JP2002069689A - Method for electroplating on powder - Google Patents

Method for electroplating on powder

Info

Publication number
JP2002069689A
JP2002069689A JP2000257443A JP2000257443A JP2002069689A JP 2002069689 A JP2002069689 A JP 2002069689A JP 2000257443 A JP2000257443 A JP 2000257443A JP 2000257443 A JP2000257443 A JP 2000257443A JP 2002069689 A JP2002069689 A JP 2002069689A
Authority
JP
Japan
Prior art keywords
powder
plating
electroplating
plated
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000257443A
Other languages
Japanese (ja)
Inventor
Hitoshi Ihara
仁史 井原
Tsukasa Sakakibara
司 榊原
Yoshinori Kusunoki
義則 楠
Masabumi Nomura
正文 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Yuken Kogyo Co Ltd
Original Assignee
Yuken Industry Co Ltd
Yuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd, Yuken Kogyo Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP2000257443A priority Critical patent/JP2002069689A/en
Publication of JP2002069689A publication Critical patent/JP2002069689A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new electroplating method which enables electroplating even on fine powder with a particle size 50 μm or less with a simple apparatus and operation. SOLUTION: This method comprises circulating a plating liquid 3 in which powder 2 is suspended, between two sheets of electrode plates 11 and 12 in an electroplating both 1, and passing an alternating current between the electrode plates. When the flowing current density becomes high, electrodeposition to a substance to be plated becomes predominant over dissolution through a bipolar phenomenon, and the powder is uniformly electroplated by means of taking an advantage of the bipolar phenomenon, without applying direct current to the powder. The powder may be either conductive powder such as metal powder or insulator powder such as of a resin plated in an electroless process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒径50μm以下と
いった、遠心力の作用が及ばない微細な粉末にも適用で
きる、粉末の電気めっき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electroplating powder which can be applied to fine powder having a particle diameter of 50 .mu.m or less and not affected by centrifugal force.

【0002】[0002]

【従来の技術】粉末のめっきには無電解めっきを利用す
ることが多い。めっき液中の被めっき物を陰極として機
能させ、これに直接通電する必要がある電気めっきの場
合、めっき液中の粉末を、均一なめっきが可能となるよ
うに動かしながら、粉末の全粒子に通電することが困難
であるためである。
2. Description of the Related Art Electroless plating is often used for powder plating. In the case of electroplating in which the object to be plated in the plating solution functions as a cathode and it is necessary to directly energize this, the powder in the plating solution is moved to all the particles of the powder while moving so as to enable uniform plating. This is because it is difficult to energize.

【0003】しかし、無電解めっき法、例えば置換めっ
きでは、現実的なめっき時間で形成できるめっき皮膜は
非常に薄く、またピンホール等の欠陥のない連続皮膜を
形成することは実質的に不可能である。従って、例え
ば、このめっき皮膜に被めっき物に対する保護皮膜
(例、酸化防止皮膜) の機能をもたせる場合、無電解め
っき皮膜では被めっき物を十分に保護することができな
い。従って、粉末についても、欠陥のない所望の厚みの
めっき皮膜を形成できるように、電気めっきを施すこと
が求められている。
However, in an electroless plating method, for example, displacement plating, a plating film that can be formed in a practical plating time is extremely thin, and it is substantially impossible to form a continuous film without defects such as pinholes. It is. Therefore, for example, this plating film has a protective film
When the function of (for example, an antioxidant film) is provided, the object to be plated cannot be sufficiently protected by the electroless plating film. Therefore, it is required that the powder be subjected to electroplating so that a plating film having a desired thickness without defects can be formed.

【0004】また、無電解めっき法のうちの化学めっき
では、還元剤を用いるため厚くつけることは出来るが、
還元剤中の成分にリンやホウ素が共析し、皮膜の柔軟性
が悪くなる、あるいは皮膜の電気伝導性が悪くなるなど
の欠点がある。
[0004] In chemical plating of the electroless plating method, a reducing agent is used, so that it can be thickened.
There are disadvantages such as phosphorus and boron being eutectoid in the components in the reducing agent, resulting in poor flexibility of the film or poor electric conductivity of the film.

【0005】粉末の電気めっき方法として、粉末をめっ
き槽内の電気めっき液中に懸濁させ、めっき槽を高速回
転させて、粉末を遠心力によりめっき槽の壁面に接触さ
せることにより粉末に通電し、電気めっきを行う方法が
知られている。回転方向を時々反転させて、粉末をばら
すことにより、粉末に均一に電気めっきを施すことがで
きる。この方法は、粒径が50〜100 μm程度の粉末に適
している。それより平均粒径の大きな粉末は、例えば、
粉末を有孔回転バレルに収容して電気めっきを行うバレ
ルめっき法により電気めっきを行うことができる。
[0005] As a method of electroplating powder, the powder is suspended in an electroplating solution in a plating tank, the plating tank is rotated at a high speed, and the powder is brought into contact with the wall surface of the plating tank by centrifugal force to energize the powder. Then, a method of performing electroplating is known. The powder can be evenly electroplated by occasionally reversing the direction of rotation and dispersing the powder. This method is suitable for powder having a particle size of about 50 to 100 μm. A powder having a larger average particle size is, for example,
Electroplating can be performed by a barrel plating method in which the powder is accommodated in a perforated rotary barrel and electroplating is performed.

【0006】しかし、粉末の粒径が50μm以下と微細に
なると、遠心力が作用しにくくなるので、高速回転させ
ても粉末をめっき槽の壁面に接触させることが困難とな
り、通電を確保することができない。
However, if the particle size of the powder is as fine as 50 μm or less, centrifugal force is less likely to act, so that it is difficult to bring the powder into contact with the wall surface of the plating tank even at high-speed rotation, and it is necessary to secure the power supply. Can not.

【0007】粒径50μm以下の微細な粉末の電気めっき
方法についても、これまでにいくつかの提案はあるが、
例えば、陰極室と陽極室を隔膜で分離し、陰極室に粉末
を循環導入するといった、複雑な装置および操作を必要
とすることが多く、工業化に成功している例はほとんど
ない。
There have been several proposals for electroplating of fine powder having a particle size of 50 μm or less.
For example, a complicated apparatus and operation such as separating a cathode chamber and an anode chamber by a diaphragm and circulating and introducing powder into the cathode chamber are often required, and there are few examples of successful industrialization.

【0008】特開平1−272982号公報には、粉末を懸濁
させためっき液を陰極だけに衝突させて、粉末をマイナ
スに帯電させ、めっき液中のプラスの金属イオンを吸着
させる粉末の電気めっき方法が提案されている。しか
し、この方法は、粉末をマイナスに帯電させる操作が難
しく、また効率的ではない。
[0008] Japanese Patent Application Laid-Open No. 1-272982 discloses that a plating solution in which a powder is suspended is caused to collide only with a cathode to negatively charge the powder and to adsorb positive metal ions in the plating solution. A plating method has been proposed. However, this method is difficult and inefficient in the operation of charging the powder negatively.

