JP2002068725A - Transportation method for polycrystalline silicon - Google Patents

Transportation method for polycrystalline silicon

Info

Publication number
JP2002068725A
JP2002068725A JP2000265159A JP2000265159A JP2002068725A JP 2002068725 A JP2002068725 A JP 2002068725A JP 2000265159 A JP2000265159 A JP 2000265159A JP 2000265159 A JP2000265159 A JP 2000265159A JP 2002068725 A JP2002068725 A JP 2002068725A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
cut
rod
packaging material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000265159A
Other languages
Japanese (ja)
Other versions
JP3496021B2 (en
Inventor
Sanji Ochiai
三二 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2000265159A priority Critical patent/JP3496021B2/en
Publication of JP2002068725A publication Critical patent/JP2002068725A/en
Application granted granted Critical
Publication of JP3496021B2 publication Critical patent/JP3496021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent powder generation from a packing material during transportation of polycrystalline silicon packed in resin film and also prevent contamination of the polycrystalline silicon by the powder. SOLUTION: The polycrystalline silicon is transported with its surface being closely fitted and fixed to a packing material by vaccumizing in resin film. Rasping of the silicon with the packing material during transportation can be prevented, and thereby powder generation from the packing material is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の製造原料
に使用される多結晶シリコンの輸送方法に関する。
The present invention relates to a method for transporting polycrystalline silicon used as a raw material for manufacturing semiconductors.

【0002】[0002]

【従来の技術】半導体デバイスの素材として使用される
シリコン単結晶は、主にシーメンス法で製造された高純
度の棒状多結晶シリコンを原料として製造される。シー
メンス法とは、高純度シリコンのシードを通電加熱し、
そのシード表面でシラン系ガスと水素を反応させること
により、高純度の棒状多結晶シリコンを製造する、気相
成長による多結晶シリコン製造方法である。
2. Description of the Related Art A silicon single crystal used as a material of a semiconductor device is manufactured mainly from high-purity rod-shaped polycrystalline silicon manufactured by the Siemens method. The Siemens method energizes and heats high-purity silicon seeds,
This is a method for producing polycrystalline silicon by vapor phase growth, in which silane-based gas and hydrogen are reacted on the seed surface to produce high-purity rod-shaped polycrystalline silicon.

【0003】シーメンス法によって製造された高純度の
棒状多結晶シリコンは、所定長さのカットロッドとさ
れ、包装・梱包されて単結晶製造工場へ輸送される。カ
ットロッドの直径は、気相成長のために一定せず、11
0〜130mm程度である。また、その長さは、単結晶
製造工場からの要求により150〜1000mmとまち
まちである。
[0003] High-purity rod-shaped polycrystalline silicon produced by the Siemens method is cut into rods of a predetermined length, packaged and packed, and transported to a single crystal production factory. The diameter of the cut rod is not constant due to vapor phase growth,
It is about 0 to 130 mm. Further, the length varies from 150 to 1000 mm depending on a request from a single crystal manufacturing plant.

【0004】棒状の多結晶シリコンを150〜1000
mm程度の長さに切断して得たカットロッドは、表面の
不純物を除去するために、混酸でエッチングされた後、
外部からの再汚染を防止するために、ポリエチレンフィ
ルムで包装され、更に輸送用ケース内に梱包されて輸送
される。
[0004] A rod-shaped polycrystalline silicon is
The cut rod obtained by cutting to a length of about mm is etched with a mixed acid to remove impurities on the surface,
In order to prevent recontamination from the outside, it is packed with a polyethylene film and further packed in a transport case and transported.

【0005】カットロッドの包装では、ポリエチレンフ
ィルムからなる袋に、大気中・大気圧下でカットロッド
が収容される。包装を終えたカットロッドは、輸送用ケ
ースの各セルに縦に挿入される。輸送用ケースの1例を
示すと、1セル200mm角、30セル(5×6セル)
である。即ち、1つのケースに30本のカットロッドが
収納されて輸送される。
[0005] In the packaging of cut rods, the cut rods are accommodated in a bag made of a polyethylene film under atmospheric pressure and atmospheric pressure. The cut rod that has been packaged is inserted vertically into each cell of the transport case. As an example of a transport case, one cell is 200 mm square, 30 cells (5 × 6 cells).
It is. That is, 30 cut rods are stored in one case and transported.

