JP2002050501A - Mounting body and using method thereof - Google Patents

Mounting body and using method thereof

Info

Publication number
JP2002050501A
JP2002050501A JP2000233409A JP2000233409A JP2002050501A JP 2002050501 A JP2002050501 A JP 2002050501A JP 2000233409 A JP2000233409 A JP 2000233409A JP 2000233409 A JP2000233409 A JP 2000233409A JP 2002050501 A JP2002050501 A JP 2002050501A
Authority
JP
Japan
Prior art keywords
resistor
land
mounting body
terminal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000233409A
Other languages
Japanese (ja)
Inventor
Atsunori Hayashi
篤範 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Tech Devices Corp
Original Assignee
K Tech Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Tech Devices Corp filed Critical K Tech Devices Corp
Priority to JP2000233409A priority Critical patent/JP2002050501A/en
Publication of JP2002050501A publication Critical patent/JP2002050501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a mounting body, constituted by mounting a chip resistor for current detection, having a metallic piece in which terminal sections 4 and a resistor section 5 between the terminal sections 4 are integrated into a single body and an insulating member 6, which covers the metallic piece except the terminal sections 4 on a substrate in a state where the terminal sections 4 are folded to the lower surface side of the substrate or to the opposite side, to suppress the deterioration of current detection accuracy resulting from the temperature change of the resistor without branching the terminal sections 4, while maintaining the resistance value accuracy at a high level. SOLUTION: The mounting body has layers, composed of a single metal on the surfaces of the terminal sections 4, and each terminal section 4 is conductively connected to a land 2 for conduction and another land 1 for detection, branched from the land 2, in a state such that the section 4 seats itself astride the lands 1 and 2. The rated resistance value of the resistor is adjusted to <=500 mΩ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電流検出用チップ抵
抗器が基板に実装されてなる実装体及びその使用法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting body in which a current detecting chip resistor is mounted on a substrate, and a method of using the same.

【0002】[0002]

【従来の技術】一般に電流検出用抵抗器用抵抗体にはニ
ッケル・クロム合金や銅・ニッケル合金等が用いられ
る。そのような合金からなる金属片の両端(端子部)を
残して絶縁部材で被覆し、当該両端の露出した端子部が
前記絶縁物下面側に折り返され、端子となる形態のチッ
プ抵抗器については、実開平5−82002号公報にそ
の開示がある。
2. Description of the Related Art Generally, a nickel-chromium alloy, a copper-nickel alloy, or the like is used as a resistor for a current detecting resistor. With respect to a chip resistor in the form of a terminal in which both ends (terminal portions) of a metal piece made of such an alloy are covered with an insulating member, and the exposed terminal portions at both ends are turned back to the lower surface of the insulator to be terminals. The actual disclosure is disclosed in Japanese Utility Model Laid-Open No. 5-82002.

【0003】このような電流検出用抵抗器は、その抵抗
値が通常数mΩ〜数百mΩ程度の低い抵抗値で且つ高い
電流検出精度が要求される。
[0003] Such a current detecting resistor is required to have a low resistance value, typically about several mΩ to several hundred mΩ, and a high current detection accuracy.

【0004】高い電流検出精度を実現するため、特開平
8−83969号公報では抵抗器の端子を通電端子部と
検出端子部とに分岐し、更に基板のランドも通電端子部
用と検出端子部用とに分岐し、両端子部間のはんだブリ
ッジの抑制可能な構成を提案している。
In order to realize high current detection accuracy, Japanese Patent Application Laid-Open No. H8-83969 discloses that a resistor terminal is branched into a current-carrying terminal portion and a detection terminal portion. It proposes a configuration that can be used to suppress the solder bridge between both terminals.

【0005】また従来は電流検出用抵抗器に流れる電流
を検出するために図7に示すようなランド配線パターン
を基板に施し、分岐させない通電用ランド4から検出用
ランド1へ配線がなされている場合が一般的であった。
Conventionally, a land wiring pattern as shown in FIG. 7 is applied to a substrate in order to detect a current flowing through a current detecting resistor, and wiring is made from a non-branching energizing land 4 to a detecting land 1. The case was common.

【0006】[0006]

【発明が解決しようとする課題】しかしながら前述の特
開平8−83969号公報に開示されている構成では、
抵抗器の端子を通電端子部と検出端子部とに分岐させて
いる。このことにより実装時の位置決め精度が非常に厳
しく要求される上に、前記分岐させるための製造工程の
増加・複雑化、それに伴う分岐位置のばらつき発生が懸
念される問題がある。
However, in the configuration disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-83969,
The terminal of the resistor is branched into a conduction terminal portion and a detection terminal portion. As a result, there is a problem that the positioning accuracy at the time of mounting is very strictly required, and there is a concern that the manufacturing process for the branching is increased and complicated, and that a variation in the branching position is caused.

【0007】例えば端子を高い位置精度で分岐する工程
は、通常柔軟でハンドリングが困難な金属片(端子)に
対し、機械的な加工を施すのが妥当である。この機械的
な加工の際には、金属片の加工しない部分への応力付与
を軽減するのが非常に困難であり、ちょっとした加工設
備の調整ミスで容易に前記応力が付与され、抵抗体部及
び端子部に伸びが発生し、上記分岐位置のばらつきが発
生する。また前記機械的な加工により金属片が熱膨張
し、その状態で前記加工を続けることにより、冷却後に
分岐位置のばらつきが発生する場合もある。
For example, in the step of branching a terminal with high positional accuracy, it is appropriate to mechanically process a metal piece (terminal) which is usually flexible and difficult to handle. At the time of this mechanical processing, it is very difficult to reduce the application of stress to the part of the metal piece that is not to be processed, and the stress is easily applied by a slight misalignment of the processing equipment, and the resistor portion and Elongation occurs at the terminal portion, and the above-mentioned branch position varies. In addition, the metal piece thermally expands due to the mechanical processing, and if the processing is continued in that state, a variation in the branch position may occur after cooling.

【0008】また実開平5−82002号公報に開示さ
れた構成の抵抗器を電流検出用として用いる場合には、
端子材料が抵抗体材料と同一である(一体化されてい
る)ため、端子部の固有抵抗が高く、基板との接続状態
によって抵抗値がばらつく問題点があった。そこで通常
は端子表面上に銅等の固有抵抗の低い単金属からなる層
をメッキ等により設け、前記接続状態が抵抗値に影響を
与えにくく、抵抗値精度を維持する工夫をしていた。
When a resistor having a structure disclosed in Japanese Utility Model Laid-Open No. 5-82002 is used for current detection,
Since the terminal material is the same as (integrated with) the resistor material, there is a problem that the specific resistance of the terminal portion is high and the resistance value varies depending on the connection state with the substrate. Therefore, usually, a layer made of a single metal having a low specific resistance such as copper is provided on the surface of the terminal by plating or the like, so that the connection state hardly affects the resistance value and the accuracy of the resistance value is maintained.

【0009】ところが銅等の単金属の抵抗温度特性(以
下TCRと略記する。)は、通常数千ppm/℃程度で
ある。それに対し端子材料を兼ねる抵抗体材料であるニ
ッケル・クロム合金や銅・ニッケル合金等のTCRは数
十ppm/℃程度である。このことから端子表面上の単
金属層の存在により、温度変化に伴う抵抗器の抵抗値変
化、その結果電流検出精度の劣化が問題視される。
However, the resistance temperature characteristics (hereinafter abbreviated as TCR) of a single metal such as copper are usually about several thousand ppm / ° C. On the other hand, the TCR of a nickel-chromium alloy or a copper-nickel alloy which is a resistor material also serving as a terminal material is about several tens ppm / ° C. Therefore, the presence of the single metal layer on the terminal surface causes a problem that a change in the resistance value of the resistor due to a change in temperature, and consequently a deterioration in the accuracy of current detection.