【0009】特開平10−324992号公報には、磁気を利用
して金属粉末を陰極に引き寄せて通電することにより、
バイポーラ現象を防止して均一に粉末に電気めっきを施
す方法が提案されている。この方法は、磁性を有する金
属粉末にしか適用することができない。
Japanese Patent Application Laid-Open No. Hei 10-324992 discloses that a metal powder is attracted to a cathode by using magnetism to conduct electricity.
There has been proposed a method of uniformly electroplating powder while preventing the bipolar phenomenon. This method can be applied only to magnetic metal powder.

【0010】[0010]

【発明が解決しようとする課題】本発明は、単純かつ簡
単な操作で、金属や樹脂を含む多様な材質からなる、粒
径50μm以下といった微細な粉末に電気めっきを施すこ
とができる、粉末の電気めっき方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention is directed to a method of electroplating fine powder having a particle size of 50 μm or less, which is made of various materials including metals and resins, with a simple and simple operation. An electroplating method is provided.

【0011】[0011]

【課題を解決するための手段】被めっき物を陰極として
電気めっきするのではなく、これを陽極と陰極との間に
両極から離間配置して電気めっきする場合に、バイポー
ラ現象がみられることはよく知られている。
When an object to be plated is not electroplated as a cathode but electroplated by disposing the object between an anode and a cathode from both electrodes, a bipolar phenomenon is observed. well known.

【0012】ここに、バイポーラ現象とは、被めっき物
の陽極を向いた側がマイナス極になって、この部分で金
属の電着 (めっき) が起こり、反対に陰極を向いた側は
プラス極となり、金属の溶解が起こる現象のことであ
る。
Here, the bipolar phenomenon means that the side of the object to be plated facing the anode becomes a negative pole, electrodeposition (plating) of metal occurs at this part, and the side facing the cathode becomes the positive pole. Is a phenomenon in which metal dissolution occurs.

【0013】めっき液は被めっき物に比べて抵抗が大き
く、電位勾配を生ずるのに対し、被めっき物は抵抗が小
さく、全体がほぼ等電位と見なせる。そのため、めっき
液の電位に対して、被めっき物の陽極を向いた側はマイ
ナス電位、陰極を向いた側はプラス電位となり、上記の
バイポーラ現象を生ずるのである。
The plating solution has a higher resistance than the object to be plated and causes a potential gradient, whereas the object to be plated has a lower resistance and can be regarded as having substantially the same potential as a whole. Therefore, with respect to the potential of the plating solution, the side facing the anode of the object to be plated has a negative potential, and the side facing the cathode has a positive potential, and the above-described bipolar phenomenon occurs.

【0014】粉末をめっき液中に懸濁させ、陽極と陰極
との間を通電する場合には、懸濁している個々の被めっ
き粒子において、上記のバイポーラ現象が起こり、粉末
表面の一方の側で電着が、反対側では既に電着しためっ
き金属の溶解が起こる。
When a powder is suspended in a plating solution and a current is passed between an anode and a cathode, the above-described bipolar phenomenon occurs in each suspended particle to be plated, and one side of the powder surface is generated. Electrodeposition, and dissolution of the already electrodeposited plating metal occurs on the opposite side.

【0015】このバイポーラ現象は、電気めっきにおい
ては、めっき皮膜の不均一化を生ずるなど、好ましくな
い現象とされてきた。例えば、前述した特開平10−3249
92号では、めっき液中の懸濁している粉末を磁気を利用
して陰極に引き寄せることで、粉末を陰極にして電気め
っきを行い、バイポーラ現象を防止している。
This bipolar phenomenon has been considered to be an unfavorable phenomenon in electroplating, for example, the plating film becomes uneven. For example, as described in JP-A-10-3249,
In No. 92, the powder suspended in the plating solution is attracted to the cathode using magnetism, so that electroplating is performed using the powder as the cathode to prevent the bipolar phenomenon.

【0016】本発明者らは、通電する電流密度が大きく
なると、このバイポーラ現象で起こる電着を利用して、
粉末を良好に電気めっきすることができることを見いだ
した。つまり、従来は電気めっきにとって望ましくない
現象であって、防止すべきであると考えられてきたバイ
ポーラ現象を、逆に電気めっきに利用することができる
のである。
The present inventors utilize the electrodeposition that occurs due to the bipolar phenomenon when the current density to be applied increases,
It has been found that the powder can be electroplated well. In other words, the bipolar phenomenon, which was previously considered undesirable for electroplating and should be prevented, can be used for electroplating.

【0017】バイポーラ現象により粉末を電気めっきで
きれば、粉末への直接通電が不要となり、直接通電を確
保するための遠心力の付与といった手段がいらなくな
る。即ち、陰極と陽極となる対向電極を備えためっき槽
中に粉末を懸濁させるだけで、粉末を電気めっきできる
ようになり、簡便なめっき設備および操作で粉末の電気
めっきが可能となる。
If the powder can be electroplated by the bipolar phenomenon, direct energization of the powder is not required, and there is no need to provide a means for applying a centrifugal force to ensure direct energization. That is, the powder can be electroplated only by suspending the powder in a plating tank having a counter electrode serving as a cathode and an anode, and the electroplating of the powder can be performed with simple plating equipment and operation.

【0018】本発明は、陽極と陰極との間で電気めっき
液中に懸濁させた粉末に対して、粉末に直接通電せず
に、バイポーラ現象を利用して電気めっきを施すことを
特徴とする、粉末の電気めっき方法である。
The present invention is characterized in that a powder suspended in an electroplating solution between an anode and a cathode is subjected to electroplating by utilizing a bipolar phenomenon without directly supplying electricity to the powder. This is a method of electroplating powder.

