JP2002050735A - Three-dimensional laminated semiconductor device - Google Patents

Three-dimensional laminated semiconductor device

Info

Publication number
JP2002050735A
JP2002050735A JP2000231214A JP2000231214A JP2002050735A JP 2002050735 A JP2002050735 A JP 2002050735A JP 2000231214 A JP2000231214 A JP 2000231214A JP 2000231214 A JP2000231214 A JP 2000231214A JP 2002050735 A JP2002050735 A JP 2002050735A
Authority
JP
Japan
Prior art keywords
electrodes
semiconductor
semiconductor device
electrode
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000231214A
Other languages
Japanese (ja)
Other versions
JP3723725B2 (en
Inventor
Yasuhiro Sakamoto
泰宏 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000231214A priority Critical patent/JP3723725B2/en
Publication of JP2002050735A publication Critical patent/JP2002050735A/en
Application granted granted Critical
Publication of JP3723725B2 publication Critical patent/JP3723725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers

Landscapes

  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device where signals can be applied to laminated semiconductor chips separately, even though these semiconductor chips have the same electrode structure. SOLUTION: In the first semiconductor chip 10, salient electrodes 15a, 15b, 15c formed on a rear face 13 and salient electrodes 14b, 14c, 14d formed on a front face 12 are connected by oblique through electrodes 17A, 17B, 17C which obliquely cross both the rear and front faces of the chip. On the first semiconductor chip 10, a second and a third semiconductor chip 20, 30, each having the same electrode structure as the first one, are laminated. The first to third semiconductor chips 10, 20, 30 are connected to each other by the oblique through electrodes 17A, 17B, 17C, and so on and vertical through electrodes 18, 28, 38, and so on. The salient electrode 15a applies a signal to only the third semiconductor chip; the salient electrode 15b applies a signal to only the second semiconductor chip; and the salient electrode 15c applies a signal to only the first semiconductor chip.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表裏面に貫通する
電極を有する例えばLSI(大規模集積回路)を、厚み
方向に積層してなる3次元積層半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional stacked semiconductor device in which, for example, an LSI (Large Scale Integrated Circuit) having electrodes penetrating on the front and back surfaces is stacked in the thickness direction.

【0002】[0002]

【従来の技術】従来、3次元積層半導体装置としては、
図3に示すようなものがある。この3次元積層半導体装
置は、表裏面に貫通する貫通電極51A,51B,51
C・・・を有する第1乃至第3半導体チップ51,5
2,53を、厚み方向に積層して形成されている。上記
貫通電極51A,51B,51C・・・は、半導体チッ
プ51,52,53の表裏面に対して直交するように、
かつ上記半導体チップ51,52,53に関して、図3
において互いに同じ横方向位置に形成されている。そし
て、第1乃至第3半導体チップ51,52,53の同じ
横方向位置にある貫通電極51A,52A,53A;5
1B,52B,53B;51C,52C,53Cを接続
して、第1乃至第3半導体チップ51,52,53を互
いに電気的に接続している。
2. Description of the Related Art Conventionally, as a three-dimensional stacked semiconductor device,
There is one as shown in FIG. The three-dimensional stacked semiconductor device has through electrodes 51A, 51B, 51 penetrating on the front and back surfaces.
The first to third semiconductor chips 51 and 5 having C ...
2, 53 are laminated in the thickness direction. The through electrodes 51A, 51B, 51C... Are orthogonal to the front and back surfaces of the semiconductor chips 51, 52, 53, respectively.
In addition, regarding the semiconductor chips 51, 52 and 53, FIG.
Are formed at the same lateral position. Then, the through electrodes 51A, 52A, 53A at the same lateral position of the first to third semiconductor chips 51, 52, 53;
1B, 52B, 53B; 51C, 52C, 53C are connected, and the first to third semiconductor chips 51, 52, 53 are electrically connected to each other.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の3次元積層半導体装置は、上記貫通電極51A,5
1B,51C・・・は、半導体チップ51,52,53
の表裏面に対して直交するように、かつ半導体チップ5
1,52,53において互いに同じ横方向位置に形成さ
れているので、貫通電極51A,51B,51Cのいず
れの貫通電極も第3半導体チップ53に接続しているか
ら、例えばコントロール信号などを1つの半導体チップ
51,52,53のみに直接印加できないという問題が
あった。
However, the above-described conventional three-dimensional stacked semiconductor device has the above-described through-electrodes 51A and 51A.
1B, 51C... Are semiconductor chips 51, 52, 53
And the semiconductor chip 5
Since the through electrodes 51A, 51B, and 51C are connected to the third semiconductor chip 53 because the through electrodes 51, 52, and 53 are formed at the same horizontal position, the control signal is transmitted to one of the first semiconductor chip 53, for example. There is a problem that the voltage cannot be directly applied only to the semiconductor chips 51, 52, and 53.

【0004】そこで、積層された半導体チップのうちの
1つの半導体チップのみに信号を印加するために、図4
に示すような3次元積層半導体装置が提案されている。
この3次元積層半導体装置は、第1の半導体チップ55
に3個の貫通電極55A,55B,55Cを設け、第2
半導体チップ56に2個の貫通電極56A,56Bを設
け、第3半導体チップ57に1個の貫通電極57Aを設
けている。そして、貫通電極55Cを介して第1半導体
チップ55に信号を印加して、貫通電極55Bと、貫通
電極56Bとを介して第2半導体チップ56に信号を印
加して、貫通電極55Aと、貫通電極56Aと、貫通電
極57Aとを介して第3半導体チップ57に信号を印加
するようにしている。
In order to apply a signal to only one of the stacked semiconductor chips, FIG.
The following three-dimensional stacked semiconductor devices have been proposed.
This three-dimensional stacked semiconductor device includes a first semiconductor chip 55
Are provided with three through electrodes 55A, 55B, and 55C,
The semiconductor chip 56 is provided with two through electrodes 56A and 56B, and the third semiconductor chip 57 is provided with one through electrode 57A. Then, a signal is applied to the first semiconductor chip 55 via the through electrode 55C, and a signal is applied to the second semiconductor chip 56 via the through electrode 55B and the through electrode 56B. A signal is applied to the third semiconductor chip 57 via the electrode 56A and the through electrode 57A.

