JP2002030380A - High tensile strength steel excellent in welded joint toughness and its production method - Google Patents

High tensile strength steel excellent in welded joint toughness and its production method

Info

Publication number
JP2002030380A
JP2002030380A JP2000211116A JP2000211116A JP2002030380A JP 2002030380 A JP2002030380 A JP 2002030380A JP 2000211116 A JP2000211116 A JP 2000211116A JP 2000211116 A JP2000211116 A JP 2000211116A JP 2002030380 A JP2002030380 A JP 2002030380A
Authority
JP
Japan
Prior art keywords
steel
toughness
strength steel
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000211116A
Other languages
Japanese (ja)
Inventor
Tomohiko Yamamoto
智彦 山本
Naoki Saito
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000211116A priority Critical patent/JP2002030380A/en
Publication of JP2002030380A publication Critical patent/JP2002030380A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high tensile strength steel having excellent toughness in the heat affected zone by welding of heat input in a wide range from small- medium heat input to large heat input and to provide its production method. SOLUTION: This high tensile strength steel has a composition containing, by weight, <=0.05% C, 0.01 to 0.5% Si, 0.2 to 2.0% Mn, 0.001 to 0.03% Ti, 0.0005 to 0.010% Mg, <=0.01% Al, <=0.02% P and <=0.010% S and the balance Fe with inevitable impurities, in which the ratio of Ti to N satisfies 2.0<=Ti/N<=3.5, and in which Ti-Mg containing oxide and one or more kinds of TiN precipitated with the oxide as the nucleus have a grain size of 0.005 to 0.2 μm and the dispersedly precipitated by 1.0×105 to 1.0×107 pieces/mm2, and in the method for producing the high tensile strength steel, steel having the above composition is heated to a temperature of the Ac3 point to 1,300 deg.C, is hot-rolled at Ac1+50 deg.C and is subsequently subjected to air cooling or accelerated cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は造船、建築、土木、
橋梁、建設機械、産業機械、圧力容器、海洋構造物、ラ
インパイプなどの分野に用いられる溶接次手靭性の優れ
た溶接構造用の高張力鋼に関するものである。特に、T
S570MPa以上の母材強度を有する鋼について有効
で、鋼としては、厚板、薄板、鋼管、形鋼、条鋼、棒鋼
のいずれでもかまわない。
The present invention relates to shipbuilding, construction, civil engineering,
The present invention relates to a high-strength steel for a welded structure having excellent second-hand toughness used in fields such as bridges, construction machinery, industrial machinery, pressure vessels, marine structures, and line pipes. In particular, T
This is effective for steel having a base material strength of S570 MPa or more, and the steel may be any of a thick plate, a thin plate, a steel pipe, a shaped steel, a section steel, and a steel bar.

【0002】[0002]

【従来の技術】造船、建築、橋梁など溶接構造物の脆性
破壊防止の観点から、使用される鋼材の溶接熱影響部
(以下、HAZと略す)靱性の向上に関する研究が数多
く報告されてきた。更に、近年では、溶接施工能率の向
上のために、大入熱溶接(〜約250kJ/cm)への要求が
増大している。
2. Description of the Related Art From the viewpoint of preventing brittle fracture of welded structures such as ships, buildings, bridges, etc., many studies have been reported on the improvement of the weld heat affected zone (hereinafter abbreviated as HAZ) toughness of steel materials used. Furthermore, in recent years, demands for large heat input welding (up to about 250 kJ / cm) have been increasing in order to improve welding work efficiency.

【0003】大入熱溶接継手部のHAZ靭性の低下は、
ミクロ組織の結晶粒の粗大化が影響していることが知ら
れており、靭性改善には結晶粒(特に旧オーステナイト
粒:以下、旧γ粒と略す)の粗大化の抑制が効果的であ
る。鋼板のHAZの結晶粒の粗大化に対しては、例え
ば、特公昭55−26164号公報や特開昭52−17
314号公報に記載されているように、微細なTiN
や、ZrNなどをいずれも鋼中に微細分散させること
で、それらのピニング効果を利用して旧γ粒の粗大化を
防止する対策が開示されている。
[0003] The decrease in HAZ toughness of a large heat input welded joint is as follows.
It is known that the coarsening of the crystal grains of the microstructure has an influence, and it is effective to suppress the coarsening of the crystal grains (particularly, old austenite grains: hereinafter, abbreviated as old γ grains) to improve toughness. . For example, Japanese Patent Publication No. 55-26164 and Japanese Patent Laid-Open Publication No.
As described in JP-A-314, fine TiN
Also, there is disclosed a measure for dispersing ZrN or the like in steel finely to prevent coarsening of old γ grains by utilizing their pinning effect.

【0004】しかしながら、このような窒化物は比較的
入熱量の低い溶接では溶解せずにピニングの効果を保持
し、旧γ粒の微細化に寄与するが、1400℃以上の高
温での滞留時間が長い大入熱溶接熱では旧γ粒のピニン
グに寄与する微細な窒化物が容易に溶解し、消滅してし
まう問題点がある。
[0004] However, such a nitride does not melt in welding with a relatively low heat input and retains the effect of pinning, contributing to the refinement of old γ grains, but the residence time at a high temperature of 1400 ° C or more is high. However, there is a problem that the fine nitride that contributes to the pinning of the old γ grains easily dissolves and disappears with the large heat input welding heat having a long heat input.

【0005】一方、近年HAZ靱性の更なる向上を目的
として、溶鋼中で生成する酸化物を用いる技術が開示さ
れている。例えば、特開昭59−190313号公報に
記載されているように、溶鋼をTiあるいはTi合金で
脱酸し、次いでAl、Mgなどを添加することを特徴と
する溶接性の優れた鋼材の製造方法が開示されている。
これは、Ti酸化物がフェライトの変態核として作用
し、フェライト分率を増加させるという効果によるもの
で、従来、窒化物などの析出物によるピニング効果と異
なった方法でのHAZ部の靱性向上を図った。その後、
同種の発明として、特開昭61−79745号公報、特
開平5−43977号公報などでは、粒内変態核として
の酸化物の個数の増加させる工夫をするなど様々な発明
が開示されている。
On the other hand, in recent years, for the purpose of further improving the HAZ toughness, a technique using an oxide generated in molten steel has been disclosed. For example, as described in JP-A-59-190313, production of a steel material having excellent weldability characterized by deoxidizing molten steel with Ti or a Ti alloy and then adding Al, Mg and the like. A method is disclosed.
This is due to the effect that the Ti oxide acts as a transformation nucleus of ferrite and increases the ferrite fraction. Conventionally, the improvement of the toughness of the HAZ portion by a method different from the pinning effect by a precipitate such as a nitride is considered. planned. afterwards,
As similar inventions, JP-A-61-79745, JP-A-5-43977 and the like disclose various inventions such as devising to increase the number of oxides as intragranular transformation nuclei.

【0006】特に、特開昭59−190313号公報に
記載されているように、これらの発明の骨子は、「γ→
α変態時のフェライト核生成、即ちフェライト組織の微
細化に利用可の含Ti酸化物を均一に微細分散させる・
・」ことであり、先に述べたような窒化物などによりピ
ニング効果を図るものではなく、冷却過程で生じるγ→
α変態時のフェライト変態を促進することで、粗大な脆
化組織の生成を抑制することを図り、組織の微細化を図
るのものである。これらの靱性改善方法すべて、粗大な
組織の中に、粒内でのフェライトを促進させるために、
変態核として、酸化物を利用するものである。
[0006] In particular, as described in JP-A-59-190313, the gist of these inventions is "γ →
Ferrite nucleation during α transformation, that is, fine and uniform dispersion of Ti-containing oxide that can be used to refine the ferrite structure.
・ ”Means that the pinning effect is not intended by the nitride or the like as described above.
By promoting ferrite transformation at the time of α transformation, formation of a coarse embrittlement structure is suppressed, and the structure is refined. All of these toughness improvement methods, in order to promote ferrite in the grain in a coarse structure,
An oxide is used as a transformation nucleus.

【0007】しかしながら、溶接構造物の大型化、軽量
化から、高張力鋼の要求が高まりつつあり、合金元素添
加量が増加する傾向にある。その場合、HAZでの焼入
れ性の増加から、HAZの組織がマルテンサイトやベイ
ナイトとなり従来のフェライト変態を利用するHAZ靱
性の向上対策は、有効ではなくなってきつつある。
However, the demand for high-strength steel is increasing due to the increase in the size and weight of the welded structure, and the amount of alloying elements added tends to increase. In that case, due to an increase in hardenability in the HAZ, the structure of the HAZ becomes martensite or bainite, and conventional measures for improving the HAZ toughness using ferrite transformation are becoming ineffective.

【0008】また、従来は母材強度確保の容易さからC
が0.05%を超える鋼種が一般的に利用されてきてお
り、このような鋼種では焼入れ・焼戻しあるいは加工熱
処理(TMCP)による強度靭性の調整が実施されてい
るが、溶接時の予熱の回避、HAZ靭性の向上を考える
上で低C化は極めて有効かつ不可欠な技術となってきて
いる。例えば、特開平8−144019等に記載されて
いる極低C鋼では、広い範囲の冷却速度でベイナイト単
相組織となり、材質ばらつきを抑制する技術が開示され
ているが、このような冷却速度による組織変化が敏感で
ないベイナイト鋼に対しては、継手部の組織についても
フェライトやマルテンサイトではなく、ベイニティック
な組織となり、従来のフェライト変態を利用するHAZ
靱性の向上対策は利用できない。
[0008] Conventionally, since the strength of the base material is easily secured, C
In general, steel grades with a content exceeding 0.05% have been used, and in such steel grades, the strength and toughness are adjusted by quenching / tempering or working heat treatment (TMCP), but avoidance of preheating during welding In view of improvement in HAZ toughness, reduction of C has become an extremely effective and indispensable technique. For example, in the ultra-low C steel described in Japanese Patent Application Laid-Open No. H8-144019 and the like, a technique of forming a bainite single-phase structure at a wide range of cooling rate and suppressing material variation is disclosed. For bainite steels whose structure change is not sensitive, the joint structure becomes bainitic instead of ferrite or martensite, and the HAZ using the conventional ferrite transformation is used.
No measures to improve toughness are available.

【0009】以上のような観点から、低Cのベイニティ
ックな組織を主体とする鋼材において、母材靭性および
HAZ靱性の向上を図るためには、大入熱溶接時での旧
γ粒のピニング効果が期待できるような、高温でも溶解
しにくい酸化物・窒化物粒子などを鋼中に微細に分散で
きるような技術の開発が望まれる。
In view of the above, in order to improve the base metal toughness and the HAZ toughness of a steel material mainly composed of a low C bainitic structure, it is necessary to reduce the former γ grains during large heat input welding. It is desired to develop a technology capable of finely dispersing oxide / nitride particles and the like that are hardly dissolved even at a high temperature in a steel so that a pinning effect can be expected.

【0010】酸化物の導入方法として、鋼の溶製過程
で、Tiなどの脱酸元素を単独に添加する方法等がある
が、多くの場合、溶鋼保持中に酸化物の凝集合体がおこ
り粗大な酸化物が生成し、かえって鋼の清浄度を損ない
靱性を低下させてしまう。そこで、これらの酸化物の微
細化を図るために、先の例に述べたごとく、複合脱酸法
など様々な工夫がなされている。しかしながら、従来知
られている方法では、大入熱溶接熱時の結晶粒の粗大化
を阻止しうるほどの、微細な酸化物を分散させることは
できない。
As a method for introducing oxides, there is a method of adding a deoxidizing element such as Ti alone in the process of smelting steel. However, in many cases, agglomeration and coalescence of oxides occur during the holding of molten steel and coarse particles are formed. A large oxide is generated, which impairs the cleanliness of the steel and lowers the toughness. Therefore, various attempts have been made to reduce the size of these oxides, such as a complex deoxidation method, as described in the previous example. However, according to the conventionally known method, it is not possible to disperse a fine oxide enough to prevent coarsening of crystal grains during large heat input welding heat.