【0019】本発明の電気めっきの原理を、図1を参照
して説明する。図1は、本発明にかかるバイポーラ電気
メッキの原理の模式的説明図である。これらの図に示す
ように、陽極と陰極との間のめっき液中に懸濁している
被めっき粒子が存在している状態で両極間に通電する
と、めっき液中を矢印のように電流が流れる。この時
に、前述しためっき液と被めっき粒子との電気抵抗の差
によるバイポーラ現象が起こり、粒子の陽極を向いた側
はマイナス極、陰極を向いた側がプラス極となって、バ
イポーラ電流が流れる。そのため、マイナス極となる粒
子の陽極を向いた側では、陰極と同様に、めっき液中の
金属イオンが還元され、電着が起こる。つまり、陰極上
で電着が起こるのと同時に、粒子の陽極を向いた側でも
電着が起こる。
The principle of the electroplating of the present invention will be described with reference to FIG. FIG. 1 is a schematic illustration of the principle of bipolar electroplating according to the present invention. As shown in these figures, when current is applied between the two electrodes in the presence of particles to be plated suspended in the plating solution between the anode and the cathode, a current flows through the plating solution as indicated by the arrow. . At this time, a bipolar phenomenon occurs due to a difference in electric resistance between the plating solution and the particles to be plated, and a bipolar electrode flows with the negative electrode facing the anode and the positive electrode facing the cathode. Therefore, on the side of the negative electrode particles facing the anode, the metal ions in the plating solution are reduced as in the case of the cathode, and electrodeposition occurs. That is, at the same time as electrodeposition occurs on the cathode, electrodeposition also occurs on the side of the particles facing the anode.

【0020】一方、プラス極なる被めっき粒子の陰極を
向いた側では、酸化反応が起こり、既にめっきされた金
属が溶解してしまう。しかし、そのときの析出量>溶解
量の場合その差が電析量としてめっきされる。そのた
め、バイポーラ現象を利用して粉末表面に金属を電着さ
せ、電気めっきを施すことができる。以下、本発明の電
気めっき方法をバイポーラめっきと呼ぶこともある。
On the other hand, an oxidation reaction occurs on the side of the positively-plated particles facing the cathode, which dissolves the already-plated metal. However, if the amount of precipitation at that time> the amount of dissolution, the difference is plated as the amount of electrodeposition. Therefore, a metal can be electrodeposited on the powder surface by utilizing the bipolar phenomenon, and electroplating can be performed. Hereinafter, the electroplating method of the present invention may be referred to as bipolar plating.

【0021】バイポーラ現象では、被めっき粒子の片側
でしか電着が起こらないが、めっき液中の被めっき粒子
を流動により回転させる (例、図1に示すように1方向
にめっき液を流動させるか、めっき液を攪拌させる)
か、および/または電流を交番電流にして、周期的に電
流の向きを反転させれば、被めっき粒子の表面全体を実
質的に均一に金属被覆することができる。
In the bipolar phenomenon, although electrodeposition occurs only on one side of the particles to be plated, the particles to be plated in the plating solution are rotated by flow (for example, the plating solution is caused to flow in one direction as shown in FIG. 1). Or let the plating solution stir)
If the direction of the current is periodically inverted by setting the current to an alternating current and / or the current can be changed, the entire surface of the particles to be plated can be substantially uniformly metal-coated.

【0022】[0022]

【発明の実施の形態】本発明のバイポーラめっき法を実
施するのに使用できる電気めっき装置の1例を図2に模
式的に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 schematically shows an example of an electroplating apparatus which can be used to carry out the bipolar plating method of the present invention.

【0023】本発明を実施するために装置は、めっき液
に被めっき物11を分散させ電解槽10へ送るためのメッキ
液槽12と、通電用の電極16と隔壁18の間にめっき液13を
供給するためのメッキ液槽14と、電解を行うための電解
槽10の三つからなる。
In order to carry out the present invention, the apparatus comprises a plating solution tank 12 for dispersing an object 11 to be plated in a plating solution and sending it to an electrolytic cell 10, and a plating solution 13 between a current-carrying electrode 16 and a partition wall 18. And an electrolytic bath 10 for performing electrolysis.

【0024】メッキ液槽12は被めっき物11の投入、取り
出し、薬液の補給と被めっき物の分散供給を目的として
いる。電解槽10は電極16と隔壁18にはさまれた空間にメ
ッキ液槽14から供給されためっき液が流れ、隔壁にはさ
まれた空間にめっき液と被めっき物が分散されためっき
液槽12からのめっき液が流れる。
The plating solution tank 12 is intended to supply and take out the object 11 to be plated, to replenish the chemical solution, and to supply the object to be dispersed in a distributed manner. The plating bath supplied from the plating bath 14 flows into the space between the electrode 16 and the partition 18 in the electrolytic bath 10, and the plating bath and the plating object are dispersed in the space between the partition walls. The plating solution from 12 flows.

【0025】電極16が被めっき物20を含む液と隔壁18で
分離されている理由は、被めっき物11が電極に接触し、
電極皮膜中に取り込まれるのを防ぐためと電極上に析出
した皮膜が脱離して不純物が混入するのを防ぐためであ
り、本例では隔壁として多孔質膜を用いているがイオン
交換膜を用いても良い。
The reason why the electrode 16 is separated from the liquid containing the plating object 20 by the partition wall 18 is that the plating object 11 comes into contact with the electrode,
This is to prevent the film deposited on the electrode from being taken into the electrode film and to prevent the film deposited on the electrode from desorbing and mixing in impurities.In this example, the porous membrane is used as the partition, but the ion exchange membrane is used. May be.

【0026】通電用めっき液槽14は電極への通電用の液
を供給するためのものであるが、同時に電極から出る脱
落皮膜の除去にも用いる。しかし、隔壁にイオン交換膜
を用いれば、めっき液ではなく電解液を用いることがで
き、交番電源を用いる必要もなくなる。
The plating bath for current supply 14 is for supplying a current for supplying current to the electrode, and is also used for removing the falling-off film from the electrode. However, if an ion exchange membrane is used for the partition, an electrolytic solution can be used instead of a plating solution, and it is not necessary to use an alternating power supply.

【0027】バイポーラ電気めっきを行うに際しては、
対向電極16a 、16b に整流器から電流を流して両極間を
通電する。通電する電流は、交番電流とすることが好ま
しい。
When performing bipolar electroplating,
A current is passed from the rectifier to the opposing electrodes 16a and 16b to conduct electricity between both electrodes. It is preferable that the current to be passed is an alternating current.

【0028】図2に示すように、バイポーラめっきで
は、バイポーラ現象によって両極間に存在する粉末粒子
に電着が起こるのと同時に、陰極でも電着が起こり、め
っき金属が陰極に析出する。交番電流を通電すれば、そ
の電極が陰極であった時に陰極表面に析出しためっき金
属を、次にその電極が陽極となった時に溶解させ、めっ
き液中に戻すことができ、めっき成分 (金属イオン) を
有効利用でき、バイポーラめっきの収率が向上する。
As shown in FIG. 2, in the bipolar plating, the electrodeposition occurs at the cathode simultaneously with the electrodeposition of the powder particles existing between the two electrodes due to the bipolar phenomenon, and the plating metal is deposited on the cathode. When an alternating current is applied, the plating metal deposited on the surface of the cathode when the electrode is the cathode can be dissolved when the electrode next becomes the anode, and can be returned to the plating solution. ) Can be used effectively, and the yield of bipolar plating is improved.

