JP2002068710A - Apparatus for removing co and apparatus for generating fuel cells using it - Google Patents

Apparatus for removing co and apparatus for generating fuel cells using it

Info

Publication number
JP2002068710A
JP2002068710A JP2000264534A JP2000264534A JP2002068710A JP 2002068710 A JP2002068710 A JP 2002068710A JP 2000264534 A JP2000264534 A JP 2000264534A JP 2000264534 A JP2000264534 A JP 2000264534A JP 2002068710 A JP2002068710 A JP 2002068710A
Authority
JP
Japan
Prior art keywords
chamber
fuel gas
separation membrane
gas
permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000264534A
Other languages
Japanese (ja)
Other versions
JP4682403B2 (en
Inventor
Yukitaka Hamada
行貴 濱田
Kazunori Kobayashi
和典 小林
Sakae Chijiiwa
栄 千々岩
Yasuaki Yamanaka
康朗 山中
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000264534A priority Critical patent/JP4682403B2/en
Publication of JP2002068710A publication Critical patent/JP2002068710A/en
Application granted granted Critical
Publication of JP4682403B2 publication Critical patent/JP4682403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a CO removing apparatus and a fuel cells generating apparatus using it in which a CO concentration in a fuel gas can be reduced to a ppm level (e.g. several ten ppm), the amount of an expensive noble metal is small in use, a structure is simple and compacting the same can be made. SOLUTION: The CO removing apparatus 10 is provided with a fuel gas chamber 14 and a permeation chamber 16 which are divided by a hydrogen separation membrane complex 12. The hydrogen separation membrane complex 12 is comprised of a metal porous plate 12 which is supported so as to keep a pressure difference between the fuel gas chamber and the permeation chamber, a sintered metal plate 12b which is laminated with adhering closely to the fuel gas chamber side of the metal porous plate and a hydrogen separation membrane 11 which is coated on a surface of the sintered metal plate. A CO shift catalyst 17a is filled up in the fuel gas chamber 14, a fuel gas, which contains carbon monoxide, is supplied by a higher pressure than the permeation chamber and a methanation catalyst 17b is filled up in the permeation chamber 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に供給す
る燃料ガス中のCO濃度を低減するためのCO除去装置
とこれを用いた燃料電池発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CO removing device for reducing the concentration of CO in fuel gas supplied to a fuel cell and a fuel cell power generator using the same.

【0002】[0002]

【従来の技術】近年、燃料電池自動車や小型の定置式の
燃料電池の研究開発が活発に行われており、燃料電池と
して作動温度が比較的低い固体高分子型燃料電池(PE
FC)が有力視されている。また燃料としては、都市ガ
ス、ナフサ、メタノール等が用いられ、これを改質して
水素を含む燃料ガスとして用いる。
2. Description of the Related Art In recent years, research and development of a fuel cell vehicle and a small stationary fuel cell have been actively conducted, and as a fuel cell, a polymer electrolyte fuel cell (PE) having a relatively low operating temperature.
FC) is promising. As a fuel, city gas, naphtha, methanol, or the like is used, which is reformed and used as a fuel gas containing hydrogen.

【0003】固体高分子型燃料電池(PEFC)は、他
の燃料電池に比べて比較的低温(100℃前後)で運転
される。また、PEFCのアノード触媒は、ガス中のC
Oによって被毒され、電池性能が大きく低下するため、
PEFCに供給する燃料ガス中のCO濃度をppmオー
ダー(例えば数10ppm)まで低減する必要がある。
そのため、燃料ガス中のCO濃度を低減する手段とし
て、特開平6−168733号、特開平7−57758
号、特開平9−10538号、等が従来から提案されて
いた。
A polymer electrolyte fuel cell (PEFC) is operated at a relatively low temperature (around 100 ° C.) as compared with other fuel cells. In addition, the anode catalyst of PEFC uses C in the gas.
Because it is poisoned by O and battery performance is greatly reduced,
It is necessary to reduce the CO concentration in the fuel gas supplied to the PEFC to the order of ppm (for example, several tens of ppm).
Therefore, as means for reducing the CO concentration in the fuel gas, JP-A-6-168733 and JP-A-7-57758 have been proposed.
And JP-A-9-10538 have been proposed in the past.

【0004】特開平6−168733号の「燃料電池用
水素の製造方法及び装置並びに供給方法」は、炭化水素
又はメタノールを水蒸気で改質し、生成する水素を逐次
水素分離機能膜により透過させ、水蒸気に同伴させて水
素を系外に取り出すものであり、改質速度を高め、かつ
分離膜の水素透過速度を高めることができる特徴があ
る。
Japanese Patent Application Laid-Open No. 6-168733 discloses a "method, apparatus and supply method of hydrogen for a fuel cell" in which hydrocarbon or methanol is reformed with steam, and the generated hydrogen is successively permeated through a hydrogen separation function membrane. Hydrogen is taken out of the system together with water vapor, and has the characteristic that the reforming rate can be increased and the hydrogen permeation rate of the separation membrane can be increased.

【0005】特開平7−57758号の「燃料電池シス
テム」は、水素ガスが溶存することができパラジウムを
含有する合金からなるガス分離膜を用いて、燃料ガス中
の水素を分離し、燃料電池の負極に水素を供給するもの
であり、燃料ガスに含有する微量の一酸化炭素を除去で
きる特徴がある。
[0005] Japanese Patent Application Laid-Open No. 7-57758 discloses a "fuel cell system" which separates hydrogen in fuel gas using a gas separation membrane made of an alloy containing palladium which can dissolve hydrogen gas. For supplying hydrogen to the negative electrode, and has the characteristic that a trace amount of carbon monoxide contained in the fuel gas can be removed.

【0006】特開平9−10538号の「吸着/スチー
ム脱着サイクルに基づく一酸化炭素の除去方法」は、C
O含有ガス流を、COを選択的に吸着できる吸着剤に通
すものであり、これによりガス流の一酸化炭素含有量を
低下させるものである。
Japanese Unexamined Patent Publication No. 9-10538 discloses a method for removing carbon monoxide based on an adsorption / steam desorption cycle.
The O-containing gas stream is passed through an adsorbent capable of selectively adsorbing CO, thereby reducing the carbon monoxide content of the gas stream.

【0007】[0007]

【発明が解決しようとする課題】上述した特開平6−1
68733号と特開平7−57758号のCO濃度低減
手段では、水素分離機能膜(以下、水素分離膜という)
の膜厚を十分に厚くする必要があり(例えば膜厚約20
μm)、透過性能が低く、装置が大型となる問題点があ
った。また、水素分離膜には貴金属であるパラジウムや
パラジウム合金を用いているため高価であり、コスト高
になる。更に、厚い水素分離膜を用いて透過流量を確保
するため、膜の差圧を大きくする必要が生じる問題点が
あった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Laid-Open No. 6-1
No. 68733 and Japanese Patent Application Laid-Open No. 7-57758 disclose a CO concentration reducing means using a hydrogen separation membrane (hereinafter referred to as a hydrogen separation membrane).
Needs to be sufficiently thick (for example, about 20
μm), the transmission performance is low, and the apparatus becomes large. Moreover, since the noble metal palladium or palladium alloy is used for the hydrogen separation membrane, it is expensive and costly. Furthermore, in order to secure a permeation flow rate using a thick hydrogen separation membrane, there has been a problem that it is necessary to increase the differential pressure of the membrane.

【0008】また、特開平9−10538号のCO濃度
低減手段では、水素分離膜を用いないので差圧が低くで
きるが、吸着剤として高価な白金、パラジウム、等を大
量に必要とするため、更にコスト高になる問題点があっ
た。
In the CO concentration reducing means disclosed in JP-A-9-10538, the pressure difference can be reduced because a hydrogen separation membrane is not used. However, since a large amount of expensive platinum, palladium or the like is required as an adsorbent, There was a problem that the cost was further increased.

【0009】更に、水素分離膜を用いずに、選択酸化部
と部分酸化部を備えた「燃料改質装置」(特開平8−1
57201号)も開示されているが、選択酸化部と部分
酸化部を異なる最適温度に保持するために熱交換器等を
余分に必要とし、装置が複雑かつ大型になる問題点があ
った。
Further, a "fuel reforming apparatus" having a selective oxidizing section and a partial oxidizing section without using a hydrogen separation membrane (Japanese Unexamined Patent Publication No. Hei 8-1)
No. 57201) is also disclosed, but there is a problem that an extra heat exchanger or the like is required to maintain the selective oxidizing section and the partial oxidizing section at different optimum temperatures, and the apparatus becomes complicated and large.

【0010】本発明は上述した種々の問題点を解決する
ために創案されたものである。すなわち、本発明の目的
は、燃料ガス中のCO濃度をppmオーダー(例えば数
10ppm)まで低減することができ、かつ高価な貴金
属の使用量が少なく、構造がシンプルであり、かつコン
パクト化が可能なCO除去装置とこれを用いた燃料電池
発電装置を提供することにある。
The present invention has been made to solve the above-mentioned various problems. That is, an object of the present invention is to reduce the CO concentration in fuel gas to the order of ppm (for example, tens of ppm), to use a small amount of expensive noble metal, to have a simple structure, and to be compact. An object of the present invention is to provide a simple CO removal device and a fuel cell power generation device using the same.

【0011】[0011]

【課題を解決するための手段】本発明によれば、水素分
離膜複合体(12)で仕切られた燃料ガス室(14)と
透過室(16)とを備え、前記水素分離膜複合体(1
2)は、燃料ガス室と透過室の差圧に耐えるように支持
された金属多孔板(12a)と、該金属多孔板の燃料ガ
ス室側に密着して積層された焼結金属板(12b)と、
該焼結金属板の表面にコーティングされた水素分離膜
(11)とからなり、前記燃料ガス室(14)には、C
Oシフト触媒(17a)が充填されており、一酸化炭素
を含む燃料ガスが透過室より高い圧力で供給され、前記
透過室(16)には、メタネーション触媒(17b)が
充填されている、ことを特徴とするCO除去装置が提供
される。
According to the present invention, a fuel gas chamber (14) and a permeation chamber (16) partitioned by a hydrogen separation membrane composite (12) are provided. 1
2) a metal perforated plate (12a) supported so as to withstand the pressure difference between the fuel gas chamber and the permeation chamber, and a sintered metal plate (12b) laminated in close contact with the metal perforated plate on the fuel gas chamber side. )When,
A hydrogen separation membrane (11) coated on the surface of the sintered metal plate;
O-shift catalyst (17a) is filled, fuel gas containing carbon monoxide is supplied at a higher pressure than the permeation chamber, and the permeation chamber (16) is filled with a methanation catalyst (17b). A CO removal device is provided.

【0012】上記本発明の構成によれば、水素分離膜複
合体(12)を構成する水素分離膜(11)は、金属多
孔板(12a)と焼結金属板(12b)とで支持されて
いるので、水素分離膜(11)を薄膜(例えば、膜厚1
0μm以下)にしても燃料ガス室と透過室の差圧(例え
ば0.2〜0.4MPa)に耐えることができる。従っ
て、燃料ガス室(14)に供給された一酸化炭素を含む
燃料ガスから、比較的低い差圧でH2ガスを効率的に透
過室側に透過させることができる。また、燃料ガス室
(14)には、COシフト触媒(17a)が充填されて
いるので、シフト反応(CO+H2O→CO2+H2)に
より燃料ガス室側のCO濃度を低減することができる。
更に、水素分離膜(11)を薄膜にしたことにより、膜
にピンホールが生じやすくなり、COガスがわずかに透
過側に漏洩するが、透過室にメタネーション反応の触媒
が充填されていることから、この若干のCOガスはメタ
ネーション反応(CO+3H2→CH4+H2O)により
メタンに転化し、燃料電池の被毒を防止することができ
る。
According to the configuration of the present invention, the hydrogen separation membrane (11) constituting the hydrogen separation membrane composite (12) is supported by the porous metal plate (12a) and the sintered metal plate (12b). Therefore, the hydrogen separation membrane (11) is
(0 μm or less), it can withstand the pressure difference between the fuel gas chamber and the permeation chamber (for example, 0.2 to 0.4 MPa). Therefore, H 2 gas can be efficiently permeated to the permeation chamber side at a relatively low pressure difference from the fuel gas containing carbon monoxide supplied to the fuel gas chamber (14). Further, since the fuel gas chamber (14) is filled with the CO shift catalyst (17a), the CO concentration on the fuel gas chamber side can be reduced by the shift reaction (CO + H 2 O → CO 2 + H 2 ). .
Further, the thinning of the hydrogen separation membrane (11) makes it easy for pinholes to occur in the membrane, and the CO gas slightly leaks to the permeation side, but the permeation chamber is filled with a catalyst for the methanation reaction. Therefore, this slight amount of CO gas is converted into methane by a methanation reaction (CO + 3H 2 → CH 4 + H 2 O), and the poisoning of the fuel cell can be prevented.

【0013】本発明の好ましい実施形態によれば、前記
透過室(16)は、約400℃以上、約450℃以下の
温度かつほぼ常圧に保持され、前記水素分離膜(11)
は、透過ガス中のCO濃度が約3%以下になるように厚
さが設定されている。
According to a preferred embodiment of the present invention, the permeation chamber (16) is maintained at a temperature of about 400 ° C. or more and about 450 ° C. and substantially at normal pressure, and the hydrogen separation membrane (11)
Is set so that the CO concentration in the permeated gas is about 3% or less.

【0014】メタネーションの平衡定数と温度の関係か
ら、約400℃以上、約450℃以下の温度範囲におけ
る常圧でのメタネーションの平衡定数Kは、約1500
〜17000であり、この温度範囲において、透過ガス
中のCO濃度が約3%以下であれば、メタネーション触
媒により出口CO濃度を10ppm以下にすることがで
きることが後述するシミュレーション結果から確認され
た。
From the relationship between the equilibrium constant of methanation and the temperature, the equilibrium constant K of methanation at normal pressure in the temperature range of about 400 ° C. or more and about 450 ° C. or less is about 1500
From this simulation result, it was confirmed that if the CO concentration in the permeated gas is about 3% or less in this temperature range, the methanation catalyst can reduce the outlet CO concentration to 10 ppm or less.

【0015】また、前記水素分離膜複合体(12)、燃
料ガス室(14)及び透過室(16)は平板状に形成さ
れ、かつ交互に複数が積層されている。この構成によ
り、水素分離膜の面積を容易に広くでき、かつCO除去
装置を耐圧構造でコンパクトにすることができる。
The hydrogen separation membrane composite (12), the fuel gas chamber (14) and the permeation chamber (16) are formed in a flat plate shape, and a plurality of them are alternately stacked. With this configuration, the area of the hydrogen separation membrane can be easily increased, and the CO removing device can be made compact with a pressure-resistant structure.

【0016】また、本発明によれば、燃料を加圧状態で
水素を含む改質ガスに改質する改質器(22)と、前記
改質ガスから水素リッチの透過ガスを透過させるCO除
去装置(10)と、前記透過ガスを用いて発電する燃料
電池(24)とを備え、前記CO除去装置(10)は、
水素分離膜複合体(12)で仕切られた燃料ガス室(1
4)と透過室(16)とを備え、透過室(16)にはメ
タネーション触媒(17b)が充填されており、前記燃
料ガス室(14)を透過せずに通過した不透過ガスは、
減圧して改質器(22)の燃焼室に供給され、前記透過
室(16)には水蒸気が供給され、該水蒸気は透過ガス
と共に燃料電池に供給される、ことを特徴とする燃料電
池発電装置が提供される。
Further, according to the present invention, a reformer (22) for reforming a fuel into a reformed gas containing hydrogen in a pressurized state, and CO removal for permeating a hydrogen-rich permeated gas from the reformed gas. An apparatus (10) and a fuel cell (24) for generating electric power using the permeated gas, wherein the CO removal apparatus (10)
The fuel gas chamber (1) partitioned by the hydrogen separation membrane composite (12)
4) and a permeation chamber (16). The permeation chamber (16) is filled with a methanation catalyst (17b), and the impermeable gas that has passed through the fuel gas chamber (14) without permeating is
The fuel cell is characterized in that the pressure is reduced and the steam is supplied to the combustion chamber of the reformer (22), steam is supplied to the permeation chamber (16), and the steam is supplied to the fuel cell together with the permeated gas. An apparatus is provided.

【0017】この構成により、透過室(16)にはメタ
ネーション触媒(17b)が充填されているので、水素
分離膜を薄膜にしても透過側に漏洩する若干のCOガス
をメタネーション反応(CO+3H2→CH4+H2O)
によりメタンに転化し、燃料電池の被毒を防止すること
ができる。また、透過室(16)には水蒸気が供給さ
れ、この水蒸気は透過ガスと共に燃料電池に供給される
ので、透過室内の水素濃度を低減し、水素分離膜の透過
効率を更に高めることができる。更に、燃料ガス室(1
4)を通過した不透過ガスが、減圧して改質器(22)
の燃焼室に供給されるので、改質器(22)の燃焼室を
低圧(例えば常圧)にすることができる。従って、燃料
電池で反応後の透過ガスもこの燃焼室に供給し、残存す
る可燃成分を燃焼させて熱効率を高めることができる。
According to this structure, the permeation chamber (16) is filled with the methanation catalyst (17b), so that even if the hydrogen separation membrane is thin, a small amount of CO gas leaking to the permeation side can be removed by the methanation reaction (CO + 3H). 2 → CH 4 + H 2 O)
As a result, the fuel cell is converted to methane, and poisoning of the fuel cell can be prevented. In addition, steam is supplied to the permeation chamber (16), and the water vapor is supplied to the fuel cell together with the permeated gas. Therefore, the hydrogen concentration in the permeation chamber can be reduced, and the permeation efficiency of the hydrogen separation membrane can be further increased. Furthermore, the fuel gas chamber (1
4) The impermeable gas that has passed through is reduced in pressure and reformed (22).
The combustion chamber of the reformer (22) can be set at a low pressure (for example, normal pressure). Therefore, the permeated gas after the reaction in the fuel cell is also supplied to this combustion chamber, and the remaining combustible components are burned to increase the thermal efficiency.

【0018】[0018]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals.

【0019】図1は、本発明のCO除去装置を備えた燃
料電池発電装置の全体システム図である。この図におい
て、1は燃料、2は改質ガス、3は不透過ガス、4は透
過ガス、5は可燃排ガス、6は燃焼排ガス、7は水、8
水蒸気、9 空気、10はCO除去装置、22は改質
器、24は燃料電池、25は蒸発器、26は燃料予熱
器、27は空気予熱器、28aはコンプレッサ、28b
はポンプ、28cはブロアである。また、
FIG. 1 is an overall system diagram of a fuel cell power generator equipped with a CO removing device of the present invention. In this figure, 1 is fuel, 2 is reformed gas, 3 is impermeable gas, 4 is permeable gas, 5 is combustible exhaust gas, 6 is combustion exhaust gas, 7 is water, 8
Steam, 9 air, 10 is a CO remover, 22 is a reformer, 24 is a fuel cell, 25 is an evaporator, 26 is a fuel preheater, 27 is an air preheater, 28a is a compressor, 28b
Is a pump and 28c is a blower. Also,

【0020】CO除去装置10は、水素分離膜複合体1
2で仕切られた燃料ガス室14と透過室16とを備え
る。燃料ガス室(14)には、COシフト触媒17aが
充填され、透過室16にはメタネーション触媒17bが
充填されている。
[0020] The CO removing apparatus 10 is a hydrogen separation membrane composite 1
A fuel gas chamber 14 and a permeation chamber 16 are provided. The fuel gas chamber (14) is filled with a CO shift catalyst 17a, and the permeation chamber 16 is filled with a methanation catalyst 17b.

【0021】改質器22は、改質触媒が充填された改質
室22aと燃焼室22bとからなる。改質室22aは高
圧であり、チャーブラ型の耐圧構造となっている。一
方、燃焼室22bは常圧であり、内部で燃料を燃焼させ
て改質室22aを約700〜780℃の改質温度に加熱
する。燃料1はコンプレッサ28aで加圧され、加圧状
態で改質室22aに供給され、燃焼室22bからの加熱
により改質反応で水素を含む燃料ガス2(改質ガス)に
改質される。
The reformer 22 includes a reforming chamber 22a filled with a reforming catalyst and a combustion chamber 22b. The reforming chamber 22a has a high pressure and has a Chubra-type pressure-resistant structure. On the other hand, the combustion chamber 22b is at normal pressure, and burns fuel inside to heat the reforming chamber 22a to a reforming temperature of about 700 to 780 ° C. The fuel 1 is pressurized by the compressor 28a, supplied to the reforming chamber 22a in a pressurized state, and reformed into a fuel gas 2 (reformed gas) containing hydrogen by a reforming reaction by heating from the combustion chamber 22b.

【0022】燃料1には、都市ガス、ナフサ、メタノー
ル等を用いる。また、CO除去装置10の水素分離膜複
合体12を透過せずに通過したCO濃度の高い未透過ガ
ス3は、減圧弁21により常圧まで減圧して改質器22
の燃焼室22bに供給され、燃焼室22bの燃料として
用いられる。更に、水素分離膜複合体12を透過した透
過ガス4が燃料電池内で反応した後の未燃成分を含む可
燃排ガス5も、燃焼室22bに供給され、燃焼室22b
の燃料として用いるようになっている。
As the fuel 1, city gas, naphtha, methanol or the like is used. Further, the non-permeate gas 3 having a high CO concentration that has passed through the hydrogen separation membrane complex 12 of the CO removal device 10 without being permeated is reduced to a normal pressure by the pressure reducing valve 21 and the reformer 22.
And is used as fuel for the combustion chamber 22b. Further, the combustible exhaust gas 5 containing the unburned component after the permeated gas 4 permeating the hydrogen separation membrane composite 12 reacts in the fuel cell is also supplied to the combustion chamber 22b,
It is designed to be used as a fuel.

【0023】改質器22の燃焼室22bを出た燃焼排ガ
ス6は燃料予熱器26で燃料1を予熱し、更に蒸発器2
5で水7を蒸発させて水蒸気8を発生させる。この水蒸
気8の一部は、燃料予熱器26の上流側の燃料1に混入
され、改質反応に用いられる。また、残りの水蒸気8
は、CO除去装置10の透過室16に供給され、透過室
16の水素濃度を低減するとともに、透過ガス4に混合
されて燃料電池24に供給される。
The combustion exhaust gas 6 exiting the combustion chamber 22b of the reformer 22 preheats the fuel 1 by a fuel preheater 26,
5 evaporates the water 7 to generate steam 8. Part of the steam 8 is mixed into the fuel 1 on the upstream side of the fuel preheater 26 and used for the reforming reaction. Also, the remaining steam 8
Is supplied to the permeation chamber 16 of the CO removal device 10 to reduce the hydrogen concentration in the permeation chamber 16, and is mixed with the permeated gas 4 and supplied to the fuel cell 24.

【0024】燃料電池24は、好ましくは、固体高分子
型燃料電池(PEFC)であり、CO除去装置(10)
を透過した水素リッチの透過ガス4(水蒸気を含む)と
コンプレッサ28cから供給された空気9とを用いて発
電するようになっている。
The fuel cell 24 is preferably a polymer electrolyte fuel cell (PEFC), and the CO removing device (10)
Is generated using the hydrogen-rich permeated gas 4 (including water vapor) that has passed through the air and the air 9 supplied from the compressor 28c.

【0025】図2は、本発明のCO除去装置の模式的斜
視図であり、図3は、本発明のCO除去装置の構造説明
図である。
FIG. 2 is a schematic perspective view of the CO removing device of the present invention, and FIG. 3 is a structural explanatory view of the CO removing device of the present invention.

【0026】図3において、(A)は水素分離膜複合体
12の断面図、(B)はこれを支持する透過室側の上面
図(平面図)である。図3(A)に示すように、本発明
のCO除去装置10を構成する水素分離膜複合体12
は、燃料ガス室と透過室の差圧に耐えるように支持され
た金属多孔板12aと、金属多孔板12aの燃料ガス室
側に密着して積層された焼結金属板12bと、焼結金属
板12bの表面にコーティングされた水素分離膜11と
からなる。また、図3(B)に示すように、この水素分
離膜複合体12全体は透過室16に設けられたバー材1
8で支持されている。このバー材18の間隔は十分小さ
く設定され、金属多孔板12aを燃料ガス室と透過室の
差圧(例えば、0.2〜0.4MPa)に耐えるように
構成されている。
In FIG. 3, (A) is a cross-sectional view of the hydrogen separation membrane composite 12, and (B) is a top view (plan view) of the permeation chamber side supporting the same. As shown in FIG. 3 (A), the hydrogen separation membrane composite 12 constituting the CO removal apparatus 10 of the present invention
Is a metal perforated plate 12a supported to withstand the pressure difference between the fuel gas chamber and the permeation chamber; a sintered metal plate 12b laminated in close contact with the fuel gas chamber side of the metal perforated plate 12a; And a hydrogen separation membrane 11 coated on the surface of the plate 12b. Further, as shown in FIG. 3 (B), the entire hydrogen separation membrane composite 12 is a bar material 1 provided in a permeation chamber 16.
8 supported. The interval between the bar members 18 is set to be sufficiently small, and the metal porous plate 12a is configured to withstand a pressure difference between the fuel gas chamber and the permeation chamber (for example, 0.2 to 0.4 MPa).

【0027】水素分離膜11は、パラジウム膜又はパラ
ジウム−銀合金膜である。この水素分離膜11は、透過
ガス中のCO濃度が約3%以下になるように、4〜20
μmの厚さに設定されている。また透過室16には、メ
タネーション触媒17bが充填されている。
The hydrogen separation membrane 11 is a palladium membrane or a palladium-silver alloy membrane. The hydrogen separation membrane 11 has a 4 to 20 volume ratio so that the CO concentration in the permeated gas is about 3% or less.
The thickness is set to μm. The permeation chamber 16 is filled with a methanation catalyst 17b.

【0028】また、図2に示すように、水素分離膜複合
体12、燃料ガス室14及び透過室16は平板状に形成
されている。また、この図では、単一の燃料ガス室14
(原料室)の上下に1対の透過室16を配置した状態を
示しているが、これを燃料ガス室14と透過室16を交
互に複数積層するのがよい。
As shown in FIG. 2, the hydrogen separation membrane composite 12, the fuel gas chamber 14, and the permeation chamber 16 are formed in a flat plate shape. Also, in this figure, a single fuel gas chamber 14
Although a state is shown in which a pair of permeation chambers 16 are arranged above and below the (raw material chamber), it is preferable that a plurality of fuel gas chambers 14 and permeation chambers 16 are alternately stacked.

【0029】また、図1において、高圧ラインを太い実
線で示すように、燃料ガス室14には、改質器22の改
質室22aから一酸化炭素を含む燃料ガス2(改質ガ
ス)が透過室より0.2〜0.4MPa程度高い圧力で
供給され、透過室16は、約400℃以上、約450℃
以下の温度かつほぼ常圧に保持されている。
In FIG. 1, the fuel gas chamber 14 is filled with fuel gas 2 (reformed gas) containing carbon monoxide from the reforming chamber 22a of the reformer 22, as indicated by the bold solid line in the high pressure line. The permeation chamber 16 is supplied at a pressure higher by about 0.2 to 0.4 MPa than the permeation chamber.
The temperature is maintained at the following temperature and almost normal pressure.

【0030】上述した本発明の燃料電池発電装置は、以
下のように作動する。 1.改質器22の燃焼排ガス6を利用して燃料1(例え
ば都市ガス)の燃料予熱と水の蒸発を行う。 2.CO除去装置10の不透過ガス3(H2、CO、C
4を含む)を改質器の熱源とする。 3.蒸発器25で発生した水蒸気をCO除去装置10の
透過側に流す。透過側にはメタネーション触媒17bが
充填されており、メタネーション反応(CO+3H2
CH4+H2O)によりCO濃度が低減する。 4.CO除去装置10の原料ガス側にはCOシフト触媒
が充填されており、シフト反応(CO+H2O→CO2
2)が進んでCO濃度を低減する。また、水素分離膜
11で原料側の水素を透過側に透過しているため平衡を
越えた反応が進む。 5.CO除去装置10でCO濃度が10ppm以下にな
った透過ガスを空気予熱器27で冷却して燃料電池24
のアノード側(燃料極)に供給する。
The above-described fuel cell power generator of the present invention operates as follows. 1. Utilizing the combustion exhaust gas 6 of the reformer 22, fuel preheating of the fuel 1 (for example, city gas) and evaporation of water are performed. 2. The impervious gas 3 (H 2 , CO, C
The containing H 4) as a heat source of the reformer. 3. The water vapor generated in the evaporator 25 flows to the permeation side of the CO removing device 10. The permeation side is filled with a methanation catalyst 17b, and a methanation reaction (CO + 3H 2
CH 4 + H 2 O) reduces the CO concentration. 4. The raw material gas side of the CO removing device 10 is filled with a CO shift catalyst, and a shift reaction (CO + H 2 O → CO 2 +
H 2 ) proceeds to reduce the CO concentration. Further, since hydrogen on the raw material side is permeated to the permeation side in the hydrogen separation membrane 11, the reaction exceeding the equilibrium proceeds. 5. The permeated gas having a CO concentration of 10 ppm or less in the CO removing device 10 is cooled by the air preheater 27 and
To the anode side (fuel electrode).

【0031】図4は、メタネーションの平衡定数と温度
との関係図である。この図において、横軸は温度、縦軸
は平衡定数である。この図からメタネーション反応の平
衡定数Kは、450℃において、約1500、400℃
において、約17000であることがわかる。
FIG. 4 is a diagram showing the relationship between the equilibrium constant of methanation and the temperature. In this figure, the horizontal axis represents temperature, and the vertical axis represents equilibrium constant. From this figure, the equilibrium constant K of the methanation reaction is approximately 1500 and 400 ° C. at 450 ° C.
It can be seen that the value is about 17000.

【0032】図5は、メタネーション触媒後のCO濃度
を示すシミュレーション結果である。この図において、
横軸は入口CO濃度(%)、縦軸は出口CO濃度(pp
m)である。この図から、約400℃以上、約450℃
以下の温度範囲において、透過ガス中のCO濃度が約3
%以下であれば、メタネーション触媒により出口CO濃
度を10ppm以下にすることができることがわかる。
FIG. 5 is a simulation result showing the CO concentration after the methanation catalyst. In this figure,
The horizontal axis is the inlet CO concentration (%), and the vertical axis is the outlet CO concentration (pp).
m). From this figure, it is found that the temperature is about 400 ° C or more,
In the following temperature range, the CO concentration in the permeated gas is about 3
%, The outlet CO concentration can be reduced to 10 ppm or less by the methanation catalyst.

【0033】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0034】[0034]

【発明の効果】上述した本発明の構成によれば、水素分
離膜複合体12を構成する水素分離膜11が、金属多孔
板12aと焼結金属板12bとで支持されているので、
水素分離膜11を薄膜(例えば、膜厚10μm以下)に
しても燃料ガス室と透過室の差圧(例えば0.2〜0.
4MPa)に耐えることができる。従って、燃料ガス室
14に供給された一酸化炭素を含む燃料ガスから、比較
的低い差圧で分子量の大きいCOガス以外を効率的に透
過室側に透過させることができる。また、燃料ガス室1
4には、COシフト触媒17aが充填されているので、
シフト反応(CO+H2O→CO2+H2)により燃料ガ
ス室側のCO濃度を低減することができる。更に、水素
分離膜11を薄膜にしたことにより、膜にピンホールが
生じやすくなり、COを含んだガスがわずかに透過側に
漏洩するが、透過室にメタネーション反応の触媒が充填
されていることから、この若干のCOガスはメタネーシ
ョン反応(CO+3H2→CH4+H2O)によりメタン
に転化し、燃料電池の被毒を防止することができる。
According to the structure of the present invention described above, the hydrogen separation membrane 11 constituting the hydrogen separation membrane composite 12 is supported by the porous metal plate 12a and the sintered metal plate 12b.
Even if the hydrogen separation membrane 11 is made thin (for example, 10 μm or less in thickness), the pressure difference between the fuel gas chamber and the permeation chamber (for example, 0.2 to 0.
4 MPa). Therefore, from the fuel gas containing carbon monoxide supplied to the fuel gas chamber 14, it is possible to efficiently transmit a gas other than the CO gas having a high molecular weight with a relatively low differential pressure to the permeation chamber side. Also, the fuel gas chamber 1
4 is filled with the CO shift catalyst 17a,
The shift reaction (CO + H 2 O → CO 2 + H 2 ) can reduce the CO concentration on the fuel gas chamber side. Further, by making the hydrogen separation membrane 11 thin, a pinhole is easily generated in the membrane, and a gas containing CO slightly leaks to the permeation side, but the permeation chamber is filled with a catalyst for the methanation reaction. Therefore, this slight amount of CO gas is converted into methane by a methanation reaction (CO + 3H 2 → CH 4 + H 2 O), and poisoning of the fuel cell can be prevented.

【0035】また、透過室16には水蒸気が供給され、
この水蒸気は透過ガスと共に燃料電池に供給されるの
で、透過室内の水素濃度を低減し、水素分離膜の透過効
率を更に高めることができる。更に、燃料ガス室14を
通過した不透過ガスが、減圧して改質器22の燃焼室に
供給されるので、改質器22の燃焼室を低圧(例えば常
圧)にすることができる。従って、燃料電池で反応後の
透過ガスもこの燃焼室に供給し、残存する可燃成分を燃
焼させて熱効率を高めることができる。
Further, steam is supplied to the permeation chamber 16,
Since this water vapor is supplied to the fuel cell together with the permeated gas, the hydrogen concentration in the permeation chamber can be reduced, and the permeation efficiency of the hydrogen separation membrane can be further increased. Furthermore, since the impervious gas that has passed through the fuel gas chamber 14 is reduced in pressure and supplied to the combustion chamber of the reformer 22, the pressure in the combustion chamber of the reformer 22 can be reduced (for example, normal pressure). Therefore, the permeated gas after the reaction in the fuel cell is also supplied to this combustion chamber, and the remaining combustible components are burned to increase the thermal efficiency.

【0036】上述したように、本発明のCO除去装置と
これを用いた燃料電池発電装置は、燃料ガス中のCO濃
度をppmオーダー(例えば数10ppm)まで低減す
ることができ、かつ高価な貴金属の使用量が少なく、構
造がシンプルであり、かつコンパクト化が可能である、
等の優れた効果を有する。
As described above, the CO removal apparatus of the present invention and the fuel cell power generation apparatus using the same can reduce the CO concentration in the fuel gas to the order of ppm (for example, several tens of ppm), and can use expensive noble metal. Uses a small amount, has a simple structure, and can be made compact.
And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCO除去装置を備えた燃料電池発電装
置の全体システム図である。
FIG. 1 is an overall system diagram of a fuel cell power generator provided with a CO removal device of the present invention.

【図2】本発明のCO除去装置の模式的斜視図である。FIG. 2 is a schematic perspective view of a CO removal device of the present invention.

【図3】本発明のCO除去装置の構造説明図である。FIG. 3 is an explanatory view of the structure of the CO removing device of the present invention.

【図4】メタネーションの平衡常数と温度との関係図で
ある。
FIG. 4 is a diagram showing the relationship between the equilibrium constant of methanation and the temperature.

【図5】メタネーション触媒後のCO濃度を示すシミュ
レーション結果である。
FIG. 5 is a simulation result showing the CO concentration after the methanation catalyst.

【符号の説明】[Explanation of symbols]

1 燃料、2 改質ガス(燃料ガス)、3 不透過ガ
ス、4 透過ガス、5 可燃排ガス、6 燃焼排ガス、
7 水、8 水蒸気、9 空気、10 CO除去装置、
11 水素分離膜、12 水素分離膜複合体、12a
金属多孔板、12b 焼結金属板、14 燃料ガス室、
16 透過室、17a COシフト触媒、17b メタ
ネーション触媒、18 バー材、22 改質器、24
燃料電池、25 蒸発器、26 燃料予熱器、27 空
気予熱器、28a コンプレッサ、28b ポンプ、2
8c ブロア
1 fuel, 2 reformed gas (fuel gas), 3 impermeable gas, 4 permeable gas, 5 combustible exhaust gas, 6 combustion exhaust gas,
7 water, 8 steam, 9 air, 10 CO removal device,
11 hydrogen separation membrane, 12 hydrogen separation membrane composite, 12a
Perforated metal plate, 12b sintered metal plate, 14 fuel gas chamber,
16 permeation chamber, 17a CO shift catalyst, 17b methanation catalyst, 18 bar material, 22 reformer, 24
Fuel cell, 25 evaporator, 26 fuel preheater, 27 air preheater, 28a compressor, 28b pump, 2
8c blower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 千々岩 栄 東京都江東区豊洲3丁目2番16号 石川島 播磨重工業株式会社東京エンジニアリング センター内 (72)発明者 山中 康朗 東京都江東区豊洲3丁目2番16号 石川島 播磨重工業株式会社東京エンジニアリング センター内 (72)発明者 鈴木 彰 東京都江東区豊洲3丁目2番16号 石川島 播磨重工業株式会社東京エンジニアリング センター内 Fターム(参考) 4G040 EA06 EB23 EB32 EB42 FA06 FB04 FC01 FE01 4H060 AA02 BB12 BB13 FF02 FF18 GG02 5H026 AA06 5H027 AA06 BA01 BA16 BA17 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H01M 8/10 H01M 8/10 (72) Inventor Sakae Chitiwa Ishikawajima 3-2-16 Toyosu, Koto-ku, Tokyo Harima Heavy Industries, Ltd. Tokyo Engineering Center (72) Inventor Yasuhiro Yamanaka 3-2-16-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries, Ltd. Tokyo Engineering Center (72) Inventor Akira Suzuki 3-2-2 Toyosu, Koto-ku, Tokyo No.16 Ishikawajima Harima Heavy Industries, Ltd. Tokyo Engineering Center F-term (reference) 4G040 EA06 EB23 EB32 EB42 FA06 FB04 FC01 FE01 4H060 AA02 BB12 BB13 FF02 FF18 GG02 5H026 AA06 5H027 AA06 BA01 BA16 BA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素分離膜複合体(12)で仕切られた
燃料ガス室(14)と透過室(16)とを備え、 前記水素分離膜複合体(12)は、燃料ガス室と透過室
の差圧に耐えるように支持された金属多孔板(12a)
と、該金属多孔板の燃料ガス室側に密着して積層された
焼結金属板(12b)と、該焼結金属板の表面にコーテ
ィングされた水素分離膜(11)とからなり、 前記燃料ガス室(14)には、COシフト触媒(17
a)が充填されており、一酸化炭素を含む燃料ガスが透
過室より高い圧力で供給され、 前記透過室(16)には、メタネーション触媒(17
b)が充填されている、ことを特徴とするCO除去装
置。
1. A fuel gas chamber (14) partitioned by a hydrogen separation membrane composite (12) and a permeation chamber (16), wherein the hydrogen separation membrane composite (12) comprises a fuel gas chamber and a permeation chamber. Metal perforated plate (12a) supported to withstand the pressure difference
And a hydrogen separation membrane (11) coated on the surface of the sintered metal plate and a sintered metal plate (12b) laminated in close contact with the fuel gas chamber side of the perforated metal plate. The gas chamber (14) contains a CO shift catalyst (17).
a), and a fuel gas containing carbon monoxide is supplied at a higher pressure than the permeation chamber, and the permeation chamber (16) is provided with a methanation catalyst (17).
b) is filled, CO removal device characterized by the above-mentioned.
【請求項2】 前記透過室(16)は、約400℃以
上、約450℃以下の温度かつほぼ常圧に保持され、前
記水素分離膜(11)は、透過ガス中のCO濃度が約3
%以下になるように厚さが設定されている、ことを特徴
とする請求項1に記載のCO除去装置。
2. The permeation chamber (16) is maintained at a temperature of about 400 ° C. or more and about 450 ° C. or less and substantially at normal pressure, and the hydrogen separation membrane (11) has a CO concentration of about 3 ° C.
The CO removal device according to claim 1, wherein the thickness is set to be equal to or less than%.
【請求項3】 前記水素分離膜複合体(12)、燃料ガ
ス室(14)及び透過室(16)は平板状に形成され、
かつ交互に複数が積層されている、ことを特徴とする請
求項1又は2に記載のCO除去装置。
3. The hydrogen separation membrane composite (12), the fuel gas chamber (14) and the permeation chamber (16) are formed in a plate shape,
The CO removal device according to claim 1, wherein a plurality of the CO removal devices are alternately stacked.
【請求項4】 燃料を加圧状態で水素を含む改質ガスに
改質する改質器(22)と、前記改質ガスから水素リッ
チの透過ガスを透過させるCO除去装置(10)と、前
記透過ガスを用いて発電する燃料電池(24)とを備
え、 前記CO除去装置(10)は、水素分離膜複合体(1
2)で仕切られた燃料ガス室(14)と透過室(16)
とを備え、透過室(16)にはメタネーション触媒(1
7b)が充填されており、 前記燃料ガス室(14)を透過せずに通過した不透過ガ
スは、減圧して改質器(22)の燃焼室に供給され、 前記透過室(16)には水蒸気が供給され、該水蒸気は
透過ガスと共に燃料電池に供給される、ことを特徴とす
る燃料電池発電装置。
4. A reformer (22) for reforming a fuel into a reformed gas containing hydrogen in a pressurized state, a CO removing device (10) for permeating a hydrogen-rich permeated gas from the reformed gas, A fuel cell (24) that generates power using the permeated gas; and the CO removal device (10) includes a hydrogen separation membrane composite (1).
Fuel gas chamber (14) and permeation chamber (16) partitioned by 2)
And the permeation chamber (16) has a methanation catalyst (1).
7b) is filled, and the impermeable gas that has passed through the fuel gas chamber (14) without permeating the fuel gas chamber (14) is supplied to the combustion chamber of the reformer (22) under reduced pressure. Is supplied with water vapor, and the water vapor is supplied to the fuel cell together with the permeated gas.
JP2000264534A 2000-08-31 2000-08-31 CO removing device and fuel cell power generator using the same Expired - Fee Related JP4682403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264534A JP4682403B2 (en) 2000-08-31 2000-08-31 CO removing device and fuel cell power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264534A JP4682403B2 (en) 2000-08-31 2000-08-31 CO removing device and fuel cell power generator using the same

Publications (2)

Publication Number Publication Date
JP2002068710A true JP2002068710A (en) 2002-03-08
JP4682403B2 JP4682403B2 (en) 2011-05-11

Family

ID=18751937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264534A Expired - Fee Related JP4682403B2 (en) 2000-08-31 2000-08-31 CO removing device and fuel cell power generator using the same

Country Status (1)

Country Link
JP (1) JP4682403B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401071A (en) * 2003-03-17 2004-11-03 Gen Motors Corp Reactor for removal of carbon monoxide from a reformate stream
JP2007524966A (en) * 2003-11-19 2007-08-30 ハイドロジェンソース エルエルシー Synthesis gas generation for NOx regeneration combined with auxiliary power generation in fuel cells
WO2010125731A1 (en) * 2009-04-28 2010-11-04 株式会社Eneosセルテック Reformer for fuel cell
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782677B1 (en) * 2014-12-29 2017-09-27 포스코에너지 주식회사 Internal reforming- fuel cell system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194708A (en) * 1982-04-23 1983-11-12 ユニオン・カ−バイド・コ−ポレ−シヨン Increase of hydrogen recovery from low purity gas flow
JPH04346824A (en) * 1991-05-21 1992-12-02 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JPH06345406A (en) * 1993-06-11 1994-12-20 Tokyo Gas Co Ltd Hydrogen production device
JPH07330304A (en) * 1994-06-08 1995-12-19 Ngk Insulators Ltd Removal of co in reformed gas
JPH08318142A (en) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd Hydrogen separator, hydrogen separation wall and manufacture thereof
JPH1027621A (en) * 1996-07-12 1998-01-27 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generating facility with suppressed generation of carbon dioxide
JPH10265202A (en) * 1997-03-25 1998-10-06 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen producing device
JP2000510433A (en) * 1996-05-10 2000-08-15 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Membrane reactor for producing hydrogen that does not contain CO or CO2
JP2001511430A (en) * 1997-08-01 2001-08-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー CO2 selective membrane process and system for reforming fuel to hydrogen for fuel cells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194708A (en) * 1982-04-23 1983-11-12 ユニオン・カ−バイド・コ−ポレ−シヨン Increase of hydrogen recovery from low purity gas flow
JPH04346824A (en) * 1991-05-21 1992-12-02 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JPH06345406A (en) * 1993-06-11 1994-12-20 Tokyo Gas Co Ltd Hydrogen production device
JPH07330304A (en) * 1994-06-08 1995-12-19 Ngk Insulators Ltd Removal of co in reformed gas
JPH08318142A (en) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd Hydrogen separator, hydrogen separation wall and manufacture thereof
JP2000510433A (en) * 1996-05-10 2000-08-15 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Membrane reactor for producing hydrogen that does not contain CO or CO2
JPH1027621A (en) * 1996-07-12 1998-01-27 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generating facility with suppressed generation of carbon dioxide
JPH10265202A (en) * 1997-03-25 1998-10-06 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen producing device
JP2001511430A (en) * 1997-08-01 2001-08-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー CO2 selective membrane process and system for reforming fuel to hydrogen for fuel cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401071A (en) * 2003-03-17 2004-11-03 Gen Motors Corp Reactor for removal of carbon monoxide from a reformate stream
GB2401071B (en) * 2003-03-17 2006-06-14 Gen Motors Corp Reactor for carbon monoxide clean-up
US7338643B2 (en) 2003-03-17 2008-03-04 General Motors Corporation Integrated membrane shift methanation reactor for carbon monoxide clean-up
JP2007524966A (en) * 2003-11-19 2007-08-30 ハイドロジェンソース エルエルシー Synthesis gas generation for NOx regeneration combined with auxiliary power generation in fuel cells
WO2010125731A1 (en) * 2009-04-28 2010-11-04 株式会社Eneosセルテック Reformer for fuel cell
JP2010257915A (en) * 2009-04-28 2010-11-11 Eneos Celltech Co Ltd Reforming device for fuel cell
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen

Also Published As

Publication number Publication date
JP4682403B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US6896709B1 (en) Miniature fuel reformer and system using metal thin film
JP4098167B2 (en) Fuel gas generation method and apparatus
US6475655B1 (en) Fuel cell system with hydrogen gas separation
CA2473449C (en) Solid oxide fuel cell system
KR100533298B1 (en) Fuel cell system
JP4184037B2 (en) Hydrogen production equipment
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US7011693B2 (en) Control of a hydrogen purifying pressure swing adsorption unit in fuel processor module for hydrogen generation
JPH10265202A (en) Hydrogen producing device
JP2004284875A (en) Hydrogen production system, and fuel cell system
JPH06345408A (en) Hydrogen production device
JP2007524553A (en) Fuel processing system having a membrane separator
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP4008051B2 (en) Power generation method
JPH09266005A (en) Solid high polymer fuel cell system
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JPH08287932A (en) Power generation method with heat utilization system
JP3625487B2 (en) Fuel cell system
JP2004075439A (en) Hydrogen generating apparatus
JPH03208801A (en) Method for removing carbon monoxide in reformed gas as raw material for hydrogen
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP2000243416A (en) Fuel cell system
JP7197374B2 (en) Hydrogen production system
JPH06280695A (en) Fuel reformer mounted on vehicle
JP3690833B2 (en) Power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees