JP2002069507A - Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit - Google Patents

Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit

Info

Publication number
JP2002069507A
JP2002069507A JP2000266043A JP2000266043A JP2002069507A JP 2002069507 A JP2002069507 A JP 2002069507A JP 2000266043 A JP2000266043 A JP 2000266043A JP 2000266043 A JP2000266043 A JP 2000266043A JP 2002069507 A JP2002069507 A JP 2002069507A
Authority
JP
Japan
Prior art keywords
laser beam
metal powder
metal
energy
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000266043A
Other languages
Japanese (ja)
Inventor
Hiroharu Sasaki
弘治 佐々木
Koji Kuwabara
皓二 桑原
Noriyuki Sadaoka
紀行 定岡
Taro Takagi
高木  太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000266043A priority Critical patent/JP2002069507A/en
Publication of JP2002069507A publication Critical patent/JP2002069507A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal article by which the metal article can be directly manufactured with high accuracy by using a laser beam, and to provide an apparatus thereof and a laser beam condensing unit. SOLUTION: When the metal article of a desired shape is formed by repeating a step of forming a metal layer by irradiating a laser beam on metal powder and melting the metal powder and a step of placing metal powder on the metal layer and melting the metal powder by a laser beam, the laser beam is split into a high-energy laser beam for melting the metal powder and a low-energy laser beam provided therearound. The manufacturing method of the metal article, the apparatus thereof, and the laser beam condensing unit employ the optical system using the laser beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光の照射に
より三次元形状の物品を金属粉から造形する新規な金属
物品の製造方法及びその装置並びにレーザ光集光装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel metal article manufacturing method and apparatus for forming a three-dimensional article from metal powder by irradiating a laser beam, and a laser beam focusing apparatus.

【0002】[0002]

【従来の技術】従来、レーザを用いた金属部材溶接で
は、溶接精度、溶接強度を向上するべく溶接前後に行う
予熱あるいは後熱処理をレーザ光を用いて行うことが知
られている(特開昭61-92792号公報)。レーザビームを
集光し、金属等の加工対象物に照射し、加工対象物とレ
ーザビームを相対的に移動させることで溶接等の加工を
行うことができるが、レーザビームの集光径が小さいほ
ど加工対象物に過大の局所的加熱が生じ、被加工物に歪
み等の変形をおよぼすことがある。それを防止すること
を目的に、予め加工部周辺を加熱しておき加工部とその
周辺部との温度差を小さくしておくことが予熱工程にな
る。また、レーザビームを照射して加工した後では、加
工部以外の周辺温度が低い場合、加工部温度はそれに影
響されて低下し、溶融した金属が急激に収縮固化する。
その結果、加工対象物に歪みがおこり残留応力が発生す
る。最悪の場合には歪み等によりひび割れを起こすこと
もある。このような歪み等を開放するためには、加工部
の急激な冷却を防止するために補助加熱をしてゆるやか
な温度低下にすることが必要である。この作業が後熱の
工程である。
2. Description of the Related Art Conventionally, in metal member welding using a laser, it is known that a laser beam is used to perform preheating or postheating before and after welding in order to improve welding accuracy and welding strength (Japanese Patent Application Laid-Open No. Sho. No. 61-92792). Focusing the laser beam, irradiating it to the workpiece such as metal, and performing the processing such as welding by moving the laser beam relatively to the workpiece, the laser beam focusing diameter is small As the workpiece is processed, excessive local heating occurs, and the workpiece may be deformed such as distortion. For the purpose of preventing this, the preheating step is to heat the periphery of the processed portion in advance and reduce the temperature difference between the processed portion and its peripheral portion. In addition, after processing by irradiating a laser beam, when the peripheral temperature other than the processed portion is low, the processed portion temperature is affected by the temperature and decreases, and the molten metal rapidly shrinks and solidifies.
As a result, the workpiece is distorted and residual stress is generated. In the worst case, cracks may occur due to distortion or the like. In order to release such distortion or the like, it is necessary to perform auxiliary heating to gradually reduce the temperature in order to prevent rapid cooling of the processed portion. This operation is a post-heating step.

【0003】このような予熱→溶接→後熱の工程をレー
ザ集光用レンズの光軸位置を変えることで溶接部材表面
での焦点位置を変化させて照射することにより行うよう
にしたものがある(特開平6-304772号公報)。これら
は、一つのレーザ光で予熱→溶接→後熱の工程を行うと
言う意味では大変意義があるが、溶接を行う周囲全体を
溶接工程と同時に予熱及び後熱工程を行うことについて
は考慮されていなかった。又、金属粉の溶着及び溶融技
術に関する考慮がされていなかった。
There is a method in which such a process of preheating → welding → postheating is performed by changing the optical axis position of the laser condensing lens to change the focal position on the surface of the welding member and irradiating. (JP-A-6-304772). These are very significant in that the preheating → welding → postheating process is performed by one laser beam, but the preheating and postheating processes performed simultaneously with the entire welding area are considered. I didn't. Also, no consideration has been given to the welding and melting techniques of metal powder.

【0004】特開昭62-40991号公報には、レーザ溶接に
おいて、溶接する部分とその周囲の低エネルギー領域と
に分けて照射する方法が示されている。
Japanese Patent Application Laid-Open No. Sho 62-40991 discloses a method of irradiating a laser beam in a laser welding portion and a low energy region around the portion to be welded.

【0005】特開平8―281807号公報には、レー
ザ光の照射によって金属粉末から3次元物体を製造する
方法及び装置が示されている。
[0005] Japanese Patent Application Laid-Open No. 8-281807 discloses a method and an apparatus for manufacturing a three-dimensional object from metal powder by irradiating a laser beam.

【0006】[0006]

【発明が解決しようとする課題】しかし、いずれの公報
においても、特定のレーザ光を用いた金属物品の製法に
ついては示されていないし、そのための特定のレーザ光
集光装置についても示されていない。
However, none of the publications discloses a method for manufacturing a metal article using a specific laser beam, and does not disclose a specific laser beam condensing device therefor. .

【0007】本発明の目的は、レーザ光を用いて予熱、
(溶着.溶融)、後熱を同時に行うことが出来ることに
より直接金属物品を高精度に製造できる金属物品の製造
方法及びその装置並びにレーザ光集光装置を提供するこ
とにある。
An object of the present invention is to preheat by using a laser beam,
It is an object of the present invention to provide a method and an apparatus for manufacturing a metal article, which can directly manufacture a metal article with high precision by simultaneously performing (welding and melting) and post-heating, and a laser beam focusing apparatus.