【0029】交番電流を通電する場合、その周波数は1
〜200 サイクル/分の範囲が適当である。周波数が大き
すぎると、1サイクル中にバイポーラめっきによる電着
が十分に起こらず、電着効率が低下する。周波数が小さ
すぎると、電極に付着した金属が応力で脱落し溶解イオ
ンとして有効に利用できなくなる。
When an alternating current is applied, its frequency is 1
A range of ~ 200 cycles / min is appropriate. If the frequency is too high, electrodeposition by bipolar plating does not sufficiently occur during one cycle, and the electrodeposition efficiency decreases. If the frequency is too low, the metal adhering to the electrode will fall off due to stress and cannot be used effectively as dissolved ions.

【0030】こうして所定のめっき厚みが得られるま
で、交番電流の通電を維持しながら、粉末を懸濁させた
めっき液をめっき槽に循環流通させる。1回の循環で得
られるめっき付着量は、めっき液の流速、電流密度、め
っき液濃度、懸濁粉末量、浴温などのめっき条件により
変化する。
Until the predetermined plating thickness is obtained, the plating solution in which the powder is suspended is circulated through the plating tank while the alternating current is maintained. The deposition amount of plating obtained by one circulation changes depending on plating conditions such as the flow rate of plating solution, current density, plating solution concentration, amount of suspended powder, and bath temperature.

【0031】粉末を懸濁させためっき液をポンプで電解
槽を循環流通させる代わりに、電解槽内に適当な攪拌手
段 (例、機械的攪拌手段、超音波等) を設けて、粉末を
懸濁状態に保持しつつバイポーラめっきを行うことも可
能である。
Instead of circulating the plating solution in which the powder is suspended and circulating through the electrolytic cell with a pump, an appropriate stirring means (eg, mechanical stirring means, ultrasonic waves, etc.) is provided in the electrolytic tank to suspend the powder. It is also possible to carry out bipolar plating while maintaining the turbid state.

【0032】被めっき物である粉末は、導体粉末と絶縁
体粉末のいずれでもよい。導体粉末の例としては、各種
の金属もしくは合金粉末、炭素粉末 (例、カーボンブラ
ック、黒鉛粉末) 、ITO粉末等がある。絶縁体粉末の
例としては、樹脂、セラミック、ガラス、鉱物等の粉末
が挙げられる。粉末の粒径は特に制限されるものではな
いが、1〜100 μmの範囲が好ましく、特に遠心力を作
用させにくい50μm以下の粒径の粉末に本発明を適用す
ることが有利である。
The powder to be plated may be either a conductor powder or an insulator powder. Examples of the conductor powder include various metal or alloy powders, carbon powder (eg, carbon black, graphite powder), and ITO powder. Examples of the insulator powder include powders of resin, ceramic, glass, mineral, and the like. Although the particle size of the powder is not particularly limited, it is preferably in the range of 1 to 100 μm, and it is particularly advantageous to apply the present invention to powder having a particle size of 50 μm or less, which hardly exerts a centrifugal force.

【0033】被めっき物が絶縁体粉末である場合には、
従来の電気めっきの場合と同様に、予め粉末に無電解め
っきを施して表面に金属層を形成し、粉末を導電性にし
ておく必要がある。粉末の無電解めっきは公知の任意の
方法を利用して実施すればよい。代表的な方法は、必要
に応じて塩化第一錫溶液で処理して粉末表面を活性化し
た後、塩化パラジウム溶液で処理して、粉末表面に金属
還元の触媒となるパラジウムイオンを吸着させた後、め
っき金属イオンおよび還元剤と場合により錯化剤とを含
有する無電解めっき液で処理して、粉末表面で金属を還
元させ、粉末を金属で被覆する方法である。
When the object to be plated is an insulator powder,
As in the case of conventional electroplating, it is necessary to previously apply electroless plating to the powder to form a metal layer on the surface and make the powder conductive. The electroless plating of the powder may be performed using any known method. A typical method was to activate the powder surface by treating it with a stannous chloride solution as necessary, and then treat it with a palladium chloride solution to adsorb palladium ions serving as a metal reduction catalyst on the powder surface. Thereafter, the powder is treated with an electroless plating solution containing a plating metal ion and a reducing agent and, if necessary, a complexing agent to reduce the metal on the powder surface and coat the powder with the metal.

【0034】本発明のバイポーラめっきの前処理として
行う絶縁性粉末の無電解めっきのめっき金属種は、バイ
ポーラめっきする金属種やそのめっき粉末の用途もしく
は機能に応じて適当に選択することができる。例えば、
Cu、Ni、Coなどの金属を無電解めっきすることができ
る。無電解めっきの厚みは、粉末が導電性となればよ
く、特に制限されないが、一般に10nm以上の膜厚とする
ことが好ましい。
The metal type of the electroless plating of the insulating powder to be performed as a pretreatment of the bipolar plating of the present invention can be appropriately selected according to the metal type to be bipolar-plated and the use or function of the plating powder. For example,
Electroless plating of metals such as Cu, Ni, and Co can be performed. The thickness of the electroless plating is not particularly limited as long as the powder becomes conductive, but it is generally preferable that the thickness be 10 nm or more.

【0035】被めっき物の粉末は、必要に応じて、めっ
き液に添加する前に、水洗、脱脂、酸洗等といった表面
清浄化または活性化のための前処理を施すことができ
る。本発明のバイポーラめっきによる電気めっきに適し
ためっき金属としては、これらに制限されないが、Au、
Pt、Ag、Pd、Ni、Co、Sn、CuおよびZnならびにこれらの
合金を挙げることができる。一般に、貴な金属ほどバイ
ポーラめっきが容易である。
Before being added to the plating solution, the powder of the object to be plated can be subjected to a pretreatment for cleaning or activating the surface, such as washing with water, degreasing or pickling, if necessary. Plating metals suitable for electroplating by bipolar plating of the present invention include, but are not limited to, Au,
Pt, Ag, Pd, Ni, Co, Sn, Cu and Zn and alloys thereof can be mentioned. In general, noble metals are easier to bipolar-plate.

【0036】このバイポーラめっきに使用するめっき液
は、基本的には従来の電気めっきに使用されてきたもの
と同じでよく、めっき金属種に応じて適当に選択するこ
とができる。めっきは光沢めっきと非光沢めっきのいず
れでもよい。めっき液は、めっき金属の供給源である水
溶性金属化合物に加え、pH調節剤、錯化剤、光沢剤とい
った各種の電気めっき添加剤の1種もしくは2種以上を
含有しうる。めっき液中のめっき金属イオンの濃度は、
通常の直接通電による電気めっきの場合に比べて低い方
が好ましい。
The plating solution used for the bipolar plating may be basically the same as that used for conventional electroplating, and can be appropriately selected according to the type of plating metal. The plating may be either bright plating or non-glossy plating. The plating solution may contain one or more of various electroplating additives such as a pH adjuster, a complexing agent, and a brightener, in addition to the water-soluble metal compound which is a supply source of the plating metal. The concentration of plating metal ions in the plating solution is
It is preferably lower than in the case of electroplating by ordinary direct energization.

【0037】本発明のバイポーラめっきによる粉末の電
気めっきにおけるめっき厚みは特に制限されないが、0.
01〜1μmの範囲、特に0.01〜0.1 μmの範囲とするこ
とが好ましい。あまり薄いとめっき皮膜が不完全にな
る。厚すぎると、めっきに時間がかかりすぎ、まためっ
き金属によって粉末の特性が損なわれることがある。
The plating thickness in the electroplating of the powder by the bipolar plating of the present invention is not particularly limited.
It is preferably in the range of 01 to 1 μm, particularly preferably in the range of 0.01 to 0.1 μm. If it is too thin, the plating film will be incomplete. If it is too thick, plating takes too long, and the properties of the powder may be impaired by the plated metal.

【0038】本発明による粉末の電気めっき方法の適用
例としては、例えば、銅粉末の電気めっきがある。電気
伝導率の高い銅の粉末は、例えば、導体ペーストや導電
性塗料等に導体粉末もしくは導電性顔料として適用する
のに適しているはずである。しかし、銅は酸化され易
く、粒径50μm以下といった微粉末にすると、粉末表面
の酸化膜のために導電性が著しく損なわれる。そのた
め、導体ペーストの導体粉末としては、銀または銀−パ
ラジウム合金の粉末といった、より高価で化学的に安定
な貴金属粉末が使用されることが多かった。
As an application example of the method for electroplating powder according to the present invention, for example, there is electroplating of copper powder. Copper powder having high electric conductivity should be suitable for application as a conductor powder or a conductive pigment to a conductor paste or a conductive paint, for example. However, copper is easily oxidized, and when it is made into a fine powder having a particle size of 50 μm or less, conductivity is significantly impaired due to an oxide film on the surface of the powder. Therefore, a more expensive and chemically stable noble metal powder such as a silver or silver-palladium alloy powder is often used as the conductor powder of the conductor paste.

【0039】本発明により、銅粉末を、例えば、Ni、A
u、Ag等の酸化に対して安定な金属でめっきすることに
より、めっき皮膜が銅粉末の表面酸化を防止する保護膜
として作用し、銅粉末の表面酸化による導電性の低下を
防止することができる。それにより、粒径が50μmの銅
の微粉末を導体粉末とする導体ペーストが使用可能にな
り、導体ペーストのコストが低下する。
According to the present invention, a copper powder is made of, for example, Ni, A
By plating with a metal that is stable against oxidation such as u and Ag, the plating film acts as a protective film that prevents surface oxidation of the copper powder, and prevents a decrease in conductivity due to surface oxidation of the copper powder. it can. This makes it possible to use a conductor paste that uses copper fine powder having a particle size of 50 μm as the conductor powder, thereby reducing the cost of the conductor paste.

【0040】別の適用例として、本発明の方法により粉
末表面にPtまたはPdといった触媒活性の高い金属を被覆
し、粉末触媒を製造することができる。例えば、セラミ
ックまたは炭素粉末の表面をPtめっきした粉末は、焼結
可能な粉末触媒として、燃料電池の極板として、あるい
は自動車の排ガス浄化用などの目的に使用できる可能性
がある。
As another application example, the powder surface can be coated with a metal having high catalytic activity such as Pt or Pd by the method of the present invention to produce a powder catalyst. For example, a powder obtained by plating the surface of ceramic or carbon powder with Pt may be used as a sinterable powder catalyst, as an electrode of a fuel cell, or for purifying exhaust gas from automobiles.

【0041】その他、従来より主に無電解めっき法によ
り製造されてきた各種のめっき粉末の製造に対して本発
明のめっき方法を適用することができる。本発明によれ
ば、バイポーラめっきという従来とは異なる原理による
電気めっきを利用して、簡便な装置および操作により、
粉末、特に粒径50μm以下の微細な粉末に対して電気め
っきを施すことができ、従来の一般的な粉末めっき法で
あった無電解めっき法に比べて、より完全で厚膜のめっ
き皮膜を粉末表面に短時間に容易に形成することが可能
となる。
In addition, the plating method of the present invention can be applied to the production of various plating powders conventionally produced mainly by electroless plating. According to the present invention, by using a simple apparatus and operation using electroplating based on a principle different from conventional bipolar plating,
Electroplating can be applied to powders, especially fine powders with a particle size of 50 μm or less, and a more complete and thicker plating film can be formed compared to the conventional electroless plating method, which is a general powder plating method. It can be easily formed on the powder surface in a short time.

【0042】本発明にかかるバイポーラ電気メッキによ
り、例えば金粉末およびNi粉末がめっきされることは、
日本電子製走査型電子顕微鏡でのSEM 像およびEDS 面分
析像で確認できた。
For example, gold powder and Ni powder are plated by the bipolar electroplating according to the present invention.
It could be confirmed by SEM image and EDS surface analysis image by JEOL scanning electron microscope.

【0043】[0043]

【実施例】(実施例1)本例では、図2に示す装置を使っ
てバイポーラめっきに関する予備実験を、銅粉末のニッ
ケルめっきについて行った。
EXAMPLES (Example 1) In this example, a preliminary experiment on bipolar plating was performed on nickel plating of copper powder using the apparatus shown in FIG.

【0044】それぞれ幅10mm×長さ40mmのステンレス鋼
製の2枚の極板を、このめっき槽の向かい合った絶縁性
壁面に接して極間距離6mmで配置し、この極板を整流器
に接続して電気めっき装置を作製した。
Two stainless steel plates each having a width of 10 mm and a length of 40 mm were placed at a distance of 6 mm between the poles of the plating tank in contact with the opposite insulating walls, and the plates were connected to a rectifier. Thus, an electroplating apparatus was manufactured.

