負極活物質とが、セパレー
タを介して巻回される構造の発電要素を備えた非水電解
質電池において、 絶縁膜と、この絶縁膜の一方の面に固着された正極集電
体と、上記絶縁膜の他方の面に固着された負極集電体と
から成る3層構造の両極集電部材を有し、且つ、上記正
極集電体には上記正極活物質が塗着され、上記負極集電
体には負極活物質が塗着されていることを特徴とする非
水電解質電池。
1. A non-aqueous electrolyte battery provided with a power generating element having a structure in which a positive electrode active material and a negative electrode active material are wound via a separator, wherein the non-aqueous electrolyte is fixed to one surface of the insulating film. And a negative electrode current collector fixed to the other surface of the insulating film. The positive electrode current collector has a three-layer structure, and the positive electrode current collector includes , And a negative electrode active material is coated on the negative electrode current collector.
【請求項2】 上記絶縁膜は樹脂から成る、請求項1記
載の非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein said insulating film is made of a resin.
【請求項3】 上記正極集電体はアルミニウム箔から成
り、上記負極集電体は銅箔から成る、請求項1又は2記
載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode current collector is made of an aluminum foil, and the negative electrode current collector is made of a copper foil.
【請求項4】 上記3層構造の両極集電部材の厚みが1
0μm以上25μm以下である、請求項1、2又は3記
載の非水電解質電池。
4. The thickness of the bipolar current collecting member having a three-layer structure is 1
The non-aqueous electrolyte battery according to claim 1, 2 or 3, wherein the thickness is from 0 µm to 25 µm.
【請求項5】 上記正極活物質がリチウム含有複合酸化
物から成る、請求項1、2、3又は4記載の非水電解質
電池。
5. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode active material comprises a lithium-containing composite oxide.
【請求項6】 上記負極活物質がリチウムイオンを吸
蔵、放出し得る炭素材料から成る、請求項1、2、3、
4又は5記載の非水電解質電池。
6. The method according to claim 1, wherein the negative electrode active material comprises a carbon material capable of occluding and releasing lithium ions.
6. The non-aqueous electrolyte battery according to 4 or 5.
JP2000261724A 2000-08-30 2000-08-30 Nonaqueous electrolyte cell Pending JP2002075456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261724A JP2002075456A (en) 2000-08-30 2000-08-30 Nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261724A JP2002075456A (en) 2000-08-30 2000-08-30 Nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JP2002075456A true JP2002075456A (en) 2002-03-15

Family

ID=18749516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261724A Pending JP2002075456A (en) 2000-08-30 2000-08-30 Nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JP2002075456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662723A (en) * 2012-07-06 2015-05-27 橙力电池株式会社 Electrode assembly, battery comprising same, and method for manufacturing same
WO2021192256A1 (en) * 2020-03-27 2021-09-30 Tdk株式会社 Electrode body, electricity storage element, and electricity storage module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662723A (en) * 2012-07-06 2015-05-27 橙力电池株式会社 Electrode assembly, battery comprising same, and method for manufacturing same
JP2015528180A (en) * 2012-07-06 2015-09-24 オレンジ パワー リミテッド Electrode assembly, battery including the same, and manufacturing method thereof
WO2021192256A1 (en) * 2020-03-27 2021-09-30 Tdk株式会社 Electrode body, electricity storage element, and electricity storage module
JPWO2021192256A1 (en) * 2020-03-27 2021-09-30
JP7332034B2 (en) 2020-03-27 2023-08-23 Tdk株式会社 Electrode body, power storage element and power storage module

Similar Documents

Publication Publication Date Title
US20230085545A1 (en) Current collector and preparation method and application thereof
US8197969B2 (en) Anode and battery
JPH10189050A (en) Lithium ion battery
WO2020168879A1 (en) Pole piece, cell and battery
JP2019096476A (en) Series laminate type all-solid battery
JP2001176482A (en) Nonaqueous electrolyte secondary battery
JPH09293537A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JP3338071B2 (en) Battery
US20050058896A1 (en) Non-aqueous electrolyte secondary battery
JP4245205B2 (en) Non-aqueous electrolyte battery
CN107275669A (en) Lithium secondary battery
JP4245429B2 (en) Battery with spiral electrode group
JP2019110092A (en) All-solid battery and its manufacturing method
JPH11260414A (en) Nonaqueous system secondary battery
JP2011076740A (en) Wound electrode group and battery using the same, and manufacturing method of battery
JP3544889B2 (en) Sealed battery
CN216120663U (en) Secondary battery's electric core and secondary battery
CN212434666U (en) Anode plate and lithium ion battery
WO2022051914A1 (en) Electrochemical device and electronic device
JP2002075456A (en) Nonaqueous electrolyte cell
JP2000285902A (en) Battery
CN113728474A (en) Electrochemical device and electronic device
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2004127599A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207