【0010】電流検出用抵抗器の温度変化要因は、周囲
の温度変化や前記抵抗器への通電によるジュール熱発生
等である。後者の場合、抵抗器温度が100℃以上上昇
する場合がある。
The factors of the temperature change of the current detecting resistor include a change in the ambient temperature and generation of Joule heat due to energization of the resistor. In the latter case, the resistor temperature may increase by 100 ° C. or more.

【0011】本発明が解決しようとする課題は、抵抗値
精度を維持した上で、抵抗器端子部を分岐させることな
く、抵抗器の温度変化に伴う電流検出精度の劣化を抑制
できる実装体を提供することである。
The problem to be solved by the present invention is to provide a package capable of suppressing deterioration of current detection accuracy due to a temperature change of a resistor without branching a resistor terminal portion while maintaining the resistance value accuracy. To provide.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明の実装体は、一対の端子部4及び端子部4間
の抵抗体部5が一体化された金属片と、端子部4を残し
て前記金属片を被覆する絶縁部材6とを有し、端子部4
が絶縁部材6下面側に折り返されるか、又は前記折り返
される方向の反対側に折り返される電流検出用チップ抵
抗器が基板に実装されてなり、端子部4表面は単金属か
らなる層を有し、前記一対の端子部4それぞれが、基板
上に通電用ランド2と検出用ランド1とに分岐形成され
たランドに跨るよう導電接続され、前記電流検出用チッ
プ抵抗器の定格抵抗値が500mΩ以下であることを特
徴とする。
In order to solve the above-mentioned problems, a package according to the present invention comprises a metal piece having a pair of terminal portions 4 and a resistor portion 5 between the terminal portions 4 integrated with a metal piece. And an insulating member 6 covering the metal piece except for the terminal portion 4.
Is folded on the lower surface side of the insulating member 6, or a current detecting chip resistor folded on the opposite side of the folding direction is mounted on a substrate, and the surface of the terminal portion 4 has a layer made of a single metal, Each of the pair of terminal portions 4 is conductively connected so as to straddle a land formed by branching into a current-carrying land 2 and a detection land 1 on a substrate, and a rated resistance value of the current detecting chip resistor is 500 mΩ or less. There is a feature.

【0013】上記端子部4が絶縁部材6下面側に折り返
される電流検出用チップ抵抗器の外観は、例えば図1の
長辺側面図に示すものである。また上記反対側に折り返
される電流検出用チップ抵抗器の外観は、例えば図6の
長辺側面図に示すものである。
The appearance of the current detecting chip resistor in which the terminal portion 4 is folded back on the lower surface side of the insulating member 6 is, for example, shown in a side view of the long side in FIG. Further, the appearance of the current detecting chip resistor turned back to the opposite side is shown in, for example, a long side view in FIG.

【0014】また上記単金属とは、銅、金、銀、アルミ
ニウム、クロム等の固有抵抗値の低いものを指す。上記
単金属が端子部4表面に層として存在することで、基板
と電流検出用チップ抵抗器端子部4との接続状態による
抵抗値のばらつきを低減でき、抵抗値精度を維持できる
こととなる。このとき単金属層は、端子部4の直接的な
表面に存在することに限定されず、他の導電物質等を介
して存在していてもよいし、単金属層の上に他の導電物
質(はんだ等)等を有しながら存在していてもよい。
The above-mentioned single metal refers to a material having a low specific resistance such as copper, gold, silver, aluminum and chromium. The presence of the single metal as a layer on the surface of the terminal portion 4 makes it possible to reduce the variation in the resistance value due to the connection state between the substrate and the chip resistor terminal portion 4 for current detection, thereby maintaining the accuracy of the resistance value. At this time, the single metal layer is not limited to being present directly on the surface of the terminal portion 4 and may be present via another conductive material or the like, or may be provided on the single metal layer by another conductive material. (Eg, solder).

【0015】また上記した「ランドに跨る」とは、例え
ば図1上面図及び短辺側面図に示すように、端子部4が
分岐形成されたランド面、及びそれらランド間に亘って
連続して存在する箇所がある状態をいう。図1では端子
部4を分岐しないことで前記状態を実現していることを
示している。そのことは図1の上面図に、端子部4の終
端が分岐されずに存在していることから把握できる。
The above-mentioned "straddling over the land" means, for example, as shown in the top view and the short side view of FIG. 1, the land surface where the terminal portion 4 is branched and continuous between the lands. It refers to a state where there is an existing part. FIG. 1 shows that the state is realized by not branching the terminal unit 4. This can be understood from the fact that the terminal end of the terminal portion 4 exists without branching in the top view of FIG.

【0016】基板面のランドを検出用ランド1と通電用
ランド2に高精度の位置精度で分岐するのは、容易であ
る。その理由はランド形成には、通常印刷技術を用いる
ためである。印刷技術の高精度さは言うまでもない。従
って上記本発明の構成は、前述した端子を高精度の位置
精度で分岐する困難さや、端子部を分岐した抵抗器を実
装する際の実装位置精度維持の困難さを有しない。また
従来分岐していなかったランドを分岐する設計変更をし
た場合、印刷のパターンを変更するだけで足り、製造工
程が増加することはない。
It is easy to branch the land on the substrate surface into the detection land 1 and the conduction land 2 with high positional accuracy. The reason for this is that the printing technique is usually used for the land formation. Needless to say, the high precision of printing technology. Therefore, the configuration of the present invention does not have the difficulty of branching the terminal with high positional accuracy described above and the difficulty of maintaining the mounting positional accuracy when mounting a resistor with a branched terminal portion. Further, when the design is changed to branch the land, which has not been branched in the past, it is sufficient only to change the printing pattern, and the manufacturing process does not increase.

【0017】通電用ランド2と検出用ランド1とに分岐
形成されたランド間を跨ぐようにして端子部4をランド
に接続すると、上述した単金属のTCRの影響を受けに
くくなる理由を図2の抵抗器用金属片展開概略図により
説明する。
FIG. 2 shows the reason why the connection of the terminal portion 4 to the land so as to straddle between the lands branched and formed between the energizing land 2 and the detecting land 1 makes it less likely to be affected by the above-mentioned single metal TCR. A description will be given with reference to FIG.

【0018】従来の電流検出用抵抗器を実装するランド
パターンでは、一方の端子部4折返し線から他方の端子
部4折返し線までの距離間の電圧を測定することとな
る。その理由は前記折返し線から金属片端部まではラン
ドと密着しているためである。従って前記折返し線から
絶縁被覆領域までの間に存在する単金属の電気的特性の
影響を受けることとなる。それに対し図2の本発明
(a)の構成のようにランドを分岐し、抵抗器上面対角
線位置に検出用ランド1を設けた場合は、検出用ランド
1近傍は殆ど電流が流れない、実質的な等電位領域とな
る。その結果、電圧を測定するのは検出用ランド1間の
前記実質的な等電位領域を除く通電領域間となる(図2
の本発明(a)の電圧測定経路)。すると前記折返し線か
ら絶縁被覆領域までの間に存在する単金属の電気的特性
の影響を殆ど受けずに済む。
In a conventional land pattern on which a current detecting resistor is mounted, a voltage is measured between a distance from one terminal 4 folded line to another terminal 4 folded line. The reason is that the land from the folded line to one end of the metal is in close contact with the land. Therefore, it is affected by the electrical characteristics of the single metal existing between the folded line and the insulating coating region. On the other hand, when the lands are branched and the detection lands 1 are provided at diagonal positions on the upper surface of the resistor as in the configuration of the present invention (a) in FIG. 2, almost no current flows near the detection lands 1. It becomes an equipotential region. As a result, the voltage is measured between the energized regions excluding the substantial equipotential region between the detection lands 1 (FIG. 2).
Of the present invention (a)). Then, there is almost no influence from the electrical characteristics of the single metal existing between the folded line and the insulating coating region.