【0045】このめっき槽に、下記組成の電気ニッケル
めっき液を投入した。 めっき液組成およびメッキ条件 硫酸ニッケル・6水塩 224〜672g/l (50〜150g/l -Ni) ホウ酸 30g/l pH 3.75 通電量 1〜12A×10min(6サイクル/ 分の交番電流) 銅粉添加量/ めっき液 5g/l 被めっき物として銅粉末 (平均粒径約20μm) を使用
し、これを上記めっき液中に銅粉添加量/ めっき液:5g/
l の割合で添加し、攪拌してめっき液中に懸濁させた。
An electric nickel plating solution having the following composition was charged into this plating tank. Plating solution composition and plating conditions Nickel sulfate hexahydrate 224-672 g / l (50-150 g / l -Ni) Boric acid 30 g / l pH 3.75 Electricity 1-12 A x 10 min (alternate current at 6 cycles / min) Copper Powder addition amount / Plating solution 5 g / l Copper powder (average particle size of about 20 μm) was used as the object to be plated.
l and stirred to suspend in the plating solution.

【0046】めっき液中のNiイオン濃度が50 g/L、100
g/L および150 g/L の3種類のめっき液を使用し、電流
密度を2、4、8、12 A/dm2と変化させ、かつ浴温 (め
っき温度) を30℃で、バイポーラめっきを行った。通電
中の攪拌は実施しなかった。
When the Ni ion concentration in the plating solution is 50 g / L, 100
Using three kinds of plating solution g / L and 0.99 g / L, the current density is changed from 2,4,8,12 A / dm 2, and a bath temperature of (plating temperature) at 30 ° C., bipolar plating Was done. No stirring was performed during energization.

【0047】めっき終了後、銅粉末をめっき液から回収
し、洗浄および乾燥した後、秤量して、めっき前の質量
との変化量を求めた。めっき前の粉末5g 当たりの粉末
質量の変化量を電流密度との関係として、図3に示す。
After the plating, the copper powder was recovered from the plating solution, washed and dried, weighed, and the change from the mass before plating was determined. FIG. 3 shows the change in the powder mass per 5 g of the powder before plating as a relationship with the current density.

【0048】また、めっき液中のNiイオン濃度を100 g/
L 、浴温を30℃に固定して、通電中に攪拌した場合の攪
拌強さと電流密度を変化させて、上と同様にバイポーラ
めっきを行った場合の同様の変化量と電流密度との関係
を図4に示す。
Further, the Ni ion concentration in the plating solution was set to 100 g /
L, the bath temperature is fixed at 30 ° C., and the stirring strength and current density are changed when stirring is performed during energization, and the relationship between the same change amount and current density when bipolar plating is performed in the same manner as above. Is shown in FIG.

【0049】これらのグラフからわかるように、電流密
度が低いと、めっき後の粉末質量の変化量がわずかにマ
イナスになり、バイポーラ現象による粉末の溶解の方が
電着より優勢になるため、バイポーラめっきは実質的に
不可能である。しかし、電流密度が高くなると、溶解よ
り電着が優勢になって、変化量が急激に増大しはじめ、
バイポーラ現象により電気めっきが可能となる。
As can be seen from these graphs, when the current density is low, the amount of change in the mass of the powder after plating becomes slightly negative, and the dissolution of the powder by the bipolar phenomenon becomes more dominant than the electrodeposition. Plating is virtually impossible. However, when the current density increases, the electrodeposition becomes dominant over the dissolution, and the amount of change begins to increase rapidly,
Electroplating becomes possible due to the bipolar phenomenon.

【0050】また、注目すべきことに、めっき後の粉末
質量の変化量は、めっき液中のNiイオン濃度の高さに必
ずしも一致しない。例えば、図3の例では、Niイオン濃
度が最も低い50 g/Lの時に変化量の増大が最大となる。
従って、Niイオン濃度は、それほど高くする必要はな
く、他のめっき条件に応じて、めっき速度が最も高くな
るように調整すればよいことがわかる。
It should also be noted that the amount of change in the mass of the powder after plating does not always coincide with the high concentration of Ni ions in the plating solution. For example, in the example of FIG. 3, when the Ni ion concentration is 50 g / L, which is the lowest, the increase in the amount of change is maximum.
Therefore, it is understood that the Ni ion concentration does not need to be so high, but may be adjusted according to other plating conditions so as to maximize the plating rate.

【0051】攪拌については、攪拌した方がめっき後の
粉末質量の変化量の増大が大きくなり、攪拌速度が高い
ほど増大幅も大きくなるので、攪拌はバイポーラめっき
にとって有利である。本実験では攪拌を利用したが、攪
拌の代わりに、ポンプ等によるめっき液の流動でも同様
の効果が得られる。
As for the stirring, the stirring increases the change in the mass of the powder after plating, and the higher the stirring speed, the larger the increase. Therefore, the stirring is advantageous for the bipolar plating. In this experiment, agitation was used. Instead of agitation, a similar effect can be obtained by flowing a plating solution using a pump or the like.

【0052】(実施例2)めっき液組成の影響を見るため
に、光沢Niめっき液の種類を変化させて、実施例1と同
様に、バイポーラめっきによる銅粉末のNiめっきを行っ
た。各めっき液中のNiイオン濃度は100 g/L の一定と
し、めっき温度は50℃で、攪拌は行わなかった。
(Example 2) In order to observe the effect of the plating solution composition, Ni plating of copper powder by bipolar plating was performed in the same manner as in Example 1 except that the type of bright Ni plating solution was changed. The Ni ion concentration in each plating solution was kept constant at 100 g / L, the plating temperature was 50 ° C., and no stirring was performed.

【0053】使用しためっき液は次の通りである。ブランク浴 硫酸ニッケル・6水塩 448g/l (100g/l -Ni) ホウ酸 30g/l硫酸Ni浴 硫酸ニッケル・6水塩 448g/l めっき後の銅粉末質量の変化量と電流密度との関係を図
5に示す。
The plating solutions used are as follows. Nickel sulfate hexahydrate in blank bath 448g / l (100g / l -Ni) Boric acid 30g / l Ni sulfate nickel sulfate hexahydrate 448g / l Relationship between change in mass of copper powder after plating and current density Is shown in FIG.

【0054】この図からわかるように、ブランク浴と硫
酸Niのみのめっき液では、電流密度が4A/dm2 より増大
すると変化量がプラスに転じて、急激に増大し、バイポ
ーラめっきが可能であった。
As can be seen from this figure, in the case of the blank bath and the plating solution containing only Ni sulfate, when the current density is higher than 4 A / dm 2, the amount of change changes to a positive value and rapidly increases, so that bipolar plating is possible. Was.

【0055】 (実施例3) シアン化金カリウム 10g/l (Au :7g/l ) 通電量 2.5〜5A×0〜60分(6サイクル/ 分の交番電流) 銅粉添加量/ めっき液 5g/l この場合の結果は図6に示すが、これからも分かるよう
に、銅粉には金めっきが行われており、実際電子顕微鏡
で確認された。
(Example 3) Potassium gold cyanide 10 g / l (Au: 7 g / l) Electricity amount 2.5 to 5 A x 0 to 60 minutes (alternate current for 6 cycles / minute) Copper powder addition amount / plating solution 5 g / l The results in this case are shown in FIG. 6, and as can be seen, the copper powder was gold-plated and was actually confirmed with an electron microscope.