【0011】[0011]

【発明が解決しようとする課題】そこで、本発明者ら
は、C量の極めて低いベイニティックな組織を主体とす
る鋼材に対して、従来の複合脱酸方法を改良し、従来以
上に酸化物あるいは窒化物を微細かつ均一に分散させる
ことで、母材の靭性および大入熱溶接のHAZ靭性の優
れた高張力鋼の製造技術の確立を課題とした。
Therefore, the present inventors have improved the conventional composite deoxidation method for steel mainly composed of a bainitic structure having an extremely low C content, and have oxidized the steel more than before. It is an object of the present invention to establish a technique for manufacturing a high-strength steel excellent in toughness of a base material and HAZ toughness of large heat input welding by dispersing a material or nitride finely and uniformly.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、以下の
通りである。重量%でC:0.05%以下、Si:0.
01〜0.5%、Mn:0.2〜2.0%、Ti:0.
001〜0.03%、Mg:0.0005〜0.010
%、Al:0.01%以下、P:0.02%以下、S:
0.010%以下を含有し、かつTiとNの比が2.0
≦Ti/N≦3.5であり、Ca:0.006%以下、
REM:0.02%以下、Cu:0.05〜1.5%、
Ni:0.05〜2.0%、Cr:0.01〜1.0
%、Mo:0.01〜0.5%、Nb:0.001〜
0.15%、V:0.001〜0.1%、B:0.00
01〜0.0050%の1種または2種以上を含有し、
残部がFeおよび不可避的不純物からなり、Ti、Mg
含有の酸化物およびその酸化物を核として析出するTi
Nの一種もしくは二種以上が、粒子径0.005〜0.
2μmの大きさで1.0×105 〜1.0×107 個/
mm2 が分散析出していることを特徴とする溶接継手靭
性の優れた高張力鋼である。その製造方法は、上記組成
の鋼塊およびスラブをAc3点〜1300℃の温度に再
加熱し、Ac1点+50℃以上で熱間圧延を完了し、圧
延後は、空冷、加速冷却、もしくは450℃以上700
℃未満の所定の温度まで加速冷却した後、当該温度域を
空冷するか、当該温度域で一定時間保持することを特徴
とする。
The gist of the present invention is as follows. C: 0.05% or less by weight%, Si: 0.
01-0.5%, Mn: 0.2-2.0%, Ti: 0.
001-0.03%, Mg: 0.0005-0.010
%, Al: 0.01% or less, P: 0.02% or less, S:
0.010% or less and the ratio of Ti to N is 2.0
≦ Ti / N ≦ 3.5, Ca: 0.006% or less,
REM: 0.02% or less, Cu: 0.05 to 1.5%,
Ni: 0.05 to 2.0%, Cr: 0.01 to 1.0
%, Mo: 0.01 to 0.5%, Nb: 0.001 to
0.15%, V: 0.001 to 0.1%, B: 0.00
Containing 1 to 0.0050% of one or more kinds,
The balance consists of Fe and unavoidable impurities, Ti, Mg
-Containing oxides and Ti precipitated with the oxides as nuclei
One or two or more of N have a particle diameter of 0.005 to 0.5.
1.0 × 10 5 to 1.0 × 10 7 pieces / size of 2 μm /
This is a high-strength steel having excellent weld joint toughness, characterized in that mm 2 is dispersed and precipitated. The manufacturing method is such that the steel ingot and the slab having the above composition are reheated to a temperature of Ac 3 point to 1300 ° C., hot rolling is completed at Ac 1 point + 50 ° C. or higher, and after rolling, air cooling, accelerated cooling, or 450 ° C. More than 700
After accelerated cooling to a predetermined temperature of less than ° C., the temperature range is air-cooled or maintained in the temperature range for a certain time.

【0013】[0013]

【発明の実施の形態】Mgは、従来から強脱酸剤、脱硫
剤として鋼の清浄度向上により、HAZ靭性を向上させ
ることが知られている。更に、酸化物の分散を制御して
HAZ靭性を向上させる技術として、特開昭59−19
0313号公報に記載されているTi添加後、Mgを添
加する複合添加の技術が開示されている。しかしながら
その技術の目的は、先に引用したように、Mg添加によ
り粒内フェライトの変態核であるTi酸化物の増加を促
進することであり、酸化物をより微細に分散析出させて
ピニングによる結晶粒の細粒化を達成するものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Mg has been known as a strong deoxidizing agent and a desulfurizing agent to improve HAZ toughness by improving the cleanliness of steel. Further, as a technique for improving the HAZ toughness by controlling the dispersion of oxides, JP-A-59-19
No. 0313 discloses a technique of composite addition in which Mg is added after Ti addition. However, the purpose of the technique, as quoted above, is to promote the increase of Ti oxide, which is a transformation nucleus of intragranular ferrite, by adding Mg, and to disperse and precipitate the oxide more finely, and crystallize by pinning. It does not achieve grain refinement.

【0014】本発明者らは、Mgの有する強脱酸剤、脱
硫剤としての作用に着目して、Alよりも凝集粗大化が
起こりにくい性質を利用して、高強度・高靭性を達成し
やすい焼戻しマルテンサイト、ベイナイト、ベイニティ
ック・フェライト等のミクロ組織(以下、ベイニティッ
クな組織と略す)主体のTi添加型の高張力鋼において
も、製鋼工程での脱酸材の添加順序および量を制御する
ことで、酸化物、窒化物の微細分散析出を期待できる余
地があると考えた。
The present inventors have focused on the action of Mg as a strong deoxidizing agent and desulfurizing agent, and have achieved high strength and high toughness by utilizing the property that aggregation and coarsening are less likely to occur than Al. The order of addition of the deoxidizing agent in the steel making process is high even for a Ti-added high-strength steel mainly composed of a microstructure (hereinafter abbreviated as a bainitic structure) such as tempered martensite, bainite, bainitic ferrite, etc. By controlling the amount, it is thought that there is room for expecting fine dispersion precipitation of oxides and nitrides.

【0015】本発明者らは、低Cのベイニティック組織
を主体とする鋼材に対して、Ti添加で弱脱酸した溶鋼
中にMgを添加した時の酸化物、窒化物の状態を系統的
に調べた。その結果、Ti脱酸後、Mgをある条件で添
加することで、TiO、MgOあるいは(Ti、Mg)
O−TiN複合粒子の量が著しく増大し、ベイニティッ
クな組織主体の鋼材においてピニング効果により旧γ粒
が細粒化し、その結果、脆性破壊の破面単位となってい
る同じ方位のベイナイト組織単位(パケット)を微細化
でき、母材靭性が向上し、更にHAZ靭性も向上するこ
とを明らかにした。
[0015] The present inventors systematically compare the state of oxides and nitrides when Mg is added to molten steel that has been weakly deoxidized by adding Ti to a steel material mainly composed of a low C bainitic structure. I checked. As a result, by adding Mg under certain conditions after Ti deoxidation, TiO, MgO or (Ti, Mg)
The amount of the O-TiN composite particles is remarkably increased, and in the steel material mainly composed of bainitic structure, the old γ grains are refined by the pinning effect, and as a result, the bainite structure having the same orientation as the fracture surface unit of the brittle fracture. It has been clarified that the unit (packet) can be miniaturized, the base material toughness is improved, and the HAZ toughness is also improved.

【0016】この結晶粒が微細化した鋼材を電子顕微鏡
で観察した結果、0.2μm以下のMgO粒子あるいは
MgO−TiN複合粒子が多数存在していることが分か
った。更に、超高分解能電子顕微鏡の観察から、MgO
−TiN粒子間は結晶方位学的に良好な平衡関係をとっ
ていることが明らかとなった。このことはMgOがTi
Nの優先析出サイトとして作用しているものと推定さ
れ、この析出サイトが多数存在するために、TiNやそ
れらを元に析出される硫化物により結晶粒のピニング効
果が増加するものと考えられる。
Observation of the steel material in which the crystal grains were refined by an electron microscope revealed that a large number of MgO particles or MgO-TiN composite particles of 0.2 μm or less were present. Furthermore, from observation with an ultra-high resolution electron microscope,
It has been clarified that a favorable equilibrium relationship is established between the TiN particles and the crystal orientation. This means that MgO becomes Ti
It is presumed that it acts as a preferential precipitation site for N, and it is considered that the presence of many such precipitation sites increases the pinning effect of crystal grains by TiN and sulfide precipitated based on them.

【0017】更に、高温で滞留時間の長い大入熱溶接に
おいてはTiN粒子の溶解が生じ、それ単独では旧γ粒
のピニング効果は失われてしまうが、本発明では鋼中に
多数のTiO、MgO、MgO−TiN粒子が存在して
いることで、TiN粒子が溶解したとしても、依然とし
て微細なTiO、MgO粒子が存在するために高温でも
従来鋼以上に優れたピニング効果を発揮できる。
Furthermore, in the case of large heat input welding at a high temperature and a long residence time, TiN particles are dissolved, and the pinning effect of the former γ grains is lost by itself, but in the present invention, a large number of TiO, The presence of the MgO and MgO-TiN particles enables the pinning effect to be more excellent than that of conventional steel even at a high temperature even when the TiN particles are dissolved, because the fine TiO and MgO particles still exist.

【0018】すなわち、本発明の特徴は、TiNなどの
窒化物を利用し結晶粒のピニングを図った従来鋼に比
べ、MgOを鋼中に微細分散させることでTiNと結晶
学的に良好な平衡関係を利用して、TiNの析出核を提
供し、TiNの個数の増加を図るとともに、TiNが溶
解してしまい、従来靭性改善効果が失われてしまった高
温域でも、MgO単独の効果により、従来にない優れた
結晶粒系の微細化効果を発揮できることである。
That is, the feature of the present invention is that MgO is finely dispersed in steel and crystallographically excellent equilibrium with TiN as compared with conventional steel in which crystal grains are pinned using nitrides such as TiN. By utilizing the relationship to provide the precipitation nuclei of TiN, to increase the number of TiN, and to dissolve the TiN, even in a high temperature region where the effect of improving the toughness has been lost, the effect of MgO alone, It is to be able to exhibit an unprecedented excellent effect of crystal grain refinement.

【0019】本発明では、Ti、Mg含有の酸化物およ
びその酸化物を核として析出するTiNとの複合析出物
の個々の大きさを0.005〜0.2μmと制限した。
これは粒子径が0.005μm未満の析出物では旧γ粒
の細粒化に有効な十分なピニング効果が得られず、ま
た、0.2μmを超える粒子径の析出物ではその粒子自
体が脆性破壊発生の起点となって、靭性低下の原因とな
るからである。さらに、平均粒子間隔が5μm超で分散
していると、分散粒子数が減少し、全体としての旧γ粒
のピニング力が低下して十分な細粒化効果が得られない
ため、平均粒子間隔が5μm以下で分散していることを
限定した。
In the present invention, the size of each of the Ti and Mg-containing oxides and the composite precipitates with TiN deposited using the oxides as nuclei is limited to 0.005 to 0.2 μm.
This is because a precipitate having a particle diameter of less than 0.005 μm cannot provide a sufficient pinning effect effective for refining old γ grains, and a precipitate having a particle diameter of more than 0.2 μm is brittle. This is because it becomes a starting point of fracture and causes a decrease in toughness. Further, when the average particle spacing is more than 5 μm, the number of dispersed particles decreases, and the pinning force of the old γ grains as a whole decreases, and a sufficient grain-reducing effect cannot be obtained. Are dispersed at 5 μm or less.

【0020】粒子個数の測定方法は、鋼材より抽出レプ
リカを作製し、特性X線検出器付きの透過型電子顕微鏡
で0.001〜0.2μm以上の大きさの粒子の個数を
少なくとも1000μm2 以上の面積について測定し、
単位面積当たりの個数に換算する。例えば、2万倍の倍
率にて1視野を100mm×80mmとして観察した場
合、1視野当たりの観察面積は20μm2 であるから少
なくとも50視野について観察を行う。この時の0.0
05〜0.2μm以上の粒子の個数が200個であれ
ば、粒子個数は1mm2 当たり2×105 個と換算でき
る。
The method of measuring the number of grains to prepare a extracted replica from steel, at least 1000 .mu.m 2 or more the number of particles bigger than 0.001~0.2μm a transmission electron microscope with a characteristic X-ray detector Measure the area of
Convert to the number per unit area. For example, when one field of view is observed at 100,000 × 80 mm at a magnification of 20,000 times, the observation area per one field of view is 20 μm 2 , so that at least 50 fields of view are observed. 0.0 at this time
If the number of particles having a size of from 0.05 to 0.2 μm is 200, the number of particles can be converted to 2 × 10 5 per 1 mm 2 .

【0021】次に個数を測定した粒子のうち、少なくと
も50個以上について、TiO、MgO、(Mg、T
i)−TiNの存在割合を測定し、先に求めた粒子個数
にこの存在割合をかけることで、TiO、MgO、(M
g、Ti)O−TiNの個数を求める。
Next, TiO, MgO, (Mg, T
i) The existence ratio of -TiN is measured, and the existence ratio is multiplied by the number of particles obtained in advance to obtain TiO, MgO, (M
g, Ti) Obtain the number of O-TiN.

