JP2002056810A - Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp - Google Patents

Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp

Info

Publication number
JP2002056810A
JP2002056810A JP2000240589A JP2000240589A JP2002056810A JP 2002056810 A JP2002056810 A JP 2002056810A JP 2000240589 A JP2000240589 A JP 2000240589A JP 2000240589 A JP2000240589 A JP 2000240589A JP 2002056810 A JP2002056810 A JP 2002056810A
Authority
JP
Japan
Prior art keywords
electrode member
conductive wire
bead glass
discharge
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000240589A
Other languages
Japanese (ja)
Inventor
Eiichi Morii
栄一 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU EREBAMU KK
Original Assignee
TOHOKU EREBAMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU EREBAMU KK filed Critical TOHOKU EREBAMU KK
Priority to JP2000240589A priority Critical patent/JP2002056810A/en
Publication of JP2002056810A publication Critical patent/JP2002056810A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a discharge electrode assembly capable of securing excellent strength without requiring high machining accuracy or a complicated structure in connection of an electrode member and a conductive wire. SOLUTION: This discharge electrode assembly 1 has a bead glass 2, the conductive wire 3 penetratingly fixed to the bead glass 2, and the bottomed tube-like electrode member 5 welded to the tip of the conductive wire 3 which is projected from the bead glass 2. An inner tube bottom part 7 of the electrode member 5 has a recessed fused trace 7A generated by welding an outer tube bottom part to the tip part of the conductive wire 3 from the inside of the tube. The fused trace 7A is formed by laser-welding, for example. Thereby, thermal influence upon the bead glass 2 is small because a fusion source is present on the electrode member 5 apart from the conductive wire 3 during welding. Because the thermal influence upon the bead glass 2 can be structurally reduced, the required welding strength can be easily obtained. Deterioration of a seal state between the bead glass 2 and the conductive wire 3 or crack generation in the bead glass 2 can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、細管型の冷陰蛍光
極放電ランプなどに適用される放電電極組立て体、その
製造方法、更には前記放電電極組立て体を適用した放電
ランプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge electrode assembly applied to a tube-type cold-cathode fluorescent lamp and the like, a method of manufacturing the same, and a discharge lamp using the discharge electrode assembly.

【0002】[0002]

【従来の技術】液晶ディスプレイのバックライト等に利
用される冷陰極蛍光放電ランプにおいて、ガラス容器の
両端に放電電極を封入するには放電電極組立て体を利用
していた。この放電電極組立て体は、ビードガラスに導
電線を貫通固定し、ビードガラスから突出させた導電線
の先端に有底筒状の電極部材を固定して構成される。放
電電極を封入するときは、中空円柱状のガラスバルブ内
部に電極部材を挿入してビードガラスをガラスバルブの
開口部に位置させ、この状態でガラスバルブの開口部を
加熱し、求心方向に押圧力を作用させ、ガラスバルブの
開口部をビードガラスと一体に熔融させて密閉する。
2. Description of the Related Art In a cold cathode fluorescent lamp used as a backlight of a liquid crystal display, a discharge electrode assembly is used to seal discharge electrodes at both ends of a glass container. This discharge electrode assembly is formed by fixing a conductive wire through a bead glass and fixing a bottomed cylindrical electrode member to the tip of the conductive wire protruding from the bead glass. When sealing the discharge electrode, insert the electrode member inside the hollow cylindrical glass bulb, position the bead glass at the opening of the glass bulb, heat the opening of the glass bulb in this state, and push in the centripetal direction. By applying pressure, the opening of the glass bulb is melted integrally with the bead glass and sealed.

【0003】ところで、液晶ディスプレイのバックライ
ト等に利用される放電ランプには小型化、細管化が強く
要求され、これに伴って、放電電極組立て体にも小型化
の考慮が必要になる。このとき、導電線に電極部材を固
定する手段として、スポット熔接を採用すると、熔接対
象が小さく、材料の肉厚が薄いため、熔接不良を生じ易
い。そこで本発明者は、抵抗熔接を検討した。即ち、導
電線の両端に比較的高い電圧を印加し、導電線と電極部
材との接触抵抗による発熱を利用する。また、特開平1
0−21876号公報には円筒状の電極部材を導電線に
嵌合し係合的に固定する技術が開示されている。
[0003] By the way, a discharge lamp used for a backlight of a liquid crystal display or the like is strongly required to be reduced in size and a tube, and accordingly, it is necessary to consider a discharge electrode assembly as well. At this time, if spot welding is employed as a means for fixing the electrode member to the conductive wire, welding defects are likely to occur because the welding target is small and the material is thin. Therefore, the present inventors have studied resistance welding. That is, a relatively high voltage is applied to both ends of the conductive wire, and heat generated by contact resistance between the conductive wire and the electrode member is used. Also, Japanese Patent Application Laid-Open
Japanese Patent Publication No. 0-21876 discloses a technique in which a cylindrical electrode member is fitted to a conductive wire and fixed in an engaging manner.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、抵抗熔
接を用いる場合には常時導電線に電流が流れ、接触抵抗
部分はもとより、ビードガラスに貫通する導電線の部分
でも過大な発熱を生ずることが明らかにされた。この発
熱によって導電線とガラスとの間の封着が不完全になっ
たり、ビードガラスにクラックが入ったりする虞のある
ことが明らかにされた。これを回避するには抵抗熔接の
電流若しくは電圧を制限しなければならず、制限し過ぎ
ると逆に導電線と電極部材との熔接不良が生じてしま
い、その制御が容易ではないことが明らかにされた。ま
た、特開平10−21876号公報記載の技術では、放
電電極組立て体の小型化に応じて、部品の加工精度を上
げなければ、円筒状の電極部材を導電線に係合的に固定
することが難しくなると予想される。
However, when resistance welding is used, current always flows through the conductive wire, and it is apparent that excessive heat is generated not only in the contact resistance portion but also in the portion of the conductive wire penetrating the bead glass. Was. It has been clarified that the heat generated may cause incomplete sealing between the conductive wire and the glass or cause cracks in the bead glass. In order to avoid this, the current or voltage of resistance welding must be limited, and if it is excessively limited, welding failure between the conductive wire and the electrode member occurs, and it is apparent that the control is not easy. Was done. In the technology described in Japanese Patent Application Laid-Open No. H10-21876, a cylindrical electrode member is fixedly engaged with a conductive wire unless the processing accuracy of the component is increased in accordance with the miniaturization of the discharge electrode assembly. Is expected to be difficult.

【0005】本発明の目的は、電極部材と導電線の結合
に複雑な構造や高い加工精度を要することなく良好な強
度を確保できる放電電極組立て体を提供することにあ
る。
An object of the present invention is to provide a discharge electrode assembly which can secure good strength without requiring a complicated structure and high machining accuracy for coupling an electrode member and a conductive wire.

【0006】本発明の別の目的は、容易に電極部材と導
電線との結合に良好な強度を得ることができる放電電極
組立て体の製造方法を提供することにある。
Another object of the present invention is to provide a method of manufacturing a discharge electrode assembly which can easily obtain good strength for coupling an electrode member and a conductive wire.

【0007】本発明の更に別の目的は、小型で信頼性の
高い放電ランプを提供することにある。
Another object of the present invention is to provide a small and highly reliable discharge lamp.

【0008】[0008]

【課題を解決するための手段】〔1〕本発明に係る放電
電極組立て体は、ビードガラスと、ビードガラスに貫通
固定された導電線と、ビードガラスから突出された導電
線の先端に熔着された有底筒状の電極部材とを有し、前
記電極部材の筒内底部には、筒内側より前記導電線の先
端部に筒外底部を熔着した凹陥状の熔融痕を有して成
る。この電極部材の筒内の底部が凹んだ熔接痕は、例え
ば前記電極部材の底部を筒内側から前記導電線の先端に
レーザ熔接することによって形成される構造である。
Means for Solving the Problems [1] A discharge electrode assembly according to the present invention comprises a bead glass, a conductive wire penetrated through the bead glass, and a tip of a conductive wire protruding from the bead glass. A cylindrical electrode member with a bottom, and a cylindrical inner bottom of the electrode member having a concave melting mark in which a cylindrical outer bottom is welded to the tip of the conductive wire from the inner side of the cylindrical. Become. The welding mark having a concave bottom in the cylinder of the electrode member is formed by, for example, laser welding the bottom of the electrode member from the inside of the cylinder to the tip of the conductive wire.

【0009】前記電極部材の筒内側より前記導電線の先
端部に筒外底部を熔着した構造によれば、熔着時の熔融
源は導電線から離れた電極部材上にあるからビードガラ
スへの熱の影響が小さい。構造的にビードガラスへの熱
的影響を小さくできるから、必要な熔着強度を得るのも
容易である。したがって、熔着不良による信頼性低下を
防止することができ、ビードガラスと導電線との封着状
態が劣化したりビードガラスにクラックが入ったりする
事態も抑制若しくは低減する事ができる。上記手段を、
導電線と電極部材の当接部を外側からスポット熔接する
構造と比較すると、この場合には熔着時の熔融源が直接
導電線上にあるから、それらに比べても本発明構造はビ
ードガラスへの熱的影響が小さい。また、導電線各部に
常時ジュール熱を生ずる抵抗熔接と比べても、本発明構
造はビードガラスへの熱的影響が少なく、必要な熔着強
度を得るのも容易である。また、電極部材を導電線に機
械的な係合状態を介して固定する構造ではないから放電
電極組立て体の小型化に際しても電極部材や導電線等の
部品に対して加工精度を上げる必要はない。また、導電
線と電極部材の当接部を外側からレーザ熔接する場合に
は当接部の円周方向で3ケ以上熔接しなければならず、
作業工数が増えて実用的ではない。
According to the structure in which the bottom of the outer tube is welded to the tip of the conductive wire from the inner side of the tube of the electrode member, since the melting source at the time of welding is on the electrode member remote from the conductive wire, the bead glass is formed. The effect of heat is small. Since the thermal effect on the bead glass can be reduced structurally, it is easy to obtain the necessary welding strength. Therefore, it is possible to prevent a decrease in reliability due to poor welding, and it is possible to suppress or reduce a situation in which the sealing state between the bead glass and the conductive wire is deteriorated and a crack is generated in the bead glass. The above means,
Compared with the structure in which the contact portion between the conductive wire and the electrode member is spot-welded from the outside, in this case, since the fusion source at the time of welding is directly on the conductive wire, the structure of the present invention can be applied to bead glass even compared to them. Has a small thermal effect. Further, the structure of the present invention has less thermal influence on the bead glass, and it is easy to obtain a necessary welding strength, as compared with resistance welding in which Joule heat is always generated in each part of the conductive wire. In addition, since the electrode member is not fixed to the conductive wire via a mechanical engagement state, it is not necessary to increase the processing accuracy of the electrode member, the conductive wire, and other components even when the discharge electrode assembly is downsized. . In addition, when the contact portion between the conductive wire and the electrode member is laser-welded from the outside, three or more welds must be made in the circumferential direction of the contact portion.
The number of work steps increases, which is not practical.

【0010】前記電極部材は、例えば、円筒形であり、
外径寸法は0.5mm以上3mm以下である。このうよ
な小型の構造において上記手段の真価が発揮される。
[0010] The electrode member is, for example, cylindrical.
The outer diameter is 0.5 mm or more and 3 mm or less. The true value of the above means is exhibited in such a small structure.

【0011】〔2〕前記放電電極組み立て体の製造に当
たっては、例えば、ビードガラスに貫通して封着された
導電線を保持する処理と、保持された導電線のビードガ
ラスから突出された先端に有底筒状の電極部材の筒外の
底部を圧接させる処理と、前記電極部材の筒内にレーザ
光を照射して前記電極部材の底部を前記導電線の先端に
熔着するレーザ熔接処理とを含む。この製造方法を採用
することにより、放電電極組み立て体を容易に製造する
ことができる。
[2] In the manufacture of the discharge electrode assembly, for example, a process of holding a conductive wire that is sealed through a bead glass, and a process of holding the held conductive wire at a tip protruding from the bead glass. A process of pressing the bottom outside the cylinder of the bottomed cylindrical electrode member, and a laser welding process of irradiating a laser beam inside the cylinder of the electrode member and welding the bottom of the electrode member to the tip of the conductive wire. including. By employing this manufacturing method, the discharge electrode assembly can be easily manufactured.

【0012】特にレーザ熔接を採用することにより、外
径寸法が0.5mm以上3mm以下のような小型の電極
部材を用いる場合にも導電線との良好な熔着強度の実現
が容易になる。
In particular, by employing laser welding, it is easy to achieve good welding strength with a conductive wire even when a small electrode member having an outer diameter of 0.5 mm or more and 3 mm or less is used.

【0013】また、前記レーザ熔接処理は例えば窒素雰
囲気中で行われるが、それ以前に電極部材には酸素か酸
化物が付着していることがあり、そのままレーザ熔接処
理を行ったのでは特に熔融を伴う筒内で酸化を生ずる虞
がある。そこでレーザ熔接処理に並行して前記筒内に水
素ガスを供給する処理を行なうことにより、酸素と混合
した水素がレーザ熔接の熱で爆発的に膨張して電極部材
筒内の酸化物や酸素を吹き飛ばし、且つ、新たな酸化を
阻止する。したがって、電極部材の酸化物が放電ランプ
のガラス容器内面にスパッタしてランプの輝度を低下さ
せたりランプ寿命を短くする事態の防止に役立つ。
The laser welding process is performed, for example, in a nitrogen atmosphere. However, oxygen or oxide may be attached to the electrode member before the laser welding process is performed. Oxidation may occur in a cylinder accompanied by Therefore, by performing a process of supplying hydrogen gas into the cylinder in parallel with the laser welding process, hydrogen mixed with oxygen explosively expands due to the heat of laser welding, thereby removing oxides and oxygen in the electrode member cylinder. Blows off and prevents new oxidation. Therefore, it is useful to prevent a situation in which the oxide of the electrode member sputters on the inner surface of the glass container of the discharge lamp to lower the brightness of the lamp or shorten the lamp life.

【0014】〔3〕放電ランプに着目した本発明は、ガ
ラス容器の両端に導入された導電線の先端部に有底筒状
の電極部材が熔着されて成る放電ランプであって、前記
電極部材の筒内底部には、筒内側より前記導電線の先端
部に筒外底部を熔着した凹陥状の熔融痕を有して成る構
造を有する。斯く構造により、上記本発明に係る放電電
極組立て体と同様の理由により、ガラス容器と導電線と
の封着状態は導電線に電極部材を熔着するときの熱で劣
化することが抑制されているから、小型で信頼性の高い
放電ランプを実現することができる。
[3] The present invention, which focuses on a discharge lamp, is a discharge lamp in which a bottomed cylindrical electrode member is welded to the tip of a conductive wire introduced into both ends of a glass container. The inner bottom portion of the member has a structure having a concave melting mark in which the outer bottom portion is welded from the inner side to the tip of the conductive wire from the inner side. With such a structure, for the same reason as the discharge electrode assembly according to the present invention, the sealing state between the glass container and the conductive wire is suppressed from being deteriorated by heat when the electrode member is welded to the conductive wire. Therefore, a small and highly reliable discharge lamp can be realized.

【0015】[0015]

【発明の実施の形態】図1には本発明に係る放電電極組
み立て体の一例が軸断面図にて示される。同図に示され
る放電電極組み立て体1は、ビードガラス2、ビードガ
ラス2に貫通固定された封着金属線3、封着金属線3に
熔接されたリード線4、及び前記ビードガラス2から突
出された封着金属線3の先端に熔着された有底筒状の電
極部材5から成る。6で示される部位は封着金属線3と
リード線4の熔接部分であり、こぶ状に盛りあがり或い
は厚肉になっている。
FIG. 1 is an axial sectional view showing an example of a discharge electrode assembly according to the present invention. The discharge electrode assembly 1 shown in FIG. 1 includes a bead glass 2, a sealing metal wire 3 penetratingly fixed to the bead glass 2, a lead wire 4 welded to the sealing metal wire 3, and protruding from the bead glass 2. A cylindrical electrode member 5 with a bottom welded to the tip of the sealed metal wire 3. A portion indicated by reference numeral 6 is a welded portion between the sealing metal wire 3 and the lead wire 4 and is raised or thickened in a bump-like manner.

【0016】前記ビードガラス2はこれが適用される放
電ランプのガラスバルブの材質に応じた材質で形成さ
れ、例えば硼珪酸ガラス又はタングステンガラス等から
成る。このビードガラス2は前記封着金属線3の周りに
熔融巻き付けされて固定されている。封着金属線3はビ
ードガラス2との封着性が優れるコバール線又はタング
ステン線等で成る。リード線4は例えばニッケル線又は
ジュメット線等から成る。熔接された封着金属線3及び
リード線4は導電線の一例である。前記電極部材5は、
特に制限されないが、プレス成形されたニッケル製カッ
プから成る。前記電極部材5の筒内底部7には、筒内側
より前記封着金属線3の先端部に筒外底部を熔着した凹
陥状の熔融痕7Aを有する。電極部材3の開口部から見
た熔融痕7Aの状態は図2に例示される。前記凹陥状の
熔接痕7Aは、例えば前記電極部材5の底部を筒内側か
ら前記封着金属線3の先端にレーザ熔接することによっ
て形成される痕跡である。レーザ熔接を行う前に前記封
着金属線3の先端に電極部材5を当て付けた状態は図3
に例示され、レーザ熔接前において前記電極部材5の筒
内底部7は、プレス成形された形状のままであり、熔接
痕7Aは存在せず、凹陥されていない。尚、電極部材5
の熔着後或いは熔着前にその周面にはバリウム等のアル
カリ土類金属を含む化合物等所謂電子放射物質を塗布し
てもよい。
The bead glass 2 is formed of a material corresponding to the material of the glass bulb of the discharge lamp to which the bead glass 2 is applied, and is made of, for example, borosilicate glass or tungsten glass. The bead glass 2 is fixed by being melt-wound around the sealing metal wire 3. The sealing metal wire 3 is made of a Kovar wire or a tungsten wire or the like having excellent sealing properties with the bead glass 2. The lead wire 4 is made of, for example, a nickel wire or a dumet wire. The welded sealing metal wire 3 and lead wire 4 are an example of a conductive wire. The electrode member 5 includes:
Although not particularly limited, it is made of a press-formed nickel cup. The inner bottom 7 of the electrode member 5 has a concave melting mark 7A in which the outer bottom is welded to the tip of the sealing metal wire 3 from the inside of the cylinder. FIG. 2 illustrates the state of the molten mark 7A as viewed from the opening of the electrode member 3. The concave welding mark 7A is a mark formed by, for example, laser welding the bottom of the electrode member 5 to the tip of the sealing metal wire 3 from the inside of the cylinder. FIG. 3 shows a state in which the electrode member 5 is applied to the end of the sealing metal wire 3 before performing the laser welding.
Prior to laser welding, the bottom 7 in the cylinder of the electrode member 5 remains in a press-formed shape, has no welding mark 7A, and is not recessed. The electrode member 5
After or before welding, a so-called electron emitting material such as a compound containing an alkaline earth metal such as barium may be applied to the peripheral surface.

【0017】前記放電電極組み立て体1の製造方法を説
明する。製法の概略を説明すると、先ず、封着金属線3
にリード線4が熔接され、次に封着金属線3にビードガ
ラス2が熔融状態で巻かれて封着固定され、最後に、封
着金属線3に電極部材5がレーザ熔接される。
A method for manufacturing the discharge electrode assembly 1 will be described. The outline of the manufacturing method will be described first.
Then, the lead wire 4 is welded, and then the bead glass 2 is wound around the sealing metal wire 3 in a molten state and sealed and fixed. Finally, the electrode member 5 is laser-welded to the sealing metal wire 3.

【0018】前記レーザ熔接作業について詳細に説明す
る。図4にはレーザ熔接のための組み立て装置が例示さ
れる。10はコンベアであり、前記封着金属線3にリー
ド線4を熔接して封着金属線3にビードガラス2を封着
固定した中間部品1A(図3参照)を1個づつ半時計方
向に間欠搬送する。11はコンベアの間欠搬送1ピッチ
毎に45°回動するターンテーブルである。中間部品1
Aは封着金属線3を上に向けて搬送される。コンベア1
0のCaの位置で中間部品1Aは図示を省略する受け渡
し機構を介してターンテーブル11のTaの位置に移動
される。ターンテーブルのTbの位置で図示を省略する
センサによって中間部品1Aの有無が検出される。ター
ンテーブルのTc位置の直上にレーザ照射ユニット12
が配置され、その右側には電極部材5を1個づつ供給す
得るパーツフィーダ13が設けられ、パーツフィーダ1
3から供給される電極部材はチャック14に保持されて
Tc位置に移動され、ここで、電極部材5の底面が封着
金属線3の上端面に圧接され、この状態で、電極部材5
の筒内側から底部7に向けてレーザ照射ユニット12よ
りレーザ光が照射され、封着金属線3に電極部材5が熔
接される。これによって組み立て完了された放電電極組
み立て体1はターンテーブル11でTd位置に運ばれ、
ここで、図示を省略する受け渡し機構にてコンベアのC
d位置に移動され、次工程へと搬送される。
The laser welding operation will be described in detail. FIG. 4 illustrates an assembling apparatus for laser welding. Reference numeral 10 denotes a conveyor, which is a counterclockwise clockwise intermediate part 1A (see FIG. 3) in which a lead wire 4 is welded to the sealing metal wire 3 and a bead glass 2 is sealed and fixed to the sealing metal wire 3. Carry out intermittently. Reference numeral 11 denotes a turntable which rotates 45 ° for every one pitch of the intermittent conveyance of the conveyor. Intermediate part 1
A is transported with the sealing metal wire 3 facing upward. Conveyor 1
At the position of Ca of 0, the intermediate part 1A is moved to the position of Ta on the turntable 11 via a transfer mechanism not shown. The presence or absence of the intermediate part 1A is detected by a sensor (not shown) at the position of Tb on the turntable. The laser irradiation unit 12 is located immediately above the Tc position of the turntable.
Is disposed on the right side thereof, and a part feeder 13 capable of supplying the electrode members 5 one by one is provided.
The electrode member supplied from 3 is held by the chuck 14 and moved to the Tc position, where the bottom surface of the electrode member 5 is pressed against the upper end surface of the sealing metal wire 3, and in this state, the electrode member 5
The laser beam is irradiated from the laser irradiation unit 12 from the inside of the tube toward the bottom 7, and the electrode member 5 is welded to the sealing metal wire 3. The discharge electrode assembly 1 thus assembled is carried to the position Td by the turntable 11, and
Here, the transfer mechanism (not shown) is used to transfer the C
It is moved to position d and transported to the next step.

【0019】図5には図4の組み立て装置におけるレー
ザ照射部分の詳細が例示される。ターンテーブル11に
はビードガラス2に貫通して封着された導電線3,4が
保持されている。保持された封着金属線3のビードガラ
ス2から突出された先端には、チャック14にて支持さ
れた電極部材5の筒外の底部が圧接される。この状態
で、レーザ照射ユニット12より、前記電極部材5の筒
内にレーザ光が照射され、前記電極部材5の底部を前記
封着金属線3の先端に熔着する。この製造方法を採用す
ることにより、放電電極組み立て体1を容易に製造する
ことができる。特にレーザ熔接を採用することにより、
外径寸法が0.5mm以上3mm以下のような小型の電
極部材5を用いる場合にも封着金属線3との良好な熔着
強度の実現が容易になる。
FIG. 5 illustrates details of a laser irradiation portion in the assembling apparatus of FIG. The turntable 11 holds conductive wires 3 and 4 that penetrate the bead glass 2 and are sealed. The outer bottom of the electrode member 5 supported by the chuck 14 is pressed against the tip of the held sealing metal wire 3 protruding from the bead glass 2. In this state, the laser irradiation unit 12 irradiates the inside of the cylinder of the electrode member 5 with laser light, and the bottom of the electrode member 5 is welded to the tip of the sealing metal wire 3. By employing this manufacturing method, the discharge electrode assembly 1 can be easily manufactured. In particular, by using laser welding,
Even when a small electrode member 5 having an outer diameter of 0.5 mm or more and 3 mm or less is used, it is easy to achieve good welding strength with the sealing metal wire 3.

【0020】前記レーザ熔接処理は例えば窒素雰囲気中
で行なわれる。更にこのレーザ熔接処理に並行して前記
電極部材5の筒内に水素ガスを供給する処理を行なうこ
とにより、レーザ熔接の熱で特に電極部材5の筒内で生
ずる虞のある酸化を阻止することができる。したがっ
て、筒内の酸化物が後述の放電ランプのガラス容器内面
にスパッタして輝度を低下させランプ寿命を短くする事
態の防止に役立つ。
The laser welding process is performed, for example, in a nitrogen atmosphere. Further, by performing a process of supplying hydrogen gas into the cylinder of the electrode member 5 in parallel with the laser welding process, it is possible to prevent oxidation which may occur particularly in the cylinder of the electrode member 5 due to heat of laser welding. Can be. Accordingly, it is useful to prevent a situation in which the oxide in the cylinder is sputtered on the inner surface of the glass container of the discharge lamp described below to lower the luminance and shorten the lamp life.

【0021】図6には以上の様に構成された放電電極組
み立て体を採用した放電ランプ20が例示される。21
で示されるものはビードガラス2と同様のガラスから成
るガラス容器であり、例えば低圧水銀蒸気放電ランプの
場合には、ガラス容器21の内周に蛍光体塗料22が塗
布され、内部に水銀蒸気及びアルゴン又はネオンなどの
希ガスが充填され、気密に封止されている。ガラス容器
21の両端に前記導電線例えば前記リード線4に熔接さ
れた封着金属線3が導入され、その導入先端部に前記有
底筒状の電極部材5が熔接固定されている。この電極部
材5は図1の前記放電電極組み立て体1を用いて構成さ
れる。例えば図7に例示されるように両端が開口した円
柱状のガラスバルブ21Aに放電電極組み立て体1を挿
入し、ガラスバルブ21Aの開口部を加熱軟化すると収
縮して求心方向(矢印F方向)に押圧力が作用してビー
ドガラス2と一体的に熔融接合し、これによって気密封
止されたガラス容器21の内部に電極部材5が得られ
る。この気密封止工程では、ガラス容器21内部の排
気、水銀や希ガスの充填が併せて行われる。水銀の充填
には水銀アマルガム若しくは所謂水銀放出合金を用いて
もよい。このようにして構成された放電ランプ20にお
いて、前記電極部材5の筒内底部7には、前述同様に、
筒内側より封着金属線3の先端部に筒外底部を熔接した
ときの凹陥状熔融痕7Aを有している。
FIG. 6 illustrates a discharge lamp 20 employing the discharge electrode assembly constructed as described above. 21
Is a glass container made of the same glass as the bead glass 2. For example, in the case of a low-pressure mercury vapor discharge lamp, a phosphor paint 22 is applied to the inner periphery of a glass container 21, and mercury vapor and A rare gas such as argon or neon is filled and hermetically sealed. The conductive wire, for example, the sealing metal wire 3 welded to the lead wire 4 is introduced into both ends of the glass container 21, and the bottomed cylindrical electrode member 5 is welded and fixed to the leading end thereof. This electrode member 5 is configured using the discharge electrode assembly 1 of FIG. For example, as illustrated in FIG. 7, the discharge electrode assembly 1 is inserted into a cylindrical glass bulb 21A having both ends opened, and when the opening of the glass bulb 21A is heated and softened, it contracts in the centripetal direction (the direction of arrow F). The pressing force acts to integrally fuse and bond the bead glass 2, whereby the electrode member 5 is obtained inside the hermetically sealed glass container 21. In this hermetic sealing step, the exhaust inside the glass container 21 and the filling of mercury or a rare gas are also performed. For the filling of mercury, a mercury amalgam or a so-called mercury releasing alloy may be used. In the discharge lamp 20 configured as described above, the in-cylinder bottom 7 of the electrode member 5 is provided in the same manner as described above.
It has a recessed melting mark 7A when the bottom of the tube is welded to the tip of the sealing metal wire 3 from the inside of the tube.

【0022】以上説明したように、前記電極部材5をそ
の筒内側より前記封着金属線3の先端部に熔着した構造
によれば、前記電極部材5の筒内底部7より熔融が開始
し、熔融状態が封着金属線3の先端部に広がり、筒内底
部7の熔融物と封着金属線3先端部の熔融物が混ざり合
い、凝固して電極部材5と前記封着金属線3が熔着す
る。即ち、熔着時の熔融源は封着金属線3から離れた電
極部材5上にある。したがって、熔着作業時のビードガ
ラス2への熱的影響が小さい。構造的にビードガラス2
への熱的影響を小さくできるから、必要な熔着強度を得
るのも容易である。これにより、熔接不良による信頼性
低下を防止することができ、ビードガラス2と封着金属
線3との封着状態が劣化したりビードガラス2にクラッ
クが入ったりする事態も抑制若しくは低減する事ができ
る。上記構造を、封着金属線と電極部材の当接部を外側
からスポット熔接する構造と比較すると、この場合には
熔着時の熔融源が直接封着金属線上にあるから、それら
に比べても図1の本発明構造はビードガラス2への熱的
影響が小さい。また、導電線3、4各部に常時ジュール
熱を生ずる抵抗熔接と比べても、図1の本発明構造はビ
ードガラス2への熱的影響が少なく、必要な熔着強度を
得るのも容易である。また、図1の本発明構造は電極部
材5を封着金属線3に機械的な係合状態を介して固定す
る構造ではないから放電電極組立て体1の小型化に際し
ても電極部材5や封着金属線3等の部品に対して加工精
度を上げる必要はない。例えば、前記電極部材5は円筒
形であり、外径寸法は0.5mm以上3mm以下であ
り、このうよな小型化への対応において、図1の電極構
造は電極部材5や封着金属線3等の部品に対する高い加
工精度を要せず、また、レーザ熔接故に熔接作業も容易
である。封着金属線3と電極部材5の当接部を外側から
レーザ熔接する場合には、熔接強度を得るために、当接
部の円周方向に3ヶ所以上熔接しなければならず、作業
工数が増えて実用的ではない。
As described above, according to the structure in which the electrode member 5 is welded from the inside of the tube to the tip of the sealing metal wire 3, the melting starts from the bottom 7 in the tube of the electrode member 5. The molten state spreads to the tip of the sealing metal wire 3, and the melt at the bottom 7 in the cylinder and the melt at the tip of the sealing metal wire 3 mix and solidify to form an electrode member 5 and the sealing metal wire 3. Is welded. That is, the welding source at the time of welding is on the electrode member 5 distant from the sealing metal wire 3. Therefore, the thermal effect on the bead glass 2 during the welding operation is small. Structurally beaded glass 2
Therefore, it is easy to obtain the necessary welding strength because the thermal influence on the welding can be reduced. As a result, it is possible to prevent a decrease in reliability due to poor welding, and to suppress or reduce a situation in which the sealing state between the bead glass 2 and the sealing metal wire 3 is deteriorated or a crack is generated in the bead glass 2. Can be. When the above structure is compared with a structure in which the contact portion between the sealing metal wire and the electrode member is spot-welded from the outside, in this case, since the fusion source at the time of welding is directly on the sealing metal wire, compared with them. Also, the structure of the present invention shown in FIG. 1 has a small thermal effect on the bead glass 2. Also, compared to resistance welding in which Joule heat is constantly generated in each of the conductive wires 3 and 4, the structure of the present invention shown in FIG. 1 has less thermal influence on the bead glass 2, and it is easy to obtain the required welding strength. is there. Further, the structure of the present invention shown in FIG. 1 is not a structure in which the electrode member 5 is fixed to the sealing metal wire 3 via a mechanical engagement state. Therefore, even when the discharge electrode assembly 1 is downsized, the electrode member 5 and the sealing member are not fixed. It is not necessary to increase the processing accuracy for components such as the metal wire 3. For example, the electrode member 5 is cylindrical and has an outer diameter of 0.5 mm or more and 3 mm or less. In order to cope with such miniaturization, the electrode structure shown in FIG. No high processing accuracy is required for parts such as No. 3, and welding work is also easy due to laser welding. When the contact portion between the sealing metal wire 3 and the electrode member 5 is laser-welded from the outside, in order to obtain welding strength, welding must be performed at three or more locations in the circumferential direction of the contact portion. It is not practical to increase.

【0023】図8には図1のレーザ熔接による放電電極
組み立て体1の折り曲げ試験結果が示される。この試験
はリード線4を支持し、その軸線に対して電極部材5を
45°の角度に往路、復路で折り曲げる処理を破壊する
まで繰り返したときの折り曲げ回数を計測したものであ
り、折り曲げ回数に対する被検体の数を度数分布で示し
てある。図9は比較例として抵抗熔接を行ったものに対
する同様の折り曲げ試験結果を示す。両者を比較すれば
明らかな如く、熔着強度はレーザ熔接の方が高い。図1
0は封着金属線に対する電極部材の引っ張り試験結果が
示される。これによれば、引っ張り強度もレーザ熔接の
ほうが抵抗熔接に比べて強い結果を得ることができた。
FIG. 8 shows a bending test result of the discharge electrode assembly 1 by laser welding of FIG. In this test, the lead wire 4 was supported, and the number of times the electrode member 5 was bent at an angle of 45 ° with respect to the axis thereof was repeated until the process of bending the electrode member 5 in the forward and backward directions was broken. The number of subjects is shown in a frequency distribution. FIG. 9 shows a similar bending test result for the case where resistance welding was performed as a comparative example. As is apparent from comparison between the two, the welding strength is higher in laser welding. Figure 1
0 indicates the result of the tensile test of the electrode member against the sealing metal wire. According to this, the laser welding was able to obtain a stronger tensile strength than the resistance welding.

【0024】上記本発明に係る放電電極組立て体を用い
た放電ランプ20によれば、ガラス容器21と封着金属
線3との封着状態は封着金属線3に電極部材5を熔着す
るときの熱で劣化することが抑制され、封着金属線3に
対する電極部材5の熔着強度も強固であるから、小型で
あっても高い信頼性を実現することができる。
According to the discharge lamp 20 using the discharge electrode assembly according to the present invention, the sealing state between the glass container 21 and the sealing metal wire 3 is such that the electrode member 5 is welded to the sealing metal wire 3. Deterioration due to heat at that time is suppressed, and the welding strength of the electrode member 5 to the sealing metal wire 3 is strong, so that high reliability can be realized even in a small size.

【0025】また、前記電極部材5をその筒内側より前
記封着金属線3の先端部に熔着する処理を例えば窒素雰
囲気中で行うから、熔融を伴う筒内以外の部分では酸化
を生じ難い。熔融を伴う筒内では空気中で付着した酸素
や酸化物を介して酸化を生ずる虞があるが、前記レーザ
熔接処理に並行して前記電極部材5の筒内に水素ガスを
供給することにより、酸素と混合した水素がレーザ熔接
の熱で爆発的に膨張して電極部材5の筒内の酸化物や酸
素を吹き飛ばし、且つ新たな酸化を阻止することができ
る。図11には水素ガスが供給されたレーザ熔接による
酸化のない電極構造を持つ放電ランプとレーザ熔接で酸
化物が電極部材の表面に付着した電極構造を持つ比較例
に係る放電ランプとの加速点灯試験を行った結果が示さ
れる。ここでは、外形2.6mm、全長321mmのガ
ラス容器を持つ被検ランプに5.5mArmsの管電流
を流し、0°Cの環境下で加速点灯試験を行った。電極
部材5の外径は例えば1.4mmである。前者の輝度減
衰率は後者に対して著しく低いことが明らかにされた。
これは、その酸化物が放電ランプのガラス容器内面に付
着することが防止されるからである。
Also, since the process of welding the electrode member 5 to the tip of the sealing metal wire 3 from the inside of the tube is performed, for example, in a nitrogen atmosphere, oxidation is unlikely to occur in portions other than the inside of the tube accompanied by melting. . In a cylinder accompanied by melting, oxidation may occur through oxygen or oxide attached in the air, but by supplying hydrogen gas into the cylinder of the electrode member 5 in parallel with the laser welding process, Hydrogen mixed with oxygen explosively expands due to the heat of laser welding to blow off oxides and oxygen in the cylinder of the electrode member 5 and prevent new oxidation. FIG. 11 shows accelerated lighting of a discharge lamp having an electrode structure without oxidation by laser welding supplied with hydrogen gas and a discharge lamp according to a comparative example having an electrode structure in which an oxide adheres to the surface of an electrode member by laser welding. The results of the test are shown. Here, a tube current of 5.5 mArms was passed through a test lamp having a glass container having an outer shape of 2.6 mm and a total length of 321 mm, and an accelerated lighting test was performed in an environment of 0 ° C. The outer diameter of the electrode member 5 is, for example, 1.4 mm. It was revealed that the luminance decay rate of the former was significantly lower than that of the latter.
This is because the oxide is prevented from adhering to the inner surface of the glass container of the discharge lamp.

【0026】以上本発明者によってなされた発明を実施
の形態に基づいて具体的に説明したが、本発明はそれに
限定されるものではなく、その要旨を逸脱しない範囲に
おいて種々変更可能であることは言うまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the invention. Needless to say.

【0027】例えば、電極部材は円筒形状に限定され
ず、三角柱、四角柱、裁頭円錐形状等の適宜の形状であ
ってよい。また、電極部材の内部には後から電子放射物
質やゲッタ物質を充填してもよい。放電電極組み立て体
の各部品の材料は上記に限定されず適宜変更可能であ
る。また、本発明に係る放電ランプは低圧水銀蒸気放電
ランプに限定されず、希ガスを含み水銀蒸気を含まない
放電ランプにも適用することができる。
For example, the electrode member is not limited to a cylindrical shape, but may have an appropriate shape such as a triangular prism, a quadrangular prism, or a truncated cone. Further, the inside of the electrode member may be later filled with an electron emitting substance or a getter substance. The material of each component of the discharge electrode assembly is not limited to the above, and can be appropriately changed. Further, the discharge lamp according to the present invention is not limited to a low-pressure mercury vapor discharge lamp, but can be applied to a discharge lamp containing a rare gas and containing no mercury vapor.

【0028】[0028]

【発明の効果】本発明の放電電極組み立て体によれば、
電極部材と導電線の結合に複雑な構造や高い加工精度を
要することなく良好な強度を確保することができる。
According to the discharge electrode assembly of the present invention,
Good strength can be ensured without requiring a complicated structure and high processing accuracy for coupling the electrode member and the conductive wire.

【0029】本発明の本願発明の放電電極組立て体の製
造方法によれば、容易に電極部材と導電線との結合に良
好な強度を得ることができる。
According to the method for manufacturing a discharge electrode assembly of the present invention of the present invention, it is possible to easily obtain good strength for coupling the electrode member and the conductive wire.

【0030】更に本発明によれば、小型で信頼性の高い
放電ランプを実現することができる。
Further, according to the present invention, a small and highly reliable discharge lamp can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る放電電極組み立て体の一例を示す
軸断面図である。
FIG. 1 is an axial sectional view showing an example of a discharge electrode assembly according to the present invention.

【図2】電極部材の開口部から見た熔融痕の状態を示す
平面図である。
FIG. 2 is a plan view showing a state of a melting mark as viewed from an opening of an electrode member.

【図3】レーザ熔接を行う前に前記封着金属線の先端に
電極部材を当て付けた状態を示す軸断面図である。
FIG. 3 is an axial sectional view showing a state in which an electrode member is applied to a tip of the sealing metal wire before performing laser welding.

【図4】レーザ熔接のための組み立て装置を例示する概
略平面図である。
FIG. 4 is a schematic plan view illustrating an assembling apparatus for laser welding.

【図5】図4の組み立て装置におけるレーザ照射部分の
詳細を例示する正面断面図である。
FIG. 5 is a front sectional view illustrating details of a laser irradiation part in the assembling apparatus of FIG. 4;

【図6】図1の放電電極組み立て体を採用した放電ラン
プを例示する軸断面図である。
FIG. 6 is an axial cross-sectional view illustrating a discharge lamp employing the discharge electrode assembly of FIG. 1;

【図7】放電ランプに対する放電電極組み立て体の組み
込み手法を概略的に示す軸断面図である。
FIG. 7 is an axial sectional view schematically showing a method of incorporating a discharge electrode assembly into a discharge lamp.

【図8】図1のレーザ熔接による放電電極組み立て体の
折り曲げ試験結果を示す説明図である。
FIG. 8 is an explanatory view showing a bending test result of the discharge electrode assembly by laser welding of FIG. 1;

【図9】比較例として抵抗熔接を行った放電電極組み立
て体に対する折り曲げ試験結果を示す説明図である。
FIG. 9 is an explanatory view showing a bending test result for a discharge electrode assembly subjected to resistance welding as a comparative example.

【図10】封着金属線に対する電極部材の引っ張り試験
結果を示す説明図である。
FIG. 10 is an explanatory diagram showing a result of a tensile test of an electrode member with respect to a sealing metal wire.

【図11】水素ガスが供給された筒内側よりのレーザ熔
接による酸化物のない電極構造を持つ放電ランプと酸化
物のある電極構造を持つ放電ランプとの加速点灯試験に
よる輝度減衰結果を示す説明図である。
FIG. 11 is a graph showing the results of luminance decay in accelerated lighting tests of a discharge lamp having an electrode structure without oxide and a discharge lamp having an electrode structure with oxide by laser welding from the inside of a cylinder supplied with hydrogen gas. FIG.

【符号の説明】[Explanation of symbols]

1 放電電極組み立て体 2 ビードガラス 3 封着金属線 4 リード線 5 電極部材 7 筒内底部 7A 凹陥状の熔融痕 10 コンベア 11 ターンテーブル 12 レーザ照射ユニット 13 パーツフィーダ 14 チャック 20 放電ランプ 21 ガラス容器 DESCRIPTION OF SYMBOLS 1 Discharge electrode assembly 2 Bead glass 3 Sealing metal wire 4 Lead wire 5 Electrode member 7 In-cylinder bottom 7A Depressed melting mark 10 Conveyor 11 Turntable 12 Laser irradiation unit 13 Parts feeder 14 Chuck 20 Discharge lamp 21 Glass container

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ビードガラスと、ビードガラスに貫通固
定された導電線と、ビードガラスから突出された導電線
の先端に熔着された有底筒状の電極部材とを有し、前記
電極部材の筒内底部には、筒内側より前記導電線の先端
部に筒外底部を熔着した凹陥状の熔融痕を有して成るも
のであることを特徴とする放電電極組立て体。
1. An electrode member comprising: a bead glass; a conductive wire penetrating through the bead glass; and a bottomed cylindrical electrode member welded to a tip of the conductive wire protruding from the bead glass. A discharge electrode assembly, characterized in that it has a concave melting mark in which the bottom of the tube is welded to the tip of the conductive wire from the inside of the tube at the bottom of the tube.
【請求項2】 ビードガラスと、ビードガラスに貫通固
定された導電線と、ビードガラスから突出された導電線
の先端に熔着された有底筒状の電極部材とを有し、前記
電極部材はその底部が筒内側から前記導電線の先端にレ
ーザ熔接されて成るものであることを特徴とする放電電
極組立て体。
2. An electrode member comprising: a bead glass; a conductive wire penetrating through the bead glass; and a bottomed cylindrical electrode member welded to a tip of the conductive wire protruding from the bead glass. A discharge electrode assembly, the bottom of which is laser welded from the inside of the tube to the tip of the conductive wire.
【請求項3】 前記電極部材は円筒形であり、外径寸法
は0.5mm以上3mm以下であることを特徴とする請
求項1又は2記載の放電電極組み立て体。
3. The discharge electrode assembly according to claim 1, wherein the electrode member has a cylindrical shape, and has an outer diameter of 0.5 mm or more and 3 mm or less.
【請求項4】 ビードガラスに貫通して封着された導電
線を保持する処理と、保持された導電線のビードガラス
から突出された先端に有底筒状の電極部材の筒外の底部
を圧接させる処理と、前記電極部材の筒内にレーザ光を
照射して前記電極部材の底部を前記導電線の先端に熔着
するレーザ熔接処理とを含むことを特徴とする放電電極
組立て体の製造方法。
4. A process for holding a conductive wire penetrated through a bead glass and sealing the conductive wire, and attaching a bottom portion of a cylindrical electrode member having a bottom to a tip end of the held conductive wire protruding from the bead glass. Manufacturing a discharge electrode assembly, comprising: a pressure welding process; and a laser welding process of irradiating a laser beam into a cylinder of the electrode member to weld a bottom portion of the electrode member to a tip of the conductive wire. Method.
【請求項5】 前記レーザ熔接処理に並行して前記筒内
に水素ガスを供給する処理を行なうことを特徴とする請
求項4記載の放電電極組立て体の製造方法。
5. The method for manufacturing a discharge electrode assembly according to claim 4, wherein a process of supplying hydrogen gas into said cylinder is performed in parallel with said laser welding process.
【請求項6】 前記電極部材は円筒形であり、外径寸法
は0.5mm以上3mm以下であることを特徴とする請
求項4又は5記載の放電電極組み立て体の製造方法。
6. The method for manufacturing a discharge electrode assembly according to claim 4, wherein said electrode member has a cylindrical shape, and an outer diameter is 0.5 mm or more and 3 mm or less.
【請求項7】 ガラス容器の両端に導入された導電線の
先端部に有底筒状の電極部材が熔着されて成る放電ラン
プであって、前記電極部材の筒内底部には、筒内側より
前記導電線の先端部に筒外底部を熔着した凹陥状の熔融
痕を有して成るものであることを特徴とする放電ラン
プ。
7. A discharge lamp in which a cylindrical electrode member having a bottom is welded to a tip end of a conductive wire introduced to both ends of a glass container, wherein a bottom of the electrode member has an inner tube. A discharge lamp, characterized in that the discharge lamp further comprises a concave melting mark formed by welding a bottom portion of the outer tube to the end of the conductive wire.
【請求項8】 ガラス容器の両端に導入された導電線の
先端部に有底筒状の電極部材が熔着されて成る放電ラン
プであって、前記電極部材の底部が筒内側から前記導電
線の先端にレーザ熔接されて成るものであることを特徴
とする放電ランプ。
8. A discharge lamp in which a bottomed cylindrical electrode member is welded to the tip of a conductive wire introduced into both ends of a glass container, wherein the bottom of the electrode member is formed from the inner side of the tube. A discharge lamp characterized by being laser-welded to the tip of a lamp.
【請求項9】 前記電極部材は円筒形であり、外径寸法
は0.5mm以上3mm以下であることを特徴とする請
求項7又は8記載の放電ランプ。
9. The discharge lamp according to claim 7, wherein the electrode member has a cylindrical shape, and has an outer diameter of 0.5 mm or more and 3 mm or less.
JP2000240589A 2000-08-09 2000-08-09 Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp Pending JP2002056810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240589A JP2002056810A (en) 2000-08-09 2000-08-09 Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240589A JP2002056810A (en) 2000-08-09 2000-08-09 Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp

Publications (1)

Publication Number Publication Date
JP2002056810A true JP2002056810A (en) 2002-02-22

Family

ID=18731919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240589A Pending JP2002056810A (en) 2000-08-09 2000-08-09 Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp

Country Status (1)

Country Link
JP (1) JP2002056810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098234A1 (en) * 2005-03-15 2006-09-21 Neomax Materials Co., Ltd. Method of welding discharging electrode, discharging electrode welded by that method and fluorescent discharge tube provide with that discharging electrode
US7913130B2 (en) * 2003-10-31 2011-03-22 Hewlett-Packard Development Company, L.P. Multi-sample read circuit having test mode of operation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913130B2 (en) * 2003-10-31 2011-03-22 Hewlett-Packard Development Company, L.P. Multi-sample read circuit having test mode of operation
WO2006098234A1 (en) * 2005-03-15 2006-09-21 Neomax Materials Co., Ltd. Method of welding discharging electrode, discharging electrode welded by that method and fluorescent discharge tube provide with that discharging electrode
JP5019390B2 (en) * 2005-03-15 2012-09-05 株式会社Neomaxマテリアル Discharge electrode welding method, discharge electrode welded by the method, and fluorescent discharge tube including the discharge electrode

Similar Documents

Publication Publication Date Title
JP2005302368A (en) Transmitting x-ray tube and its manufacturing method
US6600266B1 (en) Mount for lamp and lamp seal structure employing the mount
JP4494224B2 (en) Seal for lamp and discharge lamp
JP2001023570A (en) Sealing structure of lamp
JP2004363014A (en) Manufacturing method of high-pressure discharge lamp
JP2002056810A (en) Discharge electrode assembly, manufacturing method for discharge electrode assembly, and discharge lamp
JP2006209993A (en) Manufacturing method for low pressure mercury vapor discharge lamp, and low pressure mercury vapor discharge lamp
JP2001345069A (en) Discharge lamp and lamp unit, as well as manufacturing method of lamp unit
JP3389971B2 (en) Discharge tube
JP3171517U (en) Discharge lamp
US8342899B2 (en) Method of manufacturing lamp and quartz bulb
JP2005183267A (en) Lamp
JP3402465B2 (en) Discharge tube manufacturing method
JP2871499B2 (en) Manufacturing method of cold cathode fluorescent lamp
JP2003142026A (en) Electrode assembly for cold cathode tube and cold cathode tube
JP3402364B2 (en) Discharge tube and method of manufacturing discharge tube
JP2004335245A (en) Manufacturing method of discharge tube
KR20070084116A (en) Cold cathode fluorescent lamp
JP3113295U (en) Cold cathode lead
JP2000003695A (en) Discharge lamp
JP2010021066A (en) Mount for thermionic cathode fluorescent lamp, and thermionic cathode fluorescent lamp
JP2010123266A (en) Electrode member for discharge lamp, discharge lamp, and light-emitting device
JP2003109534A (en) Cold cathode discharge tube and its manufacturing method
JP2006004800A (en) Mouthpiece and tubular lamp
JP2008108489A (en) Discharge lamp and manufacturing method of discharge lamp

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030715