【0056】[0056]

【発明の効果】本発明により、バイポーラ現象を利用す
るという新規な粉末の電気めっき方法が提案された。本
発明の方法により、遠心力等を利用して直接通電するこ
とが困難な、粒径50μm以下の微細な粉末について、簡
便な装置および操作により電気めっきを施すことが可能
となり、従来の無電解めっき法に比べて、粉末をより完
全に金属で被覆することができる。
According to the present invention, a new powder electroplating method utilizing the bipolar phenomenon has been proposed. According to the method of the present invention, it is possible to apply electroplating to a fine powder having a particle size of 50 μm or less, which is difficult to directly energize using centrifugal force or the like, with a simple apparatus and operation. The powder can be more completely covered with the metal as compared with the plating method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バイポーラめっきの原理を示す説明図である。FIG. 1 is an explanatory view showing the principle of bipolar plating.

【図2】実施例で用いためっき装置の説明図である。FIG. 2 is an explanatory diagram of a plating apparatus used in an example.

【図3】実施例1の結果を示すグラフであり、銅粉末の
Niめっきにおける電流密度とめっき後の粉末質量の変化
量との関係を示す (浴温30℃) 。
FIG. 3 is a graph showing the results of Example 1, in which copper powder was used.
The relationship between the current density in Ni plating and the amount of change in the powder mass after plating is shown (bath temperature 30 ° C).

【図4】攪拌速度を変化させた時の図3と同様のグラフ
である。
FIG. 4 is a graph similar to FIG. 3 when the stirring speed is changed.

【図5】実施例2の結果を示す図3と同様のグラフであ
る。
FIG. 5 is a graph similar to FIG. 3 showing the results of Example 2.

【図6】実施例3の結果を示す図3と同様のグラフであ
る。
FIG. 6 is a graph similar to FIG. 3 showing the results of Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楠 義則 愛知県刈谷市野田町場割50番地 ユケン工 業株式会社内 (72)発明者 野村 正文 愛知県刈谷市野田町場割50番地 ユケン工 業株式会社内 Fターム(参考) 4K018 BC22 4K024 AA03 AA05 AA07 AA09 AA10 AA11 AA12 AA14 AB01 AB02 AB17 BA09 BA12 BA15 BC08 CA07 CB02 CB05 CB08 CB12 GA16  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshinori Kusunoki 50, Noda-cho, Kariya-shi, Aichi Prefecture Inside Yuken Industry Co., Ltd. (72) Inventor Masafumi Nomura 50, Noda-cho, Kariya-shi, Aichi Prefecture Incorporated F term (reference) 4K018 BC22 4K024 AA03 AA05 AA07 AA09 AA10 AA11 AA12 AA14 AB01 AB02 AB17 BA09 BA12 BA15 BC08 CA07 CB02 CB05 CB08 CB12 GA16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極との間で電気めっき液中に懸
濁させた粉末に対して、粉末に直接通電せずに、バイポ
ーラ現象を利用して電気めっきを施すことを特徴とす
る、粉末の電気めっき方法。
An electroplating method is applied to a powder suspended in an electroplating solution between an anode and a cathode by utilizing a bipolar phenomenon without directly energizing the powder. Electroplating method of powder.
【請求項2】 両電極間に交番電流を通電することによ
り電気めっきを行う請求項1記載の粉末の電気めっき方
法。
2. The method for electroplating powder according to claim 1, wherein the electroplating is performed by passing an alternating current between the two electrodes.
【請求項3】 交番電流の周波数が1〜200 サイクル/
分である請求項2記載の粉末の電気めっき方法。
3. The frequency of the alternating current is 1 to 200 cycles /
The method for electroplating powder according to claim 2, wherein
【請求項4】 粉末が懸濁している電気めっき液を1方
向に流動させて陽極と陰極との間の電気めっき帯域を循
環通過させながら電気めっきを行う請求項1ないし3の
いずれかに記載の粉末の電気めっき方法。
4. The electroplating method according to claim 1, wherein the electroplating solution in which the powder is suspended flows in one direction and the electroplating is performed while circulating and passing through an electroplating zone between the anode and the cathode. Electroplating method of powder.
【請求項5】 被めっき粉末が導体粉末である請求項1
ないし4のいずれかに記載の粉末の電気めっき方法。
5. The powder to be plated is a conductor powder.
5. The method for electroplating a powder according to any one of the above items 4 to 4.
【請求項6】 被めっき粉末が、無電解めっきを施した
絶縁体粉末である請求項1ないし4のいずれかに記載の
粉末の電気めっき方法。
6. The method for electroplating powder according to claim 1, wherein the powder to be plated is an insulator powder subjected to electroless plating.
【請求項7】 被めっき粉末の平均粒径が50μm以下で
ある、請求項1ないし6のいずれかに記載の粉末の電気
めっき方法。
7. The method for electroplating powder according to claim 1, wherein the average particle diameter of the powder to be plated is 50 μm or less.
【請求項8】 めっき金属がAu、Pt、Ag、Pd、Ni、Co、
Sn、CuおよびZnならびにこれらの合金から選ばれる、請
求項1ないし8のいずれかに記載の粉末の電気めっき方
法。
8. The plating metal is Au, Pt, Ag, Pd, Ni, Co,
The method for electroplating powder according to any one of claims 1 to 8, wherein the method is selected from Sn, Cu, Zn, and alloys thereof.
JP2000257443A 2000-08-28 2000-08-28 Method for electroplating on powder Withdrawn JP2002069689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257443A JP2002069689A (en) 2000-08-28 2000-08-28 Method for electroplating on powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257443A JP2002069689A (en) 2000-08-28 2000-08-28 Method for electroplating on powder

Publications (1)

Publication Number Publication Date
JP2002069689A true JP2002069689A (en) 2002-03-08

Family

ID=18745900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257443A Withdrawn JP2002069689A (en) 2000-08-28 2000-08-28 Method for electroplating on powder

Country Status (1)