【0022】本鋼に用いたTi、Mgの添加方法である
が、最初にSi、Mnを添加した後、まずTiを添加し
て溶鋼中の酸素量を調整し、Mgを添加する。Tiを先
に添加するのは、溶鋼中の酸素量の調節と共に先にでき
るTi酸化物をMgで還元するためである。最適なMg
添加量は、Ti添加後、溶鋼中に存在する酸素量などに
依存するが、実験では、その時の酸素濃度はTi添加量
に依存し、TiとMgの添加量を適正な範囲で制御すれ
ば良い。なお、Mgの添加方法については、通常の大気
圧下で溶製する場合にはMgとNiやSiなどからなる
合金として、比較的比重の重い合金による添加が望まし
い。
The method of adding Ti and Mg used in the present steel is as follows. First, after adding Si and Mn, first, Ti is added to adjust the amount of oxygen in the molten steel, and then Mg is added. Ti is added first in order to reduce the amount of oxygen in the molten steel and to reduce the previously formed Ti oxide with Mg. Optimal Mg
The amount of addition depends on the amount of oxygen present in the molten steel after the addition of Ti, but in experiments, the oxygen concentration at that time depends on the amount of Ti added, and if the amounts of Ti and Mg are controlled within an appropriate range. good. Regarding the method of adding Mg, when melted under normal atmospheric pressure, it is desirable to add an alloy having a relatively high specific gravity as an alloy composed of Mg, Ni, and Si.

【0023】以下、本発明の成分の限定理由について述
べる。なお、以下の文中での%は全て重量%である。 C:Cは鋼の母材強度を向上させるが、溶接性の観点か
らは溶接熱影響部の硬化を抑制する上で低いことが望ま
しい。また0.05%以下の低Cとすることで、マルテ
ンサイトやパーライトといった硬質相の生成を抑制し、
ベイニティックな組織を主体とすることで安定した強度
・靭性が得られるため、その上限を0.05%とした。
The reasons for limiting the components of the present invention are described below. All percentages in the following text are percentages by weight. C: C enhances the strength of the base metal of the steel, but from the viewpoint of weldability, it is desirable that C is low to suppress the hardening of the weld heat affected zone. Further, by setting the low C of 0.05% or less, the formation of a hard phase such as martensite or pearlite is suppressed,
Since stable strength and toughness can be obtained by mainly using a bainitic structure, the upper limit is set to 0.05%.

【0024】Si:Siは鋼材の強化のみならず、製鋼
上脱酸元素として必要な元素であり、鋼中に0.01%
以上の添加が必要であるが、0.5%を超えると島状マ
ルテンサイト形成を助長してHAZ靭性を著しく低下さ
せるので、Siの範囲は0.01%〜0.5%とする。
Si: Si is an element necessary not only for strengthening steel materials but also as a deoxidizing element in steel making.
The above addition is necessary, but if it exceeds 0.5%, the formation of island-like martensite is promoted and the HAZ toughness is remarkably reduced. Therefore, the range of Si is set to 0.01% to 0.5%.

【0025】Mn:Mnは母材の強度および靭性の確保
に必要な元素であるが、2.0%を超えるとHAZ靭性
を著しく阻害するが、逆に0.2%未満では、母材の強
度確保が困難になるため、その範囲を0.2〜2.0%
とする。
Mn: Mn is an element necessary for securing the strength and toughness of the base material. If it exceeds 2.0%, it significantly impairs the HAZ toughness. Since it is difficult to secure the strength, the range is 0.2 to 2.0%.
And

【0026】Al:Alは通常脱酸材として添加される
が、本発明においては、0.01%を超えて添加される
とMgの添加の効果を阻害するために、Alの範囲は
0.01%以下とする。
Al: Al is usually added as a deoxidizer, but in the present invention, if added in an amount exceeding 0.01%, the effect of the addition of Mg is impaired. 01% or less.

【0027】Ti:Tiは、脱酸材として、更には酸化
物、窒化物形成元素として結晶粒の細粒化効果の期待で
きる元素であるが、多量の添加は炭化物の形成による靭
性の低下をもたらすために、その上限を0.03%にす
る必要があるが、所定の効果を得るためには0.001
%以上の添加が必要である。したがって、Tiの範囲を
0.001〜0.03%とする。
Ti: Ti is an element which can be expected to have an effect of refining crystal grains as a deoxidizing material and further as an element forming oxides and nitrides. In order to achieve this, it is necessary to set the upper limit to 0.03%.
% Or more is required. Therefore, the range of Ti is set to 0.001 to 0.03%.

【0028】Mg:Mgは主に脱酸材として添加される
が、0.010%を超えて添加されると、粗大酸化物の
生成により母材およびHAZの靭性が低下する。しかし
ながら、0.0005%未満の添加では、前述のHAZ
靭性の改善に必要な旧γ粒微細化のためのピニング粒子
として働かないために、その添加を0.0005〜0.
010%と限定する。
Mg: Mg is mainly added as a deoxidizer, but if it exceeds 0.010%, the toughness of the base material and the HAZ decreases due to the formation of coarse oxides. However, if less than 0.0005% is added, the aforementioned HAZ
Since it does not work as pinning particles for refining old γ grains required for improvement of toughness, its addition is 0.0005 to 0.5.
010%.

【0029】P:Pは鋼の靭性に影響を与える元素であ
り、0.02%を超えて含有すると鋼材の母材およびH
AZの靭性を著しく阻害するので、その含有される上限
を0.02%とする。
P: P is an element that affects the toughness of steel, and if it is contained in excess of 0.02%, the base material of steel and H
Since the toughness of AZ is significantly impaired, the upper limit of the content is set to 0.02%.

【0030】S:Sは0.010%を超えて含有すると
鋼材の母材およびHAZの靭性を著しく阻害するため、
その上限を0.010%とした。本発明においてはNの
範囲は記述しないが、TiNの析出を考慮して、Tiと
の比(Ti/N)が2.0以上3.5以下であることを
限定する。
S: If S exceeds 0.010%, the toughness of the steel base material and HAZ is significantly impaired.
The upper limit was set to 0.010%. Although the range of N is not described in the present invention, the ratio with Ti (Ti / N) is limited to 2.0 or more and 3.5 or less in consideration of TiN precipitation.

【0031】Ca:Caは硫化物系介在物を形態制御し
てHAZ靭性を向上するのに有効であるが、0.006
%を超えて添加すると鋼中介在物を形成して鋼の性質を
圧下させるため、0.006%を上限とした。
Ca: Ca is effective for improving the HAZ toughness by controlling the form of the sulfide-based inclusions.
%, The upper limit is 0.006% because inclusions in steel are formed to reduce the properties of steel.