【0008】[0008]

【課題を解決するための手段】本発明は、金属粉にレー
ザ光を照射し、前記金属粉を溶融することにより金属層
を形成する工程と、前記金属層上に前記金属粉を載置し
てレーザ光により溶融する工程を繰り返して所望の形状
の金属物品を形成する金属物品の製造方法において、前
記レーザ光を前記金属粉に対し予熱する低エネルギーレ
ーザ光と前記予熱した前記金属粉に対し溶融する高エネ
ルギーレーザ光とに分割して照射するようにしたこと、
又、前記レーザ光を前記金属粉に対し溶融する高エネル
ギーレーザ光と該高エネルギーレーザ光の外周に同心円
状に配置した低エネルギーレーザ光とに分割して照射す
るようにしたことを特徴とする金属物品の製造方法にあ
る。
According to the present invention, there is provided a method of forming a metal layer by irradiating a metal powder with a laser beam and melting the metal powder, and placing the metal powder on the metal layer. A method of manufacturing a metal article having a desired shape by repeating a step of melting with a laser beam to form a metal article of a desired shape, wherein the low-energy laser beam for preheating the laser beam to the metal powder and the preheated metal powder Irradiating it by dividing it into a high-energy laser beam that melts,
Further, the laser light is divided into a high-energy laser light for melting the metal powder and a low-energy laser light concentrically arranged on the outer periphery of the high-energy laser light, and the laser light is irradiated. A method for manufacturing a metal article.

【0009】特に、照射面において、前記低エネルギー
レーザ光を該高エネルギーレーザ光の外周全周に同心円
状にリング状又は複数の円をリング状に配置し、中心部
で最も高く、該中心部の外周に段階的に形成されたエネ
ルギー強度を有すること、又、照射面において、前記低
エネルギーレーザ光を該高エネルギーレーザ光の外周全
周に同心円状にリング状又は複数の円をリング状に配置
したこと、又、照射面において2個以上の異なった焦点
距離にして前記照射することが好ましい。
Particularly, on the irradiation surface, the low-energy laser light is arranged concentrically in a ring shape or a plurality of circles around the entire outer periphery of the high-energy laser light, and the center is highest at the center, and the center is the highest. Having an energy intensity formed stepwise on the outer circumference of the high-energy laser light on the irradiation surface, the low-energy laser light is concentrically formed in a ring shape or a plurality of circles in a ring shape around the entire outer circumference of the high-energy laser light. It is preferable that the irradiation is performed with two or more different focal lengths on the irradiation surface.

【0010】本発明は、金属粉を所望の厚さに堆積させ
る金属粉の堆積手段と、前記金属粉にレーザ光を照射
し、前記金属粉を溶融させるレーザ光照射手段と、前記
レーザ光の照射によって形成された金属層の上に所望の
厚さの前記金属粉を前記堆積手段により堆積させ前記金
属粉を前記レーザ光によって溶融させるる工程を繰り返
す制御手段とを有す金属物品の製造装置であって、前記
レーザ光照射手段は前記金属粉を予熱する低エネルギー
レーザ光と前記予熱した前記金属粉を溶融する高エネル
ギーレーザ光とに分割して照射する光学系を有するこ
と、又、前記レーザ光照射手段は前記金属粉を溶融する
高エネルギーレーザ光とその外周の全周にリング状又は
前記外周の全周複数の円をリング状に配置した低エネル
ギーレーザ光とに分割して照射する光学系を有すること
を特徴とする金属物品の製造装置にある。
According to the present invention, there is provided a metal powder depositing means for depositing a metal powder to a desired thickness, a laser light irradiating means for irradiating the metal powder with a laser beam and melting the metal powder, A control unit for repeating a step of depositing the metal powder having a desired thickness on the metal layer formed by the irradiation by the deposition unit and melting the metal powder by the laser beam. Wherein the laser light irradiating means has an optical system for dividing and irradiating a low energy laser light for preheating the metal powder and a high energy laser light for melting the preheated metal powder, The laser beam irradiation means divides the laser beam into a high-energy laser beam for melting the metal powder and a low-energy laser beam in which a plurality of circles are arranged around the entire circumference of the ring or a plurality of circles around the circumference. In apparatus for manufacturing a metal article characterized by having an optical system for irradiating Te.

【0011】特に、前記レーザ光照射手段は照射面にお
いて2つのレーザ光を同心円状に重ね合わせて金属粉に
照射する光学系を有すること、又、前記レーザ光照射手
段は2個以上の焦点距離の違うレンズを同心円状に配置
又は重ね合わせて配置したレーザ光分割光学系からなる
ことが好ましい。
In particular, the laser beam irradiating means has an optical system for irradiating the metal powder with two laser beams concentrically superposed on an irradiation surface, and the laser beam irradiating means has two or more focal lengths. It is preferable to comprise a laser beam splitting optical system in which different lenses are arranged concentrically or superposed.

【0012】更に、本発明は、高エネルギーレーザ光と
その外周の全周に同心円状にリング状又は前記外周の全
周に同心円状に複数の円をリング状に配置した低エネル
ギーレーザ光とに分割して照射する光学系を有するこ
と、又、直径の異なる2つのレンズを同心円状に重ねる
ことにより、照射面において中心部で最もエネルギーが
高く、その外周に同心円状に前記中心部よりも段階的に
エネルギーの低いレーザ光を形成する光学系を有するこ
と、又、2個以上の焦点距離の違うレンズを同心円状に
配置又は重ね合わせて配置した光学系を有することを特
徴とするレーザ光集光装置にある。
Further, the present invention relates to a high-energy laser beam and a low-energy laser beam in which a plurality of circles are concentrically arranged in a ring shape concentrically around the entire circumference of the high-energy laser beam or a ring shape. By having an optical system that divides and irradiates, and by superimposing two lenses of different diameters concentrically, the energy is highest at the center on the irradiation surface, and the outer periphery is concentrically more stepwise than the center. A laser beam collector comprising: an optical system for forming a laser beam having low energy; and an optical system in which two or more lenses having different focal lengths are arranged concentrically or superposed. In the optical device.

【0013】以上のように、本発明は、光伝送系から出
射したレーザ光を同軸上で分割する分割光学系もしくは
焦点距離が一様でない非球面レンズを有し、レーザ光を
用いて予熱、(溶着・溶融)、後熱を同時に行うことで
高精度、高強度の金属物品の製造を可能とするものであ
る。
As described above, the present invention has a splitting optical system for coaxially splitting a laser beam emitted from an optical transmission system or an aspherical lens having a non-uniform focal length. By performing (welding / melting) and post-heating simultaneously, it is possible to manufacture a metal article with high precision and high strength.