【0019】また図2の本発明(b)の構成のようにラ
ンドを分岐し、一対の検出用ランド1を上面対角線位置
ではなく、金属片幅方向で一方の端に配置させた場合に
ついても本発明(a)と同様に、通電用ランド2間を流
れる電流が、検出用ランド1近傍には実質的に流れず、
実質的な等電位領域となるが、そこから多少離れた領域
になると電流が迂回し、金属片幅方向全域が通電領域と
なる。前記迂回は、固有抵抗の比較的低い金属片に顕著
にみられる。従ってこの場合でも、実質的に電圧を測定
するのは検出用ランド1間の前記等電位領域を除く通電
領域間となる(図2(a)の電圧測定経路)。その結果前
記折返し線から絶縁被覆領域までの間に存在する単金属
の電気的特性の影響を殆ど受けずに済む。
As in the configuration of the present invention (b) in FIG. 2, the land is branched, and the pair of detection lands 1 is arranged at one end not in the diagonal position on the upper surface but in the width direction of the metal piece. As in the present invention (a), the current flowing between the energizing lands 2 does not substantially flow in the vicinity of the detecting lands 1,
Although the region is substantially equipotential, the current detours in a region slightly away from the region, and the entire region in the width direction of the metal piece becomes a conduction region. The detour is noticeable in metal pieces having relatively low specific resistance. Therefore, even in this case, the voltage is substantially measured between the energized regions except the equipotential region between the detection lands 1 (the voltage measurement path in FIG. 2A). As a result, there is almost no influence from the electrical characteristics of the single metal existing between the folded line and the insulating coating region.

【0020】上記した銅等の単金属の電気的特性につい
て説明する。抵抗体として用いられる一例の、銅とニッ
ケルとを重量比約1:1とした合金は、TCRが数十p
pm/℃である。一方、銅単体はその固有抵抗値は低い
が、TCRは4000ppm/℃程度と非常に高くな
る。金単体についてもその固有抵抗は低いが、TCRは
3400ppm/℃程度と非常に高い。これらこのこと
から、僅かの単金属の存在が抵抗器の温度変化に伴い抵
抗値を変化させ、結果的に電流検出精度を劣らせる結果
となる。
The electrical characteristics of the above-mentioned single metal such as copper will be described. As an example of an alloy used as a resistor, an alloy having a weight ratio of copper and nickel of about 1: 1 has a TCR of several tens of p.
pm / ° C. On the other hand, copper alone has a low specific resistance value, but has a very high TCR of about 4000 ppm / ° C. The resistivity of gold alone is low, but the TCR is as high as about 3400 ppm / ° C. From these facts, the presence of a small amount of a single metal changes the resistance value with a change in the temperature of the resistor, and as a result, the current detection accuracy is deteriorated.

【0021】上記電流検出精度の劣化を抑制する効果の
大小は、電流検出用抵抗器の定格抵抗値の大小と略反比
例の関係にある。本発明の効果が顕著に得られるのは概
ね500mΩ以下である。但し抵抗値の許容差が定格抵
抗値に対し非常に狭く、つまり精度良い要求のある場合
は、本発明の効果が顕著に得られるのは概ね100mΩ
以下である。
The magnitude of the effect of suppressing the deterioration of the current detection accuracy is substantially inversely proportional to the magnitude of the rated resistance value of the current detection resistor. The effect of the present invention is remarkably obtained at about 500 mΩ or less. However, when the tolerance of the resistance value is extremely narrow with respect to the rated resistance value, that is, when there is a demand for high accuracy, the effect of the present invention can be remarkably obtained at about 100 mΩ.
It is as follows.

【0022】また抵抗器の温度変化に伴う電流検出精度
の劣化を抑制するためには、抵抗器のジュール熱に起因
する温度変化を極力抑えることも効果的である。その観
点から、上記した本発明の構成に加え、金属片の端子部
4の幅が、金属片の抵抗体部5の幅よりも広いことが好
ましい。例えば使用する金属片をそのまま抵抗器に使用
すると、目標とする抵抗値からかけ離れて低いものにな
ってしまう場合が多い。そこで予め金属片全域(全長)
に亘って、その幅を狭くしておけばよい。しかしそれで
は、抵抗器使用時に抵抗体部5に生ずるジュール熱の放
散が困難になる。つまり前記ジュール熱は抵抗体部5か
ら端子部4へ、その後ランド若しくは大気へと移動す
る。このとき端子部4がいわゆる放熱板の役割をも担
う。前記放熱板の表面積は広い方が放熱が容易となる。
従って図1の上面図に示すように、端子部4の幅を抵抗
体部5の幅よりも広くすることが好ましい。
In order to suppress the deterioration of the current detection accuracy due to the temperature change of the resistor, it is effective to minimize the temperature change caused by the Joule heat of the resistor. From that point of view, in addition to the configuration of the present invention described above, it is preferable that the width of the terminal portion 4 of the metal piece is wider than the width of the resistor portion 5 of the metal piece. For example, if a metal piece to be used is used as it is for a resistor, the resistance value is often far from a target resistance value and often becomes low. Therefore, the entire area of the metal piece (full length)
Over its width. However, in that case, it becomes difficult to dissipate Joule heat generated in the resistor portion 5 when the resistor is used. That is, the Joule heat moves from the resistor portion 5 to the terminal portion 4 and then to the land or the atmosphere. At this time, the terminal portion 4 also plays a role of a so-called heat sink. The larger the surface area of the heat sink, the easier the heat dissipation.
Therefore, as shown in the top view of FIG. 1, it is preferable that the width of the terminal portion 4 is wider than the width of the resistor portion 5.

【0023】図3は上記した本発明の構成に加え、端子
部4の幅が、抵抗体部5の幅よりも広い構成を採用した
場合の、上述した銅等の単金属のTCRの影響を受けに
くくなる理由を、図2と同様の方法で説明する抵抗器用
金属片展開概略図である。従来の電流検出用抵抗器を実
装するランドパターンでは、図2と同様に一方の端子折
返し線から他方の端子折返し線までの距離間の電圧を測
定することとなり、その結果前記折返し線から絶縁被覆
領域までの間に存在する単金属の電気的特性の影響を受
けることとなる。それに対し図3の本発明(c)、本発
明(d)の構成のようにランドを分岐した場合は、図2
で説明した検出用ランド1近傍の実質的な等電位領域が
図2のときよりも広くなることがわかる。従って、本発
明(c)、本発明(d)の構成では、前記単金属の電気
的特性の影響を図2の場合よりも受けにくくなる利点が
ある。
FIG. 3 shows the effect of the above-described single metal TCR such as copper when the width of the terminal portion 4 is wider than the width of the resistor portion 5 in addition to the above-described configuration of the present invention. FIG. 3 is an exploded schematic view of a metal piece for a resistor, which explains the reason why the resistance is hardly received by a method similar to that of FIG. 2. In the land pattern on which the conventional current detection resistor is mounted, the voltage between the distance from one terminal return line to the other terminal return line is measured as in FIG. It is affected by the electrical characteristics of the single metal existing up to the region. On the other hand, when the land is branched as in the configuration of the present invention (c) and the present invention (d) in FIG.
It can be understood that the substantial equipotential region near the detection land 1 described in FIG. Therefore, the configurations of the present invention (c) and the present invention (d) have an advantage that they are less susceptible to the influence of the electrical characteristics of the single metal than in the case of FIG.

【0024】また図2の本発明(b)の電圧測定経路で
は、電流が直進しない、電流が迂回する領域についての
電圧を主に測定していることが把握できるが、図3の本
発明(d)では、電圧測定経路が幅狭になった領域を通
るため、電流が直進する領域についての電圧を主に測定
していることが把握できる。従って図3の本発明(d)
の構成の方が、より安定した電圧測定が可能である利点
がある。
In the voltage measurement path of the present invention (b) in FIG. 2, it can be understood that the voltage is mainly measured in a region where the current does not go straight and the current detours, but the present invention shown in FIG. In d), since the voltage measurement path passes through the narrowed area, it can be understood that the voltage is mainly measured in the area where the current goes straight. Therefore, the present invention (d) of FIG.
Has the advantage that more stable voltage measurement is possible.

【0025】金属片の端子部4の幅を抵抗体部5の幅よ
りも広くするには、金属片幅方向片端のみを切除し、当
該切除部分を抵抗体部5とすることもできる。しかし図
3に示すように、金属片幅方向両端を切除することによ
り金属片の端子部4の幅を抵抗体部5の幅よりも広くす
る方が、一対の端子4の検出用ランド1付近における前
記等電位領域を広く取ることができ、特に図3の本発明
(a)の場合に有利であること、また抵抗体部5で発生
したジュール熱をほぼ均等に端子部4全域に伝播でき、
前記ジュール熱の放熱効果が得られやすい点で有利であ
ることから、より好ましい構成と言える。
In order to make the width of the terminal portion 4 of the metal piece wider than the width of the resistor portion 5, only one end in the metal piece width direction may be cut off, and the cut portion may be used as the resistor portion 5. However, as shown in FIG. 3, it is more appropriate to make the width of the terminal portion 4 of the metal piece wider than the width of the resistor portion 5 by cutting off both ends in the width direction of the metal piece in the vicinity of the detection land 1 of the pair of terminals 4. Can be widened, which is particularly advantageous in the case of the present invention (a) in FIG. 3, and that the Joule heat generated in the resistor portion 5 can be almost uniformly transmitted to the entire terminal portion 4. ,
This is advantageous in that the effect of radiating the Joule heat can be easily obtained, and thus can be said to be a more preferable configuration.

【0026】上記放熱を容易にすることで抵抗器の温度
変化に伴う電流検出精度の劣化を抑制する観点から、上
記した本発明の構成に加え、基板が金属板表面に絶縁膜
被覆したものであることが好ましい。基板材料が金属を
主体とするものであれば、エポキシ系やフェノール系等
の樹脂のみからなる基板よりも大幅に上記ジュール熱の
放熱が良好になる。前記金属には、実装体重量をむやみ
に増加させないことを考慮して、アルミニウム等の軽金
属単体あるいは当該軽金属を主体とした合金等が好適に
使用できる。また前記絶縁膜はエポキシ系樹脂、フェノ
ール系樹脂等の比較的耐熱性を有する熱硬化性樹脂等が
好適に使用できる。当該絶縁膜厚は、容易に絶縁膜が破
れ、内層の金属板が露出しないこと、内層の金属板への
熱の伝播を極端に阻害することのないことを考慮し、1
〜500μmが好ましい。
From the viewpoint of facilitating the heat dissipation and suppressing the deterioration of the current detection accuracy due to the temperature change of the resistor, in addition to the configuration of the present invention described above, the substrate has a metal plate surface coated with an insulating film. Preferably, there is. If the substrate material is mainly composed of a metal, the heat radiation of the Joule heat is much better than that of a substrate composed of only an epoxy-based or phenol-based resin. As the metal, a single light metal such as aluminum or an alloy mainly containing the light metal can be suitably used in consideration of not unnecessarily increasing the weight of the mounting body. The insulating film is preferably made of a thermosetting resin having relatively high heat resistance, such as an epoxy resin or a phenol resin. The thickness of the insulating film is taken into consideration in consideration of the fact that the insulating film is easily broken and the inner metal plate is not exposed, and that the propagation of heat to the inner metal plate is not extremely inhibited.
~ 500 µm is preferred.

【0027】また上記した本発明の構成に加え、通電用
ランド2と検出用ランド1間距離が0.3mm以上であ
ることが好ましい。その理由は、通電用ランド2と検出
用ランド1間距離を0.3mm以上と十分に広くするこ
とにより、それらの間のはんだ3ブリッジの発生を抑制
しやすいためである。
In addition to the configuration of the present invention described above, it is preferable that the distance between the energizing land 2 and the detecting land 1 is 0.3 mm or more. The reason for this is that by making the distance between the energizing land 2 and the detecting land 1 sufficiently large to 0.3 mm or more, it is easy to suppress the generation of the solder 3 bridge between them.

【0028】また上記した本発明の構成に加え、通電用
ランド2幅が、検出用ランド1幅よりも3倍以上広いこ
とが好ましい。その理由は、過大な電流が抵抗器に流れ
た場合に通電用ランド2を広く確保することで抵抗体部
5の放熱を促進できるためである。前記通電用ランド2
を広く確保する際には、他の実装部品へ悪影響を与えな
い範囲で基板の配線パターンを工夫するなどし、例えば
チップ抵抗器の幅よりも大幅に広く確保する等する。
In addition to the above configuration of the present invention, it is preferable that the width of the energizing land 2 is at least three times wider than the width of the detecting land 1. The reason is that when an excessive current flows through the resistor, heat dissipation of the resistor portion 5 can be promoted by securing a wide energizing land 2. Land for electricity supply 2
In order to ensure a large width, the wiring pattern of the substrate is devised within a range that does not adversely affect other mounted components, for example, to ensure a width significantly larger than the width of the chip resistor.

【0029】また上記した各本発明の構成に加え、一対
の検出用ランド1がチップ抵抗器の上面対角線位置にあ
ることが好ましい。その理由を説明する。上記した図2
の本発明(a)と本発明(b)とを比較すると、本発明
(a)では通電領域を完全に横切るように電圧測定経路
が存在するが、本発明(b)では電流が迂回する通電領
域に電圧測定経路が存在している。電圧測定上では非常
に僅かな差であると思われるが、本発明(a)、つまり
一対の検出端子部用ランドがチップ抵抗器の上面対角線
位置にある構成が高精度の測定ができ得る点で好ましい
と思われる。
In addition, in addition to the above-described respective configurations of the present invention, it is preferable that the pair of detection lands 1 be located at diagonal positions on the upper surface of the chip resistor. The reason will be described. Figure 2 above
Comparing the present invention (a) and the present invention (b), in the present invention (a), a voltage measurement path exists so as to completely cross the energization region, but in the present invention (b), the current is bypassed. A voltage measurement path exists in the area. Although it is considered that the difference is very small in voltage measurement, the present invention (a), that is, the configuration in which the pair of detection terminal portion lands are at diagonal positions on the upper surface of the chip resistor can perform highly accurate measurement. Seems to be preferable.

【0030】上記した各本発明の構成に加え、抵抗体部
5にトリミングが施されている場合には、一対の検出用
ランド1がチップ抵抗器の上面対角線位置にあることが
特に好ましい。
In addition to the above-described configurations of the present invention, when the resistor portion 5 is trimmed, it is particularly preferable that the pair of detection lands 1 be positioned diagonally on the upper surface of the chip resistor.

【0031】ここでいうトリミングとは、局部的に当該
金属片の幅を狭めることやそれに加え、電流流路を長く
することにより抵抗値調整がされることで、いわゆるシ
ングルカット、いわゆるLカット、円弧を描くカットや
サーペンタインカット等を指す。
The term "trimming" as used herein means that the resistance value is adjusted by locally reducing the width of the metal piece or by increasing the length of the current flow path. It refers to cuts that draw arcs, serpentine cuts, and so on.

【0032】抵抗体部5にトリミングを施した場合、一
対の検出用ランド1をチップ抵抗器の上面対角線位置に
配することが特に好ましい理由を図4、図5を用いて以
下に説明する。
The reason why it is particularly preferable to arrange the pair of detection lands 1 at diagonal positions on the upper surface of the chip resistor when the resistor portion 5 is trimmed will be described below with reference to FIGS.

【0033】まず図4のように金属片にシングルカット
のトリミング線7を形成した場合は、検出用ランド1を
A、D位置に設けた場合とB、C位置に設けた場合とで
は測定される電圧値が異なる(図4(a))。その理由
は検出用ランド1間に流れる微少電流経路距離が異なる
ためである。B、C位置に設けた場合はA、D位置に設
けた場合よりも電流経路が短いため測定される電圧値は
低くなる。それに対し、検出用ランド1をA、C位置に
設けた場合とB、D位置に設けた場合とでは測定される
電圧値が略等しくなる(図4(b))。その理由は検出
用ランド1間に流れる微少電流経路距離が略等しいため
である。仮にA−C間、B−D間のどちらか一方の直線
上に前記トリミング線と交差する部分があったとして
も、図4(a)における検出用ランド1をA、D位置に
設けた場合とB、C位置に設けた場合との測定される電
圧値の差よりは小さい差となる。これらのことから図4
(b)のように、一対の検出用ランド1をチップ抵抗器
の上面対角線位置に配することが好ましいと言える。
First, when a single-cut trimming line 7 is formed on a metal piece as shown in FIG. 4, the measurement is performed when the detection lands 1 are provided at the A and D positions and when the detection lands 1 are provided at the B and C positions. Voltage values are different (FIG. 4A). The reason is that the distance of the minute current path flowing between the detection lands 1 is different. The voltage value measured at positions B and C is lower than that provided at positions A and D because the current path is shorter. On the other hand, the measured voltage value is substantially equal between the case where the detection lands 1 are provided at the positions A and C and the case where the detection lands 1 are provided at the positions B and D (FIG. 4B). The reason is that the distances of the minute current paths flowing between the detection lands 1 are substantially equal. Even if the trimming line intersects with the trimming line on one of the straight lines A-C and B-D, the detection lands 1 shown in FIG. Is smaller than the difference between the measured voltage values in the case where the electrodes are provided at the positions B and C. From these, Figure 4
It can be said that it is preferable to dispose the pair of detection lands 1 at diagonal positions on the upper surface of the chip resistor as shown in FIG.

【0034】それに加え、一対の検出用ランド1がチッ
プ抵抗器の上面対角線位置にある構成とすることによ
り、本発明に係るチップ抵抗器を本発明に係る基板に1
80°反転実装しても目的とする実装状態を得ることが
できる利点がある。
In addition, the pair of detection lands 1 are arranged at diagonal positions on the upper surface of the chip resistor, so that the chip resistor according to the present invention can be mounted on the substrate according to the present invention.
There is an advantage that a desired mounting state can be obtained even when the mounting is performed at an angle of 80 °.

【0035】次に、図5(a)のようなサーペンタイン
のトリミング形状(抵抗値調整に電流流路を長くする要
因が含まれる)の場合には、一対の検出用ランド1をチ
ップ抵抗器の上面対角線箇所に位置させる効果は比較的
少ないと思われる。その理由は、検出端子をA、D位置
に設けた場合とB、C位置に設けた場合とでは検出用ラ
ンド1間に流れる微少電流経路距離が略等しくなる場合
があるためである。しかしながら前記微少電流経路距離
は、常に略等しくなるとは限らず、むしろ略等しくなら
ない場合のほうが多い。例えば図5(b)に示したよう
に、金属片抵抗体部幅方向の一方の端に長いトリミング
線7を、他方の端に短いトリミング線7を配した場合等
である。
Next, in the case of the trimming shape of serpentine as shown in FIG. 5A (the adjustment of the resistance value includes a factor for lengthening the current flow path), the pair of detection lands 1 is connected to the chip resistor. The effect of being located at the diagonal line on the upper surface seems to be relatively small. The reason is that the distance between the minute current paths flowing between the detection lands 1 may be substantially equal between the case where the detection terminals are provided at the positions A and D and the case where the detection terminals are provided at the positions B and C. However, the minute current path distances are not always substantially equal, but rather are often not substantially equal. For example, as shown in FIG. 5B, a case where a long trimming line 7 is arranged at one end in the width direction of the metal piece resistor portion and a short trimming line 7 is arranged at the other end.

【0036】このように、抵抗体部5にトリミングを施
した場合、一対の検出用ランド1をチップ抵抗器の上面
対角線位置に配することが好ましいことは、端子部4の
幅が、抵抗体部5の幅よりも広い、図3に示した構成に
おいても言えることは言うまでもない。
As described above, when the resistor portion 5 is trimmed, it is preferable that the pair of detection lands 1 be disposed at diagonal positions on the upper surface of the chip resistor. Needless to say, the same applies to the configuration shown in FIG. 3 which is wider than the width of the portion 5.

【0037】上述した本発明に係る電流検出用抵抗器の
温度変化を概ね50℃以上を繰り返す環境下(条件下)
で使用することで特に本発明の効果を顕著に得ることが
できる。具体的な使用例としては、例えばパーソナルコ
ンピュータ等の電源である鉛蓄電池、Ni−Cd電池や
Ni−MH電池等のアルカリ蓄電池、リチウムイオン電
池等の非水電解質二次電池に代表される蓄電池の充放電
状態を監視する用途等である。このような用途は電流検
出用抵抗器の温度変化が概ね50℃以上を繰り返す環境
となりやすい。
In an environment (condition) in which the temperature change of the current detecting resistor according to the present invention is repeated at about 50 ° C. or more.
In particular, the effect of the present invention can be significantly obtained. Specific examples of use include, for example, lead storage batteries that are power supplies for personal computers and the like, alkaline storage batteries such as Ni-Cd batteries and Ni-MH batteries, and non-aqueous electrolyte secondary batteries such as lithium ion batteries. It is used for monitoring the state of charge and discharge. Such an application is likely to be an environment in which the temperature change of the current detecting resistor repeats approximately 50 ° C. or more.

【0038】また本発明の実装体を車載部品として使用
すると、他の用途として使用するよりも本発明の効果が
発揮され易い。その理由は、車載部品の宿命として、周
囲温度が大きく変化(数十℃)する環境下での使用を余
儀なくされるためである。その場合の用途の具体例は、
例えばエンジンコントロールを担う電子機器制御部や、
電気自動車用電源の充放電状態監視等である。
When the package of the present invention is used as a vehicle-mounted component, the effect of the present invention is more easily exhibited than when it is used for other purposes. The reason for this is that the in-vehicle components are destined to be used in an environment where the ambient temperature greatly changes (several tens of degrees Celsius). Specific examples of applications in that case are:
For example, an electronic device control unit responsible for engine control,
For example, monitoring the charge / discharge state of a power supply for an electric vehicle.

【0039】[0039]

【発明の実施の形態】以下、本発明の実施の形態の一例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below.

【0040】幅2.4mm、厚み150μmのCu:N
i=1:1(重量比)の合金リボン(金属片)の抵抗体
となる部分の幅方向両端を切除し、当該部分の幅が2.
0mmとなるようにする。そして合金リボンの長さ方向
10mmの間隔(この間に前記抵抗体となる部分が全て
含まれる。)で抵抗値測定しながら抵抗値が所望の値
(10mΩ)となるよう前記抵抗体となる部分にシング
ルカットのトリミング線を機械加工法(ディスクカッタ
ーを用いた金属片の部分研削)により形成する。その後
前記抵抗体となる部分が絶縁被覆領域の中間となるよう
に金属片を絶縁部材6で被覆する。絶縁部材6は液晶ポ
リマーを用い、前記絶縁被覆は、モールド成形による。
その後長さ2mmの金属片を両側に露出させるよう金属
片を切断する。
Cu: N 2.4 mm wide and 150 μm thick
Both ends in the width direction of a portion to be a resistor of an alloy ribbon (metal piece) of i = 1: 1 (weight ratio) are cut off, and the width of the portion becomes 2.
0 mm. Then, while measuring the resistance value at an interval of 10 mm in the length direction of the alloy ribbon (including all the portion serving as the resistor in the interval), the portion serving as the resistor is adjusted so that the resistance value becomes a desired value (10 mΩ). A single-cut trimming line is formed by a machining method (partial grinding of a metal piece using a disk cutter). Thereafter, the metal piece is covered with the insulating member 6 such that the portion serving as the resistor is located in the middle of the insulating covering region. The insulating member 6 uses a liquid crystal polymer, and the insulating coating is formed by molding.
Thereafter, the metal piece is cut so that a metal piece having a length of 2 mm is exposed on both sides.

【0041】前記露出した金属片(端子部4)をチップ
抵抗器下面となる絶縁部材6側に折り返し、その後端子
部4表面に厚み40〜50μmの銅メッキ及び厚み4〜
6μmのはんだメッキをこの順に施し、図1に示すよう
な本発明に係る電流検出用チップ抵抗器を得る。このと
き絶縁部材6により被覆された金属片の抵抗体部5には
メッキ液が接触しないため、上記銅及びはんだは形成さ
れなかった。
The exposed metal piece (terminal portion 4) is folded back on the insulating member 6 side which is the lower surface of the chip resistor, and then the surface of the terminal portion 4 is plated with copper having a thickness of 40 to 50 μm and a thickness of 4 to 50 μm.
A 6 μm solder plating is applied in this order to obtain a current detecting chip resistor according to the present invention as shown in FIG. At this time, since the plating solution did not contact the resistor portion 5 of the metal piece covered with the insulating member 6, the copper and the solder were not formed.

【0042】上記本発明に係る電流検出用チップ抵抗器
の外寸は、幅3.1mm、長さ6.3mm、高さ1.9
mmとなった。
The external dimensions of the current detecting chip resistor according to the present invention are 3.1 mm in width, 6.3 mm in length, and 1.9 in height.
mm.

【0043】厚み2mmのアルミニウム板表面に厚み8
0μmのエポキシ系樹脂からなる絶縁層を有する印刷回
路板上には、図1に示すような上記本発明に係る電流検
出用チップ抵抗器を実装するためのランドが設けられて
いる。前記印刷回路版上の配線、ランドとして厚み35
μmの銅が前記絶縁層上に形成されている。このランド
は通電用と検出用とに分岐形成され、当該通電用のラン
ドと検出用のランド間距離は0.3mmである。前記電
流検出用のチップ抵抗器の端子が前記分岐形成された通
電用と検出用ランド1に跨るよう、且つ一対の検出端子
部用ランドがチップ抵抗器の上面対角線位置にあるよう
にする。ランドと抵抗器端子との接続には、適量のクリ
ームはんだ3を用いてリフローさせることによる。
A thickness of 8 mm is applied to the surface of a 2 mm thick aluminum plate.
On a printed circuit board having an insulating layer made of 0 μm epoxy resin, lands for mounting the above-described current detecting chip resistor according to the present invention as shown in FIG. 1 are provided. Wiring on the printed circuit board, thickness 35 as land
μm copper is formed on the insulating layer. These lands are formed into branches for conduction and detection, and the distance between the conduction lands and the detection lands is 0.3 mm. The terminals of the current-sensing chip resistor are arranged so as to straddle the branch-formed energizing and detecting lands 1, and the pair of sensing terminal portion lands are positioned diagonally on the top surface of the chip resistor. The connection between the lands and the resistor terminals is made by reflowing using an appropriate amount of cream solder 3.

【0044】このような過程を経ることで本発明の実装
体を得ることができる。
Through such a process, the package of the present invention can be obtained.

【0045】上記実装体A及び、ランド形状が図7に示
すものである以外は実装体Aと同条件で作製した実装体
Bについて比較試験を実施した。実装体A、実装体Bを
恒温槽に入れ20℃と120℃のときの抵抗値を夫々の
実装体の検出用ランド1にて測定し、抵抗器のみかけの
TCRを導き出した(n=20)。結果は実装体AのT
CRは27.53ppm/℃、実装体BのTCRは5
3.51ppm/℃と、本発明の実装体Aは従来の実装
体Bに比して飛躍的にみかけのTCR特性が向上してい
る。このことはつまり、本発明によって抵抗器の温度変
化に伴う電流検出精度が劣化するのを抑制できているこ
とが明らかになったということである。
A comparative test was performed on the package A and the package B manufactured under the same conditions as the package A except that the land shape was as shown in FIG. The mounting bodies A and B were placed in a thermostat, and the resistance values at 20 ° C. and 120 ° C. were measured at the detection lands 1 of the respective mounting bodies, and the apparent TCR of the resistors was derived (n = 20). ). Result is T of package A
CR is 27.53 ppm / ° C, and TCR of package B is 5
At 3.51 ppm / ° C., the apparent TCR characteristics of the package A of the present invention are dramatically improved as compared with the conventional package B. That is, it has been clarified that the present invention can suppress the deterioration of the current detection accuracy due to the temperature change of the resistor.

【0046】上記TCRの数値から、金属銅単体が占め
る抵抗器の抵抗値(20℃)成分比を導くと、実装体A
の場合0.8%、実装体Bの場合1.3%となる。この
ことから実装体Aが実装体Bに比して抵抗器端子部表面
の銅の電気的特性を受けにくい構成であることが実証さ
れた。
From the value of the above TCR, the component ratio of the resistance value (20 ° C.) of the resistor occupied by the metallic copper alone is derived.
0.8% in the case of, and 1.3% in the case of the mounting body B. This proves that the mounting body A has a configuration that is less susceptible to the electrical characteristics of copper on the surface of the resistor terminal than the mounting body B.

【0047】本例における抵抗器に用いた金属片の両端
を残して被覆する絶縁部材6は、液晶ポリマーとした
が、それに代えて放熱性が良好なPPS(ポリフェニレ
ンスルファイド)、またフェノール系樹脂エポキシ系樹
脂等が好適に使用できる。
The insulating member 6 covering both ends of the metal piece used for the resistor in this embodiment was made of a liquid crystal polymer, but instead of PPS (polyphenylene sulfide) having a good heat radiation property, and a phenol resin. Epoxy resins and the like can be suitably used.

【0048】また本例における抵抗器に用いた金属片は
銅・ニッケル(Cu−Ni)系合金だったが、それに代
えてニッケル・クロム(Ni−Cr)系合金、銅・マン
ガン・ゲルマニウム(Cu−Mn−Ge)系合金、銅・
マンガン・錫(Cu−Mn−Sn)系合金、マンガン・
ニッケル・銅(Mn−Ni−Cu)系合金等が好適に使
用できる。
Although the metal piece used for the resistor in this example was a copper-nickel (Cu-Ni) alloy, it was replaced with a nickel-chromium (Ni-Cr) alloy or copper-manganese-germanium (Cu). -Mn-Ge) alloys, copper
Manganese-tin (Cu-Mn-Sn) alloy, manganese
A nickel-copper (Mn-Ni-Cu) alloy or the like can be preferably used.

【0049】また本例における抵抗器端子部4表面に施
した金属単体はメッキによる銅だったが、その形成法は
スパッタリングや蒸着等としてもよい。また材質は金、
銀、アルミニウム、クロム等の固有抵抗値の低いものが
好適に使用できる。
Although the single metal applied to the surface of the resistor terminal portion 4 in this embodiment is copper by plating, the forming method may be sputtering or vapor deposition. The material is gold,
Those having low specific resistance such as silver, aluminum and chromium can be suitably used.

【0050】また本例のトリミング工程では機械加工法
を採用したが、それに代えてサンドブラスト法、レーザ
法、エッチング法等としてもよい。
Although the machining method is employed in the trimming step of this embodiment, a sand blast method, a laser method, an etching method, or the like may be used instead.

【0051】[0051]

【発明の効果】本発明により、抵抗値精度を高く維持し
た上で、抵抗器端子を分岐させることなく、抵抗器の温
度変化に伴う電流検出精度の劣化を抑制できる実装体を
提供することができた。
According to the present invention, it is possible to provide a mounting body capable of suppressing deterioration of current detection accuracy due to a temperature change of a resistor without branching a resistor terminal while maintaining high resistance value accuracy. did it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実装体の長辺側面図、短辺側面図、上
面図の概要を示した図である。
FIG. 1 is a diagram schematically illustrating a long side view, a short side view, and a top view of a mounting body of the present invention.

【図2】本発明の効果を得るメカニズムを説明する図で
ある。
FIG. 2 is a diagram illustrating a mechanism for obtaining an effect of the present invention.

【図3】本発明の効果を得るメカニズムを説明する図で
ある。
FIG. 3 is a diagram illustrating a mechanism for obtaining the effect of the present invention.

【図4】検出端子の配置とトリミング線位置についての
説明図である。
FIG. 4 is an explanatory diagram of an arrangement of detection terminals and a trimming line position.

【図5】検出端子の配置とトリミング線位置についての
説明図である。
FIG. 5 is an explanatory diagram of an arrangement of detection terminals and a trimming line position.

【図6】金属片の両端を残して絶縁物で被覆され、当該
両端の露出した金属片が、チップ抵抗器下面の前記絶縁
物側の反対側に折り返されて端子となる電流検出用チッ
プ抵抗器の外観を示す図である。
FIG. 6 is a diagram illustrating a current detecting chip resistor which is covered with an insulator except for both ends of the metal piece and the exposed metal pieces at the both ends are folded back to the opposite side of the lower surface of the chip resistor from the insulator side to become terminals. It is a figure which shows the external appearance of a container.

【図7】従来のランドと抵抗器の組合せを示す図であ
る。
FIG. 7 is a diagram showing a conventional combination of a land and a resistor.

【符号の説明】[Explanation of symbols]

1.検出用ランド 2.通電用ランド 3.はんだ 4.端子部 5.抵抗体部 6.絶縁部材 7.トリミング線 1. 1. Land for detection Land for energization 3. Solder 4. Terminal part 5. Resistor part 6. Insulation member 7. Trimming line

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】一対の端子部及び当該端子部間の抵抗体部
が一体化された金属片と、前記端子部を残して前記金属
片を被覆する絶縁部材とを有し、前記端子部が前記絶縁
部材下面側に折り返されるか、又は前記折り返される方
向の反対側に折り返される電流検出用チップ抵抗器が基
板に実装されてなる実装体において、 前記端子部表面は単金属からなる層を有し、 前記一対の端子部それぞれが、基板上に通電用ランドと
検出用ランドとに分岐形成されたランドに跨るよう導電
接続され、 前記電流検出用チップ抵抗器の定格抵抗値が500mΩ
以下であることを特徴とする実装体。
1. A semiconductor device comprising: a metal piece in which a pair of terminal portions and a resistor portion between the terminal portions are integrated; and an insulating member for covering the metal piece except for the terminal portion, wherein the terminal portion is provided. In a mounting body in which a current-detecting chip resistor folded on the lower surface side of the insulating member or folded on the opposite side to the folding direction is mounted on a substrate, the surface of the terminal portion has a layer made of a single metal. Each of the pair of terminal portions is conductively connected so as to straddle a land formed by branching into an energizing land and a detecting land on the substrate, and a rated resistance value of the current detecting chip resistor is 500 mΩ.
A mounting body characterized by the following.
【請求項2】通電用ランドと検出用ランド間距離が0.
3mm以上であることを特徴とする請求項1記載の実装
体。
2. The distance between the energizing land and the detecting land is 0.
The mounting body according to claim 1, wherein the mounting body is 3 mm or more.
【請求項3】端子部の幅が、抵抗体部の幅よりも広いこ
とを特徴とする請求項1又は2記載の実装体。
3. The mounting body according to claim 1, wherein the width of the terminal portion is wider than the width of the resistor portion.
【請求項4】通電用ランド幅が、検出用ランド幅よりも
3倍以上広いことを特徴とする請求項1〜3のいずれか
に記載の実装体。
4. The mounting body according to claim 1, wherein the width of the land for energization is at least three times wider than the width of the land for detection.
【請求項5】基板が金属板表面に絶縁膜被覆したもので
あることを特徴とする請求項1〜4のいずれかに記載の
実装体。
5. The mounting body according to claim 1, wherein the substrate has a metal plate surface coated with an insulating film.
【請求項6】一対の検出用ランドがチップ抵抗器の上面
対角線位置にあることを特徴とする請求項1〜5のいず
れかに記載の実装体。
6. The mounting body according to claim 1, wherein the pair of detection lands are positioned diagonally on the upper surface of the chip resistor.
【請求項7】金属片抵抗体部にトリミングが施されてい
ることを特徴とする請求項6記載の実装体。
7. The package according to claim 6, wherein the metal piece resistor portion is trimmed.
【請求項8】請求項1〜7のいずれかに記載された実装
体を、抵抗器温度変化が50℃以上を繰り返す環境下で
使用する実装体の使用法。
8. A method of using the mounting body according to claim 1, wherein the mounting body is used in an environment in which a temperature change of a resistor repeats 50 ° C. or more.
【請求項9】請求項1〜7のいずれかに記載された実装
体を、車載部品として使用する実装体の使用法。
9. A method of using a package according to claim 1, wherein the package is used as a vehicle-mounted component.
JP2000233409A 2000-08-01 2000-08-01 Mounting body and using method thereof Pending JP2002050501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000233409A JP2002050501A (en) 2000-08-01 2000-08-01 Mounting body and using method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233409A JP2002050501A (en) 2000-08-01 2000-08-01 Mounting body and using method thereof

Publications (1)

Publication Number Publication Date
JP2002050501A true JP2002050501A (en) 2002-02-15

Family

ID=18725932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233409A Pending JP2002050501A (en) 2000-08-01 2000-08-01 Mounting body and using method thereof

Country Status (1)

Country Link
JP (1) JP2002050501A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107361A1 (en) * 2002-06-13 2003-12-24 ローム株式会社 Chip resistor having low resistance and its producing method
WO2004001774A1 (en) * 2002-06-19 2003-12-31 Rohm Co., Ltd. Chip resistor having low resistance and its producing method
JP2004104047A (en) * 2002-09-13 2004-04-02 Koa Corp Resistor composition and resistor
US6936192B2 (en) 2002-09-26 2005-08-30 Koa Kabushiki Kaisha Resistive composition, resistor using the same, and making method thereof
JP2014170960A (en) * 2009-09-04 2014-09-18 Vishay Dale Electronics Inc Resistor with temperature coefficient of resistance (tcr) compensation function
US11555831B2 (en) 2020-08-20 2023-01-17 Vishay Dale Electronics, Llc Resistors, current sense resistors, battery shunts, shunt resistors, and methods of making
JP7470899B2 (en) 2019-01-16 2024-04-19 パナソニックIpマネジメント株式会社 Resistor and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582301A (en) * 1990-12-25 1993-04-02 Tamura Seisakusho Co Ltd Surface mounting fixed resistor
JPH0582002U (en) * 1992-04-11 1993-11-05 コーア株式会社 Power type surface mount low resistor
JPH062603U (en) * 1992-06-19 1994-01-14 コーア株式会社 4-terminal power type surface mount resistor
JPH0620802A (en) * 1992-03-30 1994-01-28 Dale Electronics Inc Bulk metal chip resistor
JPH06186254A (en) * 1992-12-16 1994-07-08 Mitsubishi Electric Corp Chip-type resistor for current detection
JPH0883969A (en) * 1994-07-15 1996-03-26 Fuji Electric Co Ltd Surface-mounting resistance element for detection of current and its mounting board
JPH09293601A (en) * 1996-04-26 1997-11-11 Koyo Electron Ind Co Ltd Resistor
JPH11102801A (en) * 1997-09-29 1999-04-13 Matsushita Electric Ind Co Ltd Resistor and its manufacture
WO1999018584A1 (en) * 1997-10-02 1999-04-15 Matsushita Electric Industrial Co., Ltd. Resistor and method for manufacturing the same
JP2000068102A (en) * 1998-08-25 2000-03-03 Matsushita Electric Ind Co Ltd Resistor
JP2000133501A (en) * 1998-10-23 2000-05-12 Matsushita Electric Ind Co Ltd Resistor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582301A (en) * 1990-12-25 1993-04-02 Tamura Seisakusho Co Ltd Surface mounting fixed resistor
JPH0620802A (en) * 1992-03-30 1994-01-28 Dale Electronics Inc Bulk metal chip resistor
JPH0582002U (en) * 1992-04-11 1993-11-05 コーア株式会社 Power type surface mount low resistor
JPH062603U (en) * 1992-06-19 1994-01-14 コーア株式会社 4-terminal power type surface mount resistor
JPH06186254A (en) * 1992-12-16 1994-07-08 Mitsubishi Electric Corp Chip-type resistor for current detection
JPH0883969A (en) * 1994-07-15 1996-03-26 Fuji Electric Co Ltd Surface-mounting resistance element for detection of current and its mounting board
JPH09293601A (en) * 1996-04-26 1997-11-11 Koyo Electron Ind Co Ltd Resistor
JPH11102801A (en) * 1997-09-29 1999-04-13 Matsushita Electric Ind Co Ltd Resistor and its manufacture
WO1999018584A1 (en) * 1997-10-02 1999-04-15 Matsushita Electric Industrial Co., Ltd. Resistor and method for manufacturing the same
JP2000068102A (en) * 1998-08-25 2000-03-03 Matsushita Electric Ind Co Ltd Resistor
JP2000133501A (en) * 1998-10-23 2000-05-12 Matsushita Electric Ind Co Ltd Resistor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7342480B2 (en) 2002-06-13 2008-03-11 Rohm Co., Ltd. Chip resistor and method of making same
WO2003107361A1 (en) * 2002-06-13 2003-12-24 ローム株式会社 Chip resistor having low resistance and its producing method
WO2004001774A1 (en) * 2002-06-19 2003-12-31 Rohm Co., Ltd. Chip resistor having low resistance and its producing method
CN100421190C (en) * 2002-06-19 2008-09-24 罗姆股份有限公司 Chip resistor having low resistance and its manufacturing method
US7221254B2 (en) 2002-06-19 2007-05-22 Rohm Co., Ltd. Chip resistor having low resistance and method of making the same
JP4623921B2 (en) * 2002-09-13 2011-02-02 コーア株式会社 Resistive composition and resistor
US7238296B2 (en) 2002-09-13 2007-07-03 Koa Kabushiki Kaisha Resistive composition, resistor using the same, and making method thereof
JP2004104047A (en) * 2002-09-13 2004-04-02 Koa Corp Resistor composition and resistor
US6936192B2 (en) 2002-09-26 2005-08-30 Koa Kabushiki Kaisha Resistive composition, resistor using the same, and making method thereof
JP2014170960A (en) * 2009-09-04 2014-09-18 Vishay Dale Electronics Inc Resistor with temperature coefficient of resistance (tcr) compensation function
JP2016006899A (en) * 2009-09-04 2016-01-14 ヴィシェイ デイル エレクトロニクス, インコーポレイテッドVishay Dale Electronics, Inc. Resistor having function/action of compensating for temperature coefficient of resistor (tcr)
US9400294B2 (en) 2009-09-04 2016-07-26 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US9779860B2 (en) 2009-09-04 2017-10-03 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US10217550B2 (en) 2009-09-04 2019-02-26 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US10796826B2 (en) 2009-09-04 2020-10-06 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US11562838B2 (en) 2009-09-04 2023-01-24 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
JP7470899B2 (en) 2019-01-16 2024-04-19 パナソニックIpマネジメント株式会社 Resistor and manufacturing method thereof
US11555831B2 (en) 2020-08-20 2023-01-17 Vishay Dale Electronics, Llc Resistors, current sense resistors, battery shunts, shunt resistors, and methods of making

Similar Documents

Publication Publication Date Title
JP4452196B2 (en) Metal plate resistor
JP2002057009A (en) Resistor and method of manufacturing the same
US6794985B2 (en) Low resistance value resistor
US20160372293A1 (en) Fuse in chip design
US10643769B2 (en) Resistor element and resistor element assembly
US10181367B2 (en) Resistor element, method of manufacturing the same, and resistor element assembly
US20220246333A1 (en) Resistor
JP2002050501A (en) Mounting body and using method thereof
US6529115B2 (en) Surface mounted resistor
US20160172083A1 (en) Resistor element and method of manufacturing the same
JP2002184601A (en) Resistor unit
US20220059282A1 (en) Inductor component
JP2000232008A (en) Resistor and its manufacture
JP2007103976A (en) Chip resistor
JP4867487B2 (en) Manufacturing method of chip resistor
JP3670593B2 (en) Electronic component using resistor and method of using the same
JP7470899B2 (en) Resistor and manufacturing method thereof
JP2007335488A5 (en)
JP2963671B2 (en) Chip resistor
WO2023074131A1 (en) Chip resistor
JP7386184B2 (en) High frequency and high power thin film components
JP2002057010A (en) Resistor and method of manufacturing the same
JP3215648B2 (en) Manufacturing method of chip resistor
WO2023053594A1 (en) Chip resistor
JP2004047603A (en) Resistor for current detection and its manufacture

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208