【0032】REM:REMはオキシサルファイドとな
って、オーステナイト粒の粒成長を抑制してHAZ靭性
の向上に寄与するが、0.02%を超えて添加すると鋼
の清浄度を損なうために、その上限を0.02%とし
た。
REM: REM becomes oxysulfide and suppresses grain growth of austenite grains and contributes to improvement of HAZ toughness. However, if added in excess of 0.02%, the cleanliness of steel is impaired. The upper limit was made 0.02%.

【0033】Cu:Cuは靭性を低下させずに、強度を
上昇できる元素であるが、その効果を得るためには、
0.05%以上の添加が必要であり、1.5%を超える
と鋼片加熱時や溶接時に熱間での割れが生じ易くなる。
したがって、その含有量を0.05〜1.5%とする。
Cu: Cu is an element that can increase the strength without lowering the toughness.
Addition of 0.05% or more is necessary. If it exceeds 1.5%, hot cracks are likely to occur at the time of heating the slab or welding.
Therefore, the content is set to 0.05 to 1.5%.

【0034】Ni:Niは靭性および強度の改善に有効
な元素である。その効果を得るためには、0.05%以
上の添加が必要であり、多量に入れるを高価となる上、
焼入れ性を増加させて溶接性が低下するため、その上限
を2.0%とした。
Ni: Ni is an element effective for improving toughness and strength. In order to obtain the effect, addition of 0.05% or more is necessary.
Since the hardenability increases and the weldability decreases, the upper limit is set to 2.0%.

【0035】Cr:Crは析出強化により鋼材の強度を
上昇させるために、0.01%以上の添加が有効である
が、多量に添加すると焼入れ性が増加し、靭性が低下す
る。したがって、その上限を1.0%とする。
Cr: Cr is effectively added in an amount of 0.01% or more to increase the strength of the steel material by precipitation strengthening. However, if added in a large amount, the hardenability increases and the toughness decreases. Therefore, the upper limit is set to 1.0%.

【0036】Mo:Moは0.01%以上の添加で、大
幅に焼入れ性を向上させると同時に、炭窒化物を形成し
て強度が増加に有効である。しかしながら、0.5%を
超えた多量の添加は必要以上の強化とともに、島状マル
テンサイトを生成しやすくして、靭性の低下をもたらす
ため、その範囲を0.01〜0.5%とする。
Mo: When Mo is added in an amount of 0.01% or more, the hardenability is greatly improved, and at the same time, the formation of carbonitride is effective in increasing the strength. However, the addition of a large amount exceeding 0.5%, together with unnecessarily strengthening, facilitates the formation of island-like martensite and lowers the toughness, so that the range is 0.01 to 0.5%. .

【0037】Nb:Nbも炭窒化物を形成し、強度の向
上に効果のある元素であるが、0.001%未満の添加
では、その効果が無く、0.15%を超える添加では、
逆に靭性の低下を招くために、その範囲を、0.001
〜0.15%以下とする。
Nb: Nb also forms a carbonitride and is an element effective in improving the strength. However, the addition of less than 0.001% has no effect, and the addition of more than 0.15%
On the other hand, in order to cause a decrease in toughness, the range is set to 0.001.
To 0.15% or less.

【0038】V:Vは炭窒化物を形成し、強度の向上に
効果のある元素であるが、0.001%未満の添加で
は、その効果が無く、0.1%を超える添加では、逆に
靭性の低下を招くために、その範囲を、0.001〜
0.1%以下とする。
V: V is an element that forms carbonitrides and is effective in improving the strength. However, when V is added less than 0.001%, the effect is not obtained. To reduce the toughness, the range is 0.001 to
0.1% or less.

【0039】B:Bは一般に、固溶すると焼入れ性を増
加させるが、またBNとして固溶Nを低下させ、HAZ
靭性を向上させる元素である。したがって、その効果を
利用できる0.0001%以上の添加し、靭性の低下を
招く過剰の添加を避ける意味で、その上限を0.005
0%とする。上述した基本組成に成分調整を行うことに
より、本発明鋼材は優れた大入熱溶接HAZ靭性を示す
が、母材の特性と生産性の観点から、次に示す製造工程
が望ましい。
B: B generally increases the hardenability when dissolved, but also decreases the dissolved N as BN to form HAZ.
It is an element that improves toughness. Therefore, the upper limit is 0.005% in order to avoid the addition of 0.0001% or more that can utilize the effect and to avoid the excessive addition that causes the decrease in toughness.
0%. The steel material of the present invention exhibits excellent large heat input welding HAZ toughness by adjusting the components to the basic composition described above. However, from the viewpoint of the properties and productivity of the base material, the following manufacturing process is desirable.

【0040】すなわち、上述した基本組成に成分調整し
た鋼塊あるいはスラブについて、組織をオーステナイト
化し、かつ析出物を溶解して各合金元素を一旦固溶させ
るためにAc3点〜1300℃の温度に再加熱した後、
Ac1点+50℃以上のオーステナイト域で熱間圧延を
完了する。圧延後、引き続いて、空冷あるいは加速冷却
を行うか、圧延後、450℃以上700℃未満の所定の
温度まで一定速度で加速冷却し、当該温度域を空冷、も
しくは当該温度域で一定時間保持保持することが、母材
特性および生産性の上で推奨される。圧延後の冷却につ
いては、本発明鋼が冷却速度への依存が小さく、均一な
ベイニティックな組織を呈することから、空冷あるいは
加速冷却のいずれでも構わない。また、冷却過程で45
0℃以上700℃未満の温度域で、空冷もしくは一定時
間保持することで加工歪みの緩和、島状マルテンサイト
の分解、NbやVの炭窒化物析出による析出強化を図る
ことで、より高い強度・靭性バランスを得ることができ
る。
That is, in the steel ingot or slab whose components have been adjusted to the above-mentioned basic composition, the structure is austenitized, the precipitate is dissolved, and the alloy elements are once dissolved to form a solid solution. After heating,
Hot rolling is completed in the austenitic region of Ac1 point + 50 ° C or higher. After rolling, air cooling or accelerated cooling is performed subsequently, or after rolling, accelerated cooling is performed at a constant rate to a predetermined temperature of 450 ° C. or more and less than 700 ° C., and the temperature range is air-cooled or held for a predetermined time in the temperature range. Is recommended in terms of base material properties and productivity. Regarding cooling after rolling, air cooling or accelerated cooling may be used since the steel of the present invention has a small dependence on the cooling rate and exhibits a uniform bainitic structure. In addition, 45
Higher strength by air cooling or holding for a certain period of time in a temperature range of 0 ° C. or more and less than 700 ° C. to alleviate processing strain, decompose island-like martensite, and strengthen precipitation by carbonitride precipitation of Nb and V.・ Toughness balance can be obtained.