【0005】しかしながら、上記3次元積層半導体装置
は、互いに異なる数の貫通電極を有して貫通電極構造が
異なる半導体チップ55,56,57を夫々作る必要が
あるので、生産コストが大幅に上昇するという問題があ
る。
However, in the three-dimensional stacked semiconductor device, it is necessary to manufacture semiconductor chips 55, 56, and 57 having different numbers of through electrodes and different through electrode structures, respectively, so that the production cost is significantly increased. There is a problem.

【0006】そこで、図5に示すように、互いに同じ貫
通電極構造を有する半導体チップ61,62,63を用
いて、積層された第1乃至第3半導体チップ61,6
2,63のうちの1つの半導体チップ61,62,63
のみに信号を印加するようにした3次元積層半導体装置
がある。この3次元積層半導体装置は、第1半導体チッ
プ61に配線61eを設け、第2半導体チップ62に配
線62eを設け、第3半導体チップ63に配線63eを
設けて、上記配線61e,62e,63eによって、各々
の半導体チップのみに信号を印加するようにしている。
Therefore, as shown in FIG. 5, the first to third semiconductor chips 61, 6 stacked using semiconductor chips 61, 62, 63 having the same through electrode structure as one another.
One of semiconductor chips 61, 62, 63
There is a three-dimensional stacked semiconductor device in which a signal is applied only to the three-dimensional stacked semiconductor device. In this three-dimensional stacked semiconductor device, a wiring 61e is provided on a first semiconductor chip 61, a wiring 62e is provided on a second semiconductor chip 62, a wiring 63e is provided on a third semiconductor chip 63, and the wirings 61e, 62e, 63e are used. The signal is applied only to each semiconductor chip.

【0007】しかしながら、上記3次元積層半導体装置
は、第1乃至第3半導体チップ61,62,63に、互
いに異なる配線61e,62e,63eを施すために、
互いに異なるパターニング工程が必要になるので、第1
乃至第3半導体チップ61,62,63を製造するため
の工程が煩雑になると同時に、生産歩留りが低下して生
産コストが上昇するという問題がある。
However, in the three-dimensional stacked semiconductor device, different wirings 61e, 62e, 63e are provided to the first to third semiconductor chips 61, 62, 63, respectively.
Since different patterning steps are required, the first
In addition, there is a problem that a process for manufacturing the third semiconductor chips 61, 62, and 63 becomes complicated, and that a production yield decreases and a production cost increases.

【0008】そこで、本発明の目的は、互いに同じ位置
に貫通電極を有して同一の電極構造を有するにも拘わら
ず、積層されて3次元積層半導体装置を形成した場合に
半導体装置毎に信号を印加でき、しかも構造が簡単で安
価な半導体装置と、それを用いた3次元積層半導体装置
を提供することにある。
Therefore, an object of the present invention is to provide a three-dimensional stacked semiconductor device in which, despite having through electrodes at the same positions and having the same electrode structure, a three-dimensional stacked semiconductor device is formed, It is an object of the present invention to provide an inexpensive semiconductor device that can apply a voltage and that has a simple structure and a three-dimensional stacked semiconductor device using the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体装置は、表裏面に貫通する貫通電極
を有する半導体装置において、少なくとも1つの上記貫
通電極は、上記表裏面に対して斜めに交差する斜め貫通
電極であることを特徴としている。
In order to achieve the above object, a semiconductor device according to the present invention has a through electrode penetrating on the front and back surfaces. It is characterized in that it is an oblique through electrode that obliquely intersects.

【0010】本発明の半導体装置によれば、上記斜め貫
通電極が半導体装置の表裏面に対して斜めに交差してい
るので、この斜め貫通電極は、表面と裏面とで異なる位
置の例えば端子などを接続する。したがって、この半導
体装置は、従来のように別個に引き回し用の配線を設け
ることなく、半導体装置の表面と裏面とで異なる位置の
例えば端子などが接続される。
According to the semiconductor device of the present invention, since the oblique through electrodes obliquely intersect with the front and back surfaces of the semiconductor device, the oblique through electrodes have different positions on the front surface and the rear surface, such as terminals. Connect. Therefore, in this semiconductor device, for example, terminals and the like at different positions on the front surface and the back surface of the semiconductor device are connected without separately providing wiring for routing as in the related art.

【0011】1実施形態の半導体装置は、上記表裏面に
対して直交する垂直貫通電極を有することを特徴として
いる。
The semiconductor device of one embodiment is characterized in that it has a vertical through electrode perpendicular to the front and back surfaces.

【0012】1実施形態の半導体装置によれば、半導体
装置の表裏面に対して斜めに交差する斜め貫通電極を有
すると共に、半導体装置の表裏面に対して直交する垂直
貫通電極も有するので、上記斜め貫通電極と垂直貫通電
極とが、上記半導体装置の表面と裏面とにおいて、同じ
位置と異なる位置の例えば端子などを接続する。したが
って、この半導体装置は、上記斜め貫通電極と垂直貫通
電極の配置位置および配置個数を変えることによって、
半導体装置の表面と裏面との間で所定の接続パターンが
得られる。
According to the semiconductor device of one embodiment, the semiconductor device has oblique through electrodes obliquely intersecting the front and back surfaces of the semiconductor device and also has vertical through electrodes orthogonal to the front and back surfaces of the semiconductor device. The oblique penetrating electrode and the vertical penetrating electrode connect, for example, terminals at the same position and different positions on the front and back surfaces of the semiconductor device. Therefore, in this semiconductor device, by changing the arrangement position and the number of the oblique through electrodes and the vertical through electrodes,
A predetermined connection pattern is obtained between the front surface and the back surface of the semiconductor device.