Country Link
JP (1) JP2002069689A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513120A (en) * 2002-11-15 2006-04-20 ティムカル・ソシエテ・アノニム Carbon black composition and application examples thereof
JPWO2009075375A1 (en) * 2007-12-13 2011-04-28 株式会社平昭 Method for producing conductive inorganic oxide particles and conductive inorganic oxide particles obtained by the production method
JP2013535579A (en) * 2010-08-06 2013-09-12 シャーメン ユニバーシティー Surface structure control and manufacturing method of metal nano catalyst
WO2013147405A1 (en) * 2012-03-30 2013-10-03 Lg Electronics Inc. Method of preparing nanocomposite magnet using electroless or electro deposition method
JP2014508215A (en) * 2010-12-22 2014-04-03 インスティテュート ポリテクニーク デ ボルドー Asymmetric particles (Janus particles) and their synthesis by bipolar electrochemistry
JP2014139344A (en) * 2006-05-05 2014-07-31 Cabot Corp Tantalum powder and its manufacturing method
CN104439231A (en) * 2014-11-15 2015-03-25 吉林大学 Method for preparing Au modified Zn/ZnO micro-nanometer material
WO2016024078A1 (en) * 2014-08-14 2016-02-18 Bae Systems Plc Improved electrodeposition
CN105612643A (en) * 2013-07-19 2016-05-25 奥迪股份公司 Method and system for core-shell catalyst processing
CN105745362A (en) * 2014-01-30 2016-07-06 惠普发展公司,有限责任合伙企业 Treating a substrate
EP3235927A2 (en) 2014-11-14 2017-10-25 YKK Corporation Apparatus for surface electrolytic treatment of garment accessory part
CN107552779A (en) * 2017-09-11 2018-01-09 中国科学院过程工程研究所 A kind of batch (-type) electro-deposition prepares the device and its processing method of micron order and/or grade Coated powder
CN108326292A (en) * 2017-12-18 2018-07-27 中国平煤神马集团开封炭素有限公司 A kind of metallic cover type composite granule electroplating technology
US10626515B2 (en) 2014-11-14 2020-04-21 Ykk Corporation Surface electrolytic treatment apparatus for garment accessory part

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513120A (en) * 2002-11-15 2006-04-20 ティムカル・ソシエテ・アノニム Carbon black composition and application examples thereof
JP2014139344A (en) * 2006-05-05 2014-07-31 Cabot Corp Tantalum powder and its manufacturing method
JPWO2009075375A1 (en) * 2007-12-13 2011-04-28 株式会社平昭 Method for producing conductive inorganic oxide particles and conductive inorganic oxide particles obtained by the production method
JP2013535579A (en) * 2010-08-06 2013-09-12 シャーメン ユニバーシティー Surface structure control and manufacturing method of metal nano catalyst
JP2014508215A (en) * 2010-12-22 2014-04-03 インスティテュート ポリテクニーク デ ボルドー Asymmetric particles (Janus particles) and their synthesis by bipolar electrochemistry
US10745821B2 (en) 2010-12-22 2020-08-18 Universite de Bordeaux Dissymetric particles (Janus particles) and their method of synthesis by bipolar electrochemistry
CN103889619B (en) * 2012-03-30 2016-05-25 Lg电子株式会社 Use electroless deposition processes or electrodeposition process to prepare the method for nano composite material magnet
WO2013147405A1 (en) * 2012-03-30 2013-10-03 Lg Electronics Inc. Method of preparing nanocomposite magnet using electroless or electro deposition method
CN103889619A (en) * 2012-03-30 2014-06-25 Lg电子株式会社 Method of preparing nanocomposite magnet using electroless or electro deposition method
CN105612643A (en) * 2013-07-19 2016-05-25 奥迪股份公司 Method and system for core-shell catalyst processing
JP2016525444A (en) * 2013-07-19 2016-08-25 アウディ アクチェンゲゼルシャフトAudi Ag Core-shell catalyst treatment method and treatment system
US10541425B2 (en) 2013-07-19 2020-01-21 Audi Ag Method and system for core-shell catalyst processing
CN105745362A (en) * 2014-01-30 2016-07-06 惠普发展公司,有限责任合伙企业 Treating a substrate
WO2016024078A1 (en) * 2014-08-14 2016-02-18 Bae Systems Plc Improved electrodeposition
US10443144B2 (en) 2014-08-14 2019-10-15 Bae Systems Plc Method for electrodeposition on a conductive particulate substrate
EP3235927A2 (en) 2014-11-14 2017-10-25 YKK Corporation Apparatus for surface electrolytic treatment of garment accessory part
US10590557B2 (en) 2014-11-14 2020-03-17 Ykk Corporation Method for surface electrolytic treatment of garment accessory part and method for producing a garment accessory part
US10626515B2 (en) 2014-11-14 2020-04-21 Ykk Corporation Surface electrolytic treatment apparatus for garment accessory part
CN104439231A (en) * 2014-11-15 2015-03-25 吉林大学 Method for preparing Au modified Zn/ZnO micro-nanometer material
CN107552779A (en) * 2017-09-11 2018-01-09 中国科学院过程工程研究所 A kind of batch (-type) electro-deposition prepares the device and its processing method of micron order and/or grade Coated powder
CN107552779B (en) * 2017-09-11 2019-05-28 中国科学院过程工程研究所 A kind of intermittent electro-deposition prepares the device and its processing method of micron order and/or grade Coated powder
CN108326292A (en) * 2017-12-18 2018-07-27 中国平煤神马集团开封炭素有限公司 A kind of metallic cover type composite granule electroplating technology

Similar Documents

Publication Publication Date Title
EP1051543B1 (en) Method for electroplating metal coating(s) on particulates at high coating speed with high current density
Buelens et al. Electrochemical aspects of the codeposition of gold and copper with inert particles
US5882723A (en) Durable electrode coatings
US4097342A (en) Electroplating aluminum stock
JP2002069689A (en) Method for electroplating on powder
US9631282B2 (en) Method for depositing a nickel-metal layer
US5911865A (en) Method for electroplating of micron particulates with metal coatings
Flis et al. Catalytic activity of iron, nickel, and nickel‐phosphorus in electroless nickel plating
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
JP2004524443A (en) Method and apparatus for recovering metals by pulsed cathodic current combined with anodic co-production process
Choi et al. Production of ultrahigh purity copper using waste copper nitrate solution
CN111041532A (en) Formula and preparation process of nickel plating electroplating solution using insoluble anode for electroplating
JPS6318096A (en) Method for coating metal to hyperfine powder
CA1066650A (en) Electroplating aluminium stock
TWI451003B (en) Nickel ph adjustment method and apparatus
RU2537346C1 (en) Method of electrolite-plasma processing of metal surface
JP4103209B2 (en) Cleaning method for low hydrogen overvoltage electrode
US4916098A (en) Process and apparatus for manufacturing an electrocatalytic electrode
JP2586466B2 (en) Manufacturing method of metal coated carbon material
JP2004059948A (en) Method and apparatus for recovering metal from metal dissolution liquid
US2439935A (en) Indium electroplating
JPH0310713B2 (en)
CN117428371A (en) Preparation method of stainless steel welding wire
JPH05106085A (en) Method for preventing elution of fe ion into electroplating solution

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106