【0041】[0041]

【実施例】次に本発明の実施例について述べる。 <実施例1>実験室溶解(50kg、120mm厚鋼
塊)で種々の成分の鋼塊を製造した。これらの鋼塊を種
々の条件で厚みが13〜30mmの鋼板に圧延し、諸機
械的性質を調査した。鋼板の機械的性質(降伏強さ:Y
S、引張強さ:TS、シャルピー衝撃試験の−20℃で
の吸収エネルギー:vE−20と50%脆性破面遷移温
度:vTrs)は圧延と直角方向で調査した。HAZ靭
性(シャルピー衝撃試験の−20℃での吸収エネルギ
ー:vE−20)は再現熱サイクル装置で再現したHA
Zで評価した(最高加熱温度:1400℃、800〜5
00℃の冷却時間 [Δt800-500 ] :237秒)。Ti
O、MgOおよびそれを核として析出したTiNの大き
さ、個数は透過型電子顕微鏡によるレプリカ・サンプル
の観察により、調査した。
Next, an embodiment of the present invention will be described. Example 1 Steel ingots of various components were produced by laboratory melting (50 kg, 120 mm thick steel ingot). These ingots were rolled under various conditions into steel plates having a thickness of 13 to 30 mm, and various mechanical properties were investigated. Mechanical properties of steel sheet (Yield strength: Y
S, tensile strength: TS, absorbed energy at −20 ° C. in Charpy impact test: vE-20 and 50% brittle fracture transition temperature: vTrs) were examined in the direction perpendicular to the rolling. The HAZ toughness (absorbed energy at −20 ° C. in the Charpy impact test: vE-20) was measured using HA reproduced with a reproducible thermal cycler.
(Maximum heating temperature: 1400 ° C., 800 to 5
(Cooling time at 00 ° C. [Δt 800-500 ]: 237 seconds). Ti
The size and the number of O, MgO and TiN precipitated using the nuclei were examined by observing the replica sample with a transmission electron microscope.

【0042】実施例を表1、2に示す。本発明にしたが
って製造した鋼板は、母材靭性−40℃でのシャルピー
衝撃吸収エネルギーが200Jを超え、かつ−20℃で
のHAZのシャルピー衝撃吸収エネルギーが150Jを
超え、優れた母材およびHAZ靭性を有する。これに対
し、比較鋼は化学成分またはTi、Mg酸化物粒子およ
びそれを核として析出したTiN粒子の個数が少なく、
−20℃でのHAZのシャルピー衝撃吸収エネルギーが
低い。鋼KはC量が多く、粗大で硬質な炭化物を含む組
織となっておりHAZのシャルピー衝撃吸収エネルギー
が低い。鋼LおよびOはTi/Nのバランスが不適切、
Ti過剰であるため、Tiの炭化物が生成すると同時に
TiN粒子も粗大になっており、HAZのシャルピー衝
撃吸収エネルギーが低い。鋼M、NはSi、Mn量が多
いために、焼入れ性が向上し、硬質層(島状マルテンサ
イトなど)の生成が増加し、HAZのシャルピー衝撃吸
収エネルギーが低い。鋼PはAl量が多く、Ti、Mg
酸化物の個数が減少しており、充分なピニング効果が得
られずにHAZのシャルピー衝撃吸収エネルギーが低
い。鋼QはMg量が多いために、粗大なMgO粒子を形
成し、個数も減少していることから、HAZのシャルピ
ー衝撃吸収エネルギーが低い。鋼RはMgの添加がない
ため、HAZのシャルピー衝撃吸収エネルギーが低い。
Examples are shown in Tables 1 and 2. The steel sheet manufactured according to the present invention has a base metal toughness having a Charpy impact absorption energy at −40 ° C. of more than 200 J, and a HAZ at −20 ° C. having a Charpy impact absorption energy of more than 150 J, and excellent base metal and HAZ toughness. Having. On the other hand, the comparative steel has a small number of chemical components or Ti, Mg oxide particles and the number of TiN particles precipitated by using them as nuclei,
The Charpy impact absorption energy of HAZ at -20 ° C is low. Steel K has a large C content, has a structure containing coarse and hard carbides, and has a low Charpy impact absorption energy of HAZ. Steel L and O have improper balance of Ti / N,
Due to the excess of Ti, TiN particles are also coarsened at the same time that carbides of Ti are generated, and the Charpy impact absorption energy of HAZ is low. Since steels M and N have large amounts of Si and Mn, quenching properties are improved, generation of hard layers (such as island martensite) is increased, and the Charpy impact absorption energy of HAZ is low. Steel P has a large amount of Al, Ti, Mg
The number of oxides is reduced, and the HAZ has low Charpy impact absorption energy without obtaining a sufficient pinning effect. Since the steel Q has a large amount of Mg, it forms coarse MgO particles and the number thereof is also reduced, so that the HAZ has a low Charpy impact absorption energy. Steel R has no added Mg, and therefore has low Charpy impact absorption energy of HAZ.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】(表1のつづき) [Table 2] (continuation of Table 1)

【0045】[0045]

【発明の効果】本発明の化学成分および製造方法に限定
し、TiとMgを適切に添加することで大入熱溶接熱影
響部の靭性の低下を防止し、構造物の脆性破壊に対する
安全性を大幅に向上することができる。
The present invention is limited to the chemical components and the manufacturing method of the present invention, and by appropriately adding Ti and Mg, it is possible to prevent the toughness of the heat-affected zone of large heat input welding from being reduced, and to prevent the structure from brittle fracture. Can be greatly improved.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA00 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA19 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA01 CA02 CA03 CB02 CC03 CC04 CD05  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4K032 AA00 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA19 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA01 CA02 CA03 CB02 CC03 CC04 CD05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】重量%で C:0.05%以下 Si:0.01〜0.5% Mn:0.2〜2.0% Ti:0.001〜0.03% Mg:0.0005〜0.010% Al:0.01%以下 P:0.02%以下 S:0.010%以下 を含有し、かつTiとNの比が2.0≦Ti/N≦3.
5であり、残部がFeおよび不可避的不純物からなり、
Ti、Mg含有の酸化物およびその酸化物を核として析
出するTiNの一種もしくは二種以上が、粒子径0.0
05〜0.2μmの大きさで1.0×105 〜1.0×
107 個/mm2 が分散析出していることを特徴とする
溶接継手靭性の優れた高張力鋼。
C: 0.05% or less by weight% Si: 0.01 to 0.5% Mn: 0.2 to 2.0% Ti: 0.001 to 0.03% Mg: 0.0005 -0.010% Al: 0.01% or less P: 0.02% or less S: 0.010% or less, and the ratio of Ti to N is 2.0 ≦ Ti / N ≦ 3.
5, the balance being Fe and unavoidable impurities,
One or more of Ti and Mg-containing oxides and TiN precipitated with the oxides as nuclei have a particle diameter of 0.0
1.0 × 10 5 to 1.0 × with a size of 05 to 0.2 μm
High strength steel with excellent weld joint toughness characterized in that 10 7 particles / mm 2 are dispersed and precipitated.
【請求項2】重量%で Ca:0.006%以下 REM:0.02%以下 の1種または2種を含有する請求項1に記載の溶接継手
靭性の優れた高張力鋼。
2. The high-strength steel with excellent toughness of a welded joint according to claim 1, which contains one or two of Ca: 0.006% or less and REM: 0.02% or less by weight%.
【請求項3】重量%で Cu:0.05〜1.5% Ni:0.05〜2.0% Cr:0.01〜1.0% Mo:0.01〜0.5% Nb:0.001〜0.15% V:0.001〜0.1% B:0.0001〜0.0050% の1種または2種以上を含有する請求項1または請求項
2のいずれかに記載の溶接継手靭性の優れた高張力鋼。
3. In% by weight Cu: 0.05 to 1.5% Ni: 0.05 to 2.0% Cr: 0.01 to 1.0% Mo: 0.01 to 0.5% Nb: The composition according to claim 1, wherein the composition contains at least one of 0.001 to 0.15% V: 0.001 to 0.1% B: 0.0001 to 0.0050%. High strength steel with excellent toughness of weld joint.
【請求項4】請求項1〜3に記載の鋼組成からなる鋼塊
またはスラブを、再加熱後、熱間圧延を行い、溶接継手
靭性の優れた高張力鋼を製造するのに際し、Ac3点〜
1300℃の温度に加熱し、 Ac1+50℃以上の温
度で熱間圧延を完了し、圧延後空冷もしくは加速冷却す
ることを特徴とする溶接継手靭性の優れた高張力鋼の製
造方法。
4. A steel ingot or a slab having the steel composition according to any one of claims 1 to 3, which is re-heated and then hot-rolled to produce a high-strength steel having excellent weld joint toughness. ~
A method for producing a high-strength steel having excellent toughness of a welded joint, comprising heating to a temperature of 1300 ° C., completing hot rolling at a temperature of Ac1 + 50 ° C. or higher, and air-cooling or accelerated cooling after the rolling.
【請求項5】請求項1〜3に記載の鋼組成からなる鋼塊
またはスラブを、再加熱後、熱間圧延を行い、溶接継手
靭性の優れた高張力鋼を製造するのに際し、Ac3点〜
1300℃の温度に加熱し、Ac1+50℃以上の温度
で熱間圧延を完了し、圧延後、450℃以上700℃未
満の所定の温度まで加速冷却し、当該温度域を空冷する
か、もしくは当該温度域で一定時間保持することを特徴
とする溶接継手靭性の優れた高張力鋼の製造方法。
5. A steel ingot or a slab having the steel composition according to any one of claims 1 to 3, which is reheated and then hot-rolled to produce a high-strength steel excellent in weld joint toughness. ~
Heat to a temperature of 1300 ° C., complete hot rolling at a temperature of Ac1 + 50 ° C. or more, and after rolling, accelerate and cool to a predetermined temperature of 450 ° C. or more and less than 700 ° C., or air-cool the temperature range, or A method for producing high-strength steel having excellent toughness in welded joints, characterized in that the high-strength steel is maintained for a certain period of time in a weld zone.
JP2000211116A 2000-07-12 2000-07-12 High tensile strength steel excellent in welded joint toughness and its production method Withdrawn JP2002030380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000211116A JP2002030380A (en) 2000-07-12 2000-07-12 High tensile strength steel excellent in welded joint toughness and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211116A JP2002030380A (en) 2000-07-12 2000-07-12 High tensile strength steel excellent in welded joint toughness and its production method

Publications (1)

Publication Number Publication Date
JP2002030380A true JP2002030380A (en) 2002-01-31

Family

ID=18707282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211116A Withdrawn JP2002030380A (en) 2000-07-12 2000-07-12 High tensile strength steel excellent in welded joint toughness and its production method

Country Status (1)

Country Link
JP (1) JP2002030380A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
US8920713B2 (en) 2009-05-21 2014-12-30 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
CN112912527A (en) * 2018-10-26 2021-06-04 株式会社Posco Steel sheet for pressure vessel having excellent low-temperature toughness and excellent ductility, and method for producing same
CN114107828A (en) * 2020-08-27 2022-03-01 宝山钢铁股份有限公司 Steel plate for high-heat-input welding with tensile strength of 570MPa and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
US8920713B2 (en) 2009-05-21 2014-12-30 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
CN112912527A (en) * 2018-10-26 2021-06-04 株式会社Posco Steel sheet for pressure vessel having excellent low-temperature toughness and excellent ductility, and method for producing same
CN114107828A (en) * 2020-08-27 2022-03-01 宝山钢铁股份有限公司 Steel plate for high-heat-input welding with tensile strength of 570MPa and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
CN108342655B (en) Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP2018204109A (en) Abrasion resistant thick steel plate
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
WO2008029583A1 (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP5151693B2 (en) Manufacturing method of high-strength steel
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP5055783B2 (en) Manufacturing method of high strength and high toughness steel
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JP2001192761A (en) Ferritic heat resistant steel sheet excellent in creep strength and toughness of base metal and welded joint and producing method therefor
JP4286581B2 (en) Wear-resistant steel
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2007217772A (en) Method for producing high strength/high toughness steel
JP2002030380A (en) High tensile strength steel excellent in welded joint toughness and its production method
JP2003105499A (en) Pearlitic rail having excellent toughness and ductility, and production method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002