【0006】[0006]

【発明が解決しようとする課題】ところが、このような
包装・梱包の形態でカットロッドの輸送を行うと、輸送
先の単結晶製造工場では、カットロッドの表面や、カッ
トロッドを収容する袋の内面に白い微粉末が広く付着す
る。調査したところ、この微粉末は、包装材であるポリ
エチレンフィルムが粉末化したものであり、トラックな
どによる輸送中の振動により、カットロッドと袋の内面
が擦れ合うことによって発生することが判明した。
However, when the cut rods are transported in such a form of packing, the single crystal manufacturing plant to which the cut rods are transported has a cut rod surface or a bag for storing the cut rods. White fine powder adheres widely to the inner surface. Investigation revealed that the fine powder was a powdered polyethylene film as a packaging material, and was generated due to the friction between the cut rod and the inner surface of the bag due to vibration during transportation by a truck or the like.

【0007】即ち、カットロッドは、棒状の多結晶シリ
コンを単にダイヤモンドカッターで切断したものである
ため、両端の切断面の縁は鋭利であり、僅かの擦れでも
包装材の内面を容易に削り取って、包装材の粉末を発生
させる。また、カットロッドの外周面も気相成長した面
であるため、エッチング後であっても微細な凹凸が一面
に分布しており、ヤスリのように包装材の内面を削り取
って、包装材の粉末を発生させる。
That is, since the cut rod is obtained by simply cutting rod-shaped polycrystalline silicon with a diamond cutter, the edges of the cut surfaces at both ends are sharp, so that even a slight rubbing can easily scrape off the inner surface of the packaging material. Generates packaging material powder. In addition, since the outer peripheral surface of the cut rod is also a surface grown by vapor phase, even after etching, fine irregularities are distributed on one surface, so that the inner surface of the packaging material is scraped off like a file, and the powder of the packaging material is removed. Generate.

【0008】包装材から発生する粉末は、炭素やその他
の不純物を含んでいるため、粉末が付着したままのカッ
トロッドを単結晶の製造に使用することは問題であり、
輸送後にカットロッド表面に付着する粉末の除去作業な
どを要する場合もある。このため、包装材からの粉末の
発生は、品質上も能率上も問題であった。
[0008] Since the powder generated from the packaging material contains carbon and other impurities, it is problematic to use a cut rod with the powder attached for the production of a single crystal.
In some cases, it is necessary to remove the powder adhering to the surface of the cut rod after transportation. For this reason, generation of powder from the packaging material has been a problem both in terms of quality and efficiency.

【0009】本発明の目的は、多結晶シリコンの輸送中
における包装材からの粉末の発生を、簡単な手法で確実
かつ経済的に防止できる多結晶シリコンの輸送方法を提
供することにある。
An object of the present invention is to provide a method for transporting polycrystalline silicon, which can reliably and economically prevent generation of powder from a packaging material during transport of polycrystalline silicon by a simple method.

【0010】[0010]

【課題を解決するための手段】ところで、多結晶シリコ
ンのカットロッドを包装する包装材からの粉末の発生原
因は、前述したとおり、輸送中の振動であり、この振動
によるカットロッドと包装材との擦れにある。このた
め、輸送ケース内でカットロッドを固定し、輸送中の振
動がケース内の包装されたカットロッドに伝わるのを阻
止することが、粉末の発生防止に有効となる。このよう
な観点から、本発明者は輸送ケースと包装されたカット
ロッドとの隙間に発砲スチロールなどの緩衝材を挿入す
ることを試みた。
The cause of powder generation from the packaging material for packaging the polycrystalline silicon cut rod is vibration during transportation, as described above. In rubbing. For this reason, fixing the cut rod in the transport case and preventing the vibration during transport from being transmitted to the cut rod packed in the case is effective for preventing generation of powder. From such a viewpoint, the present inventor has tried to insert a cushioning material such as styrene foam into a gap between the transport case and the cut rod packaged.