【0013】本発明の3次元積層半導体装置は、上記半
導体装置を2個以上積層して、少なくとも上記斜め貫通
電極によって上記半導体装置を互いに電気的に接続した
ことを特徴としている。
A three-dimensional stacked semiconductor device according to the present invention is characterized in that two or more of the above-mentioned semiconductor devices are stacked, and the above-mentioned semiconductor devices are electrically connected to each other at least by the above-mentioned oblique through electrodes.

【0014】本発明の3次元積層半導体装置によれば、
上記斜め貫通電極が上記2個以上積層された半導体装置
の異なる位置を接続する。したがって、同じ位置に斜め
貫通電極または垂直貫通電極を有して同じ電極構造を有
する半導体装置を2個以上積層しても、上記斜め貫通電
極は、積層された2個以上の半導体装置の全てを接続し
ないで、積層された2個以上の半導体装置のうちの所定
の半導体装置のみを接続する。その結果、異なる電極構
造の半導体装置を用いたり、半導体装置にさらに配線を
施すことなく、所定の半導体装置のみに信号を印加でき
る3次元積層半導体装置が得られる。
According to the three-dimensional stacked semiconductor device of the present invention,
The oblique through electrodes connect different positions of the semiconductor device in which two or more of the oblique through electrodes are stacked. Therefore, even if two or more semiconductor devices having the same electrode structure with diagonal through electrodes or vertical penetrating electrodes at the same position are stacked, the diagonal through electrodes can be used to form all of the two or more stacked semiconductor devices. Without connection, only a predetermined semiconductor device of the two or more stacked semiconductor devices is connected. As a result, a three-dimensional stacked semiconductor device in which signals can be applied only to a predetermined semiconductor device without using a semiconductor device having a different electrode structure or providing additional wiring to the semiconductor device can be obtained.

【0015】本発明の3次元積層半導体装置は、上記半
導体装置を2個以上積層して、上記斜め貫通電極および
垂直貫通電極によって、上記半導体装置を互いに電気的
に接続したことを特徴としている。
A three-dimensional stacked semiconductor device according to the present invention is characterized in that two or more of the above-mentioned semiconductor devices are stacked, and the above-mentioned semiconductor devices are electrically connected to each other by the oblique through electrodes and the vertical through electrodes.

【0016】本発明の3次元積層半導体装置によれば、
上記斜め貫通電極および垂直貫通電極によって、斜め貫
通電極および垂直貫通電極を有する2個以上積層された
半導体装置の間を接続する。したがって、垂直貫通電極
が上記2個以上積層された半導体装置の全てを接続する
一方、斜め貫通電極が上記2個以上積層された半導体装
置のうちのいずれかのみを接続する。その結果、同一の
電極構造を有する半導体装置を積層するにも拘らず、全
ての半導体装置に信号を印加する一方、所定の半導体装
置のみにも信号を印加できる3次元積層半導体装置が得
られる。
According to the three-dimensional stacked semiconductor device of the present invention,
The oblique through electrode and the vertical through electrode connect between two or more stacked semiconductor devices having the oblique through electrode and the vertical through electrode. Therefore, the vertical through electrodes connect all of the semiconductor devices in which the two or more are stacked, while the oblique through electrodes connect only one of the semiconductor devices in which the two or more are stacked. As a result, a three-dimensional stacked semiconductor device is obtained in which signals can be applied to all the semiconductor devices while signals can be applied to only predetermined semiconductor devices, despite the fact that semiconductor devices having the same electrode structure are stacked.

【0017】[0017]

【発明の実施の形態】以下、本発明を図示の実施の形態
により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments.

【0018】図1は、本発明の一実施形態に係る半導体
装置としての半導体チップを示す断面図である。この半
導体チップ1は、表面2にAu(金)からなる突起電極
4a,4b,4c,4d,4e・・・を備え、裏面3に
Auからなる突起電極5a,5b,5c,5d,5e・
・・を備える。
FIG. 1 is a sectional view showing a semiconductor chip as a semiconductor device according to one embodiment of the present invention. The semiconductor chip 1 has projecting electrodes 4a, 4b, 4c, 4d, 4e... Made of Au (gold) on the front surface 2 and projecting electrodes 5a, 5b, 5c, 5d, 5e.
・ ・

【0019】上記表面2の突起電極4b,4c,4d
と、裏面3の突起電極5a,5b,5cは、上記表面2
および裏面3に対して斜めに交差するCu(銅)からな
る斜め貫通電極7A,7B,7Cによって電気的に接続
されている。より詳しくは、表面2の突起電極4bと裏
面3の突起電極5aとが斜め貫通電極7Aによって、表
面2の突起電極4cと裏面3の突起電極5bとが斜め貫
通電極7Bによって、表面2の突起電極4dと裏面3の
突起電極5cとが斜め貫通電極7Cによって接続されて
いる。すなわち、上記斜め貫通電極7A,7B,7C
は、半導体チップ1の表裏面2,3において、電極を1
ピッチだけシフトして接続している。
The protruding electrodes 4b, 4c, 4d on the surface 2
And the protruding electrodes 5a, 5b, 5c on the back surface 3
And are electrically connected by oblique through electrodes 7A, 7B, 7C made of Cu (copper) obliquely intersecting the back surface 3. More specifically, the protruding electrode 4b on the front surface 2 and the protruding electrode 5a on the back surface 3 are formed by the oblique penetrating electrode 7A, and the protruding electrode 4c on the front surface 2 and the protruding electrode 5b on the back surface 3 are formed by the oblique penetrating electrode 7B. The electrode 4d and the protruding electrode 5c on the back surface 3 are connected by an oblique through electrode 7C. That is, the oblique through electrodes 7A, 7B, 7C
Indicates that the electrodes are connected to the front and back surfaces 2 and 3 of the semiconductor chip 1 by one.
The connection is shifted by the pitch.

【0020】一方、半導体チップ1の表面2の突起電極
4eと、裏面3の突起電極5eは、半導体チップ1の表
裏面2,3に対して直交する垂直貫通電極8によって電
気的に接続されている。上記斜め貫通電極7A,7B,
7Cと垂直貫通電極8は、周面が絶縁性半導体酸化皮膜
で覆われている。
On the other hand, the protruding electrode 4e on the front surface 2 of the semiconductor chip 1 and the protruding electrode 5e on the back surface 3 are electrically connected by a vertical through electrode 8 orthogonal to the front and back surfaces 2, 3 of the semiconductor chip 1. I have. The oblique through electrodes 7A, 7B,
The peripheral surfaces of 7C and the vertical through electrode 8 are covered with an insulating semiconductor oxide film.

【0021】上記半導体チップ1は、以下のようにして
製造する。
The semiconductor chip 1 is manufactured as follows.

【0022】まず、50μmの厚みを有する半導体部1
aの表面2側から、この表面2の法線に対して21.8
度の角度をなして、炭酸ガスレーザーもしくはYAGレ
ーザーによって小径スポットのレーザ光を照射する。そ
うして、半導体部1aの表裏面2,3に対して斜めに交
差する直径10μmの貫通穴を形成する。上記21.8
度の傾きによって、上記貫通穴の表面2側端と裏面3側
端との間に、図1において横方向に20μmのずれを生
じさせる。その後、上記貫通穴の内面に熱酸化膜を形成
し、その内側にCuめっきを施して斜め貫通電極7A,
7B,7Cを形成する。そして、上記半導体部1aの表
面2に、Auめっきによって突起電極4a,4b,4
c,4dを20μmの間隔をおいて形成する。また、上
記半導体部1aの裏面3に、上記表面2の突起電極4
a,4b,4c,4dの直下に、突起電極5a,5b,
5c,5dを形成する。ここにおいて、上記表面2の突
起電極4b,4c,4dと、裏面3の突起電極5a,5
b,5cとが、上記斜め貫通電極7A,7B,7Cによ
って各々接続されるようにする。
First, a semiconductor unit 1 having a thickness of 50 μm
a from the surface 2 side with respect to the normal to this surface 2
At a certain angle, a laser beam of a small diameter spot is irradiated by a carbon dioxide gas laser or a YAG laser. As a result, a through-hole having a diameter of 10 μm that obliquely intersects the front and back surfaces 2 and 3 of the semiconductor portion 1a is formed. 21.8 above
Due to the degree of inclination, a shift of 20 μm occurs in the lateral direction in FIG. 1 between the end on the front surface 2 side and the end on the back surface 3 of the through hole. Thereafter, a thermal oxide film is formed on the inner surface of the through hole, and Cu plating is applied to the inside thereof to form oblique through electrodes 7A,
7B and 7C are formed. Then, the projecting electrodes 4a, 4b, 4 are formed on the surface 2 of the semiconductor portion 1a by Au plating.
c and 4d are formed at intervals of 20 μm. Also, on the back surface 3 of the semiconductor portion 1a, the projecting electrode 4 on the front surface 2 is provided.
a, 4b, 4c, and 4d, projecting electrodes 5a, 5b,
5c and 5d are formed. Here, the projecting electrodes 4b, 4c, 4d on the front surface 2 and the projecting electrodes 5a, 5
b and 5c are connected by the oblique through electrodes 7A, 7B and 7C, respectively.

【0023】さらに、上記半導体部分1aの表面2側か
ら、上記表面2に対して直角をなして小径スポットのレ
ーザ光を照射して、半導体部分1aの表裏面2,3に対
して直交する直径10μmの貫通穴を形成する。この貫
通穴の内面に熱酸化膜を形成し、その内側にCuめっき
を施して、垂直貫通電極8を形成する。上記半導体部分
1aの表面2および裏面3の上記垂直貫通電極8の両端
部に、Auめっきによって夫々突起電極4e,5eを形
成する。
Further, a laser beam of a small-diameter spot is irradiated from the front surface 2 side of the semiconductor portion 1a at right angles to the front surface 2 so as to have a diameter perpendicular to the front and back surfaces 2 and 3 of the semiconductor portion 1a. A 10 μm through hole is formed. A thermal oxide film is formed on the inner surface of the through-hole, and Cu plating is applied to the inside thereof to form the vertical through-electrode 8. Protruding electrodes 4e and 5e are formed by Au plating on both ends of the vertical through electrode 8 on the front surface 2 and the rear surface 3 of the semiconductor portion 1a, respectively.

【0024】図2は、本発明の実施形態における3次元
積層半導体装置を示す断面図であり、上記半導体チップ
1と同一の構造を有する半導体チップ10,20,30
を厚み方向に積層して形成されている。
FIG. 2 is a sectional view showing a three-dimensional stacked semiconductor device according to an embodiment of the present invention, and semiconductor chips 10, 20, and 30 having the same structure as the semiconductor chip 1 described above.
Are laminated in the thickness direction.

【0025】この3次元積層半導体装置は、第1半導体
チップ10と第2半導体チップ20との間において、第
1半導体チップ10の表面12に形成された突起電極1
4a,14b,14c,14dと、第2半導体チップ2
0の表面23に形成された突起電極25a,25b,2
5c,25dとを、Au−Auの固相拡散接合によって
各々接合している。また、第2半導体チップ20の表面
22に形成された突起電極24a,24b,24c,2
4dと、第3半導体チップ30の裏面33に形成された
突起電極35a,35b,35c,35dとを、Au−
Auの固相拡散接合によって各々接合している。また、
第1半導体チップ10の表面12の突起電極14e,1
4e・・・と第2半導体チップ20の裏面23の突起電
極25e,25e・・・と、かつ、第2半導体チップ2
0の表面22の突起電極24e,14e・・・と第3半
導体チップ30の裏面33の突起電極35e,53e・
・・とを、Au−Auの固相拡散接合によって各々接合
している。ここにおいて、Au−Auの固相拡散接合の
他に、単に圧接した状態で接着剤を硬化させて導通を得
る方法や、異方性導電接着剤を用いて接合してもよく、
常温接合を用いてもよい。
In this three-dimensional stacked semiconductor device, the projection electrode 1 formed on the surface 12 of the first semiconductor chip 10 is provided between the first semiconductor chip 10 and the second semiconductor chip 20.
4a, 14b, 14c, 14d and the second semiconductor chip 2
Projecting electrodes 25a, 25b, 2 formed on the surface 23
5c and 25d are respectively bonded by solid-phase diffusion bonding of Au-Au. Further, the protruding electrodes 24a, 24b, 24c, 2 formed on the surface 22 of the second semiconductor chip 20
4d and the projecting electrodes 35a, 35b, 35c, 35d formed on the back surface 33 of the third semiconductor chip 30 are connected to Au-
They are joined by solid-state diffusion bonding of Au. Also,
The projecting electrodes 14e, 1 on the surface 12 of the first semiconductor chip 10
4e... And the protruding electrodes 25e on the back surface 23 of the second semiconductor chip 20 and the second semiconductor chip 2
. And the protruding electrodes 35e, 53e on the back surface 33 of the third semiconductor chip 30.
Are joined by Au-Au solid phase diffusion bonding. Here, in addition to the solid-phase diffusion bonding of Au-Au, a method of hardening the adhesive in a state of being simply pressed to obtain conduction, or a bonding using an anisotropic conductive adhesive,
Room temperature bonding may be used.

【0026】この3次元積層半導体装置は、第1半導体
チップ10の裏面13の突起電極15a,15b,15
cが、斜め貫通電極17A,17B,17C・・・を介
して、互いに異なる半導体チップ10,20,30に夫
々接続している。すなわち、上記突起電極15cが、斜
め貫通電極17Cを介して、第1半導体チップ10の表
面12の突起電極14dに接続している。上記突起電極
35bは、斜め貫通電極17Bと斜め貫通電極27Cと
を介して、半第2導体チップ20の表面22の突起電極
24dに接続している。さらに、斜め貫通電極17Aと
斜め貫通電極27Bと斜め貫通電極37Cとを介して、
上記突起電極15aが、第3半導体チップ30の表面3
2の突起電極34dに接続している。
This three-dimensional stacked semiconductor device is provided with the protruding electrodes 15a, 15b, 15 on the back surface 13 of the first semiconductor chip 10.
are connected to different semiconductor chips 10, 20, 30 via diagonal through electrodes 17A, 17B, 17C,..., respectively. That is, the protruding electrode 15c is connected to the protruding electrode 14d on the surface 12 of the first semiconductor chip 10 via the oblique through electrode 17C. The protruding electrode 35b is connected to the protruding electrode 24d on the surface 22 of the semi-second conductor chip 20 via the oblique through electrode 17B and the oblique through electrode 27C. Furthermore, via the oblique through electrode 17A, the oblique through electrode 27B, and the oblique through electrode 37C,
The protruding electrode 15a is disposed on the surface 3 of the third semiconductor chip 30.
The second projection electrode 34d is connected to the second projection electrode 34d.

【0027】上記第1半導体チップ10の突起電極14
dには第1半導体チップ10のセレクト信号線を、第2
半導体チップ20の突起電極24dには第2半導体チッ
プ20のセレクト信号線を、第3半導体チップ30の突
起電極34dには第3半導体チップ30のセレクト信号
線を連結している。
The protruding electrode 14 of the first semiconductor chip 10
d denotes the select signal line of the first semiconductor chip 10 and the second
The select signal line of the second semiconductor chip 20 is connected to the projecting electrode 24 d of the semiconductor chip 20, and the select signal line of the third semiconductor chip 30 is connected to the projecting electrode 34 d of the third semiconductor chip 30.

【0028】上記構成の3次元積層半導体装置におい
て、上記第1半導体チップ10の裏面13の突起端子1
5a,15b,15cに、(1,0,0)の論理信号を
印加する。そうすると、上記突起端子15aに接続され
た第3半導体チップ30のみに信号が印加されて、第3
半導体チップ30に形成された回路が能動状態になる。
また、(0,1,0)および、(0,0,1)の各論理
信号に対しては、夫々第2半導体チップ20および、第
1半導体チップ10の各々に形成された回路が夫々排他
的に能動状態になる。
In the three-dimensional stacked semiconductor device having the above structure, the protrusion terminals 1 on the back surface 13 of the first semiconductor chip 10 are formed.
A logic signal of (1, 0, 0) is applied to 5a, 15b, 15c. Then, a signal is applied only to the third semiconductor chip 30 connected to the protruding terminal 15a, and the third
The circuit formed on the semiconductor chip 30 becomes active.
Further, for the logic signals (0, 1, 0) and (0, 0, 1), the circuits formed on each of the second semiconductor chip 20 and the first semiconductor chip 10 are exclusive. Becomes active state.

【0029】一方、第1半導体チップ10の表面13の
突起端子15e,15e・・・に信号を印加すると、第
1乃至第3半導体チップ10,20,30の全てに信号
が印加される。
On the other hand, when a signal is applied to the protruding terminals 15e, 15e... On the surface 13 of the first semiconductor chip 10, the signal is applied to all of the first to third semiconductor chips 10, 20, 30.

【0030】このように、上記3次元積層半導体装置
は、図4に示した従来の3次元積層半導体装置における
ような互いに異なる貫通電極構造を有する半導体チップ
55,56,57を積層することなく、同一の貫通電極
構造を有する半導体チップ10,20,30を積層し
て、この半導体チップ10,20,30に個別に信号を
印加できるので、3次元積層半導体装置の生産コストを
大幅に削減することができる。
As described above, the three-dimensional stacked semiconductor device does not have to stack the semiconductor chips 55, 56, 57 having different through-electrode structures as in the conventional three-dimensional stacked semiconductor device shown in FIG. Since the semiconductor chips 10, 20, and 30 having the same through-electrode structure can be stacked and signals can be individually applied to the semiconductor chips 10, 20, and 30, the production cost of the three-dimensional stacked semiconductor device can be significantly reduced. Can be.

【0031】また、図5に示した従来の3次元積層半導
体装置におけるように、半導体チップ61,62,63
に、互いに異なるパターンの引き回し用配線61e,6
2e,63eを形成する必要がないため、従来よりも工
程を簡素化できて、生産歩留りを向上できると共に生産
効率を向上でき、その結果、3次元積層半導体装置の生
産コストを低減できる。
As in the conventional three-dimensional stacked semiconductor device shown in FIG. 5, the semiconductor chips 61, 62, 63
In addition, routing wirings 61e, 6
Since there is no need to form the 2e and 63e, the process can be simplified as compared with the conventional case, the production yield can be improved, and the production efficiency can be improved. As a result, the production cost of the three-dimensional stacked semiconductor device can be reduced.

【0032】上記実施形態の3次元積層半導体装置は、
斜め貫通電極17A,17B,17C・・・を図2にお
いて右側に3個づつ設けたが、斜め貫通電極を配置する
位置はどこでもよく、また、斜め貫通電極と垂直貫通電
極とを交互に配置してもよい。また、斜め貫通電極およ
び垂直貫通電極の個数は何個でもよく、全てが斜め貫通
電極であってもよい。全ての貫通電極が斜め貫通電極の
場合、同一の電極構造を有する半導体装置を積層したに
も拘らず、積層された半導体装置に個別に信号を印加で
きる3次元積層半導体装置が得られる。
The three-dimensional stacked semiconductor device of the above embodiment is
Two oblique through electrodes 17A, 17B, 17C,... Are provided on the right side in FIG. 2, but the oblique penetrating electrodes may be arranged at any position, and oblique penetrating electrodes and vertical penetrating electrodes are alternately arranged. You may. Also, the number of oblique through electrodes and vertical through electrodes may be any number, and all may be oblique through electrodes. When all the penetrating electrodes are oblique penetrating electrodes, a three-dimensional stacked semiconductor device capable of individually applying a signal to the stacked semiconductor devices is obtained despite the stacked semiconductor devices having the same electrode structure.

【0033】上記実施形態の3次元積層半導体装置は、
半導体チップ10,20,30を3個積層したが、積層
する半導体装置チップは2個以上の何個でもよい。
The three-dimensional stacked semiconductor device of the above embodiment is
Although three semiconductor chips 10, 20, and 30 are stacked, the number of stacked semiconductor device chips may be two or more.

【0034】[0034]

【発明の効果】以上より明らかなように、本発明の半導
体装置によれば、少なくとも1つの貫通電極が、半導体
装置の表裏面に対して斜めに交差する斜め貫通電極であ
るので、従来におけるような引き回し用の配線を設ける
ことなく、上記斜め貫通電極によって、半導体装置の表
面と裏面とで異なる位置の例えば端子などを接続でき
る。
As is clear from the above, according to the semiconductor device of the present invention, at least one through electrode is an oblique through electrode obliquely intersecting the front and back surfaces of the semiconductor device. The diagonal through electrode allows connection of, for example, terminals at different positions on the front surface and the back surface of the semiconductor device without providing an appropriate wiring for wiring.

【0035】1実施形態の半導体装置によれば、上記表
裏面に対して直交する垂直貫通電極を有するので、上記
斜め貫通電極と垂直貫通電極とが上記半導体装置の表面
と裏面の同じ位置と異なる位置を接続するから、上記斜
め貫通電極と垂直貫通電極の配置位置および配置個数を
変えることによって、半導体装置の表面と裏面との間で
所定の接続パターンを得ることができる。
According to the semiconductor device of one embodiment, since the vertical through electrodes perpendicular to the front and back surfaces are provided, the oblique through electrodes and the vertical through electrodes are different from the same position on the front surface and the back surface of the semiconductor device. Since the positions are connected, a predetermined connection pattern can be obtained between the front surface and the back surface of the semiconductor device by changing the arrangement position and the number of the oblique through electrodes and the vertical through electrodes.

【0036】本発明の3次元積層半導体装置は、上記半
導体装置を2個以上積層して、少なくとも上記斜め貫通
電極によって上記半導体装置を互いに電気的に接続した
ので、同じ電極構造を有する半導体装置を2個以上積層
しても、上記斜め貫通電極が2個以上の半導体装置のう
ちの所定の半導体装置を接続するから、異なる電極構造
の半導体装置を用いたり、半導体装置にさらに配線を施
すことなく、積層された2個以上の半導体装置のうちの
所定の半導体装置のみに信号を印加できる3次元積層半
導体装置を得ることができる。
In the three-dimensional stacked semiconductor device of the present invention, two or more of the semiconductor devices are stacked and the semiconductor devices are electrically connected to each other at least by the oblique through-electrodes. Even when two or more semiconductor devices are stacked, the oblique through electrode connects a predetermined semiconductor device of the two or more semiconductor devices, so that a semiconductor device having a different electrode structure is not used, and further wiring is not applied to the semiconductor device. Thus, a three-dimensional stacked semiconductor device capable of applying a signal to only a predetermined semiconductor device among two or more stacked semiconductor devices can be obtained.

【0037】本発明の3次元積層半導体装置は、上記半
導体装置を2個以上積層して、上記斜め貫通電極および
垂直貫通電極によって、上記半導体装置を互いに電気的
に接続したので、同一の電極構造を有する半導体装置を
積層するにも拘らず、全ての半導体装置に信号を印加す
る一方、所定の半導体装置のみにも信号を印加できる3
次元積層半導体装置を得ることができる。
In the three-dimensional stacked semiconductor device of the present invention, two or more of the above-mentioned semiconductor devices are stacked, and the above-mentioned semiconductor devices are electrically connected to each other by the above-mentioned oblique through electrodes and vertical through electrodes. Although signals are applied to all the semiconductor devices despite the fact that the semiconductor devices having
A three-dimensional stacked semiconductor device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施形態の半導体装置を示す断面
図である。
FIG. 1 is a sectional view showing a semiconductor device according to an embodiment of the present invention.

【図2】 図1に示した半導体装置を3個積層して形成
した3次元積層半導体装置を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a three-dimensional stacked semiconductor device formed by stacking three semiconductor devices illustrated in FIG. 1;

【図3】 従来の同一の電極構造を有する半導体装置を
積層して形成した3次元積層半導体装置を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a conventional three-dimensional stacked semiconductor device formed by stacking semiconductor devices having the same electrode structure.

【図4】 従来の互いに異なる電極構造を有する半導体
装置を積層して形成した3次元積層半導体装置を示す断
面図である。
FIG. 4 is a cross-sectional view illustrating a conventional three-dimensional stacked semiconductor device formed by stacking semiconductor devices having different electrode structures.

【図5】 従来の、同一の電極構造を有する半導体装置
を積層すると共に、互いに異なる配線を施した3次元積
層半導体装置を示す断面図である。
FIG. 5 is a cross-sectional view showing a conventional three-dimensional stacked semiconductor device in which semiconductor devices having the same electrode structure are stacked and different wirings are provided.

【符号の説明】[Explanation of symbols]

10 第1半導体チップ 12 第1半導体チップの表面 13 第1半導体チップの裏面 14a,14b,14c,14d,14e 第1半導体
チップの表面の突起電極 15a,15b,15c,15d,15e 第1半導体
チップの裏面の突起電極 17A,17B,17C 第1半導体チップの斜め貫通
電極 18 第1半導体チップの垂直貫通電極 20 第2半導体チップ 24a,24b,24c,24d,24e 第2半導体
チップの表面の突起電極 25a,25b,25c,25d,25e 第2半導体
チップの裏面の突起電極 27A,27B,27C 第2半導体チップの斜め貫通
電極 28 第2半導体チップの垂直貫通電極 30 第3半導体チップ 34a,34b,34c,34d,34e 第3半導体
チップの表面の突起電極 35a,35b,35c,35d,35e 第3半導体
チップの裏面の突起電極 37A,37B,37C 第3半導体チップの斜め貫通
電極 38 第3半導体チップの垂直貫通電極
Reference Signs List 10 first semiconductor chip 12 front surface of first semiconductor chip 13 back surface of first semiconductor chip 14a, 14b, 14c, 14d, 14e projecting electrode 15a, 15b, 15c, 15d, 15e on front surface of first semiconductor chip Projecting electrodes 17A, 17B, 17C on the back surface of the first semiconductor chip 18 Oblique penetrating electrodes of the first semiconductor chip 18 Vertical penetrating electrodes of the first semiconductor chip 20 Second semiconductor chips 24a, 24b, 24c, 24d, 24e Projecting electrodes on the front surface of the second semiconductor chip 25a, 25b, 25c, 25d, 25e Projecting electrodes 27A, 27B, 27C on the back surface of the second semiconductor chip Diagonal through electrodes of the second semiconductor chip 28 Vertical through electrodes of the second semiconductor chip 30 Third semiconductor chips 34a, 34b, 34c , 34d, 34e Projecting electrodes 35a, 35b on the surface of the third semiconductor chip , 35c, 35d, 35e Projecting electrodes 37A, 37B, 37C on the back surface of the third semiconductor chip Oblique penetrating electrodes of the third semiconductor chip 38 Vertical penetrating electrodes of the third semiconductor chip

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表裏面に貫通する貫通電極を有する半導
体装置において、 少なくとも1つの上記貫通電極は、上記表裏面に対して
斜めに交差する斜め貫通電極であることを特徴とする半
導体装置。
1. A semiconductor device having a penetrating electrode penetrating on the front and back surfaces, wherein at least one of the penetrating electrodes is an oblique penetrating electrode obliquely intersecting the front and back surfaces.
【請求項2】 請求項1に記載の半導体装置において、 上記表裏面に対して直交する垂直貫通電極を有すること
を特徴とする半導体装置。
2. The semiconductor device according to claim 1, further comprising a vertical through electrode perpendicular to the front and back surfaces.
【請求項3】 請求項1または2に記載の半導体装置を
2個以上積層して、少なくとも上記斜め貫通電極によっ
て上記半導体装置を互いに電気的に接続したことを特徴
とする3次元積層半導体装置。
3. A three-dimensional stacked semiconductor device, wherein two or more semiconductor devices according to claim 1 or 2 are stacked, and the semiconductor devices are electrically connected to each other at least by the oblique through electrodes.
【請求項4】 請求項2に記載の半導体装置を2個以上
積層して、上記斜め貫通電極および垂直貫通電極によっ
て、上記半導体装置を互いに電気的に接続したことを特
徴とする3次元積層半導体装置。
4. A three-dimensional laminated semiconductor, wherein two or more semiconductor devices according to claim 2 are stacked, and the semiconductor devices are electrically connected to each other by the oblique through electrodes and the vertical through electrodes. apparatus.
JP2000231214A 2000-07-31 2000-07-31 Semiconductor device and three-dimensional stacked semiconductor device Expired - Fee Related JP3723725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231214A JP3723725B2 (en) 2000-07-31 2000-07-31 Semiconductor device and three-dimensional stacked semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231214A JP3723725B2 (en) 2000-07-31 2000-07-31 Semiconductor device and three-dimensional stacked semiconductor device

Publications (2)

Publication Number Publication Date
JP2002050735A true JP2002050735A (en) 2002-02-15
JP3723725B2 JP3723725B2 (en) 2005-12-07

Family

ID=18724081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231214A Expired - Fee Related JP3723725B2 (en) 2000-07-31 2000-07-31 Semiconductor device and three-dimensional stacked semiconductor device

Country Status (1)

Country Link
JP (1) JP3723725B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040261A (en) * 2004-06-25 2006-02-09 Matsushita Electric Ind Co Ltd Slave device, master device and laminated device
US7064443B2 (en) 2003-03-27 2006-06-20 Seiko Epson Corporation Semiconductor device having a plurality of stacked semiconductor chips with positions of chip-selecting terminals being different from each other
JP2007103521A (en) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US7346051B2 (en) 2004-06-25 2008-03-18 Matsushita Electric Industrial Co., Ltd. Slave device, master device and stacked device
CN100433326C (en) * 2004-06-25 2008-11-12 松下电器产业株式会社 Slave device, master device and stacked device
JP2008547124A (en) * 2005-06-22 2008-12-25 インテル・コーポレーション Memory device identification
JP2009177114A (en) * 2008-01-25 2009-08-06 Hynix Semiconductor Inc Semiconductor chip and stacked semiconductor package having same
KR101088825B1 (en) 2010-07-09 2011-12-01 주식회사 하이닉스반도체 Semiconductor chip and stack package having the same
JP2012060102A (en) * 2010-09-03 2012-03-22 Headway Technologies Inc Stacked chip package and method of manufacturing the same
JP2012080067A (en) * 2010-10-01 2012-04-19 Headway Technologies Inc Method of manufacturing stacked chip package
JP2012083243A (en) * 2010-10-13 2012-04-26 Elpida Memory Inc Semiconductor device and testing method thereof
JP2012084841A (en) * 2010-10-12 2012-04-26 Headway Technologies Inc Stacked chip package and method of manufacturing the same
JP2013153083A (en) * 2012-01-25 2013-08-08 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method thereof
US8652877B2 (en) 2010-12-06 2014-02-18 Headway Technologies, Inc. Method of manufacturing layered chip package
US8929118B2 (en) 2010-04-07 2015-01-06 Samsung Electronics Co., Ltd. Stacked memory device having inter-chip connection unit, memory system including the same, and method of compensating for delay time of transmission line
JP2021068737A (en) * 2019-10-17 2021-04-30 本田技研工業株式会社 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437163B2 (en) 2010-02-11 2013-05-07 Micron Technology, Inc. Memory dies, stacked memories, memory devices and methods

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064443B2 (en) 2003-03-27 2006-06-20 Seiko Epson Corporation Semiconductor device having a plurality of stacked semiconductor chips with positions of chip-selecting terminals being different from each other
JP2006040261A (en) * 2004-06-25 2006-02-09 Matsushita Electric Ind Co Ltd Slave device, master device and laminated device
US7346051B2 (en) 2004-06-25 2008-03-18 Matsushita Electric Industrial Co., Ltd. Slave device, master device and stacked device
CN100433326C (en) * 2004-06-25 2008-11-12 松下电器产业株式会社 Slave device, master device and stacked device
JP2008547124A (en) * 2005-06-22 2008-12-25 インテル・コーポレーション Memory device identification
JP2007103521A (en) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP4564434B2 (en) * 2005-09-30 2010-10-20 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2009177114A (en) * 2008-01-25 2009-08-06 Hynix Semiconductor Inc Semiconductor chip and stacked semiconductor package having same
US8929118B2 (en) 2010-04-07 2015-01-06 Samsung Electronics Co., Ltd. Stacked memory device having inter-chip connection unit, memory system including the same, and method of compensating for delay time of transmission line
KR101088825B1 (en) 2010-07-09 2011-12-01 주식회사 하이닉스반도체 Semiconductor chip and stack package having the same
US8829665B2 (en) 2010-07-09 2014-09-09 SK Hynix Inc. Semiconductor chip and stack package having the same
US8541887B2 (en) 2010-09-03 2013-09-24 Headway Technologies, Inc. Layered chip package and method of manufacturing same
JP2012060102A (en) * 2010-09-03 2012-03-22 Headway Technologies Inc Stacked chip package and method of manufacturing the same
US8441112B2 (en) 2010-10-01 2013-05-14 Headway Technologies, Inc. Method of manufacturing layered chip package
JP2012080067A (en) * 2010-10-01 2012-04-19 Headway Technologies Inc Method of manufacturing stacked chip package
JP2012084841A (en) * 2010-10-12 2012-04-26 Headway Technologies Inc Stacked chip package and method of manufacturing the same
US8618646B2 (en) 2010-10-12 2013-12-31 Headway Technologies, Inc. Layered chip package and method of manufacturing same
JP2012083243A (en) * 2010-10-13 2012-04-26 Elpida Memory Inc Semiconductor device and testing method thereof
US8848473B2 (en) 2010-10-13 2014-09-30 Ps4 Luxco S.A.R.L. Semiconductor device and test method thereof
US9312031B2 (en) 2010-10-13 2016-04-12 Ps4 Luxco S.A.R.L. Semiconductor device and test method thereof
US8652877B2 (en) 2010-12-06 2014-02-18 Headway Technologies, Inc. Method of manufacturing layered chip package
JP2013153083A (en) * 2012-01-25 2013-08-08 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method thereof
JP2021068737A (en) * 2019-10-17 2021-04-30 本田技研工業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3723725B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP2002050735A (en) Three-dimensional laminated semiconductor device
JP2001223324A (en) Semiconductor device
JP3495305B2 (en) Semiconductor device and semiconductor module
JP2001127243A (en) Laminated semiconductor device
JP2002124625A (en) Semiconductor device and method of manufacturing the same
JP2001044357A (en) Semiconductor device and manufacture thereof
JP2003110084A (en) Semiconductor device
JP2001196529A (en) Semiconductor device and wiring method therefor
JP2001044197A (en) Semiconductor device and manufacture thereof
WO2007023747A1 (en) Semiconductor chip, method of manufacturing semiconductor chip, and semiconductor device
JP2014503992A (en) Conductive pads defined by embedded traces
JP2001177050A (en) Semiconductor device
JP2000299542A (en) Laminated circuit substrate and its manufacture
JP2001189414A (en) Semiconductor chip, manufacturing method therefor, semiconductor module, and electronic apparatus
JP4047819B2 (en) Interconnection part using BGA solder ball and method for producing the same
JP2002217354A (en) Semiconductor device
JPH08306724A (en) Semiconductor device, manufacturing method and its mounting method
JP2008283024A (en) Semiconductor device, and manufacturing method thereof
JP2003142647A (en) Semiconductor device
JP2004087936A (en) Semiconductor device, manufacturing method thereof, and electronic appliance
JP2001068513A (en) Semiconductor device
JP2001177049A (en) Semiconductor device and ic card
TWI387085B (en) Hardwired switch of die stack and operating method of hardwired switch
JP2005101186A (en) Laminated semiconductor integrated circuit
US7800237B2 (en) Electronic device including a component stack and connecting elements, and connecting elements, and method for producing the electronic device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees