JP2002041243A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JP2002041243A
JP2002041243A JP2000220015A JP2000220015A JP2002041243A JP 2002041243 A JP2002041243 A JP 2002041243A JP 2000220015 A JP2000220015 A JP 2000220015A JP 2000220015 A JP2000220015 A JP 2000220015A JP 2002041243 A JP2002041243 A JP 2002041243A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
range
touch panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000220015A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanda
広行 神田
Hideaki Gondaira
英昭 権平
Shigeo Yamada
茂男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2000220015A priority Critical patent/JP2002041243A/en
Publication of JP2002041243A publication Critical patent/JP2002041243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film capable of providing a touch panel of an excellent touching property by improving the surface of the film mainly on a transparent conductive substrate on the non-touched side on a contact resistance type touch panel. SOLUTION: The transparent conductive film comprises an aggregate of columnar crystals oriented (100) whose grain size is in the range of 30-100 nm and surface roughness 5-20 nm, and preferably comprises compound oxide of In-Sn, wherein the tin content in the film is preferably 0.05-2.0 wt.% of the In content, and further preferably the thickness of the film is in the range of 10-30 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極に用いられる
透明導電膜に関し、更に詳しくは接触抵抗膜式タッチパ
ネル用に用いられる透明導電膜に関する。
The present invention relates to a transparent conductive film used for an electrode, and more particularly, to a transparent conductive film used for a contact resistive touch panel.

【0002】[0002]

【従来の技術】接触抵抗膜式タッチパネルは、主に非タ
ッチ側/タッチ側が、ガラス/フィルムの組み合わせか
らなる透明絶縁性基体にITO(酸化インジウム・ス
ズ)等をスパッタリング法等により成膜し、必要に応じ
てエッチング等により所望の電極パターンを形成させた
後、絶縁性スペーサーを介して両電極膜面を対向配置し
製作されるのが一般的である。
2. Description of the Related Art In a contact resistive touch panel, ITO (indium tin oxide) or the like is formed on a transparent insulating substrate mainly composed of a glass / film combination on a non-touch side / touch side by a sputtering method or the like. In general, a desired electrode pattern is formed by etching or the like, if necessary, and then both electrode film surfaces are arranged to face each other via an insulating spacer.

【0003】かかる透明タッチパネルでは、タッチ側の
パネル面を指やペン等でタッチ(押圧)することによ
り、必要な情報が電気的な信号として入力され、そして
その結果はLCD等の画面に表示されるようになってい
る。この入力のためのタッチにより、タッチ側の電極膜
が非タッチ側の電極膜に接触して正確に電気的な信号が
供給される。また、逆にタッチを解放すれば瞬時に離
れ、元の状態に復帰するものでなくてはならず、かかる
タッチの感触(以下、タッチ性と呼称する)は、可能な
限り軽い方が好ましい。
In such a transparent touch panel, necessary information is input as an electrical signal by touching (pressing) the touch-side panel surface with a finger or a pen, and the result is displayed on a screen such as an LCD. It has become so. By this touch for input, the touch-side electrode film comes into contact with the non-touch-side electrode film, and an accurate electrical signal is supplied. Conversely, when the touch is released, the touch must be instantaneously separated and returned to the original state, and it is preferable that the touch of the touch (hereinafter, referred to as touch property) be as light as possible.

【0004】前記タッチ性に関しては、両電極膜面の表
面状態によって、大きく影響することが知られている。
例えば、表面状態を粗面化すればタッチした時にくっつ
きにくくなるので、タッチ性は改良されることになる。
例えば、特開平8−77871号公報には、タッチ側の
透明性基体の両面、もしくはタッチ側の透明絶縁性基体
の非タッチ側に対向配置される面に、エンボス加工によ
り中心線平均粗さ(Ra)0.05〜2.0μmかつ最
大高さ(Rmax)0.6〜3.0μmの範囲にある微
細凹凸を無数に賦形した透明タッチパネルが記載されて
いる。
It is known that the touch property is greatly affected by the surface condition of both electrode film surfaces.
For example, if the surface state is roughened, it becomes difficult to stick when touched, so that the touch property is improved.
For example, Japanese Patent Application Laid-Open No. 8-77871 discloses that the center line average roughness (embossing) is applied to both surfaces of a transparent substrate on the touch side or a surface facing the non-touch side of the transparent insulating substrate on the touch side. (Ra) A transparent touch panel in which fine irregularities in the range of 0.05 to 2.0 μm and a maximum height (Rmax) of 0.6 to 3.0 μm are formed countlessly is described.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記に示した
方法では、微細な凹凸を表面に賦形するには限界があ
り、より精度の高い位置認識、及びより感度のよいタッ
チ性を求めることができないという問題があった。ま
た、フィルムを上記に示したような特殊加工を必要と
し、 商業的にはコストが高くなるという問題があっ
た。更に、非タッチ側においては、主にガラスを基板と
して用いることから、その表面を微細加工することは困
難であった。本発明は、接触抵抗式タッチパネルにおい
て、主に非タッチ側である透明導電性基体上の透明導電
膜表面を改良し、よりタッチ性の優れたタッチパネルを
提供できる透明導電膜を提供することを目的とする。
However, in the above-described method, there is a limit in forming fine irregularities on the surface, and it is necessary to obtain a more accurate position recognition and a more sensitive touch property. There was a problem that can not be. In addition, the film requires special processing as described above, and there is a problem that the cost is high commercially. Furthermore, on the non-touch side, since glass is mainly used as a substrate, it has been difficult to finely process the surface thereof. An object of the present invention is to provide a transparent conductive film that can improve the surface of a transparent conductive film on a transparent conductive substrate that is mainly a non-touch side in a contact resistance type touch panel and can provide a touch panel with more excellent touch properties. And

【0006】[0006]

【課題を解決しようとうする手段】本発明者等は、上記
課題を解決するため鋭意検討した結果、成膜方法及び条
件を選択することにより、平滑な基材上に直接微細な表
面構造及び電気的特性を満足する膜を成膜することで上
記課題を解決できることを見出し本発明を完成するに至
った。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by selecting a film forming method and conditions, a fine surface structure and an electric It has been found that the above problem can be solved by forming a film that satisfies the specific characteristics, and the present invention has been completed.

【0007】即ち、本発明は、(1)(100)面配向
の柱状結晶の集合体からなり,グレンサイズが30〜1
00nmの範囲であり、且つ表面凹凸が5〜20nmで
あることを特徴とする透明導電膜に関し、(2)インジ
ウム−スズの複合酸化物からなることを特徴とする
(1)に記載の透明導電膜に関し、(3)膜中のスズ含
有量がインジウムに対して0.05〜2.0重量%又は
10〜40重量%であることを特徴とする(1)又は
(2)に記載の透明導電膜に関し、(4)膜厚が、10
〜30nmの範囲であることを特徴とする請求項(1)
〜(3)のいずれかに記載の透明導電膜に関し、(5)
表面抵抗値が200〜2000Ω/□の範囲であること
を特徴とする(1)〜(4)のいずれかに記載の透明導
電膜に関し、(6)光直線透過率が80%以上であるこ
とを特徴とする(1)〜(5)のいずれかに記載の透明
導電膜に関し、(7)(1)〜(6)のいずれかに記載
の透明導電膜を用いた接触抵抗膜式タッチパネルに関す
る。
That is, the present invention comprises (1) an aggregate of (100) -oriented columnar crystals having a grain size of 30 to 1
(2) The transparent conductive film according to (1), wherein the transparent conductive film has a range of 00 nm and has surface irregularities of 5 to 20 nm. (3) The transparent film according to (1) or (2), wherein (3) the tin content in the film is 0.05 to 2.0% by weight or 10 to 40% by weight based on indium. (4) When the film thickness is 10
3. The method according to claim 1, wherein the distance is in the range of about 30 nm.
(5) The transparent conductive film according to any one of (1) to (3),
The transparent conductive film according to any one of (1) to (4), wherein the surface resistance is in the range of 200 to 2000 Ω / □, (6) the linear light transmittance is 80% or more. The present invention relates to a transparent conductive film according to any one of (1) to (5), and (7) a contact resistive touch panel using the transparent conductive film according to any one of (1) to (6). .

【0008】[0008]

【発明の実施の形態】本発明は、透明導電膜を構成して
いる結晶が、基板面に対して(100)方向に結晶配向
している柱状結晶からなることを特徴とする。膜表面を
エッチングして電極加工を行う場合、エッチングが結晶
粒界及び結晶軸に沿って進行するため、このことによっ
て、エッチング速度が一定となるばかりでなく、エッチ
ングパターンの肩崩れが小さく、直線性の優れた電極パ
ターンが得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is characterized in that the crystals constituting the transparent conductive film are columnar crystals oriented in the (100) direction with respect to the substrate surface. When the electrode is processed by etching the film surface, the etching proceeds along the crystal grain boundaries and the crystal axes. As a result, not only is the etching rate constant, but also the shoulder of the etching pattern is small and the straight line is reduced. An electrode pattern having excellent properties can be obtained.

【0009】また、グレンサイズが30〜100nmで
あり、結晶粒界が明瞭であることを特徴とする。結晶粒
界は、例えばITO膜においては、スズの過度の偏析や
格子欠陥による歪みが、ある限界に達したときにでる。
よって結晶粒界では、欠陥が多いため、その部分ではキ
ャリアが捕獲されやすくなる。接触抵抗式タッチパネル
では、高抵抗な透明導電膜が望ましく、結晶粒界が明瞭
であり、しかもグレンサイズが30〜100nmと比較
的小さい多結晶膜は、比抵抗値を5×10-4以上の値に
制御するためには好ましい。また、スズを結晶中に均一
に分布させることにより、より結晶粒界を明瞭にするこ
とができる。
Also, the grain size is 30 to 100 nm, and the crystal grain boundaries are clear. Grain boundaries occur when, for example, in an ITO film, distortion due to excessive segregation of tin and lattice defects reaches a certain limit.
Therefore, since there are many defects in the crystal grain boundaries, carriers are easily captured in those portions. In a contact resistance type touch panel, a high resistance transparent conductive film is desirable, a crystal grain boundary is clear, and a polycrystalline film having a relatively small Glen size of 30 to 100 nm has a specific resistance of 5 × 10 −4 or more. It is preferable to control the value. Further, by uniformly distributing tin in the crystal, crystal grain boundaries can be made clearer.

【0010】グレンサイズが30nm以下では、膜強度
が低くなり耐久性の点で問題となり、100nm以上で
は、キャリアの移動度が高くなり比抵抗値を高い水準で
制御するのが困難となる。グレンサイズは、TEMを用
いて表面を観察し、結晶粒界の最大幅を計測し、任意に
選んだ10個の値の平均値として求めることができる。
If the grain size is less than 30 nm, the film strength becomes lower and the durability becomes a problem. If the grain size is more than 100 nm, the mobility of carriers increases and it becomes difficult to control the resistivity at a high level. The grain size can be obtained by observing the surface using a TEM, measuring the maximum width of a crystal grain boundary, and averaging 10 values arbitrarily selected.

【0011】更に本発明は、表面の凹凸が5〜20nm
であることを特徴とする。ここに、表面の凹凸とは透明
導電膜の表面における、最大凹部と最大凸部との間の距
離意味し、例えば、以下の方法で求めることができる。
測定器として、触針式表面粗さ計(例えば、スローン社
製DETAK3030)を用い、これを透明導電膜上の
任意の位置で20mgの荷重下で、1nmにわたって掃
引させ、最大凹部と最大凸部との間の距離を測定する。
この測定を5回繰り返し、その平均値を、本発明におけ
る表面凹凸とする。また、原子間力顕微鏡を用いて透明
導電膜の数箇所を測定し、各部分最大凹部、最大凸部の
差を計測し、その平均値を本発明の表面凹凸部とするこ
ともできる。表面の凹凸が5nm以下では、表面が平滑
になり、タッチ性を改善することができない。また、特
に高抵抗透明導電膜では、膜厚が10〜30nmと薄い
ため20nm以上の凹凸がある場合、キャリアの移動度
が悪化し、エッチングの直線性が損なわれる。
Further, according to the present invention, the surface unevenness is 5 to 20 nm.
It is characterized by being. Here, the surface irregularities mean the distance between the largest concave portion and the largest convex portion on the surface of the transparent conductive film, and can be determined by, for example, the following method.
A stylus type surface roughness meter (for example, DETAK3030 manufactured by Sloan Co.) was used as a measuring instrument, and this was swept over 1 nm under a load of 20 mg at an arbitrary position on the transparent conductive film. Measure the distance between
This measurement is repeated five times, and the average value is defined as the surface unevenness in the present invention. Further, it is also possible to measure several portions of the transparent conductive film using an atomic force microscope, measure the difference between the maximum concave portion and the maximum convex portion of each portion, and determine the average value as the surface unevenness of the present invention. If the surface unevenness is 5 nm or less, the surface becomes smooth and the touch property cannot be improved. In particular, in the case of a high-resistance transparent conductive film, the film thickness is as thin as 10 to 30 nm, so that when there is unevenness of 20 nm or more, carrier mobility is deteriorated, and linearity of etching is impaired.

【0012】本発明の構造を有する透明導電膜におい
て、導電膜が設けられている透明基板は、可視光の透過
率が70%い所である電気絶縁基板であれば特に限定さ
れず、具体的には、アルカリガラス、石英ガラス等のガ
ラス、ポリカーボネート、ポリエチレンテレフタレー
ト、ポリアリレート等のポリエステル、ポリエーテルス
ルホン系樹脂、アモルファスポリオレフィン、ポリスチ
レン、アクリル樹脂等からなるフィルムもしくはシート
等が挙げられる。これらの材質は、最終的に用いる製品
の用用途に応じて最適なものが適宜選択される。これら
の基板はそのまま用いることもできるし、基板の両面も
しくは片面に反射防止膜を設けたもの、また、基材中か
ら基材成分を移行を抑制する処理を施したもの等も使用
することができる。
In the transparent conductive film having the structure of the present invention, the transparent substrate provided with the conductive film is not particularly limited as long as it is an electrically insulating substrate having a visible light transmittance of 70%. Examples thereof include films such as glass such as alkali glass and quartz glass, polyesters such as polycarbonate, polyethylene terephthalate and polyarylate, polyethersulfone resins, amorphous polyolefins, polystyrene, and acrylic resins. These materials are appropriately selected in accordance with the intended use of the product to be finally used. These substrates can be used as they are, or those provided with an antireflection film on both surfaces or one surface of the substrate, or those subjected to a treatment for suppressing migration of the base material component from the base material can be used. it can.

【0013】本発明の構造を有する膜の材質は、導電性
を有し透明な膜であれば特に限定されないが、具体的に
は、スズがドープされた酸化インジウム膜(ITO
膜)、フッ素がドープされた酸化スズ膜(FTO膜)、
アンチモンがドープされた酸化亜鉛膜やインジウムがド
ープされた酸化亜鉛膜等を例示することができ、中でも
アナログタッチパネル等の接触抵抗式タッチパネル等に
汎用されるITO膜で好適に用いられる。
The material of the film having the structure of the present invention is not particularly limited as long as it is a conductive and transparent film. Specifically, a tin-doped indium oxide film (ITO)
Film), a fluorine-doped tin oxide film (FTO film),
Examples thereof include a zinc oxide film doped with antimony and a zinc oxide film doped with indium. Among them, an ITO film generally used for a contact resistance type touch panel such as an analog touch panel is suitably used.

【0014】以下、接触抵抗膜式タッチパネルに用いら
れるITO膜を例にあげ本発明を詳細に説明する。接触
抵抗式タッチパネルに用いるITO膜は、表面抵抗値が
200〜3000Ω/□でしかも抵抗値の均一性に優
れ、更に透明性の高い膜が要求される。表面抵抗値を上
記値の範囲にするためには、膜厚を薄くする、及び/又
は比抵抗値を高くする必要がある。膜厚を10nm以下
のように極端に薄くした場合、抵抗値の均一性が損なわ
れるため好ましくない。10〜30nmの範囲にするの
がのが好ましい。また、比抵抗値を高くして膜厚を厚く
する方法も考えられるが、膜の透明性を損なうため好ま
しくない。膜の透明性は550nmでの直線透過率が8
0%以上ある膜が好ましい。
Hereinafter, the present invention will be described in detail with an example of an ITO film used for a contact resistive touch panel. The ITO film used for the contact resistance type touch panel is required to have a surface resistance of 200 to 3000 Ω / □, excellent uniformity of the resistance, and high transparency. In order for the surface resistance to fall within the above range, it is necessary to reduce the film thickness and / or increase the specific resistance. If the thickness is extremely thin, such as 10 nm or less, it is not preferable because the uniformity of the resistance value is impaired. It is preferable to set it in the range of 10 to 30 nm. A method of increasing the specific resistance to increase the film thickness is also considered, but is not preferable because the transparency of the film is impaired. The film has a transparency of 8 at a linear transmittance of 550 nm.
Films with 0% or more are preferred.

【0015】比抵抗値を高くするためには、キャリア密
度及び/又は移動度を小さくする必要がある。インジウ
ムにスズをドープすることにより、移動度は、徐々に低
下する傾向にある。また、キャリア密度は、スズドープ
量が0〜3重量%の範囲で増大し、3〜10重量%の範
囲で最大となり、10重量%以上で単調減少する傾向が
ある。以上のことをふまえ、上記表面抵抗値の範囲を維
持するため、膜中のスズ量をインジウムに対して0.0
5〜2.0重量%、又は10〜40重量%の範囲にする
のが好ましい。
In order to increase the specific resistance, it is necessary to reduce the carrier density and / or the mobility. By doping tin with indium, the mobility tends to gradually decrease. Further, the carrier density tends to increase when the tin doping amount is in the range of 0 to 3% by weight, becomes maximum in the range of 3 to 10% by weight, and monotonically decreases when the amount is 10% by weight or more. Based on the above, in order to maintain the above range of the surface resistance value, the amount of tin in the film was 0.0
It is preferably in the range of 5 to 2.0% by weight, or 10 to 40% by weight.

【0016】本発明の構造を有するITO膜を成膜する
方法は、特に限定されず、具体的には、スパッタ法、電
子ビーム蒸着法、イオンプレーティング法、化学気相成
膜法、、パイロゾル法等を例示することができる。得ら
れる膜の透明性、化学エッチングのし易さ等は成膜方法
によって条件は異なるが、一般的に、LCD用の低抵抗
ITO膜を成膜する条件で、Snのドープ量を変えるこ
とで対処することが可能である。
The method of forming the ITO film having the structure of the present invention is not particularly limited. Specifically, a sputtering method, an electron beam evaporation method, an ion plating method, a chemical vapor deposition method, a pyrosol, And the like. The transparency of the obtained film, the ease of chemical etching, and the like are different depending on the film forming method. However, in general, by changing the doping amount of Sn under the conditions for forming a low-resistance ITO film for LCD. It is possible to deal with it.

【0017】即ち、スパッター法では、ターゲットのS
nの組成を変え、電子ビーム蒸着法、イオンプレーティ
ング法ではペレットのスズ組成を変え、CVD法、パイ
ロゾル法では、原料中のスズ組成を変更することで対処
することができる。また、Snドープ量が10〜40重
量%のITO膜で8×10-4Ω・cm以上の比抵抗を得
たい場合、成膜後、酸素を含むガスを導入し、例えば2
00℃以上の温度で処理することにより、抵抗値の均一
性の良好な高抵抗の膜を得ることができる。また、通常
の成膜後、空気中で冷却し、上記のように抵抗値を高く
した後、還元性の雰囲気下で、熱処理することにより、
所定の抵抗値に調整することもできる。
That is, in the sputtering method, the target S
This can be dealt with by changing the composition of n, changing the tin composition of the pellet in the electron beam evaporation method and the ion plating method, and changing the tin composition in the raw material in the CVD method and the pyrosol method. Further, when it is desired to obtain a specific resistance of 8 × 10 −4 Ω · cm or more with an ITO film having a Sn doping amount of 10 to 40% by weight, a gas containing oxygen is introduced after film formation, and for example,
By performing the treatment at a temperature of 00 ° C. or higher, a high-resistance film with good uniformity of the resistance value can be obtained. Also, after normal film formation, cooled in air, after increasing the resistance value as described above, by heat treatment in a reducing atmosphere,
It can also be adjusted to a predetermined resistance value.

【0018】以下実施例により本発明を更に詳細に説明
するが、本発明の範囲は実施例に限定されるものではな
い。
Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited to the examples.

【0019】[0019]

【実施例】実施例1 平均粒径0.2μmのIn2O3粉末と平均粒径0.6
μmのSnO2粉末とをInに対して0.4重量%にな
るように配合し、ボールミル中で5時間粉砕した後、こ
の混合粉末を800℃、400kg/cm2の条件でホ
ットプレスして焼結体を得た。これをターゲットとして
用い、スパッター成膜を行った。スパッター条件は、R
Fスパッター装置を用い、ガラス基板上に成膜した。ガ
ラス基板の厚さは1mmで10cm角のソーダライムガ
ラス上に80nmのSiO2膜がコートされたものを用
いた。RF出力200W、ガス組成は、Ar:O2=9
8:2、基板温度=300℃、成膜時間4分で行った。
その後、空気封入し、室温まで冷却後、600ppmエ
タノールを含む空気の循環した雰囲気中400℃で10
分間焼成した。
EXAMPLES Example 1 In2O3 powder having an average particle diameter of 0.2 μm and an average particle diameter of 0.6
μm of SnO2 powder was mixed with In so as to be 0.4% by weight with respect to In, and the mixture was pulverized in a ball mill for 5 hours. I got a body. Using this as a target, sputter deposition was performed. The sputter condition is R
A film was formed on a glass substrate using an F sputtering apparatus. A glass substrate having a thickness of 1 mm and a 10 cm square soda lime glass coated with an 80 nm SiO 2 film was used. RF output 200W, gas composition: Ar: O2 = 9
8: 2, substrate temperature = 300 ° C., film formation time 4 minutes.
Thereafter, air is sealed, and after cooling to room temperature, 10 ° C. at 400 ° C. in a circulating atmosphere containing 600 ppm ethanol
Bake for a minute.

【0020】得られたITO膜は、膜中のSnをICP
発光分光法で分析したところ、0.3重量%であり、膜
厚25nm、表面抵抗値500Ω/□、比抵抗値、1.
25×10-3Ω・cmであった。また表面抵抗値の均一
性は±25Ω/□以内であり電気的特性は良好であっ
た。表面をAFCで5個所測定し表面凹凸を測定したと
ころ10nmであった。更に、また、AFCにより結晶
粒径を測定したところ25nmであった、更にX線回折
を測定したところ(400)面に吸収が見られた。ま
た、550nmの光線倒壊率は91%であった。
In the obtained ITO film, Sn contained in the film was replaced by ICP.
When analyzed by emission spectroscopy, it was 0.3% by weight, the film thickness was 25 nm, the surface resistance value was 500Ω / □, the specific resistance value was 1.
It was 25 × 10 −3 Ω · cm. The uniformity of the surface resistance was within ± 25 Ω / □, and the electrical characteristics were good. It was 10 nm when the surface was measured at five points by AFC and the surface irregularities were measured. Furthermore, when the crystal grain size was measured by AFC, it was 25 nm. Further, when X-ray diffraction was measured, absorption was observed on the (400) plane. Further, the rate of collapse of light at 550 nm was 91%.

【0021】このITO膜を成膜した基板上に、感光性
アクリル樹脂を用いて直径40μm、高さ5μmのドッ
トを2mmピッチで格子状にスクリーン印刷し、紫外光
で硬化させた。タッチ側としてPET上にITO膜を成
膜したシートを用い、ITO膜を内側にして対向させ、
周囲を厚さ0.5mm、幅5mmの両面テープで接着固
定し、テスト用具とした。これを、広業社製キーボード
打鎚試験機を使用し、荷重300g、打鎚速度3回/秒
で10万回打鎚後のくっつきの有無を目視で判断した。
その結果、くっつきは全く見られなかった。
On the substrate on which the ITO film was formed, dots having a diameter of 40 μm and a height of 5 μm were screen-printed in a grid pattern at a pitch of 2 mm using a photosensitive acrylic resin, and cured by ultraviolet light. Using a sheet with an ITO film formed on PET as the touch side, facing it with the ITO film inside,
The periphery was adhesively fixed with a double-sided tape having a thickness of 0.5 mm and a width of 5 mm to obtain a test tool. Using a keyboard hammer tester manufactured by Kogyo Co., Ltd., the presence or absence of sticking after hammering 100,000 times at a load of 300 g and a hammer speed of 3 times / sec was visually determined.
As a result, no sticking was observed.

【0022】実施例2 パイロゾル成膜法においてITO膜を成膜するに際し、
インジウム原料として、0.15モル/lのInCl3
のメチルアルコール溶液にドープ用スズ原料として0.
2モル/lのSnCl4のメチルアルコール溶液をIn
に対してSnが25重量%になるように添加した溶液を
調整した。基板にソーダライムガラス上に100nmの
SiO2膜をコートしたものを用い、パイロゾル成膜装
置に基板をセットし、500℃に加熱し、超音波により
先に調整した溶液を2ml/minの速度で霧化させ基
板に導入し、2分間かけて成膜した。その後、エタノー
ルを600ppm含む空気雰囲気下で室温まで10分か
けて冷却した。
Example 2 In forming an ITO film by the pyrosol film forming method,
As an indium raw material, 0.15 mol / l of InCl 3
As a tin raw material for doping in a methyl alcohol solution of 0.1.
2 mol / l of a solution of SnCl 4 in methyl alcohol
The solution added was adjusted so that Sn became 25% by weight. Using a substrate obtained by coating a soda lime glass with a 100 nm SiO 2 film on a soda lime glass, setting the substrate in a pyrosol film forming apparatus, heating the solution to 500 ° C., and applying the solution previously adjusted by ultrasonic waves at a rate of 2 ml / min. It was atomized and introduced into a substrate, and a film was formed for 2 minutes. Thereafter, the mixture was cooled to room temperature in an air atmosphere containing 600 ppm of ethanol over 10 minutes.

【0023】得られたITO膜は、膜中のSnをICP
発光分光法で分析したところ、19.6重量%であり、
膜厚24nm、表面抵抗値420Ω/□、比抵抗値、
1.00×10-3Ω・cmであった。また表面抵抗値の
均一性は±30Ω/□以内であり電気的特性は良好であ
った。表面をAFCで5個所測定し表面凹凸を測定した
ところ15nmであった。更に、また、AFCにより結
晶粒径を測定したところ28nmであった、更にX線回
折を測定したところ(400)面に吸収が見られた。ま
た、550nmの光線倒壊率は92%であった。実施例
1と同様に、テスト用具を作成し同様のテストを行った
ところ、くっつきは全く見られなかった。
In the obtained ITO film, Sn in the film was converted to ICP.
When analyzed by emission spectroscopy, it was 19.6% by weight.
Film thickness 24 nm, surface resistance value 420 Ω / □, specific resistance value,
It was 1.00 × 10 −3 Ω · cm. The uniformity of the surface resistance was within ± 30Ω / □, and the electrical characteristics were good. The surface was measured by AFC at five points, and the surface unevenness was measured to be 15 nm. Furthermore, when the crystal grain size was measured by AFC, it was 28 nm. Further, when X-ray diffraction was measured, absorption was observed on the (400) plane. Further, the rate of collapse of light at 550 nm was 92%. As in Example 1, a test tool was prepared and a similar test was performed. As a result, no sticking was observed.

【0024】[0024]

【発明の効果】以上、述べたように、本発明の構造を有
する透明導電膜を用いることにより、特に接触抵抗膜式
タッチパネルに使用した場合、タッチ側のくっつきが全
く見られず、長期にわたってタッチパネルにおける位置
認識を正確に行うことが可能となった。
As described above, by using the transparent conductive film having the structure of the present invention, especially when used in a contact resistive touch panel, no sticking on the touch side is observed at all, and the touch panel can be used for a long time. It is now possible to accurately perform position recognition in.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 茂男 千葉県市原市五井南海岸12−8 日本曹達 株式会社千葉工場内 Fターム(参考) 4K029 AA09 BA50 BC09 CA05 DC05 DC09 GA01 5B087 AA09 CC14 CC36 5G307 FA01 FA02 FB01 FC02 FC10 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeo Yamada 12-8, Goi-minamikaigan, Ichihara-shi, Chiba F-term in Nippon Soda Co., Ltd. Chiba Plant (reference) 4K029 AA09 BA50 BC09 CA05 DC05 DC09 GA01 5B087 AA09 CC14 CC36 5G307 FA01 FA02 FB01 FC02 FC10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】(100)面配向の柱状結晶の集合体から
なり,グレンサイズが30〜100nmの範囲であり、
且つ表面凹凸が5〜20nmであることを特徴とする透
明導電膜。
1. A (100) plane-oriented aggregate of columnar crystals having a grain size in the range of 30 to 100 nm,
A transparent conductive film having surface irregularities of 5 to 20 nm.
【請求項2】インジウム−スズの複合酸化物からなるこ
とを特徴とする請求項1に記載の透明導電膜。
2. The transparent conductive film according to claim 1, comprising an indium-tin composite oxide.
【請求項3】膜中のスズ含有量がインジウムに対して
0.05〜2.0重量%又は10〜40重量%であるこ
とを特徴とする請求項1又は2に記載の透明導電膜。
3. The transparent conductive film according to claim 1, wherein the tin content in the film is 0.05 to 2.0% by weight or 10 to 40% by weight based on indium.
【請求項4】膜厚が、10〜30nmの範囲であること
を特徴とする請求項1〜3のいずれかに記載の透明導電
膜。
4. The transparent conductive film according to claim 1, wherein the film thickness is in the range of 10 to 30 nm.
【請求項5】表面抵抗値が200〜2000Ω/□の範
囲であることを特徴とする請求項1〜4のいずれかに記
載の透明導電膜。
5. The transparent conductive film according to claim 1, wherein the surface resistance is in the range of 200 to 2000 Ω / □.
【請求項6】光直線透過率が80%以上であることを特
徴とする請求項1〜5のいずれかに記載の透明導電膜。
6. The transparent conductive film according to claim 1, having a linear light transmittance of 80% or more.
【請求項7】請求項1〜6のいずれかに記載の透明導電
膜を用いた接触抵抗膜式タッチパネル。
7. A contact resistive touch panel using the transparent conductive film according to claim 1.
JP2000220015A 2000-07-21 2000-07-21 Transparent conductive film Pending JP2002041243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220015A JP2002041243A (en) 2000-07-21 2000-07-21 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220015A JP2002041243A (en) 2000-07-21 2000-07-21 Transparent conductive film

Publications (1)

Publication Number Publication Date
JP2002041243A true JP2002041243A (en) 2002-02-08

Family

ID=18714696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220015A Pending JP2002041243A (en) 2000-07-21 2000-07-21 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP2002041243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004105055A1 (en) * 2003-05-26 2006-07-20 日本曹達株式会社 Translucent substrate with transparent conductive film
JP2006323567A (en) * 2005-05-18 2006-11-30 Kitagawa Ind Co Ltd Glass breakage detector
US8075948B2 (en) * 2004-06-03 2011-12-13 Nitto Denko Corporation Transparent conductive film
WO2013183564A1 (en) * 2012-06-07 2013-12-12 日東電工株式会社 Transparent conductive film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325415A (en) * 1991-04-26 1992-11-13 Tosoh Corp Indium hydroxide and oxide
JPH0790550A (en) * 1993-09-14 1995-04-04 Sharp Corp Production of transparent conductive film
JPH0864034A (en) * 1994-08-26 1996-03-08 Teijin Ltd Transparent conductive layered product
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JPH11335815A (en) * 1998-05-20 1999-12-07 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film and deposition apparatus
JP2000081952A (en) * 1998-07-06 2000-03-21 Nissha Printing Co Ltd Transparent conductive film for transparent touch panel, transparent touch panel and manufacture of transparent conductive film for transparent touch panel
JP2000111896A (en) * 1998-08-04 2000-04-21 Kanegafuchi Chem Ind Co Ltd Liquid crystal display with touch panel and touch panel
JP2000111931A (en) * 1998-09-30 2000-04-21 Nippon Sheet Glass Co Ltd Substrate with ito transparent conductive film and liquid crystal display element using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325415A (en) * 1991-04-26 1992-11-13 Tosoh Corp Indium hydroxide and oxide
JPH0790550A (en) * 1993-09-14 1995-04-04 Sharp Corp Production of transparent conductive film
JPH0864034A (en) * 1994-08-26 1996-03-08 Teijin Ltd Transparent conductive layered product
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JPH11335815A (en) * 1998-05-20 1999-12-07 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film and deposition apparatus
JP2000081952A (en) * 1998-07-06 2000-03-21 Nissha Printing Co Ltd Transparent conductive film for transparent touch panel, transparent touch panel and manufacture of transparent conductive film for transparent touch panel
JP2000111896A (en) * 1998-08-04 2000-04-21 Kanegafuchi Chem Ind Co Ltd Liquid crystal display with touch panel and touch panel
JP2000111931A (en) * 1998-09-30 2000-04-21 Nippon Sheet Glass Co Ltd Substrate with ito transparent conductive film and liquid crystal display element using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004105055A1 (en) * 2003-05-26 2006-07-20 日本曹達株式会社 Translucent substrate with transparent conductive film
EP1628310A4 (en) * 2003-05-26 2009-01-21 Nippon Soda Co Light-transmitting substrate with transparent electroconductive film
JP4538410B2 (en) * 2003-05-26 2010-09-08 日本曹達株式会社 Method for manufacturing translucent substrate with transparent conductive film
US8075948B2 (en) * 2004-06-03 2011-12-13 Nitto Denko Corporation Transparent conductive film
JP2006323567A (en) * 2005-05-18 2006-11-30 Kitagawa Ind Co Ltd Glass breakage detector
WO2013183564A1 (en) * 2012-06-07 2013-12-12 日東電工株式会社 Transparent conductive film

Similar Documents

Publication Publication Date Title
JP3447163B2 (en) Transparent conductive laminate
US9636877B2 (en) Method for production of transparent conductive film
JP5543907B2 (en) Transparent conductive film and method for producing the same
EP2450468B1 (en) Method for producing transparent conductive film
GB2094355A (en) Sputtered indium-tin oxide coating
CN103839607B (en) Transparent and electrically conductive film
EP1011040A1 (en) Transparent conductive film for transparent touch panel, transparent touch panel using transparent conductive film, and method of manufacturing transparent conductive film
TW503405B (en) Method of manufacturing substrate having transparent conductive film, substrate having transparent conductive film manufactured using the method, and touch panel using the substrate
JP3943617B2 (en) Transparent conductive laminate and touch panel using the same
JP2009295545A (en) Transparent conductive film and method for manufacturing the same
JP2003109434A (en) Transparent conductive film and touch panel
JP3589519B2 (en) Touch panel
JP2002041243A (en) Transparent conductive film
JPH0315536B2 (en)
JPH08249929A (en) Transparent electrode film for input panel of coordinate data input apparatus
JP2989886B2 (en) Analog touch panel
US8795786B2 (en) Transparent conductive substrate
JP4586263B2 (en) Substrate with conductive film and method for producing the same
JP2004318899A (en) Touch panel
JPH08132554A (en) Transparent conductive film
JP4188392B2 (en) Method for producing transparent conductive film for transparent touch panel
JP2000081952A (en) Transparent conductive film for transparent touch panel, transparent touch panel and manufacture of transparent conductive film for transparent touch panel
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
JPH04308612A (en) Transparent conductive membrane and manufacture thereof, transparent conductive film, and analog touch-panel
JPH06135742A (en) Method for giving high resistance to tin-doped indium oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110210