【0014】又、本発明はRP(ラピッドプロトタイピ
ング)造型に関するものであり、金属での三次元造型物
の製作精度を高めることを目的とし、金属粉より三次元
の造型物を造る際に、熱源であるレーザによって造型物
が熱歪みを起こし変形量が大きくなる等の問題を解決す
るものである。
Further, the present invention relates to RP (rapid prototyping) molding, and aims at increasing the production accuracy of a three-dimensional molded article made of metal. An object of the present invention is to solve the problem that a molded article is thermally distorted by a laser as a heat source and the deformation amount is increased.

【0015】[0015]

【発明の実施の形態】図1は、本発明の一実施例による
三次元金属物品の製造装置の構成を示す断面図である。
レーザ装置1から出たレーザ光は光ファイバ2中を伝送
され、光ファイバ先端から図中下方に出射される。又、
光ファイバ先端部はX―Yテーブル14,15に固定されて
いる。光ファイバ先端から出射されたレーザ光はレーザ
光分割光学系5によって二つのレーザ光に分割され、そ
の一つである高エネルギーレーザ光7aは金属13の表面
で概略焦点を結ぶ。他方のレーザ光7bは金属粉13の表
面より上部で焦点を結ぶように高エネルギー光の外周の
全周に配置された低エネルギー光によって構成され、溶
融前後の予熱及び後熱を行うことができるものである。
金属粉13のレーザ光照射部への金属粉13の供給はロー
ラ8の往復動作によって行われ、左右のケース4の中に
納められた金属粉13を金属粉供給ピストン12を押し上
げ、ローラ8を回転させながらレーザ光照射領域方向に
移動させることで厚さ0.1mm程度の金属粉の層を形成す
る。この供給された金属粉の層に選択的にレーザ光を照
射して、そのレーザ光が照射された部分のみの金属粉を
溶融または溶着させる。次に、パーツピストン9を図面
下方に下げ、金属粉供給ピストン11を押し上げてローラ
8を回転させながらレーザ光照射領域方向に移動させる
ことで再度厚さ0.1mm程度の金属粉の層を形成する。こ
の一連の動作を繰り返すことで、3次元の立体の金属物
品が得られる。
FIG. 1 is a sectional view showing the structure of a three-dimensional metal article manufacturing apparatus according to one embodiment of the present invention.
Laser light emitted from the laser device 1 is transmitted through the optical fiber 2 and emitted downward from the tip of the optical fiber in the figure. or,
The tip of the optical fiber is fixed to XY tables 14 and 15. The laser light emitted from the tip of the optical fiber is split into two laser lights by the laser light splitting optical system 5, and one of the high-energy laser lights 7 a is approximately focused on the surface of the metal 13. The other laser beam 7b is constituted by low-energy light arranged on the entire periphery of the high-energy light so as to be focused above the surface of the metal powder 13, and can perform preheating and postheating before and after melting. Things.
The supply of the metal powder 13 to the laser beam irradiation part of the metal powder 13 is performed by reciprocating operation of the roller 8, the metal powder 13 contained in the right and left cases 4 is pushed up by the metal powder supply piston 12, and the roller 8 is moved. A metal powder layer having a thickness of about 0.1 mm is formed by moving the metal powder in the direction of the laser beam irradiation area while rotating. The supplied metal powder layer is selectively irradiated with laser light, and the metal powder only in the portion irradiated with the laser light is melted or welded. Next, lower the parts piston 9 below the drawing, push up the metal powder supply piston 11 and
By moving 8 in the direction of the laser beam irradiation area while rotating 8, a layer of metal powder having a thickness of about 0.1 mm is formed again. By repeating this series of operations, a three-dimensional three-dimensional metal article is obtained.

【0016】図2は図1に示す本発明のレーザ光分割光
学系5の詳細を示すレーザ光集光装置の断面図である。
光ファイバー2の端部はアダプター16を介してホルダー
100に取り付けられている。レーザ光17は高いエネル
ギーレーザ光を形成する凸レンズ18とその外周に配置
された低エネルギーレーザ光を形成する環状レンズ19
からなるものである。
FIG. 2 is a cross-sectional view of the laser beam condensing device showing details of the laser beam splitting optical system 5 of the present invention shown in FIG.
The end of the optical fiber 2 is a holder via the adapter 16
Attached to 100. The laser beam 17 is a convex lens 18 for forming a high energy laser beam and an annular lens 19 for forming a low energy laser beam disposed around the convex lens 18.
It consists of

【0017】図3は図2の上部から金属粉13の表面を見
た場合の平面図である。又、レンズ18、19もホルダー10
1を介してホルダー100に取り付けられている。
FIG. 3 is a plan view when the surface of the metal powder 13 is viewed from the upper part of FIG. Lenses 18 and 19 are also holders 10
It is attached to the holder 100 via 1.

【0018】図4は、図2のレンズ18、19の構成を平面
図(図4a)、断面図(図4b)に示したものである。レン
ズ18は通常凸レンズであり、レンズ19は環状になつてお
り、断面は通常の凸レンズとなっている。これら2個の
レンズが同心円状に配置されている。光ファイバー2か
ら出たレーザ光17はレーザ光及び光ファイバーの特性に
よって決まる広がり角でレンズ系に入射する。レンズ18
部に入射したレーザ光束は広がり角とレンズ18の焦点距
離で決まる焦点位置である金属粉13の表面に集束され
る。一方、環状レンズ19部に入射したレーザ光束は上記
と同様に広がり角とレンズ19の焦点距離で決まる位置に
環状に集束される。今、レンズ19の焦点距離をレンズ18
の焦点距離より短く構成したとすると、その焦点位置は
金属粉13の表面より上部に位置することになり、金属粉
13の表面には焦点を通過した後の環状に広がったレーザ
光7bが金属粉13の表面の破線20で示した部分に照射され
ることなる。この様な状態で図3に示したレーザビーム
7a、7bが矢印200の方向に移動させることで選択的造型
を行う。
FIG. 4 shows a plan view (FIG. 4a) and a cross-sectional view (FIG. 4b) of the structure of the lenses 18 and 19 of FIG. The lens 18 is usually a convex lens, the lens 19 is annular, and the cross section is a normal convex lens. These two lenses are arranged concentrically. The laser light 17 emitted from the optical fiber 2 enters the lens system at a spread angle determined by the characteristics of the laser light and the optical fiber. Lens 18
The laser beam incident on the portion is focused on the surface of the metal powder 13 at a focal position determined by the spread angle and the focal length of the lens 18. On the other hand, the laser beam incident on the annular lens 19 is annularly focused at a position determined by the spread angle and the focal length of the lens 19 in the same manner as described above. Now, change the focal length of lens 19 to lens 18.
Is shorter than the focal length of the metal powder 13, the focal position is located above the surface of the metal powder 13,
The surface of the metal powder 13 is irradiated with the laser light 7b that has spread in an annular shape after passing through the focal point on the surface of the metal powder 13 as indicated by the broken line 20. The laser beam shown in FIG. 3 in such a state
7a and 7b move in the direction of arrow 200 to perform selective molding.

