JP2002052619A - Method for manufacturing thermoplastic resin molded object for cutting processing - Google Patents

Method for manufacturing thermoplastic resin molded object for cutting processing

Info

Publication number
JP2002052619A
JP2002052619A JP2000242317A JP2000242317A JP2002052619A JP 2002052619 A JP2002052619 A JP 2002052619A JP 2000242317 A JP2000242317 A JP 2000242317A JP 2000242317 A JP2000242317 A JP 2000242317A JP 2002052619 A JP2002052619 A JP 2002052619A
Authority
JP
Japan
Prior art keywords
rubber
temperature
resin
cutting
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000242317A
Other languages
Japanese (ja)
Inventor
Atsushi Kaiya
篤 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2000242317A priority Critical patent/JP2002052619A/en
Publication of JP2002052619A publication Critical patent/JP2002052619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin molded object for cutting processing improved in deformation at the time of cutting. SOLUTION: In a method for manufacturing the thermoplastic resin molded object for cutting processing from a composition containing hydrocarbon oil, a woody powder and a rubber reinforced styrenic resin, the surface temperature of the molded object after being molded is held to a range from 50 deg.C to temperature higher than the thermal deformation temperature of the rubber reinforced styrenic resin by 10 deg.C. In this state, the shape of the molded object is kept substantially constant for 12 hrs or more under environment having temperature not lower than the surface temperature of the molded object and humidity of 50-100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は切削時の変形を改善
した切削加工用熱可塑性樹脂成形体の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic resin molded article for cutting with improved deformation during cutting.

【0002】[0002]

【従来の技術】切削加工用の成形体は、家具、建具など
の建材類及び模型材用として有用である。ここで建材類
とは滑り性を必要とする家屋の敷居、引き戸、戸棚の引
戸部分などの建具類素材をいう。また、模型材とは鉄や
アルミニウム等の金属を鋳造する砂型を作るための模
型、石膏やエポキシ樹脂等の注型用模型、金属、樹脂及
び木材等を切削加工する際の倣い模型等の切削加工によ
り任意の形状を作るために用いる材料であり、近年発達
が著しい数値制御方式の工作機械の数値制御用プログラ
ムを検定する為の試削材等も包含するものである。
2. Description of the Related Art Moldings for cutting are useful for building materials such as furniture and fittings, and for model materials. Here, the building materials refer to materials for fittings such as a sill, a sliding door, and a sliding door portion of a closet that require slipperiness. In addition, the model material is a model for making a sand mold for casting a metal such as iron or aluminum, a casting model such as plaster or epoxy resin, and a cutting model for cutting a metal, resin, wood, etc. It is a material used for forming an arbitrary shape by machining, and also includes a trial cutting material for examining a numerical control program of a numerically controlled machine tool that has been remarkably developed in recent years.

【0003】木質材としては、パーチクルボードおよび
ファイバーボードが汎用的に用いられている。これらは
主にミリメートル単位の木材小薄片または木材チップを
解繊して得たフィバーに、各種樹脂を結合剤として用
い、必要に応じて硬化促進剤を加えて、圧縮して作られ
る。これらはその使い勝手のよさからテーブル、カウン
ター、家具などの木製什器あるいは床材、壁材等の木製
建材の表面材として使用されている。また、熱可塑性木
質材としてはポリ塩化ビニル系樹脂とABS樹脂と木粉
の組成物が特公昭61−31447号公報で提案されて
いる。しかしこれには切削時の変形の改善については提
案されておらず、実用においては切削時のそり、変形の
少ない成形体が望まれる。
[0003] As wood materials, particle boards and fiber boards are generally used. These are mainly produced by fibrillating small pieces of wood or chips of wood in units of millimeters, compressing them using various resins as binders, adding a hardening accelerator if necessary. These are used as wooden furniture such as tables, counters and furniture or as surface materials of wooden building materials such as flooring and wall materials because of their ease of use. Further, as a thermoplastic wood material, a composition of a polyvinyl chloride resin, an ABS resin and wood flour has been proposed in Japanese Patent Publication No. 61-31447. However, there is no proposal for improvement of deformation during cutting, and a molded article with less warpage and deformation during cutting is desired in practical use.

【0004】一方従来模型材としては檜、姫小松、杉、
マホガニ等の木材、エポキシ、ウレタン等の樹脂、石
膏、アルミニウム、亜鉛合金や徹党の金属が使用されて
きたが、模型材としての性能と価格の両面から満足でき
るものがなく、新しい材料の開発が望まれている。例え
ば模型材として最も要求が厳しい砂型用模型ではまず最
も安価で、切削加工が容易な木材(檜、姫小松等)で模
型(木型)を作り、これを砂型に転写して鉄やアルミニ
ウム等の鋳物を試験的に製造する。試作した鋳物に巣や
空隙が発生しないこと、強度や寸法精度が要求を満たす
こと等を試行錯誤的に模型を修正しながら確認し、最終
的には必要な鋳物の生産数量により、模型の材質が決め
られる。一般に生産数量が数100個程度以下の場合に
は木型がそのまま用いられ、5000個未満の場合には
主としてエポキシ樹脂模型が使用され、2〜3万個程度
の場合にはアルミニウム合金が、さらに多量の生産の場
合には鋼が使用される。このように模型材料が鋳物の生
産量により使い分けられるのは、鋳物砂による磨耗で、
模型の寸法が変化するからである。生産数量が少なくて
も、寸法精度を要求される模型あるいは木材では製造が
不可能な形状の模型では、鋼やアルミニウム合金が使用
される。
On the other hand, conventional model materials include hinoki, hime komatsu, cedar,
Wood such as mahogany, resin such as epoxy and urethane, gypsum, aluminum, zinc alloy, and metal of Tohru party have been used, but there is no one that can be satisfied from both the performance and price as a model material, and the development of new materials Is desired. For example, the most demanding model for sand molds, which is the most demanding model material, is to make a model (wood mold) using the cheapest and easy-to-cut wood (hinoki, Himekomatsu, etc.) and transfer it to a sand mold to transfer iron, aluminum, etc. Is manufactured on a trial basis. The prototype casting was checked to make sure that no voids or voids were generated, and that the strength and dimensional accuracy met the requirements while modifying the model by trial and error. Is determined. In general, when the production quantity is about several hundred pieces or less, a wooden mold is used as it is, when less than 5000 pieces, an epoxy resin model is mainly used, and when about 20 to 30,000 pieces, an aluminum alloy is used. For mass production, steel is used. In this way, model materials are used differently depending on the amount of castings produced, due to wear caused by foundry sand.
This is because the dimensions of the model change. Even if the production quantity is small, steel or an aluminum alloy is used for a model that requires dimensional accuracy or a shape that cannot be manufactured with wood.

【0005】これら模型材料に要求される性能として
は、手加工及び機械加工での良好な切削加工性及び形
状の自由度、寸法安定性及び精度、適度の剛性、靱
性及び表面高度、接着性が要望され、砂型用模型では
さらに鋳物砂に対する耐磨耗性、鋳物砂に含まれる
硬化剤等に対する耐薬品性、鋳物砂からの離型性、
補修の容易さ等がある。
[0005] The performance required of these model materials includes good machinability in manual processing and machining, freedom of shape, dimensional stability and accuracy, appropriate rigidity, toughness and surface height, and adhesiveness. In the sand mold model, there is a demand for more abrasion resistance to molding sand, chemical resistance to hardeners contained in molding sand, releasability from molding sand,
There is ease of repair.

【0006】最も安価で広く使用されている模型材は
檜、姫小松、マホガニ等の天然木材であるが、近年木材
資源も徐々に枯渇し、模型剤に適する直径600mm以
上の大木は少なくなり、たとえ木材が入手できても模型
材として使用できるようになるには1〜2年の十分な乾
燥後である。木材は乾燥が不十分であると切削加工後に
著しい寸法変化、変形を起こし、場合によっては破損し
たりする。乾燥期間中の広い保管場所や在庫負担は無視
できない。
The most inexpensive and widely used model materials are natural wood such as cypress, hime komatsu and maho crab. However, in recent years, wood resources have been gradually depleted, and large trees having a diameter of 600 mm or more suitable for model agents have been reduced. Even after the wood is available, it is after 1-2 years of sufficient drying before it can be used as a model material. Insufficient drying of wood can cause significant dimensional changes and deformations after cutting, and in some cases breakage. The large storage space and inventory burden during the drying period cannot be ignored.

【0007】模型材としての木材の最大の欠点は吸湿に
よる著しい寸法変化であり、特に異方性(接線方向:放
射方向=10:5〜1:0.5)が大きいことである。
最も寸法精度が良く高級模型材である檜でさえも接線方
向の平均縮率(含水率15%の時の含推量1%減少する
ことによる寸法変化率)は、0.14〜0.17%もあ
る。また模型材として使用する木材は柾目材であり、板
目材は著しい反りが発生するので使用できず、また白太
等の樹皮に近い部分も除外される。木材は他の模型材に
比べて切削加工性が優れているとされるが、これは木型
職人によるノミ、カンナといった手加工による場合であ
り、工作機械による切削加工では、木材の成長方向で順
目及び逆目があり、逆目では木材が割れて切削加工がで
きない。
[0007] The biggest drawback of wood as a model material is a remarkable dimensional change due to moisture absorption, and is particularly large in anisotropy (tangential direction: radial direction = 10: 5 to 1: 0.5).
The average shrinkage in the tangential direction (the rate of dimensional change due to a 1% reduction in the guesses at a water content of 15%) is 0.14% to 0.17%, even for the cypress, which is the finest model material and has the highest dimensional accuracy. There is also. The wood used as the model material is straight-grained wood, and the wood-grained wood cannot be used because remarkable warpage occurs, and a portion close to bark such as white sand is also excluded. Wood is said to have better machinability than other model materials, but this is due to the hand processing of chisels and canna by woodworkers. There is a straight line and a reverse line. In the reverse line, the wood is broken and cutting cannot be performed.

【0008】このため、木型では凸モデルが多く、型打
鍛造用倣い模型とする凹モデルは少ない。またボールエ
ンドミル加工では、木材繊維による毛羽立ちが生じ、刃
物による切削後にサンダーによる仕上げが必要となるば
かりか、金属加工用の機械による低回転の切削加工で
は、木材繊維が鋭く切断されず、毛羽立ちが生じるの
で、高速加工が可能な木工専用機が必要となる。空冷エ
ンジンの放熱版のように厚みが薄い部分や90°以下の
鋭角部分では木材の靱性不足から切削加工中に破損する
ことが多いので、模型の製作は困難を極める。多くの苦
労の末に切削が完了しても、天候の変化による吸湿で思
わぬ変形を起こす場合もあり、安定して高精度の模型を
木材で作ることには限界がある。
For this reason, there are many convex models in wooden dies, and few concave models as copy models for stamping and forging. Also, in ball end milling, fuzzing occurs due to wood fibers, and not only requires finishing with a sander after cutting with a cutting tool, but also in low-speed cutting processing with a metal processing machine, wood fibers are not sharply cut and fuzzing occurs. Therefore, a dedicated woodworking machine capable of high-speed processing is required. Since a thin portion or an acute angle portion of 90 ° or less, such as a heat sink of an air-cooled engine, is often broken during cutting due to insufficient toughness of wood, it is extremely difficult to make a model. Even if cutting is completed after a lot of hard work, unexpected deformation may occur due to moisture absorption due to changes in the weather, and there is a limit to stably making high-precision models from wood.

【0009】木材よりも寸法安定性が高く、耐磨耗性が
よい材料としてエポキシ樹脂が多量に使用されている
が、刃物による切削加工は殆ど不可能であることから、
これら樹脂模型は一旦木材で木型を作りこれを石膏で転
写し、さらにエポキシ樹脂で反転する注型法により製造
される。このためエポキシ樹脂を中心とする樹脂模型は
当然木型よりも高価であり、納期も長くなる。アルミニ
ウム合金や鋼では、切削加工性は木材に比べると著しく
劣ることは明白である。模型業界では模型の寸法の高精
度化と短納期化、ひいては低価格化を目指しており、こ
のためには前記〜の諸性能を満たす材料の開発を待
ち望んでいる。
Although a large amount of epoxy resin is used as a material having higher dimensional stability and better abrasion resistance than wood, cutting with a blade is almost impossible.
These resin models are manufactured by a casting method in which a wooden mold is once made of wood, transferred to a plaster, and then inverted with an epoxy resin. For this reason, a resin model mainly made of epoxy resin is naturally more expensive than a wooden mold, and the delivery time is longer. It is clear that aluminum alloys and steels have significantly lower machinability than wood. In the model industry, the aim is to increase the precision of the dimensions of the model, shorten the delivery time, and reduce the price. To this end, we are waiting for the development of materials that satisfy the above-mentioned various properties.

【0010】この前記〜の諸性能を満たす材料とし
て、特公昭62−54570号公報は乾燥した木質末に
炭化水素油を添加処理した後、強化スチレン系樹脂に混
合・成型した模型材を提案している。しかし、この方法
により製造された模型材は、特に押出し成型時に与えら
れた応力ひずみを取り除くことなく切削加工を行うと、
大きな変形を生じてしまうという大きな欠点を有してい
る。
As a material satisfying the above-mentioned various properties, Japanese Patent Publication No. 54570/1987 proposes a model material obtained by adding a hydrocarbon oil to a dry wood powder, and then mixing and molding it with a reinforced styrene resin. ing. However, if the model material manufactured by this method is cut without removing the stress strain given at the time of extrusion molding,
It has a major drawback of causing large deformation.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、職人
によるノミ、カンナ等による手加工、高速度の木工用切
削加工機械及び低速度の金属用切削加工機械などの方法
によって切削する際、寸法安定性に優れ、滑り性を具備
した家具、建材、及び各種模型材に適した切削加工用の
ゴム強化スチレン系樹脂の製造方法を提供することにあ
り、特にゴム強化スチレン系成形体を従来の常識では考
えられない方法で成型時の応力ひずみを除去することで
切削時の変形を改善した、炭化水素油、木質末およびゴ
ム強化スチレン系樹脂を含む切削加工用成形体の製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for cutting by a method such as hand cutting with a chisel or a canner by a craftsman, a high-speed cutting machine for woodworking and a low-speed cutting machine for metal. An object of the present invention is to provide a method for producing a rubber-reinforced styrene resin for cutting, which is suitable for furniture, building materials, and various model materials having excellent dimensional stability and slipperiness. Provided a method for manufacturing molded products for cutting including hydrocarbon oil, woody powder and rubber-reinforced styrene resin, which improved deformation during cutting by removing stress and strain during molding by a method not considered by common sense Is to do.

【0012】[0012]

【課題を解決するための手段】本発明は、炭化水素油、
木質末およびゴム強化スチレン系樹脂を含む組成物から
切削加工用成形体を製造する方法において、成形体の腑
形後に、該成形体の表面温度を50℃以上かつゴム強化
スチレン系樹脂の熱変形温度より10℃高い温度以下の
範囲に保ちながら、該成形体の表面温度以上かつ湿度5
0%〜100%の環境下で該成形体の形状を実質的に一
定に保つ工程を含むことを特徴とする切削加工成形体の
製造方法である。
SUMMARY OF THE INVENTION The present invention provides a hydrocarbon oil,
In a method for producing a molded body for cutting from a composition containing wood powder and a rubber-reinforced styrene-based resin, after shaping the molded body, the surface temperature of the molded body is 50 ° C. or more and the thermal deformation of the rubber-reinforced styrene-based resin is performed. While maintaining the temperature within a range of 10 ° C. or higher and a temperature of 5 ° C. or higher and a humidity of 5
A method for producing a cut molded article, comprising a step of maintaining the shape of the molded article substantially constant in an environment of 0% to 100%.

【0013】本発明では切削加工用成形体の基材として
炭化水素油、木質片及びゴム強化スチレン系樹脂を含む
組成物を用いることを不可欠とする。まずこの基材組成
物について説明するに、用いる炭化水素油に特に制限は
ないが、100°Fで測定した粘度が10〜500cs
tであることが、取り扱いの点から望ましく、さらに、
炭化水素油の中に含まれる芳香族環を形成する量(C
A )が20重量%以下であることが長期使用時の変色の
点から好ましい。具体的には、流動パラフィン、n−パ
ラフィン、イソパラフィン、ポリα−オレフィン、ポリ
デセンおよびスクワランなどを挙げられ、それらの混合
物等が例示できる。
In the present invention, as a base material of a molded product for cutting,
Contains hydrocarbon oil, wood chips and rubber-reinforced styrenic resin
It is essential to use the composition. First, this base material composition
There are no particular restrictions on the hydrocarbon oil used.
No, but viscosity measured at 100 ° F. is 10-500 cs
t is desirable in terms of handling, and
Amount of aromatic ring contained in hydrocarbon oil (C
A ) Is less than 20% by weight.
Preferred from the point. Specifically, liquid paraffin, n-
Raffin, isoparaffin, poly α-olefin, poly
Decene and squalane, etc., and their mixture
Objects can be exemplified.

【0014】炭化水素油の添加は、木質末とゴム強化ス
チレン系樹脂との混合を容易にするだけでなく刃物によ
る切削加工性を改善する目的で行われる。100°Fで
の粘度が10cst未満の炭化水素油では、一般に沸点
が低く、ゴム強化スチレン系樹脂と炭化水素油と木質末
との混練において、スクリュー押出機のダイス出口で発
泡が生じやすくなる傾向がある。他方100°Fでの粘
度が500cst以上の炭化水素油では木質末への含浸
が不十分となり、切削力が高くなり、混練した成型物の
表面にべとつきを生じることがある。CA が20重量%
より多い炭化水素油は一般に黒褐色や濃緑色に着色して
おり、成形体の色相に悪影響を及ぼす。ゴム強化スチレ
ン系樹脂と木質末と炭化水素油との混練りはいずれの方
法でも行うことができる。好ましくは混練りに先立って
木質末に炭化水素油を添加するが、さらに好ましくは木
質末を加熱しながら炭化水素油を添加処理する。その添
加量は木質末100重量部に対して10重量部以下では
混練の容易性や切削性の改良ができず、50重量部以上
では木質末に吸着や含浸されない遊離の炭化水素油が残
り、混練後の成形体の剛性を著しく低下させる等の弊害
が現れる。
The addition of the hydrocarbon oil is performed for the purpose of not only facilitating the mixing of the wood powder and the rubber-reinforced styrenic resin, but also improving the cutting workability with a blade. A hydrocarbon oil having a viscosity at 100 ° F. of less than 10 cst generally has a low boiling point, and tends to be easily foamed at a die outlet of a screw extruder in kneading a rubber-reinforced styrene resin, a hydrocarbon oil, and a wood powder. There is. On the other hand, in the case of a hydrocarbon oil having a viscosity at 100 ° F. of 500 cst or more, impregnation of the woody powder becomes insufficient, the cutting force increases, and the surface of the kneaded molded product may become sticky. C A is 20% by weight
More hydrocarbon oils are generally colored dark brown or dark green, which adversely affects the hue of the molding. The kneading of the rubber-reinforced styrene resin, the woody powder and the hydrocarbon oil can be performed by any method. Preferably, the hydrocarbon oil is added to the wood powder prior to kneading, and more preferably, the hydrocarbon oil is added while heating the wood powder. If the addition amount is less than 10 parts by weight with respect to 100 parts by weight of the wood powder, the kneading easiness and machinability cannot be improved, and if it is more than 50 parts by weight, free hydrocarbon oil not adsorbed or impregnated in the wood powder remains. There are adverse effects such as remarkably lowering the rigidity of the molded body after kneading.

【0015】本発明に用いる木質末としては木質系複合
材に一般に用いる木質末、例えば各種の木粉やパルプ粉
が使用できるが、気乾比重が低く、耐湿性が不足気味で
あるので、針葉樹、例えば、米ツガ、ヒマラヤ杉、檜、
姫小松等の木粉が好ましい。その含水率は気乾状態で1
3〜18%であり、標準含水率を15%としている。木
質末の粒経は60メッシュ(目開き0.246mm)の
篩を90%以上通過する大きさであり、好ましくは80
メッシュ(目開き0.175mm)を全通する程度が良
い。粒経が60メッシュよりも粗い木質末は成形体の表
面を荒くするので、建材類、模型材に使用する場合には
好ましくない。
As the wood powder used in the present invention, wood powder generally used for wood-based composite materials, for example, various wood powders and pulp powders, can be used. For example, rice hemlock, Himalayan cedar, cypress,
Wood flour such as Himekomatsu is preferred. Its moisture content is 1 in air-dry condition
3 to 18%, and the standard moisture content is 15%. The particle size of the woody powder has a size that allows 90% or more to pass through a 60-mesh (mesh 0.246 mm) sieve.
It is preferable to pass through the entire mesh (opening of 0.175 mm). Woody powder having a grain size coarser than 60 mesh roughens the surface of the molded product, and is not preferable when used for building materials and model materials.

【0016】好ましい木質末の量は、ゴム強化スチレン
系樹脂と木質末との合計中の10〜40重量%である。
10重量%未満では刃物による良好な切削加工性や機械
的強度が十分に得られず、他方40重量%以上ではゴム
強化スチレン系樹脂との混練性が悪くなったり、成形体
の可撓性や靱性が低下したり、切削加工時に鋭角のコー
ナー部分が欠落したり、肉薄の加工製品の製作が困難に
なる等の切削加工の自由度が低下することがある。
The preferred amount of the wood powder is 10 to 40% by weight of the total of the rubber-reinforced styrene resin and the wood powder.
If the content is less than 10% by weight, satisfactory cutting workability and mechanical strength by the blade cannot be sufficiently obtained, and if the content is more than 40% by weight, kneadability with the rubber-reinforced styrene-based resin becomes poor, The degree of freedom in cutting may be reduced, for example, the toughness may be reduced, sharp corners may be missing at the time of cutting, or it may be difficult to manufacture thin processed products.

【0017】本発明に用いるゴム強化スチレン系樹脂
は、スチレンモノマーを含む連続相(マトリックス相)
とマトリックス成分を含有するゴム重合体分散相(ドメ
イン相)からなり、両者の界面にはグラフト共重合体が
存在する2相構造をもつスチレン系樹脂である。連続相
中のスチレン系樹脂成分を例示すれば、ポリスチレン、
アクリルニトリル−スチレン共重合体、これらと、アク
リル酸エステル、不飽和ジカルボン酸又はその無水物等
の共重合体を挙げることができる。分散相中のゴム重合
体成分を例示すれば、ポリブタジエン、ブタジエン−ス
チレン共重合体、ブタジエン−アクリロニトリル共重合
体等ブタジエンを主成分とするゴム質重合体、エチレン
−プロピレン−ジエン共重合体(EPDM)、ポリアク
リル酸エステル、が挙げることができる。
The rubber-reinforced styrene resin used in the present invention is a continuous phase (matrix phase) containing a styrene monomer.
And a rubber polymer dispersed phase (domain phase) containing a matrix component, and a styrene-based resin having a two-phase structure in which a graft copolymer exists at the interface between the two. Examples of the styrene resin component in the continuous phase include polystyrene,
Examples thereof include acrylonitrile-styrene copolymers, and copolymers thereof with acrylic esters, unsaturated dicarboxylic acids or anhydrides thereof. Examples of the rubber polymer component in the dispersed phase include rubber polymers mainly containing butadiene such as polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, and ethylene-propylene-diene copolymer (EPDM). ) And polyacrylates.

【0018】一般に、これらゴム強化スチレン系樹脂は
ゴム共重合体の反架橋粒子を連続相を構成するスチレン
系樹脂の重合工程中に存在させて製造する。このため、
連続相と分散相の界面にはグラフト共重合体が生成し、
強固な界面接着が構成される。本発明に使用できるゴム
強化スチレン系樹脂の具体例としては、ポリスチレン系
樹脂を連続相、ポリブタジエン系ゴムを分散相とする耐
衝撃ポリスチレン系樹脂、ポリスチレン−ポリアクリル
ニトリル共重合体系樹脂を連続相、ポリブタジエン系ゴ
ムを分散相とするABS系樹脂、ポリスチレン−ポリア
クリルニトリル共重合体系樹脂を連続相、エチレン−プ
ロピレン−ジエン共重合体(EPDM)系ゴムを分散相
とするAES系樹脂が挙げられる。
In general, these rubber-reinforced styrene resins are produced by allowing anti-crosslinked particles of a rubber copolymer to be present during the polymerization step of the styrene resin constituting the continuous phase. For this reason,
At the interface between the continuous phase and the dispersed phase, a graft copolymer is formed,
Strong interfacial adhesion is formed. Specific examples of the rubber-reinforced styrene resin that can be used in the present invention include a polystyrene resin as a continuous phase, an impact polystyrene resin having a polybutadiene rubber as a dispersed phase, and a polystyrene-polyacrylonitrile copolymer resin as a continuous phase. An ABS resin having a polybutadiene rubber as a dispersed phase, an AES resin having a polystyrene-polyacrylonitrile copolymer resin as a continuous phase, and an ethylene-propylene-diene copolymer (EPDM) rubber as a dispersed phase are exemplified.

【0019】ゴム強化スチレン系樹脂中のゴム質成分は
5重量%〜40重量%であり、好ましくは10重量%〜
40重量%である。5重量%以下であれば、切削加工時
に薄肉部分や鋭角部分に折損を招く危険性が大きく、又
40重量%を超えると剛性が著しく低下することにな
る。
The rubbery component in the rubber-reinforced styrenic resin is from 5% by weight to 40% by weight, preferably from 10% by weight.
40% by weight. If it is 5% by weight or less, there is a large risk of breakage of a thin portion or an acute angle portion during cutting, and if it exceeds 40% by weight, the rigidity is significantly reduced.

【0020】本発明におけるゴム強化スチレン系樹脂
は、建材類、模型材用途において、弾性や靱性を付与
し、薄肉部分や鋭角部分の切削加工を可能にし、建材
類、模型材の形状の自由度を増大させ、更に模型材が鋳
物木型代替で使用される際鋳物砂に対する耐摩耗性を高
める為に使用され、本目的に合致する範囲で任意に選択
でき、また、公知の添加材、強化材、顔料等を添加する
ことができる。
The rubber-reinforced styrenic resin according to the present invention imparts elasticity and toughness to building materials and model materials, enables cutting of thin portions and acute-angled portions, and has a high degree of freedom in the shapes of building materials and model materials. It is used to increase the abrasion resistance to molding sand when the model material is used in place of a casting mold, and can be arbitrarily selected within a range that meets the purpose. Materials, pigments and the like can be added.

【0021】本発明の成形体は好ましくは次のように製
造される。例えば加熱が可能なジャケット付回転翼形混
合機(三井三池製作所ヘンシェルミキサー)を用い、3
kg/cm2 の低圧スチームを通し、混合槽壁面温度を
約140℃に昇温し、気乾状態の木質末を混合槽に投入
して回転翼を高速で回転させながら炭化水素油を徐々に
滴下する。木質末の含水率が高く乾燥不十分の場合に
は、炭化水素油を添加する前に適宜加熱乾燥することが
できる。通常気乾状態の木質末では混合槽壁面温度が1
00℃から150℃で炭化水素油の添加時間は5〜15
分間程度である。
The molded article of the present invention is preferably produced as follows. For example, using a heated rotary airfoil mixer (Henschel mixer of Mitsui Miike Works) capable of heating
Pass the low-pressure steam of kg / cm 2 , raise the temperature of the mixing tank wall to about 140 ° C, put the wood powder in an air-dried state into the mixing tank, and gradually rotate the hydrocarbon oil while rotating the impeller at high speed. Drip. If the water content of the woody powder is high and drying is insufficient, it can be appropriately heated and dried before adding the hydrocarbon oil. Normally, the temperature of the mixing tank wall surface is 1 for woody dry wood.
From 00 ° C to 150 ° C, hydrocarbon oil addition time is 5 to 15
About a minute.

【0022】木質末を200℃以上の温度で炭化水素油
を添加処理すると、木質末や炭化水素油が変質及び炭化
を起こしたり、炭化水素油の引火点からも着火の危険性
が増大するので避けなければならない。又常圧下100
℃以下では木質末からの水分の飛散及び木質末への炭化
水素油の吸着や含浸が不十分となり、成形体の成型時に
おいて水分の蒸発による空隙が発生しやすくなる。成形
体の空隙は建材類、模型材等の用途において致命的欠陥
となる。木質末の炭化水素油による事前の添加処理及び
その処理温度条件は、本発明の成形体の製造工程におい
て成形体内に大きな空隙を生じさせないことに大きな効
果を有する。
If the wood powder is treated with a hydrocarbon oil at a temperature of 200 ° C. or more, the wood powder and the hydrocarbon oil undergo alteration and carbonization, and the risk of ignition increases from the flash point of the hydrocarbon oil. Must be avoided. Also under normal pressure 100
If the temperature is lower than ℃, the scattering of water from the wood powder and the adsorption and impregnation of hydrocarbon oil into the wood powder become insufficient, and voids are likely to be generated due to the evaporation of water during molding of the molded product. The voids in the molded article are fatal defects in applications such as building materials and model materials. The pre-addition treatment of wood powder with hydrocarbon oil and the treatment temperature conditions have a great effect on preventing large voids from being formed in the molded article in the production process of the molded article of the present invention.

【0023】木質末に炭化水素油を添加処理後、木質末
とゴム強化スチレン系樹脂の合計量中木質末が10〜4
0重量%になるようにゴム強化スチレン系樹脂粉末を加
え、100から150℃の温度で15分間攪拌混合す
る。この後の成形体の製造工程から混合物は全体が一体
になった溶融物ではなく顆粒状であることが望ましいの
で、混合槽壁面温度は100〜150℃であることが望
ましい。得られた混合物は通常の熱可塑性樹脂用混練装
置である1軸または2軸のスクリュー押出機、混練ロー
ル、加圧ニーダー、バンバリーミキサー等とペレタイザ
ーの組み合わせによりゴム強化スチレン系樹脂を溶融状
態にして混練、造粒する。
After the addition of the hydrocarbon oil to the woody powder, the total amount of the woody powder and the rubber-reinforced styrenic resin is 10 to 4%.
The rubber-reinforced styrene resin powder is added so as to be 0% by weight, and the mixture is stirred and mixed at a temperature of 100 to 150 ° C. for 15 minutes. From the subsequent manufacturing process of the molded article, it is desirable that the mixture is not an integrated melt but a granular one, so the mixing tank wall surface temperature is desirably 100 to 150 ° C. The resulting mixture is made into a rubber-reinforced styrenic resin in a molten state by a combination of a single-screw or twin-screw extruder, a kneading roll, a pressure kneader, a Banbury mixer, and a pelletizer, which are ordinary kneading apparatuses for thermoplastic resins. Knead and granulate.

【0024】この造粒時または上記の任意の工程中に、
顔料、酸化防止剤、紫外線防止剤、可塑剤、充填剤、発
泡剤等を適宜加えることができる。造粒されたペレット
を用いて、熱可塑性樹脂用の射出成型機、スクリュー押
出機及び加熱プレス等で任意の形状に腑形(成型)する
ことができる。建材、模型材として使用する場合はスク
リュー押出機により厚み5〜50mm程度の平板や直径
10〜50mm程度の丸棒に腑形(成型)しておくと便
利である。
During this granulation or during any of the above steps,
Pigments, antioxidants, UV inhibitors, plasticizers, fillers, foaming agents and the like can be added as appropriate. The granulated pellets can be formed (molded) into an arbitrary shape by an injection molding machine for a thermoplastic resin, a screw extruder, a hot press, or the like. When used as a building material or a model material, it is convenient to form (mold) a flat plate having a thickness of about 5 to 50 mm or a round bar having a diameter of about 10 to 50 mm by a screw extruder.

【0025】本発明では、このように腑形(成型)され
た炭化水素油、木質末およびゴム強化スチレン形樹脂を
含む組成物から製造された切削加工用成形体を、該成形
体の表面温度を50℃〜ゴム強化スチレン系樹脂の熱変
形温度より10℃高い温度に保ちながら、該成形体の表
面温度以上かつ湿度50%〜100%の環境下で、該成
形体の形状を実質的に一定に保つことにより、加工時に
受けた応力披歴から生じた成形体内の残留応力を緩和・
開放し、切削時の反りおよび変形を改善し、寸法安定性
に優れた成形体とする。上記の湿潤環境下での処理時間
は通常12時間以上である。
According to the present invention, a molded body for cutting produced from a composition containing the hydrocarbon oil, the wood powder, and the rubber-reinforced styrene-type resin thus formed (molded) is subjected to the surface temperature of the molded body. Is maintained at a temperature of 50 ° C. to 10 ° C. higher than the thermal deformation temperature of the rubber-reinforced styrenic resin, and the shape of the molded article is substantially changed in an environment of a surface temperature of the molded article and a humidity of 50% to 100%. By keeping it constant, the residual stress in the molded body caused by the history of
It is released to improve the warpage and deformation during cutting and to provide a molded body with excellent dimensional stability. The processing time in the above humid environment is usually 12 hours or more.

【0026】一般に熱可塑性樹脂の成形後に加圧、加温
して焼きなましをすることで、成型時の残留応力を緩和
・開放させることはよく知られていることであるが、本
発明の成形体は気乾状態の木質末に炭化水素油を含浸さ
せた含油木質末を含んでいる為、単に加熱による焼きな
ましだけでは、切削加工時に反り、変形が生じ、実用に
支障をきたしている。反り、変形の改善を検討した結
果、加温と同時に湿度を与えて湿潤加熱処理すること
で、その目的が達成されることを見出した。
It is well known that, after molding a thermoplastic resin, the residual stress at the time of molding is relaxed and released by annealing by applying pressure and heating to the molded article of the present invention. Since air-dried wood powder contains oil-impregnated wood powder impregnated with hydrocarbon oil, simply annealing by heating causes warpage and deformation during cutting, which hinders practical use. As a result of examining the improvement of the warpage and the deformation, it was found that the purpose was achieved by giving the humidity simultaneously with the heating and performing the wet heat treatment.

【0027】以下、本発明をさらに具体的に説明する。
腑形後の成形体が平板である場合には、一例として複数
枚の成形体を重ねて適当な重石を載せて形状を保持し、
温度制御ができる室または熱風乾燥炉の中で表面温度を
50℃以上ゴム強化スチレン系樹脂の熱変形温度より1
0℃高い温度まで、好ましくは、80℃〜110℃に設
定する。設定した温度において、熱風乾燥機内を該成形
体の表面温度以上でかつ湿度50%〜100%好ましく
は湿度80%〜100%に設定し、通常12時間以上、
好ましくは24時間以上72時間(3日間)程度、加
温、加湿状態に保持したのち徐冷して取り出す。温度が
50℃以下であると残留応力の緩和・開放が十分でな
く、切削時に大きな反り、変形等が生じる。またゴム強
化スチレン系樹脂の熱変形温度よりも10℃以上高いで
は成形物が流れ、成型時の形状を保つことができないく
らい変形を起こす危険性があり好ましくない。
Hereinafter, the present invention will be described more specifically.
When the molded body after the shaping is a flat plate, as an example, a plurality of molded bodies are stacked and an appropriate weight is placed thereon to hold the shape,
In a room where temperature control is possible or in a hot-air drying furnace, the surface temperature is 50 ° C. or more, and the temperature is 1
The temperature is set to 0 ° C. higher, preferably 80 ° C. to 110 ° C. At the set temperature, the inside of the hot air dryer is set at a temperature equal to or higher than the surface temperature of the molded body and a humidity of 50% to 100%, preferably 80% to 100%, and usually for 12 hours or more.
Preferably, the sample is kept in a heated and humidified state for about 24 hours to 72 hours (3 days) and then slowly cooled and taken out. If the temperature is 50 ° C. or less, the relaxation and release of the residual stress are not sufficient, and large warpage or deformation occurs during cutting. On the other hand, if the temperature is higher than the thermal deformation temperature of the rubber-reinforced styrene-based resin by 10 ° C. or more, there is a risk that the molded product will flow and deform so that the shape at the time of molding cannot be maintained.

【0028】湿度が50%以下であると成形体中の木質
末への吸湿が不十分で、切削時の反り、変形が使用に耐
えられない。また湿度が100%以上の状態では成形体
を切削加工した後、表面からの過分の水分の蒸発により
切削加工時に、そり、変形が実用に耐えられない。湿度
の加え方としてはスチーム、および/または、温水を使
用すること、例えば、成形体を温水に浸漬することで、
加温、加湿の条件を満足させることもできる。100℃
以上の温度を必要とするときは、高圧スチームを使用す
ることが好ましい。
If the humidity is 50% or less, the wood particles in the molded body do not absorb moisture sufficiently, so that warping and deformation during cutting cannot be used. Further, when the humidity is 100% or more, after the formed body is cut, warpage and deformation cannot be practically used during the cutting due to excessive evaporation of water from the surface. The method of adding humidity is to use steam and / or hot water, for example, by immersing the molded body in hot water,
Heating and humidification conditions can be satisfied. 100 ℃
When the above temperature is required, it is preferable to use high-pressure steam.

【0029】処理時間が不足すると、ひずみ除去効果が
少なく、また72時間以上の長時間保持することはエネ
ルギーの無駄使いとなり、経済的に不利であると共に成
形体の原型を保てなくなる場合がある。処理時間は設定
温度が高ければ短くて済むが、急激な温度上昇は残留応
力の緩和・開放には好ましくなく、徐々に例えば1.5
〜3.0℃/hr程度の温度上昇で設定温度に到達させ
ることが好ましい。冷却も同様であり、急激な温度変化
は樹脂に対して温度ひずみを与えることになる。
If the treatment time is insufficient, the effect of removing the strain is small, and holding for a long time of 72 hours or more results in waste of energy, which is economically disadvantageous and sometimes makes it impossible to maintain the original shape of the molded product. . The processing time can be shortened if the set temperature is high, but a rapid temperature rise is not preferable for relaxing or releasing the residual stress.
It is preferable to reach the set temperature by a temperature rise of about 3.0 ° C./hr. The same applies to cooling, and a rapid change in temperature gives a temperature distortion to the resin.

【0030】加湿の効果は本発明の樹脂組成物を得るた
めに、炭化水素油の添加処理、樹脂成型時と2回にわた
る加熱工程を通ることで、木質末から水分が除去されて
しまい、常温付近の保存、切削時の温度での湿度との差
が大きくなり過ぎ、そのため吸湿することで変形する。
したがって、加熱による応力ひずみの除去と適度に吸湿
させることが変形を防止しているものと考察する。
The effect of humidification is as follows. In order to obtain the resin composition of the present invention, the water is removed from the woody powder by passing through two heating steps, that is, the addition of hydrocarbon oil and the resin molding. The difference from the humidity at the temperature at the time of preservation and cutting in the vicinity becomes too large, so that it deforms by absorbing moisture.
Therefore, it is considered that removal of stress strain by heating and appropriate moisture absorption prevent deformation.

【0031】実際の使用においての変形の許容量は、お
おむね0.1mm/10mm以下、即ち長さ方向での精
度1/100以下が好ましく、これ以上変形が大きいと
接着材、ボルト等での接合に支障をきたす。変形の評価
は後述の試験により、変形許容範囲の20%増しの0.
12mm/10mmを合否の判定基準とした。本発明の
方法にしたがって処理をした成形体は、ノミ、カンナ、
鋸、キリおよびサンドペーパー等による手加工で任意の
形に製作加工でき、エポキシ樹脂系およびウレタン樹脂
系接着剤等で任意に接着することができる。さらに目的
に応じてねじ穴をあけ金属ボルト等で他の金属または木
材と接合することができる。
It is preferable that the allowable amount of deformation in actual use is approximately 0.1 mm / 10 mm or less, that is, the accuracy in the length direction is 1/100 or less. Cause trouble. The deformation was evaluated by a test described below, which increased the allowable deformation range by 20% to 0.1%.
12 mm / 10 mm was used as a criterion for acceptance / rejection. Molded bodies treated according to the method of the present invention are fleas, canna,
It can be manufactured and processed into an arbitrary shape by hand processing with a saw, a drill, sandpaper, or the like, and can be arbitrarily bonded with an epoxy resin-based or urethane resin-based adhesive. Further, according to the purpose, a threaded hole can be formed and joined to another metal or wood with a metal bolt or the like.

【0032】本発明の各処理が成形体の残留応力の緩和
・開放にどのように影響しているかの詳細は不明である
が、以下の各構成要素が相乗的に機能しているものと考
えられる。 緩衝相としてのゴム強化スチレン系樹脂中のゴム分散
相の適量化 ゴム強化スチレン系樹脂中の連続相の分子運動を促進
する環境温度の適正化 ゴム分散相とポリスチレン系連続相の強固な接着によ
るの相互作用 系内に含有された炭化水素油の添加量および粘度の適
正化、その移動による残留応力の緩和・開放の促進 系内に含有された適量の炭化水素油による成形体の弾
性率低下効果。(木質末の柔軟効果を含む) 木質末形状の適切化 適切な外部応力による形状保持 適切な湿度環境による木末質の吸湿・柔軟化
The details of how each treatment of the present invention affects the relaxation and release of the residual stress of the molded product are unknown, but it is considered that the following components function synergistically. Can be Optimization of rubber dispersed phase in rubber-reinforced styrene resin as buffer phase Optimization of environmental temperature to promote molecular motion of continuous phase in rubber-reinforced styrene resin Due to strong adhesion between rubber dispersed phase and polystyrene continuous phase Optimizing the amount and viscosity of the hydrocarbon oil contained in the system, and alleviating the residual stress due to its movement.Promoting release of the oil. Decrease in the elastic modulus of the compact due to the appropriate amount of hydrocarbon oil contained in the system. effect. (Including the softening effect of wood powder) Optimizing the shape of wood powder Keeping shape by appropriate external stress Moisture absorption and softening of wood powder by appropriate humidity environment

【0033】本発明による成形体は、木工用切削加工機
械(丸ノコ、帯ノコ、機械カンナ、木工用旋盤、ドリ
ル、ルーター等)及び金属用切削加工機械(旋盤、ミリ
ングマシン、研削盤、ボーリングマシン等)で、木材や
金属と同様に切削加工をすることができる。
The molded product according to the present invention is a cutting machine for woodworking (round saw, band saw, machine planner, lathe for woodworking, drill, router, etc.) and a cutting machine for metal (lathe, milling machine, grinder, boring). Machine, etc.), and can be cut in the same manner as wood and metal.

【0034】[0034]

【実施例及び効果】以下実施例により本発明を具体的に
説明するが、本発明はこれらの実施例のみに限定される
ものではない。 実施例−1 (1)木質末の炭化水素油添加処理 ヘンシェルミキサーの加熱用ジャケットに3kg/cm
2 のスチームを通し、混合槽壁面温度を130℃に昇温
して、110℃で3時間乾燥したヒマラヤ杉の粉末(6
0メッシュ篩全通)を投入し、ヘンシェルミキサーの羽
根の回転数を180rpm.にして、木粉を攪拌しなが
ら炭化水素油(ナフテン系プロセスオイル:サンセン2
50、サンオイル(株)、粘度107cst(100°
F))を滴下した。10分経過後ヘンシェルミキサー止
め、木質末に炭化水素油が十分に吸着され、混合槽壁面
に遊離の炭化水素油が殆どないことを確認した。この時
の炭化水素油の添加量は木質末100重量部に対して2
0重量部であった。木質末への炭化水素油添加完了は十
分に攪拌混合後、混合槽壁面に遊離の炭化水素油が残っ
ていないこと、添加処理された木質末にべとつきがな
く、流動性がよいことから確認できる。 (2)ゴム強化スチレン系樹脂との混合 前記炭化水素油を添加処理した木質末にゴム成分を20
重量%を含むABS樹脂粉末(サイコラックEX12
1:熱変形温度89℃、宇部サイコン(株))を加え、
ABS樹脂と木質末の合計中木質末が20重量%となる
ようにし、15分間130℃で混合した。混合物は顆粒
状であった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited only to these examples. Example-1 (1) Addition of hydrocarbon oil to woody powder 3 kg / cm on heating jacket of Henschel mixer
Insert two steam, by elevating the temperature of the mixing tank wall surface temperature to 130 ° C., cedar powder was dried 3 hours at 110 ° C. (6
0 mesh sieve) and the rotation speed of the blade of the Henschel mixer is set to 180 rpm. While stirring the wood flour, add hydrocarbon oil (naphthenic process oil: Sansen 2)
50, Sun Oil Co., Ltd., viscosity 107 cst (100 °
F)) was added dropwise. After a lapse of 10 minutes, it was confirmed that the hydrocarbon oil was sufficiently adsorbed on the wood powder and the Henschel mixer was stopped, and that there was almost no free hydrocarbon oil on the wall surface of the mixing tank. At this time, the addition amount of the hydrocarbon oil was 2 parts per 100 parts by weight of the wood powder.
0 parts by weight. Completion of the addition of hydrocarbon oil to the wood powder can be confirmed by sufficient stirring and mixing, that no free hydrocarbon oil remains on the mixing tank wall, and that the wood powder added has no stickiness and has good fluidity. . (2) Mixing with rubber-reinforced styrenic resin A rubber component is added to the woody powder to which the hydrocarbon oil has been added and treated.
ABS resin powder (Psycolak EX12
1: Heat deformation temperature 89 ° C, Ube Sicon Co., Ltd.)
The total amount of the woody powder of the ABS resin and the woody powder was adjusted to 20% by weight and mixed at 130 ° C. for 15 minutes. The mixture was granular.

【0035】(3)スクリュー押出機による溶融混練と
造粒 前記混合物である顆粒を40mmφ 1軸スクリュー押
出機で混練し、一般の熱可塑性樹脂の造粒方法と同様に
直径約4mm長さ約5mmの円筒形ペレットとした。 (4)樹脂成型 造粒したペレットを用い65mmφ 1軸スクリュー押
出機で厚み30mm、幅500mmの平板を連続的に成
型し、1mの長さで切断した。 (5)焼きなまし(加熱、加湿)方法 1m×1mの木製パレット上に、厚さ5mmの合板を置
き、(4)で成型した厚さ30mm、幅500mmの成
形体の平板10枚を重ね、上部に厚さ5mmの合板を乗
せさらに重石として1個約10kgの鋳物を計3個乗せ
た。このパレットを2m×2m×2mの温度制御の可能
な循環熱風加熱炉の室に入れ、さらに容量20Lの金属
製のバケツに水を入れて同様に室に入れた。温度センサ
ーとしてCA熱電対を平板の4枚目と5枚目の間に、端
から10cmの位置に差し込んだ。循環熱風乾燥炉の設
定温度を110℃にし、室温25℃から3℃/時間で昇
温を開始した。約30時間後にCA熱電対は99℃に達
した。この時の室内湿度は100%であった。この状態
で72時間保持したのち加熱保持を止め、3℃/時間で
徐冷を開始し、約30時間で経過してCA熱電対での温
度はほぼ30℃になったことを確認して、CA熱電対を
差し込んだ上から5枚目の平板を1枚取り出し湿潤加熱
処理効果の切削加工評価用板とした。
(3) Melt kneading and granulation by a screw extruder The granules as the mixture are kneaded by a 40 mmφ single screw extruder, and have a diameter of about 4 mm and a length of about 5 mm in the same manner as in a general method of granulating a thermoplastic resin. Cylindrical pellets. (4) Resin molding Using a granulated pellet, a flat plate having a thickness of 30 mm and a width of 500 mm was continuously molded by a 65 mmφ single screw extruder, and cut into a length of 1 m. (5) Annealing (heating, humidification) method Place a 5 mm thick plywood on a 1 mx 1 m wooden pallet, and stack 10 flat plates of 30 mm thick and 500 mm wide molded in (4). A plywood having a thickness of 5 mm was placed on the slab, and a total of three castings of about 10 kg each were placed as a weight. This pallet was placed in a chamber of a circulating hot air heating furnace capable of controlling the temperature of 2 mx 2 mx 2 m, and further, water was poured into a metal bucket having a capacity of 20 L, and the pallet was similarly placed in the chamber. A CA thermocouple as a temperature sensor was inserted between the fourth and fifth flat plates at a position 10 cm from the end. The temperature of the circulating hot air drying oven was set to 110 ° C., and the temperature was raised from room temperature 25 ° C. at 3 ° C./hour. After about 30 hours, the CA thermocouple reached 99 ° C. At this time, the indoor humidity was 100%. After holding for 72 hours in this state, the heating and holding were stopped, slow cooling was started at 3 ° C./hour, and after about 30 hours, it was confirmed that the temperature with the CA thermocouple was almost 30 ° C. A fifth flat plate from the top where the CA thermocouple was inserted was taken out and used as a plate for evaluating the cutting process of the wet heat treatment effect.

【0036】(6)湿潤加熱処理効果の評価方法 湿潤加熱処理した平板から押出し方向に両端を30mm
づつ切落として、長さ120mm、幅220mmの切削
加工試験片2枚を電動ノコで切出した。 試験片の切削加工 2枚の試験片は図1に示したように試験片の真中を切削
するために、試験片の中心の位置5を基準点にして、8
点を測定点として選び切削前の変形量を測定した。その
後下記の条件で切削加工を行った。 工作機 : 小久保製小型フライス盤(KC−2) 刃物 : 20φ 2枚ハイス 回転数 : 1,680rpm 送り : 手動切削 : 10mm/回、短尺方向
は両端から20mmまで、長尺方向は両端から36.6
mmまで、厚み(深さ方向)は深さ20mmまで切削す
る。 そり、変形測定方法 基準点5の変形をゼロとして切削加工前後の変形をmμ
単位で測定した。2枚の試験片での各測定点での測定値
を平均し測定データとした。 評価方法 このような素材に対する変形の評価法としては規定がな
いため、対角の1,9および3,7の測定点での切削前
後の変形差の絶対値を変形量とし、1,3,7及び9の
変形量の平均値を変位量とした。また、測定点8点の変
形量の最大値と最小値の差を変位幅として評価の対象と
した。即ち変位量がゼロに近ければ切削加工前後の変形
が少なく、変位幅が小さければ小さいほど全体の変形が
少ないと評価される。許容変形は変位、変位幅とともに
100mμ以下として合否判定基準とした。(これは前
述の単位長さ方向の変形量で示すと、0.12mm/1
0mmに相当する。)
(6) Method of evaluating the effect of wet heat treatment Both ends of the plate subjected to the wet heat treatment were 30 mm in the extrusion direction.
Two cut test pieces having a length of 120 mm and a width of 220 mm were cut out with an electric saw. Cutting of test piece As shown in FIG. 1, two test pieces were cut at a position 5 at the center of the test piece as a reference point in order to cut the center of the test piece.
A point was selected as a measurement point, and the amount of deformation before cutting was measured. Thereafter, cutting was performed under the following conditions. Machine tool: Small milling machine made by Kokubo (KC-2) Blade: 20φ 2 high-speeds Revolution: 1,680 rpm Feed: Manual cutting: 10 mm / times, short direction from both ends to 20 mm, long direction from both ends 36.6
mm, and the thickness (in the depth direction) is cut to a depth of 20 mm. Deflection and deformation measurement method Deformation before and after cutting with the deformation at the reference point 5 as zero
It was measured in units. The measured values at each measurement point on the two test pieces were averaged to obtain measurement data. Evaluation method Since there is no standard as a method for evaluating the deformation of such a material, the absolute value of the deformation difference before and after cutting at the diagonal 1, 9 and 3, 7 measurement points is defined as the deformation amount. The average value of the deformation amounts of 7 and 9 was defined as the displacement amount. The difference between the maximum value and the minimum value of the deformation amount at the eight measurement points was evaluated as the displacement width and evaluated. That is, when the displacement amount is close to zero, the deformation before and after cutting is small, and as the displacement width is small, the whole deformation is evaluated to be small. The allowable deformation was set to 100 mμ or less together with the displacement and the displacement width, and was used as a pass / fail criterion. (This is 0.12 mm / 1 in terms of the amount of deformation in the unit length direction described above.
It corresponds to 0 mm. )

【0037】実施例−2 実施例−1に従い樹脂成型を行い、湿潤加熱条件の保持
時間を48時間とした。その他すべて実施例−1と同じ
に行った。評価方法も実施例−1と同じである。 実施例−3 実施例−1に従い樹脂成型を行い、湿潤加熱条件の保持
時間を24時間とした。その他すべて実施例−1と同じ
に行った。評価方法も実施例−1と同じである。 実施例−4 実施例−1に従い樹脂成型を行い、循環熱風乾燥炉の設
定温度を100℃とした。加熱は3℃/時間で昇温し
て、約20時間後にCA熱電対は90℃に達した。この
ときの室内湿度は98%を示した。この状態で72時間
保持した。72時間経過後実施例−1と同様の徐冷速度
で冷却し30℃に達してから試験用の樹脂成型平板を取
り出した。評価方法は実施例−1に従った。 実施例−5 実施例−1に従い樹脂成型を行い、循環熱風乾燥炉の設
定温度を65℃とした。加熱は3℃/時間で昇温して、
約15時間後にCA熱電対は55℃に達した。このとき
の室内湿度は90%を示した。この条件で保持時間を7
2時間としたのち、加熱を止め、3℃/時間で徐冷し、
30℃に達してから試験用の樹脂成型平板を取り出し
た。評価方法は実施例−1に従った。
Example 2 Resin molding was performed according to Example 1, and the holding time under the wet heating condition was set to 48 hours. All other operations were the same as in Example-1. The evaluation method is the same as in Example-1. Example 3 Resin molding was performed according to Example 1, and the holding time under the wet heating condition was set to 24 hours. All other operations were the same as in Example-1. The evaluation method is the same as in Example-1. Example-4 Resin molding was performed according to Example-1, and the set temperature of the circulating hot air drying furnace was set to 100 ° C. Heating increased at 3 ° C./hour, and after about 20 hours the CA thermocouple reached 90 ° C. At this time, the room humidity was 98%. This state was maintained for 72 hours. After a lapse of 72 hours, cooling was performed at the same slow cooling rate as in Example 1 and the temperature reached 30 ° C., and then a resin molded flat plate for testing was taken out. The evaluation method followed Example-1. Example-5 Resin molding was performed according to Example-1, and the set temperature of the circulating hot air drying oven was set to 65 ° C. The heating temperature rises at 3 ° C / hour,
After about 15 hours, the CA thermocouple reached 55 ° C. At this time, the room humidity was 90%. Under these conditions, the retention time is 7
After 2 hours, stop heating, slowly cool at 3 ° C / hour,
After the temperature reached 30 ° C., the resin molded flat plate for test was taken out. The evaluation method followed Example-1.

【0038】比較例−1 実施例−1に従い樹脂成型を行い、湿潤加熱処理を行わ
ず実施例−1の切削加工条件で切削加工した。評価方法
は実施例−1と同じである。 比較例−2 実施例−1に従い樹脂成型を行い、熱風乾燥炉内に水を
入れたバケツは入れず、即ち加湿をせずに実施例−1と
同様の99℃で焼きなました。その時の室内湿度は5%
であった。この状態で、72時間保持した後、実施例と
同様に3℃/時間で徐冷し、30℃に達してから試験用
の樹脂成型平板を取り出した。評価方法も実施例−1と
同じである。 比較例−3 実施例−1に従い樹脂成型を行い、熱風乾燥炉内に水を
入れたバケツは入れず、即ち加湿をせずに熱風乾燥炉の
設定温度を55℃とし加熱した。加熱開始8時間後にC
A熱電対は45℃を示した。このときの室内湿度は14
%であった。この状態で24時間保持した後、3℃/時
間で徐冷し、30℃に達してから試験用の樹脂成型平板
を取り出した。評価方法も実施例−1と同じである。
Comparative Example 1 Resin molding was performed according to Example 1, and cutting was performed under the cutting processing conditions of Example 1 without performing wet heat treatment. The evaluation method is the same as in Example-1. Comparative Example 2 Resin molding was performed in accordance with Example 1, and a hot air drying oven was baked at 99 ° C. in the same manner as in Example 1 without putting a bucket filled with water, that is, without humidification. Indoor humidity at that time is 5%
Met. After maintaining in this state for 72 hours, the temperature was gradually cooled at 3 ° C./hour in the same manner as in the example, and after the temperature reached 30 ° C., a test resin molded flat plate was taken out. The evaluation method is the same as in Example-1. Comparative Example-3 Resin molding was performed in accordance with Example 1, and the hot air drying furnace was heated at a set temperature of 55 ° C. without a bucket filled with water, ie, without humidification. 8 hours after starting heating
A thermocouple showed 45 ° C. The indoor humidity at this time was 14
%Met. After maintaining in this state for 24 hours, the temperature was gradually cooled at 3 ° C./hour, and after reaching 30 ° C., a resin molded flat plate for test was taken out. The evaluation method is the same as in Example-1.

【0039】表−1に焼きなまし条件、表−2に実施例
−1〜5及び比較例−1〜3を示した。表−2におい
て、本発明の切削加工前後の変形を少なくするには、加
熱だけの焼きなましだけではなく、加熱と同時に加湿す
ることが効果のあることが示された。
Table 1 shows annealing conditions, and Table 2 shows Examples-1 to 5 and Comparative Examples-1 to 3. Table 2 shows that in order to reduce the deformation before and after the cutting process of the present invention, not only annealing by heating but also humidification simultaneously with heating is effective.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における成形体試験片の切削加工と変形
測定を説明する図。
FIG. 1 is a view for explaining cutting and deformation measurement of a molded body test piece in an example.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 91/00 C08L 91/00 97/02 97/02 // B29K 105:16 B29K 105:16 511:14 511:14 Fターム(参考) 4F070 AA06 AA16 AA18 AA34 AA63 AA66 AB08 AE01 FA01 FB03 FB06 FB07 FC05 4F071 AA15X AA20X AA21X AA22X AA34X AA71 AA73 AA77 AA88 AD06 AF54 AG20 AH19 BA01 BB06 BC03 4F201 AA13K AA45K AB11 AB20 AB28 AG02 AH81 AK01 AM27 AR06 AR17 AR20 BA07 BC01 BC03 BR02 BR06 BR12 BR17 BR40 4J002 AE053 AH002 BN061 BN151 GT00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C08L 91/00 C08L 91/00 97/02 97/02 // B29K 105: 16 B29K 105: 16 511: 14 511: 14 F-term (reference) 4F070 AA06 AA16 AA18 AA34 AA63 AA66 AB08 AE01 FA01 FB03 FB06 FB07 FC05 4F071 AA15X AA20X AA21X AA22X AA34X AA71 AA73 AA77 AA88 AD06 AF54 AG20 AH11 AB01 AB01 AB01 AB01 AB01 AB01 AB01 BC01 BC03 BR02 BR06 BR12 BR17 BR40 4J002 AE053 AH002 BN061 BN151 GT00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素油、木質末およびゴム強化スチ
レン系樹脂を含む組成物から切削加工用成形体を製造す
る方法において、成形体の腑形後に、該成形体の表面温
度を50℃以上かつゴム強化スチレン系樹脂の熱変形温
度より10℃高い温度以下の範囲に保ちながら、該成形
体の表面温度以上かつ湿度50%〜100%の環境下で
該成形体の形状を実質的に一定に保つ工程を含むことを
特徴とする切削加工成形体の製造方法。
1. A method for producing a molded body for cutting from a composition comprising a hydrocarbon oil, a wood powder and a rubber-reinforced styrene resin, wherein after molding the molded body, the surface temperature of the molded body is 50 ° C. or higher. The shape of the molded article is substantially constant under the environment of not less than the surface temperature of the molded article and the humidity of 50% to 100% while maintaining the temperature not more than 10 ° C. higher than the thermal deformation temperature of the rubber-reinforced styrene resin. A method for producing a cut and formed body, the method comprising:
【請求項2】 湿潤環境下での処理時間が12時間以上
である請求項1記載の方法。
2. The method according to claim 1, wherein the treatment time in a humid environment is 12 hours or more.
【請求項3】 該組成物中のゴム強化スチレン系樹脂が
90〜60wt%、木質末(気乾状態)が10〜40wt%
(両者の合計を100wt%とする。)、かつ、木質末
(気乾状態)100重量部に対する炭化水素油の量が1
0〜50重量部であることを特徴とする請求項1記載の
方法。
3. The composition contains 90 to 60% by weight of rubber-reinforced styrene resin and 10 to 40% by weight of woody powder (in an air-dried state).
(The total of both is 100 wt%.) And the amount of hydrocarbon oil is 1 to 100 parts by weight of wood powder (air-dried state).
The method according to claim 1, wherein the amount is from 0 to 50 parts by weight.
【請求項4】 炭化水素油が粘度10〜500cst
(100°F)であること特徴とする請求項1〜3のい
ずれか1項記載の方法。
4. The hydrocarbon oil has a viscosity of 10 to 500 cst.
The method according to any one of claims 1 to 3, wherein the temperature is (100 ° F).
【請求項5】 ゴム強化スチレン系樹脂が10〜40wt
%以上のゴム成分を含有することを特徴とする請求項1
〜4のいずれか1項記載の方法。
5. The rubber-reinforced styrene resin is 10 to 40 wt.
2. The rubber composition according to claim 1, wherein said rubber component contains at least one rubber component.
The method according to any one of claims 4 to 4.
【請求項6】 木粉末の含水率が気乾状態で13〜18
%であり、粒径が60メッシュ(目開き0.246m
m)の篩を90%以上通過することを特徴とする請求項
1〜5のいずれか1項記載の方法。
6. The wood powder has a moisture content of 13 to 18 in an air-dried state.
% And a particle size of 60 mesh (aperture 0.246 m
Process according to any of the preceding claims, characterized in that it passes over 90% of the sieve of m).
【請求項7】 該組成物がゴム強化スチレン系樹脂と木
質末を混合する前に木質末に炭化水素油を添加処理して
得られたものであることを特徴とする請求項1〜6のい
ずれか1項記載の方法。
7. The composition according to claim 1, wherein the composition is obtained by adding a hydrocarbon oil to the woody powder before mixing the rubber-reinforced styrenic resin and the woody powder. A method according to any one of the preceding claims.
【請求項8】 湿潤環境がスチームおよび/または温水
からなることを特徴とする請求項1〜7のいずれか1項
記載の方法。
8. The method according to claim 1, wherein the humid environment comprises steam and / or hot water.
JP2000242317A 2000-08-10 2000-08-10 Method for manufacturing thermoplastic resin molded object for cutting processing Pending JP2002052619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242317A JP2002052619A (en) 2000-08-10 2000-08-10 Method for manufacturing thermoplastic resin molded object for cutting processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242317A JP2002052619A (en) 2000-08-10 2000-08-10 Method for manufacturing thermoplastic resin molded object for cutting processing

Publications (1)

Publication Number Publication Date
JP2002052619A true JP2002052619A (en) 2002-02-19

Family

ID=18733353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242317A Pending JP2002052619A (en) 2000-08-10 2000-08-10 Method for manufacturing thermoplastic resin molded object for cutting processing

Country Status (1)

Country Link
JP (1) JP2002052619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226031A (en) * 2004-02-16 2005-08-25 Kureha Chem Ind Co Ltd Machine processing material and method for producing the same
JP2008081735A (en) * 2006-08-29 2008-04-10 Purex:Kk Bamboo powder and/or wood powder-thermoplastic resin composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226031A (en) * 2004-02-16 2005-08-25 Kureha Chem Ind Co Ltd Machine processing material and method for producing the same
US8158240B2 (en) 2004-02-16 2012-04-17 Kureha Corporation Stock shape for machining
US8158242B2 (en) 2004-02-16 2012-04-17 Kureha Corporation Stock shape for machining and production process thereof
JP2008081735A (en) * 2006-08-29 2008-04-10 Purex:Kk Bamboo powder and/or wood powder-thermoplastic resin composite

Similar Documents

Publication Publication Date Title
EP1498241B1 (en) Method for manufacturing a shaped body and a shaped body
EP0652817B1 (en) Wood flour composition
KR900000781B1 (en) Modeling material composition
US5932334A (en) Advanced polymer wood composite
CA1196461A (en) Method for manufacturing wood-like molded product
US6004668A (en) Advanced polymer wood composite
US20020106498A1 (en) Advanced polymer wood composite
JP2002052619A (en) Method for manufacturing thermoplastic resin molded object for cutting processing
CA2743038C (en) Embossed monolayer particleboards and methods of preparation thereof
CN109161132A (en) Polyvinyl chloride automotive trim panel and preparation method thereof
KR20180100143A (en) Manufacturing method of artificial wood board
US5296176A (en) Method of manufacturing a parent material for wooden patterns
NL193934C (en) Method for preparing a regenerate.
CN1454759A (en) Bamboo particle board for building wall material and manufacturing process thereof
Jafarian Jam et al. Challenge to the Production of Fine Wood—Plastic Injection Molded Composites
JP2006082353A (en) Woody thermoplastic resin composition and method for producing woody thermoplastic resin molding
JP2002146195A (en) Wood-based thermosetting resin molding material and method for molding the same
JPH0316970B2 (en)
RU2090297C1 (en) Method for manufacture of casting models
JPH0780809A (en) Bagasse-based water-resistant board and production thereof
JP2002128944A (en) Molded body for wooden mold and its manufacturing method
KR101989299B1 (en) Manufacturing method of artificial timber using woody prepreg and artificial timber moulded thereby
JP3462249B2 (en) Resin composition for molding die, molding die, and molding method using the molding die
Guo et al. Effect of Pattern-Less Forming Process on Quality of Sand Mold Surface
JP2004082706A (en) Woody material for molding and method of preparing it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070112