【0011】しかしながら、この方法では、緩衝材の脱
着に余分の手数がかかり、作業能率が低下する。加え
て、カットロッドは、気相成長ゆえに直径が110〜1
30mm程度の範囲でまちまちであり、サイズの合った
緩衝材を用意することが困難なため、カットロッドのガ
タつきを避けることができず、粉末の発生を完全に防止
することは不可能であった。また、例えサイズの合った
緩衝材を用意できたとしても、袋内に空気が残っている
と隙間なく固定されているが故に、袋内の空気の逃げ場
がなくなる。その結果、袋内の空気圧が緩衝材を押し返
すため、カットロッドと袋との間に隙間ができてしま
い、カットロッドを確実に固定することができなくなる
ことにより、粉末が発生する。
However, in this method, extra work is required for attaching and detaching the cushioning material, and the working efficiency is reduced. In addition, the cut rod has a diameter of 110 to 1 due to vapor phase growth.
Since it is different in the range of about 30 mm and it is difficult to prepare a buffer material of a suitable size, rattling of the cut rod cannot be avoided, and it is impossible to completely prevent the generation of powder. Was. Further, even if a buffer material of a suitable size can be prepared, if air remains in the bag, it is fixed without any gap, so that there is no place for air in the bag to escape. As a result, the air pressure in the bag pushes back the cushioning material, so that a gap is formed between the cut rod and the bag, and the cut rod cannot be securely fixed, thereby generating powder.

【0012】そこで本発明者は、包装材からの粉末の発
生原因がカットロッドと包装材との擦れにあるとから、
包装材をカットロッドの表面に密着固定させることを考
え、その密着固定の具体的手段として真空包装に着目し
た。真空包装は食品等の包装に広く使用されているが、
その本来の目的は、包装材内に残存する空気等による汚
染の防止にある。本発明者は、真空包装の二次的な側
面、即ち、包装材が包装材内の物品の表面に密着し、固
定されるという物理的な側面に着目し、カットロッドを
真空包装してその輸送を行った。その結果、発砲スチロ
ールなどの緩衝材を使わずとも、輸送中の振動による包
装材からの粉末の発生を確実に防止できることが判明し
た。
The inventor of the present invention has found that the generation of powder from the packaging material is caused by friction between the cut rod and the packaging material.
Considering that the packaging material is fixedly adhered to the surface of the cut rod, attention was paid to vacuum packaging as a specific means of the adhesion fixation. Vacuum packaging is widely used for packaging foods, etc.
The original purpose is to prevent contamination by air or the like remaining in the packaging material. The present inventor focused on the secondary aspect of vacuum packaging, that is, the physical aspect in which the packaging material adheres to and is fixed to the surface of the article in the packaging material, and vacuum cuts the cut rod to form a package. Transported. As a result, it was found that generation of powder from the packaging material due to vibration during transportation can be reliably prevented without using a cushioning material such as styrene foam.

【0013】本発明の多結晶シリコンの輸送方法は、か
かる知見に基づいて開発されたものであり、高純度の多
結晶シリコンを、ガス難透過性フィルムにより真空包装
し、その包装材をシリコン表面に密着固定した状態で、
前記多結晶シリコンの輸送を行うものである。
The method for transporting polycrystalline silicon according to the present invention has been developed based on this finding. High-purity polycrystalline silicon is vacuum-packaged with a gas-impermeable film, and the packaging material is coated on the silicon surface. With the
And transporting the polycrystalline silicon.

【0014】ここで、多結晶シリコンは、代表的には、
高純度シリコンのシードを通電加熱し、そのシード表面
でシラン系ガスと水素を反応させる、いわゆるシーメン
ス法により製造された棒状の多結晶シリコンを、適当長
さに切断して得たカットロッドであるが、数mm〜15
0mmに破砕されたシリコン塊でもよい。
Here, polycrystalline silicon is typically
It is a cut rod obtained by cutting a rod-shaped polycrystalline silicon manufactured by the so-called Siemens method into an appropriate length by heating a high-purity silicon seed by heating and reacting silane-based gas and hydrogen on the seed surface. But several mm to 15
A silicon lump crushed to 0 mm may be used.

【0015】カットロッドは、前述したように、両端の
切断面の鋭利な縁のみならず、ヤスリ状の外周面も粉末
の発生に関与するが、真空包装によって包装材をカット
ロッドの表面に密着固定させることにより、輸送中の振
動によっても包装材の内面を削り取る危険がなくなり、
その内面からの粉末の発生が防止される。
As described above, not only the sharp edges of the cut surfaces at both ends but also the file-shaped outer peripheral surface are involved in the generation of powder, as described above, but the packaging material is closely adhered to the surface of the cut rod by vacuum packaging. By fixing, there is no danger of scraping the inner surface of the packaging material even by vibration during transportation,
Generation of powder from the inner surface is prevented.

【0016】同様に、数mm〜150mmに破砕された
シリコン塊も気相成長面や破砕面を持っているため、包
装材からの粉末の発生が問題になるが、真空包装によっ
て包装材をカットロッドの表面に密着固定させることに
より、輸送中の振動に伴う包装材の内面からの粉末の発
生が防止される。
Similarly, since silicon chunks crushed to several mm to 150 mm also have a vapor growth surface and a crushed surface, generation of powder from the packaging material poses a problem, but the packaging material is cut by vacuum packaging. By tightly fixing to the surface of the rod, generation of powder from the inner surface of the packaging material due to vibration during transportation is prevented.

【0017】包装材は、代表的にはポリエチレンフィル
ムからなる袋体である。ポリエチレンフィルムは完全な
ガス不透過性ではないが、真空包装により隙間を排除し
た後2〜3ヵ月放置しても袋体の中に隙間が発生しない
ことを確認している。カットロッドの輸送前の保管期間
は最大でも2〜3ヵ月であるので、ポリエチレンフィル
ム程度のガス難透過性を有するものであれば、輸送時の
振動に伴う包装材の内面からの粉末の発生を防止でき
る。
The wrapping material is typically a bag made of a polyethylene film. Although the polyethylene film is not completely gas-impermeable, it has been confirmed that no gap is generated in the bag even after leaving the gap by vacuum packaging for a few months. Since the storage period of cut rods before transport is a maximum of two to three months, the generation of powder from the inner surface of the packaging material due to vibration during transport can be prevented if the material has gas permeability as low as polyethylene film. Can be prevented.

【0018】ポリエチレンフィルム以外に使用可能なガ
ス難透過性フィルムとしては、ポリプロピレンフィル
ム、ナイロンフィルム等を挙げることができる。いずれ
のフィルムも袋体とすることにより、真空包装の操作が
簡単になる。
Examples of the gas-impermeable film that can be used other than the polyethylene film include a polypropylene film and a nylon film. By making each film into a bag, the operation of vacuum packaging is simplified.

【0019】フィルムの厚みは0.1〜0.3mmが好
ましい。この厚みが小さすぎると破れが問題になる。大
きすぎる場合は袋体と多結晶シリコンとの接触面積が十
分に確保できないため、密着による固定が不十分とな
る。
The thickness of the film is preferably from 0.1 to 0.3 mm. If the thickness is too small, tearing becomes a problem. If it is too large, the contact area between the bag and the polycrystalline silicon cannot be sufficiently ensured, so that the fixation by close contact becomes insufficient.

【0020】真空包装に使用する包装機器の種類は問わ
ない。ポリエチレン等の樹脂フィルムからなる袋体内を
脱気し、その口をシールできる脱気式シーラー、例えば
富士インパルス社製V400(商品名)が代表的な包装
機器である。
There is no limitation on the type of packaging equipment used for vacuum packaging. A typical packaging device is a deaeration type sealer that can deaerate the inside of a bag made of a resin film such as polyethylene and seal its mouth, for example, V400 (trade name) manufactured by Fuji Impulse Co., Ltd.

【0021】真空包装後の包装材内の気圧は大気圧の
0.95倍以下が好ましい。包装材内の気圧が大気圧の
0.95倍を超えると、減圧による締め付け効果が十分
に得られない。この気圧の下限については、多結晶シリ
コンがカットロッドの場合はほぼ完全な真空状態であっ
てもよいが、破砕されたシリコン塊の場合は余りに低圧
であると包装材の破れが問題になるので、大気圧の0.
3倍以上が好ましい。
The pressure in the packaging material after vacuum packaging is preferably 0.95 times or less the atmospheric pressure. If the air pressure in the packaging material exceeds 0.95 times the atmospheric pressure, a sufficient tightening effect due to the reduced pressure cannot be obtained. As for the lower limit of the atmospheric pressure, when the polycrystalline silicon is a cut rod, the vacuum state may be almost perfect, but in the case of a crushed silicon lump, if the pressure is too low, the packaging material may be broken. At atmospheric pressure.
Three times or more is preferable.

【0022】[0022]

【発明の実施の形態】以下に本発明の一実施形態を、シ
ーメンス法により製造された棒状の多結晶シリコンから
切り出された直径120mm、長さ180mmのカット
ロッドについて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to a cut rod having a diameter of 120 mm and a length of 180 mm cut out of rod-shaped polycrystalline silicon manufactured by the Siemens method.

【0023】カットロッドの表面をHFと硝酸の混合液
でエッチングし、純水にて十分に洗浄した後、乾燥させ
る。そのカットロッドをポリエチレンフィルムからなる
袋体の中に入れ、包装機器としての富士インパルス社製
V400(商品名)により、袋体の内部を大気圧の0.
4倍である0.04MPaまで減圧した状態で、その袋
体の口部をシールする。袋体の大きさは縦500mm×
横300mm、厚みは0.2mmである。
The surface of the cut rod is etched with a mixed solution of HF and nitric acid, washed sufficiently with pure water, and dried. The cut rod is placed in a bag made of a polyethylene film, and the inside of the bag is set to a pressure of atmospheric pressure of V400 (trade name) manufactured by Fuji Impulse as a packaging device.
With the pressure reduced to 0.04 MPa, which is four times, the mouth of the bag is sealed. The size of the bag is 500 mm long x
The width is 300 mm and the thickness is 0.2 mm.

【0024】包装の手順としては、まず、カットロッド
を収容した袋体の口に減圧ノズルを差し込んだ状態で、
口部を圧着レバーで挟む。減圧操作後、減圧ノズルを引
き抜き、圧着レバーによる加圧で口部をシールする。
As a packaging procedure, first, a vacuum nozzle is inserted into the mouth of the bag housing the cut rod,
Clamp the mouth with the pressure lever. After the depressurizing operation, the depressurizing nozzle is pulled out, and the mouth is sealed by pressurizing with a pressure lever.

【0025】真空包装後のカットロッドを従来と同じ輸
送ケースにより梱包し、約12時間かけて単結晶製造工
場へトラック輸送した。真空包装されたカットロッド
は、輸送中にケース内で激しく振動したはずであるが、
輸送先での粉末発生は全く認められなかった。
The cut rods after vacuum packaging were packed in the same transport case as before, and transported by truck to a single crystal manufacturing plant for about 12 hours. The vacuum-packed cut rod should have vibrated violently in the case during transportation,
No powder was generated at the transport destination.

【0026】この効果を確認するために、上記のポリエ
チレンフィルムにより真空包装されたカットロッドを、
周囲に10mmの隙間がある状態で円筒形の容器に入
れ、振とう器により縦方向152回/分、横方向304
回/分の条件で16分間振動させた。真空包装されたカ
ットロッドは容器内で激しく振動したが、カットロッド
と包装材との間に擦れはなく、粉末の発生は認められな
かった。
In order to confirm this effect, a cut rod vacuum-packaged with the above-mentioned polyethylene film was used.
Put into a cylindrical container with a gap of 10 mm around it, and use a shaker 152 times / minute in the vertical direction and 304
Vibration was performed for 16 minutes under the conditions of times / minute. The vacuum-packed cut rod violently vibrated in the container, but there was no rubbing between the cut rod and the packaging material, and no generation of powder was observed.

【0027】一方、ポリエチレンフィルムからなる袋体
の内部に、空気を抜かずにカットロッドを収容した場合
について、同様の振動試験を行った。包装材とその内部
のカットロッドとが激しく擦れ、振動開始から1分後に
袋体の内面に傷がつき、5分後にはカットロッドの表面
に、包装材から生じた粉末の付着が認められた。
On the other hand, a similar vibration test was conducted for a case where a cut rod was accommodated in a bag made of polyethylene film without bleeding air. The packaging material and the cut rods inside were severely rubbed, and the inner surface of the bag was scratched one minute after the start of vibration, and the adhesion of powder generated from the packaging material to the surface of the cut rod was recognized five minutes later. .

【0028】[0028]

【発明の効果】以上に説明したとおり、本発明の多結晶
シリコンの輸送方法は、高純度の多結晶シリコンを、ガ
ス難透過性フィルムにより真空包装し、その包装材をシ
リコン表面に密着固定した状態で輸送することにより、
輸送中における包装材からの粉末の発生を、簡単な手法
で確実かつ経済的に防止することができる。
As described above, in the method for transporting polycrystalline silicon according to the present invention, high-purity polycrystalline silicon is vacuum-packaged with a gas-impermeable film, and the packaging material is tightly fixed to the silicon surface. By transporting in a state,
Generation of powder from the packaging material during transportation can be reliably and economically prevented by a simple method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高純度の多結晶シリコンを、ガス難透過
性フィルムにより真空包装し、その包装材をシリコン表
面に密着固定した状態で輸送することを特徴とする多結
晶シリコンの輸送方法。
1. A method of transporting polycrystalline silicon, comprising vacuum-packaging high-purity polycrystalline silicon with a gas-impermeable film, and transporting the packaging material in a state of being tightly fixed to the silicon surface.
【請求項2】 前記多結晶シリコンは、高純度シリコン
のシードを通電加熱し、そのシード表面でシラン系ガス
と水素を反応させることにより製造された棒状の多結晶
シリコンを、適当長さに切断して得たカットロッドであ
る請求項1に記載の多結晶シリコンの輸送方法。
2. The polycrystalline silicon is obtained by cutting a rod-shaped polycrystalline silicon produced by energizing and heating a high-purity silicon seed and reacting a silane-based gas with hydrogen on the surface of the seed. 2. The method for transporting polycrystalline silicon according to claim 1, wherein the cut rod is obtained by cutting.
JP2000265159A 2000-09-01 2000-09-01 Transport method of polycrystalline silicon Expired - Lifetime JP3496021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265159A JP3496021B2 (en) 2000-09-01 2000-09-01 Transport method of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265159A JP3496021B2 (en) 2000-09-01 2000-09-01 Transport method of polycrystalline silicon

Publications (2)

Publication Number Publication Date
JP2002068725A true JP2002068725A (en) 2002-03-08
JP3496021B2 JP3496021B2 (en) 2004-02-09

Family

ID=18752462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265159A Expired - Lifetime JP3496021B2 (en) 2000-09-01 2000-09-01 Transport method of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP3496021B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030905A2 (en) 2007-08-27 2009-03-04 Mitsubishi Materials Corporation Method of packing silicon and packing body
JP2012062085A (en) * 2010-09-16 2012-03-29 Tokuyama Corp Transport case and transport method for polysilicon
KR101296756B1 (en) 2010-09-15 2013-08-14 와커 헤미 아게 Method for producing thin silicon rods
EP2479142A4 (en) * 2009-09-16 2014-07-02 Shinetsu Chemical Co Polycrystalline silicon mass and process for producing polycrystalline silicon mass
JP2017524632A (en) * 2014-11-10 2017-08-31 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Polycrystalline silicon rod pair and method for producing polycrystalline silicon
KR20170137895A (en) * 2015-04-23 2017-12-13 와커 헤미 아게 Polysilicon packaging and polysilicon packaging methods
WO2022190945A1 (en) * 2021-03-08 2022-09-15 株式会社トクヤマ Packaging bag for filling crushed polysilicon material and polysilicon package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514048B2 (en) * 2010-09-06 2014-06-04 株式会社トクヤマ Polysilicon packaging

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030905A2 (en) 2007-08-27 2009-03-04 Mitsubishi Materials Corporation Method of packing silicon and packing body
EP2030905A3 (en) * 2007-08-27 2009-08-19 Mitsubishi Materials Corporation Method of packing silicon and packing body
US9988188B2 (en) 2007-08-27 2018-06-05 Mitsubishi Materials Corporation Method of packing silicon and packing body
EP2479142A4 (en) * 2009-09-16 2014-07-02 Shinetsu Chemical Co Polycrystalline silicon mass and process for producing polycrystalline silicon mass
US11440804B2 (en) 2009-09-16 2022-09-13 Shin-Etsu Chemical Co., Ltd. Process for producing polycrystalline silicon mass
KR101296756B1 (en) 2010-09-15 2013-08-14 와커 헤미 아게 Method for producing thin silicon rods
JP2012062085A (en) * 2010-09-16 2012-03-29 Tokuyama Corp Transport case and transport method for polysilicon
JP2017524632A (en) * 2014-11-10 2017-08-31 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Polycrystalline silicon rod pair and method for producing polycrystalline silicon
KR20170137895A (en) * 2015-04-23 2017-12-13 와커 헤미 아게 Polysilicon packaging and polysilicon packaging methods
KR101907815B1 (en) 2015-04-23 2018-10-12 와커 헤미 아게 Polysilicon packaging and polysilicon packaging methods
WO2022190945A1 (en) * 2021-03-08 2022-09-15 株式会社トクヤマ Packaging bag for filling crushed polysilicon material and polysilicon package

Also Published As

Publication number Publication date
JP3496021B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
JP2002068725A (en) Transportation method for polycrystalline silicon
CA2836208C (en) Packing polycrystalline silicon
EP2004882A2 (en) Growing large surface area gallium nitride crystals
US2967777A (en) Method of packaging food products to inhibit growth of molds and bacteria
JP5514081B2 (en) Method for manufacturing polysilicon package
CN109094861A (en) A kind of packing method of chunk polysilicon
JP5514048B2 (en) Polysilicon packaging
CN106660694A (en) Polysilicon package
US4478025A (en) Vacuum packing device
JP4335489B2 (en) Method for producing silicon melt
JP4115986B2 (en) Packing method for polycrystalline silicon
WO2006095536A1 (en) Method of growing single crystal and single crystal growing apparatus
CA2673400A1 (en) Device and method for decanting powders and solid substances while avoiding contamination and novel use of a weldable and peelable tubular film
PT89994B (en) PROCESS FOR PACKAGING PROTECTION AND DAMPING
JP6203959B2 (en) Method for making polycrystalline silicon
Aoki et al. Dissolution and recrystallization of GaN in molten Na
JP2022113562A (en) Storage container of polycrystal silicon raw material after washing, storage apparatus, and storage method
JP2009189294A (en) Method for producing sealed lactic fermented bamboo powder product
JPS60167414A (en) Semiconductor packing body
JP2012062085A (en) Transport case and transport method for polysilicon
JP2004059037A (en) Packaging method and packaging apparatus
JP3614621B2 (en) How to store and transport gas hydrates
JP2005119673A (en) Chopped strand package
JP4716537B2 (en) How to store powder detergent
JPH07256097A (en) Corrosive gas absorbent and container valve of gas sealing container

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3496021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term