【0019】図5は、図2〜4におけるものと同様に、
このときの金属粉表面におけるレーザ光の強度分布を示
す。凸レンズ18で集束された高エネルギーレーザ光7aの
強度分布を20aで示し、金属粉の溶融を行うものであ
り、その周辺には環状凸レンズを通過した低エネルギー
レーザ光7bの強度分布を20bで示し、溶融前後の金属層
を予熱及び後熱を行うのに用いられる。本実施例によっ
て得られるエネルギー強度は中心部で最も高く、その外
周に段階的に形成された低エネルギーレーザ光を有し、
実際の金属粉表面におけるレーザ光強度分布はこれら20
a、20bの2個の強度分布を重ね合わせたものとなり、21
で示した強度分布となる。このような強度分布のレーザ
光で金属粉の溶融・溶着を行う場合、レーザ光の進行方
向に対して、まず強度の弱いレーザ光で予熱を行い、次
いで強度の強いところで溶融・溶着を行う。その後、そ
の周辺の強度の弱いレーザ光で後熱を行うことになる。
FIG. 5 is similar to that in FIGS.
The intensity distribution of laser light on the metal powder surface at this time is shown. The intensity distribution of the high-energy laser light 7a focused by the convex lens 18 is indicated by 20a, which melts the metal powder, and the intensity distribution of the low-energy laser light 7b that has passed through the annular convex lens is indicated by 20b around the metal powder. It is used to preheat and postheat the metal layer before and after melting. The energy intensity obtained by the present embodiment is the highest at the center, and has a low-energy laser beam formed stepwise on its outer periphery,
The laser light intensity distribution on the actual metal powder surface
a, 20b are obtained by superimposing the two intensity distributions.
The intensity distribution shown by. When melting and welding the metal powder with the laser light having such an intensity distribution, preheating is performed first with a laser light having a low intensity in the traveling direction of the laser light, and then melting and welding are performed at a high intensity. Thereafter, post-heating is performed by a laser beam having a low intensity around the periphery.

【0020】この様に1つのレーザビームを2つに分割
し、さらに重ね合わせて金属粉に照射することで予熱→
溶融・溶着→後熱の一連の造型処理が可能となることか
ら、造型時間を短縮させる効果がある。
As described above, one laser beam is divided into two parts, and they are further superimposed on each other to irradiate the metal powder, thereby preheating the laser beam.
Since a series of molding processes from melting and welding to post-heating can be performed, there is an effect of shortening the molding time.

【0021】図6は、他の実施例を示すレンズの平面図
である。この実施例は図2、図3、図4a、図4bで説明し
た前記実施例のレンズホルダー101部分のみを示してお
り、環状レンズ19に換えて通常のレンズ19aをレンズ18
の外周上の全周に複数個配置した構成になっており、図
5と同様のエネルギー分布が得られる。そのため、環状
レンズ19を使用すること無く前記実施例と同等の効果を
あげることができることから、製造容易なレンズを用い
る方法でも目的を達成できる。
FIG. 6 is a plan view of a lens showing another embodiment. In this embodiment, only the lens holder 101 of the embodiment described with reference to FIGS. 2, 3, 4a and 4b is shown.
And the same energy distribution as that of FIG. 5 can be obtained. Therefore, the same effects as in the above embodiment can be obtained without using the annular lens 19, and the object can be achieved even by a method using a lens that is easily manufactured.

【0022】図7は他の実施例を示すレンズの断面図で
ある。この実施例は直径の大きさが違い、一方の面が平
らな凸レンズ22と23を張り合わせて配置した構成になっ
ている。レーザ光17がこの組み合わせレンズに入射する
と2枚のレンズが重ね合わせられた部分は2枚のレンズ
のそれぞれの焦点距離が結合された焦点距離をもつこと
になる。また、2枚のレンズが重ね合わせられていない
部分は、大きいレンズの焦点距離をもっている。このよ
うに構成されたレンズ系にレーザ光17が入射するとレン
ズ22とレンズ23が重ね合わされた部分に入射したレーザ
光束24は広がり角とレンズ22とレンズ23で結合された焦
点距離で決まる焦点位置である金属粉13の表面に集束さ
れる。一方、レンズ22とレンズ23が重ね合わせられてい
ない部分に入射したレーザ光束25は上記と同様に広がり
角とレンズ23の焦点距離で決まる位置に環状に集束され
る。今、レンズ23の焦点距離をレンズ22とレンズ23で結
合された焦点距離より長く構成したとすると、その焦点
位置は金属粉13の表面より下部に位置することになり、
金属粉13の表面には焦点を通過する前の環状に広がった
レーザ光25が照射されることなる。
FIG. 7 is a sectional view of a lens showing another embodiment. This embodiment has a configuration in which convex lenses 22 and 23 having different diameters and flat surfaces on one side are stuck together. When the laser beam 17 is incident on the combination lens, the portion where the two lenses are overlapped has a focal length in which the respective focal lengths of the two lenses are combined. The portion where the two lenses are not superimposed has a large lens focal length. When the laser beam 17 is incident on the lens system configured as described above, the laser beam 24 incident on the portion where the lens 22 and the lens 23 are superimposed is a focal position determined by the spread angle and the focal length combined by the lens 22 and the lens 23. Is focused on the surface of the metal powder 13 which is On the other hand, the laser beam 25 incident on the portion where the lens 22 and the lens 23 are not overlapped is converged annularly at a position determined by the spread angle and the focal length of the lens 23 as described above. Now, if the focal length of the lens 23 is configured to be longer than the focal length combined by the lens 22 and the lens 23, the focal position will be located below the surface of the metal powder 13,
The surface of the metal powder 13 is irradiated with the laser light 25 that has spread in an annular shape before passing through the focal point.

【0023】図8は、図7のレンズ構成によって得られ
るときの金属粉表面におけるレーザ光の強度分布を示す
線図である。組み合わせレンズで集束された最も高い強
度分布を24aで示し、レンズ23のみを通過したそれより
低く、段階的な強度を有するレーザ光の強度分布を25a
で示した。このような強度分布のレーザ光で金属粉の溶
融・溶着を行う場合、レーザ光の進行方向に対して、ま
ず強度の弱いレーザ光で予熱を行い、ついで強度の強い
ところで溶融・溶着を行う。その後、強度の弱いレーザ
光で後熱を行うことになる。この実施例によれば単純な
2枚の凸レンズを使用するだけで、二つの焦点距離の違
うレンズを構成することができることから、より簡便な
方法で予熱、溶融、後熱を行うことができる効果があ
る。
FIG. 8 is a diagram showing the intensity distribution of laser light on the surface of the metal powder obtained by the lens configuration of FIG. The highest intensity distribution focused by the combination lens is indicated by 24a, and the intensity distribution of the laser light having a stepwise intensity lower than that passed through only the lens 23 is indicated by 25a.
Indicated by When melting and welding metal powder with laser light having such an intensity distribution, first, preheating is performed with weak laser light in the traveling direction of the laser light, and then melting and welding are performed at a strong intensity. Thereafter, post-heating is performed with a laser beam having a low intensity. According to this embodiment, two lenses having different focal lengths can be formed only by using two simple convex lenses, so that preheating, melting, and postheating can be performed by a simpler method. There is.

【0024】[0024]

【発明の効果】本発明によれば、レーザ光を用いて直接
金属物品を高精度に製造できる。更に、レーザ分割光学
系内に焦点距離の違うレンズを2個設置するか又は焦点
距離が不定のレンズを設置するだけで、金属粉を溶融や
溶着する際の予熱及び後熱を同時に行うことができる。
このことから、構造が簡単な装置によって、高品質に金
属粉を溶融や溶着することができる等の効果が得られ
る。
According to the present invention, a metal article can be directly manufactured with high precision using a laser beam. Furthermore, by installing two lenses with different focal lengths or installing a lens with an indefinite focal length in the laser splitting optical system, it is possible to simultaneously perform preheating and postheating when melting or welding metal powder. it can.
From this, it is possible to obtain effects such as melting and welding of metal powder with high quality by a device having a simple structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属物品の製造装置を示す断面図。FIG. 1 is a sectional view showing an apparatus for manufacturing a metal article according to the present invention.

【図2】本発明のレーザ光集光装置の構成図。FIG. 2 is a configuration diagram of a laser light focusing device of the present invention.

【図3】図2を上部から見た平面図。FIG. 3 is a plan view of FIG. 2 as viewed from above.

【図4】本発明の凸レンズと環状レンズとの組み合わせ
の平面図と断面図。
FIG. 4 is a plan view and a cross-sectional view of a combination of a convex lens and an annular lens according to the present invention.

【図5】図4のレンズによる照射レーザ強度分布を示す
線図。
FIG. 5 is a diagram showing an irradiation laser intensity distribution by the lens of FIG. 4;

【図6】本発明のレンズ光学系の平面図。FIG. 6 is a plan view of a lens optical system according to the present invention.

【図7】本発明のレンズ光学系の平面図。FIG. 7 is a plan view of a lens optical system according to the present invention.

【図8】図7のレンズによる照射レーザ強度分布を示す
線図。
FIG. 8 is a diagram showing an irradiation laser intensity distribution by the lens of FIG. 7;

【符号の説明】[Explanation of symbols]

1…レーザ装置、5…レーザ分割光学系、7a、24…
高エネルギーレーザ光、7b、25…低エネルギーレー
ザ光、18、19a、22、23…凸レンズ、19…環状レンズ。
DESCRIPTION OF SYMBOLS 1 ... Laser apparatus, 5 ... Laser division optical system, 7a, 24 ...
High energy laser light, 7b, 25 ... low energy laser light, 18, 19a, 22, 23 ... convex lens, 19 ... annular lens.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定岡 紀行 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 高木 太郎 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4E068 AJ03 BA02 BB00 CD01 CD05 CD14 4K018 CA44 EA51 EA60 JA05 JA07 JA09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyuki Sadaoka 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electricity Research Laboratory, Hitachi, Ltd. (72) Inventor Taro Takagi Omika-cho, Hitachi City, Ibaraki Prefecture No. 7-2-1 F-term in Hitachi, Ltd. Electric Power and Electric Development Laboratory 4E068 AJ03 BA02 BB00 CD01 CD05 CD14 4K018 CA44 EA51 EA60 JA05 JA07 JA09

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】金属粉にレーザ光を照射し、前記金属粉を
溶融することにより金属層を形成する工程と、前記金属
層上に前記金属粉を載置してレーザ光により溶融する工
程を繰り返して所望の形状の金属物品を形成する金属物
品の製造方法において、前記レーザ光を前記金属粉に対
し予熱する低エネルギーレーザ光と前記予熱した前記金
属粉に対し溶融する高エネルギーレーザ光とに分割して
照射するようにしたことを特徴とする金属物品の製造方
法。
A step of irradiating the metal powder with a laser beam and melting the metal powder to form a metal layer; and a step of placing the metal powder on the metal layer and melting the metal layer with the laser beam. In a method of manufacturing a metal article that repeatedly forms a metal article having a desired shape, the method further comprises: a low-energy laser light that preheats the laser light to the metal powder; and a high-energy laser light that melts the preheated metal powder. A method for manufacturing a metal article, wherein the metal article is divided and irradiated.
【請求項2】金属粉にレーザ光を照射し、前記金属粉を
溶融することにより金属層を形成する工程と、前記金属
層上に前記金属粉を載置してレーザ光により溶融する工
程を繰り返して所望の形状の金属物品を形成する金属物
品の製造方法において、前記レーザ光を前記金属粉に対
し溶融する高エネルギーレーザ光と該高エネルギーレー
ザ光の外周に同心円状に配置した低エネルギーレーザ光
とに分割して照射するようにしたことを特徴とする金属
物品の製造方法。
A step of irradiating the metal powder with a laser beam and melting the metal powder to form a metal layer; and a step of placing the metal powder on the metal layer and melting the same by the laser beam. In a method for manufacturing a metal article that repeatedly forms a metal article having a desired shape, a high-energy laser beam that melts the laser beam with respect to the metal powder and a low-energy laser that is concentrically arranged around the periphery of the high-energy laser beam A method for manufacturing a metal article, wherein the irradiation is performed by dividing the light into light.
【請求項3】照射面において、前記低エネルギーレーザ
光を該高エネルギーレーザ光の外周全周に同心円状にリ
ング状又は複数の円をリング状に配置し、中心部で最も
高く、該中心部の外周に段階的に形成されたエネルギー
強度を有することを特徴とする請求項1又は2に記載の
金属物品の製造方法。
3. An irradiation surface, wherein the low-energy laser light is concentrically arranged in a ring shape or a plurality of circles around the entire outer periphery of the high-energy laser light. The method for manufacturing a metal article according to claim 1, wherein the metal article has energy intensity formed stepwise on an outer periphery of the metal article.
【請求項4】照射面において、前記低エネルギーレーザ
光を該高エネルギーレーザ光の外周全周に同心円状にリ
ング状又は複数の円をリング状に配置したことを特徴と
する請求項1〜3のいずれかに記載の金属物品の製造方
法。
4. An irradiation surface, wherein the low-energy laser light is concentrically arranged in a ring shape or a plurality of circles in a ring shape around the entire outer periphery of the high-energy laser light. The method for producing a metal article according to any one of the above.
【請求項5】照射面において2個以上の異なった焦点距
離にして前記照射することを特徴とする請求項1〜4の
いずれかに記載の金属物品の製造方法。
5. The method for manufacturing a metal article according to claim 1, wherein the irradiation is performed at two or more different focal lengths on an irradiation surface.
【請求項6】金属粉を所望の厚さに堆積させる金属粉の
堆積手段と、前記金属粉にレーザ光を照射し、前記金属
粉を溶融させるレーザ光照射手段と、前記レーザ光の照
射によって形成された金属層の上に所望の厚さの前記金
属粉を前記堆積手段により堆積させ前記金属粉を前記レ
ーザ光によって溶融させるる工程を繰り返す制御手段と
を有す金属物品の製造装置であって、前記レーザ光照射
手段は前記金属粉を予熱する低エネルギーレーザ光と前
記予熱した前記金属粉を溶融する高エネルギーレーザ光
とに分割して照射する光学系を有することを特徴とする
金属物品の製造装置。
6. A means for depositing metal powder for depositing metal powder to a desired thickness; a means for irradiating the metal powder with laser light; and a means for irradiating laser light for melting the metal powder; Control means for repeating a step of depositing the metal powder of a desired thickness on the formed metal layer by the depositing means and melting the metal powder by the laser beam. Wherein the laser light irradiating means has an optical system for irradiating the low-energy laser light for preheating the metal powder and the high-energy laser light for melting the preheated metal powder. Manufacturing equipment.
【請求項7】金属粉を所望の厚さに形成する金属粉の堆
積手段と、前記金属粉にレーザ光を照射し、前記金属粉
を溶融させるレーザ光照射手段と、前記レーザ光の照射
によって形成された金属層の上に所望の厚さの前記金属
粉を堆積させる前記堆積手段により堆積させ前記金属粉
を前記レーザ光によって溶融させるる工程を繰り返す制
御手段とを有する金属物品の製造装置であって、前記レ
ーザ光照射手段は前記金属粉を溶融する高エネルギーレ
ーザ光とその外周の全周にリング状又は前記外周の全周
複数の円をリング状に配置した低エネルギーレーザ光と
に分割して照射する光学系を有することを特徴とする金
属物品の製造装置。
7. A means for depositing a metal powder for forming a metal powder to a desired thickness, a means for irradiating the metal powder with a laser beam, and a means for irradiating the metal powder with a laser beam; A control unit that repeats a step of depositing the metal powder having a desired thickness on the formed metal layer by the deposition unit and melting the metal powder by the laser beam. The laser beam irradiating means divides the laser beam into a high-energy laser beam that melts the metal powder and a low-energy laser beam in which a plurality of circles are arranged around the entire circumference of the outer periphery and a plurality of circles are arranged in a ring around the entire circumference. An apparatus for manufacturing a metal article, comprising: an optical system that emits light.
【請求項8】前記レーザ光照射手段は照射面において2
つのレーザ光を互いに同心円状に配置して金属粉に照射
する光学系を有することを特徴とする請求項6又は7に
記載の金属物品の製造装置。
8. The laser beam irradiating means is provided on the irradiation surface.
The apparatus for manufacturing a metal article according to claim 6, further comprising an optical system configured to irradiate the metal powder by arranging two laser lights concentrically with each other.
【請求項9】前記レーザ光照射手段は、2個以上の焦点
距離の違うレンズを同心円状に配置又は重ね合わせて配
置した光学系からなることを特徴とする請求項6〜8の
いずれかに記載の金属物品の製造装置。
9. The laser beam irradiating means comprises an optical system in which two or more lenses having different focal lengths are concentrically arranged or superposed. An apparatus for manufacturing a metal article as described in the above.
【請求項10】高エネルギーレーザ光とその外周の全周
に同心円状にリング状又は前記外周の全周に同心円状に
複数の円をリング状に配置した低エネルギーレーザ光と
に分割して照射する光学系を有することを特徴とするレ
ーザ光集光装置。
10. A high-energy laser beam and a low-energy laser beam in which a plurality of circles are concentrically arranged in a ring around the entire periphery of the high-energy laser beam or concentrically around the entire periphery. A laser beam condensing device, comprising:
【請求項11】直径の異なる2つのレンズを同心円状に
重ねることにより、照射面において中心部で最もエネル
ギーが高く、その外周に同心円状に前記中心部よりも段
階的にエネルギーの低いレーザ光を形成する光学系を有
することを特徴とするレーザ光集光装置。
11. Concentrically superimposing two lenses having different diameters, a laser beam having the highest energy at the center on the irradiation surface and concentrically lowering the laser light with a lower energy than the center at the outer periphery. A laser light condensing device comprising an optical system for forming.
【請求項12】2個以上の焦点距離の違うレンズを同心
円状に配置又は重ね合わせて配置した光学系を有するこ
とを特徴とするレーザ光集光装置。
12. A laser beam condensing device comprising an optical system in which two or more lenses having different focal lengths are arranged concentrically or superposed.
JP2000266043A 2000-09-01 2000-09-01 Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit Pending JP2002069507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266043A JP2002069507A (en) 2000-09-01 2000-09-01 Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266043A JP2002069507A (en) 2000-09-01 2000-09-01 Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit

Publications (1)

Publication Number Publication Date
JP2002069507A true JP2002069507A (en) 2002-03-08

Family

ID=18753211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266043A Pending JP2002069507A (en) 2000-09-01 2000-09-01 Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit

Country Status (1)

Country Link
JP (1) JP2002069507A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297452A (en) * 2005-04-21 2006-11-02 Toyota Boshoku Corp Laser welding method
JP2007270227A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Method for producing optically formed body
JP2009274136A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Preheating using laser beam
JP2010207839A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Laser beam welding equipment and laser beam welding method
JP2011527238A (en) * 2008-06-24 2011-10-27 ストラタシス,インコーポレイテッド System and method for constructing a three-dimensional object using a metal-based alloy
CN103668461A (en) * 2013-09-21 2014-03-26 北京工业大学 Method for preparing nickel-based superalloy Rene80 directionally-grown column crystal/single crystal alloy and manufacturing parts
CN104001914A (en) * 2014-05-16 2014-08-27 华南理工大学 Manufacturing device and method for injection mold with conformal cooling pipeline
CN104001915A (en) * 2014-05-22 2014-08-27 华中科技大学 Equipment for manufacturing large-size metal part in high energy beam additive manufacturing mode and control method of equipment
CN104476196A (en) * 2014-12-30 2015-04-01 深圳市圆梦精密技术研究院 Combined laser melting and laser milling 3D (three-Dimensional) printing equipment
CN104493493A (en) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3D printing apparatus
CN104493165A (en) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 Electron beam melting and laser milling composite 3D printing apparatus
JP2016505709A (en) * 2012-11-30 2016-02-25 エムベーデーアー フランスMbda France Method for melting powder, including heating in a range adjacent to the molten bath
CN105642893A (en) * 2015-10-14 2016-06-08 哈尔滨福沃德多维智能装备有限公司 Laser spot diameter output adjustable device and method for selective laser melting system
WO2016151740A1 (en) 2015-03-23 2016-09-29 技術研究組合次世代3D積層造形技術総合開発機構 Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional molding device
KR101726833B1 (en) * 2015-10-28 2017-04-14 조선대학교산학협력단 Rapid manufacturing process of ferrous and non-ferrous parts using plasma electron beam
WO2017099478A1 (en) * 2015-12-09 2017-06-15 한국생산기술연구원 Method for stereoscopically molding metal material using 3d printing that is capable of microstructure control and precipitation hardening control
KR20170108927A (en) * 2017-09-18 2017-09-27 한국생산기술연구원 3-Dimensional manufacturing method for the high strength metallic materials using 3D printing with controlling precipitation hardening
KR101780465B1 (en) * 2015-12-09 2017-10-10 한국생산기술연구원 3-Dimensional manufacturing method for the metallic materials using 3D printing with controlling the microstructure
KR101789682B1 (en) * 2016-05-02 2017-10-25 한국생산기술연구원 Additive manufacturing method for metallic materials using laser producible a large sized product
WO2017213082A1 (en) * 2016-06-07 2017-12-14 三菱重工業株式会社 Selective beam melting apparatus and selective beam melting method
WO2018128827A1 (en) * 2017-01-06 2018-07-12 General Electric Company Systems and methods for controlling microstructure of additively manufactured components
JP2018138694A (en) * 2014-11-14 2018-09-06 株式会社ニコン Shaping apparatus and shaping method
JP2018138695A (en) * 2018-03-30 2018-09-06 株式会社ニコン Shaping apparatus and shaping method
WO2019091801A1 (en) * 2017-11-09 2019-05-16 Trumpf Laser- Und Systemtechnik Gmbh Processing machine for producing three-dimensional components layer by layer and method for heating a powder
KR20200013066A (en) * 2017-06-23 2020-02-05 어플라이드 머티어리얼스, 인코포레이티드 Additive manufacturing with multi-sided and galvo mirror scanners
KR20200013065A (en) * 2017-06-23 2020-02-05 어플라이드 머티어리얼스, 인코포레이티드 Additive manufacturing with multiple mirror scanners
KR20200099606A (en) 2018-01-31 2020-08-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Manufacturing method of three-dimensional sculpture
JP2020525650A (en) * 2017-06-30 2020-08-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Additive Manufacturing Technology for Precipitation Hardening Superalloy Powder Material
US11161202B2 (en) 2014-11-14 2021-11-02 Nikon Corporation Shaping apparatus and shaping method
US11806810B2 (en) 2014-11-14 2023-11-07 Nikon Corporation Shaping apparatus and shaping method

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297452A (en) * 2005-04-21 2006-11-02 Toyota Boshoku Corp Laser welding method
JP2007270227A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Method for producing optically formed body
JP4693681B2 (en) * 2006-03-31 2011-06-01 パナソニック株式会社 Manufacturing method of stereolithography
JP2009274136A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Preheating using laser beam
JP2011527238A (en) * 2008-06-24 2011-10-27 ストラタシス,インコーポレイテッド System and method for constructing a three-dimensional object using a metal-based alloy
JP2010207839A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Laser beam welding equipment and laser beam welding method
JP2016505709A (en) * 2012-11-30 2016-02-25 エムベーデーアー フランスMbda France Method for melting powder, including heating in a range adjacent to the molten bath
CN103668461A (en) * 2013-09-21 2014-03-26 北京工业大学 Method for preparing nickel-based superalloy Rene80 directionally-grown column crystal/single crystal alloy and manufacturing parts
CN104001914B (en) * 2014-05-16 2016-01-06 华南理工大学 A kind of injection mold manufacture method with conformal cooling pipe
CN104001914A (en) * 2014-05-16 2014-08-27 华南理工大学 Manufacturing device and method for injection mold with conformal cooling pipeline
CN104001915B (en) * 2014-05-22 2016-07-27 上海电气(集团)总公司 A kind of high energy beam increases material and manufactures equipment and the control method thereof of large scale metallic element
CN104001915A (en) * 2014-05-22 2014-08-27 华中科技大学 Equipment for manufacturing large-size metal part in high energy beam additive manufacturing mode and control method of equipment
JP2018138694A (en) * 2014-11-14 2018-09-06 株式会社ニコン Shaping apparatus and shaping method
US11161202B2 (en) 2014-11-14 2021-11-02 Nikon Corporation Shaping apparatus and shaping method
US11911844B2 (en) 2014-11-14 2024-02-27 Nikon Corporation Shaping apparatus and shaping method
US11806810B2 (en) 2014-11-14 2023-11-07 Nikon Corporation Shaping apparatus and shaping method
CN104493165A (en) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 Electron beam melting and laser milling composite 3D printing apparatus
CN104493493A (en) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3D printing apparatus
CN104476196A (en) * 2014-12-30 2015-04-01 深圳市圆梦精密技术研究院 Combined laser melting and laser milling 3D (three-Dimensional) printing equipment
WO2016151740A1 (en) 2015-03-23 2016-09-29 技術研究組合次世代3D積層造形技術総合開発機構 Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional molding device
JPWO2016151740A1 (en) * 2015-03-23 2017-04-27 技術研究組合次世代3D積層造形技術総合開発機構 Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional modeling apparatus
CN105642893A (en) * 2015-10-14 2016-06-08 哈尔滨福沃德多维智能装备有限公司 Laser spot diameter output adjustable device and method for selective laser melting system
KR101726833B1 (en) * 2015-10-28 2017-04-14 조선대학교산학협력단 Rapid manufacturing process of ferrous and non-ferrous parts using plasma electron beam
US10279420B2 (en) 2015-10-28 2019-05-07 Industry-Academic Cooperation Foundation, Chosun University Rapid manufacturing process of ferrous and non-ferrous parts using plasma electron beam
KR101780465B1 (en) * 2015-12-09 2017-10-10 한국생산기술연구원 3-Dimensional manufacturing method for the metallic materials using 3D printing with controlling the microstructure
WO2017099478A1 (en) * 2015-12-09 2017-06-15 한국생산기술연구원 Method for stereoscopically molding metal material using 3d printing that is capable of microstructure control and precipitation hardening control
CN108472729A (en) * 2015-12-09 2018-08-31 韩国生产技术研究院 The stereoforming method of controllable microstructure and the metal material using 3D printing of precipitation-hardening
KR101789682B1 (en) * 2016-05-02 2017-10-25 한국생산기술연구원 Additive manufacturing method for metallic materials using laser producible a large sized product
CN109311227B (en) * 2016-06-07 2021-01-05 三菱重工业株式会社 Selective beam lamination molding device and selective beam lamination molding method
WO2017213082A1 (en) * 2016-06-07 2017-12-14 三菱重工業株式会社 Selective beam melting apparatus and selective beam melting method
CN109311227A (en) * 2016-06-07 2019-02-05 三菱重工业株式会社 Styling apparatus is laminated in selection type beam and formative method is laminated in selection type beam
JP2017217799A (en) * 2016-06-07 2017-12-14 三菱重工業株式会社 Selection type beam lamination molding device and selection type beam lamination molding method
WO2018128827A1 (en) * 2017-01-06 2018-07-12 General Electric Company Systems and methods for controlling microstructure of additively manufactured components
US10821512B2 (en) 2017-01-06 2020-11-03 General Electric Company Systems and methods for controlling microstructure of additively manufactured components
KR102495072B1 (en) * 2017-06-23 2023-02-06 어플라이드 머티어리얼스, 인코포레이티드 Additive manufacturing using multi-sided and galvo mirror scanners
KR102488484B1 (en) * 2017-06-23 2023-01-13 어플라이드 머티어리얼스, 인코포레이티드 Additive manufacturing using multiple mirror scanners
KR20200013066A (en) * 2017-06-23 2020-02-05 어플라이드 머티어리얼스, 인코포레이티드 Additive manufacturing with multi-sided and galvo mirror scanners
KR20200013065A (en) * 2017-06-23 2020-02-05 어플라이드 머티어리얼스, 인코포레이티드 Additive manufacturing with multiple mirror scanners
JP2020525650A (en) * 2017-06-30 2020-08-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Additive Manufacturing Technology for Precipitation Hardening Superalloy Powder Material
KR101863075B1 (en) * 2017-09-18 2018-06-29 한국생산기술연구원 3-Dimensional manufacturing method for the high strength metallic materials using 3D printing with controlling precipitation hardening
KR20170108927A (en) * 2017-09-18 2017-09-27 한국생산기술연구원 3-Dimensional manufacturing method for the high strength metallic materials using 3D printing with controlling precipitation hardening
WO2019091801A1 (en) * 2017-11-09 2019-05-16 Trumpf Laser- Und Systemtechnik Gmbh Processing machine for producing three-dimensional components layer by layer and method for heating a powder
US11679557B2 (en) 2017-11-09 2023-06-20 Trumpf Laser- Und Systemtechnik Gmbh Processing machines and methods for heating a powder to produce three-dimensional components
KR20200099606A (en) 2018-01-31 2020-08-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Manufacturing method of three-dimensional sculpture
JP2018138695A (en) * 2018-03-30 2018-09-06 株式会社ニコン Shaping apparatus and shaping method

Similar Documents

Publication Publication Date Title
JP2002069507A (en) Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit
CA3026330C (en) Laser processing apparatus and method
US8404994B2 (en) Laser beam welding device and method
JP4363039B2 (en) Surface modification method and method of joining workpieces by surface modification
JP2009515709A (en) Method and apparatus for laser use
CN106583726B (en) Laser multiple beam cladding apparatus
CN102666414A (en) Glass welding method and glass layer fixing method
CN106862756B (en) Multi-angle can preheat reversal-flame type laser melting coating head
CN101573205A (en) Laser-beam welding device and a corresponding laser-beam welding method
WO2023077282A1 (en) Laser 3d printing method and laser 3d printing device
CN108188581B (en) Wire feeding type laser additive manufacturing method
CN106498389A (en) Based on the laser cladding apparatus that multi-focus lenss produce the gentle cold light of preheating
CN114012111A (en) Blue light and infrared dual-wavelength coaxial composite laser additive manufacturing device and method
JP7412428B2 (en) Method especially for spatter-free welding using solid state lasers
CN106757014B (en) Laser multi-beam feeding cladding and preheating device
US20040231788A1 (en) Laser joining method for structured plastics
CN107363416A (en) A kind of laser ring cutter device and its control method
JP2003251480A (en) Laser cladding device and laser irradiation device
JP2006168260A (en) Manufacturing method of mold for molding light guide plate, mold for molding light guide plate, and light guide plate
CN216758172U (en) Blue light infrared dual-wavelength coaxial composite laser additive manufacturing device
CN114589401A (en) Infrared laser welding method and device
CN209532091U (en) A kind of increasing material manufacturing equipment of three laser assisteds preheating slow cooling
JP2000288755A (en) Laser beam joining method its device
JP7185436B2 (en) Laser processing method
WO2021184513A1 (en) Laser apparatus