JP2002025493A - Electron beam irradiation apparatus - Google Patents

Electron beam irradiation apparatus

Info

Publication number
JP2002025493A
JP2002025493A JP2000205122A JP2000205122A JP2002025493A JP 2002025493 A JP2002025493 A JP 2002025493A JP 2000205122 A JP2000205122 A JP 2000205122A JP 2000205122 A JP2000205122 A JP 2000205122A JP 2002025493 A JP2002025493 A JP 2002025493A
Authority
JP
Japan
Prior art keywords
electron beam
beam irradiation
vacuum
sample
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000205122A
Other languages
Japanese (ja)
Inventor
Yoshinobu Miyake
善信 三宅
Kiichi Eto
喜市 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO MATERIAL KK
Shin Etsu Chemical Co Ltd
Iwasaki Denki KK
Original Assignee
TAIYO MATERIAL KK
Shin Etsu Chemical Co Ltd
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO MATERIAL KK, Shin Etsu Chemical Co Ltd, Iwasaki Denki KK filed Critical TAIYO MATERIAL KK
Priority to JP2000205122A priority Critical patent/JP2002025493A/en
Publication of JP2002025493A publication Critical patent/JP2002025493A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron beam irradiation apparatus for curing a cable with a core of optical fiber, electric wire or the like which is coated with resin by electron beam irradiation. SOLUTION: A reverse magnetron plasma electron gun 2, actuating at low vacuum, is used as a cylindrical electron gun, and differential vacuum mechanisms 6, 7 are provided, thereby evacuating an electron beam generating part and making an electron beam irradiating part B a vacuum level or low- vacuum atmosphere. With this system, a long, linear sample like optical fiber 1 is guided to the electron beam irradiating part in the vacuum from the atmosphere, to perform electron beam irradiation, and the sample is then discharged into the atmosphere. The energy and intensity of the irradiated electron beam are not limited, because no thin partition wall between the atmosphere and the vacuum is present in the path through which the electron beam passes, and the throughput of resin curing is greatly improved, as compared with the conventional electron beam irradiation system using a partition wall. The electric charge carried on an insulating material as the object is neutralized, by arranging a PIG ion source in the electron beam irradiating part, whereby the electron beam curing can be performed with proper efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバー、電
線等のコアーに樹脂を塗布したケーブルを電子線照射に
より硬化させる電子線照射装置の改良に関し、特に、照
射窓を不要とした電子線照射装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electron beam irradiator for curing a cable coated with a resin such as an optical fiber or an electric wire by electron beam irradiation, and more particularly to an electron beam irradiator which does not require an irradiation window. Regarding improvement.

【0002】電線又は光ケーブルはエネルギー及び情報
に関する現代社会をつくる基幹産業の一つである。その
性能は多様化し、かつ高品位のものが望まれている。さ
らに需要の拡大に伴って生産性の向上と低コスト化が要
求されている。そうした中で、線材又は帯材の保護皮膜
の高分子硬化処理速度は製造速度を規定する一つの要因
となっている。硬化処理は試料を真空中又は大気中に持
ち込んでそれに直接電子線を照射することにより処理速
度が大幅に向上し、かつ架橋処理の深さ方向の制御が出
来る。また差動排気方式による無隔壁電子線照射方法で
は電子線のエネルギー散逸も少ないため、処理の運転コ
ストも低減化出来る。
[0002] Electric wires or optical cables are one of the key industries that create a modern society related to energy and information. Its performance is diversified, and high-quality ones are desired. Further, with the increase in demand, improvement in productivity and cost reduction are required. Under such circumstances, the polymer curing speed of the protective coating of the wire or the strip is one factor that determines the production speed. In the curing treatment, the treatment speed is greatly improved by bringing the sample into a vacuum or the atmosphere and directly irradiating the specimen with an electron beam, and the depth direction of the crosslinking treatment can be controlled. Further, in the non-partitioned electron beam irradiation method by the differential pumping method, since the energy dissipation of the electron beam is small, the operation cost of the processing can be reduced.

【0003】本発明は、光ファイバーコアーに樹脂を塗
布した光ファイバーケーブルを大気圧雰囲気から高速度
で真空中か減圧中に持ち込んで電子線照射による樹脂硬
化を行わせ、再度大気圧雰囲気に戻す事を可能にする。
また、真空中で発泡性のある樹脂被膜材も本発明により
未発泡の状態で硬化処理が可能である外、多層に被膜材
料を重ねる事も可能となる。この事は、ケーブル仕様の
多様化と合わせ、製造の高速化と低コスト化によって今
後新分野の市場を形成すると同時に市場規模も拡大する
と期待される。
According to the present invention, an optical fiber cable in which a resin is applied to an optical fiber core is brought into a vacuum or a reduced pressure from an atmospheric pressure atmosphere at a high speed, the resin is cured by electron beam irradiation, and the atmosphere is returned to the atmospheric pressure again. enable.
According to the present invention, a resin coating material that is foamable in a vacuum can be cured in an unfoamed state, and the coating material can be stacked in multiple layers. This is expected to create a market in a new field and to expand the market scale in the future by speeding up manufacturing and reducing costs, along with diversification of cable specifications.

【0004】[0004]

【従来の技術】光ファイバーの生産工程で樹脂材料の硬
化は現在紫外線ランプからの紫外光で行われている。紫
外線を使用する場合の問題は、第一に紫外線の物質中透
過力が小さく、試料の表面の浅い領域までしか硬化処理
が出来ないこと、第二に紫外線ランプからの紫外線強度
の制限から架橋処理速度が遅いこと、そして第三に紫外
線ランプの紫外光輻射能率が小さいために架橋処理コス
トを下げる事が出来ないことである。
2. Description of the Related Art In an optical fiber production process, a resin material is currently cured with ultraviolet light from an ultraviolet lamp. The problems with the use of ultraviolet light are firstly that the ultraviolet light has a low permeability in the substance and can be cured only to a shallow area on the surface of the sample, and secondly the crosslinking treatment due to the limitation of the intensity of the ultraviolet light from the ultraviolet lamp. Thirdly, the speed is slow, and thirdly, the cost of crosslinking treatment cannot be reduced due to the small ultraviolet radiation efficiency of the ultraviolet lamp.

【0005】一方、電子線を真空中で照射する場合、従
来の方法では試料を逐一、照射真空容器内に入れて真空
排気しなければならず作業能率が悪い。また、真空中で
発泡する樹脂試料には照射出来ない。電子線を真空壁に
設けた金属製真空隔壁用薄膜を透過させて大気圧下で試
料に照射させる場合、電子線がその隔壁通過時に散乱で
広角度に広がるため、光ファイバーケーブル等の高速度
で通過する線状の試料には十分な強度の電子線を収束さ
せる事が出来ない。さらに、その隔壁に吸収された電子
線のエネルギーによる発熱除去は強制空冷によってなさ
れているが、その熱除去にも限界があるため、照射電子
線量を紫外線ランプ硬化処理並の強度にすることは技術
的に極めて困難な情勢である。
On the other hand, when irradiating an electron beam in a vacuum, in the conventional method, the sample must be placed in an irradiation vacuum vessel one by one and evacuated to vacuum. Also, irradiation cannot be performed on a resin sample that foams in a vacuum. When irradiating a sample under atmospheric pressure by passing an electron beam through a thin film for a metal vacuum bulkhead provided on a vacuum wall and irradiating the sample under atmospheric pressure, the electron beam spreads at a wide angle due to scattering when passing through the bulkhead. An electron beam of sufficient intensity cannot be converged on a passing linear sample. Furthermore, although the removal of heat by the energy of the electron beam absorbed by the partition walls is performed by forced air cooling, there is a limit to the heat removal. It is an extremely difficult situation.

【0006】[0006]

【発明が解決しようとする課題】電子線が真空と大気と
の隔膜を透過するときの散乱による発散の問題は本発明
の差動排気系を有した真空チェンバー内で電子線を加速
し試料へ収束させる事によって隔壁を使用しない方法で
回避出来る。この場合、試料は大気圧環境から高速度で
真空又は減圧あるいは大気圧の環境に移され、そこで電
子線のシャワーを集中的に浴びた後、再度高速度で大気
圧環境に戻されて架橋処理が完了する。
The problem of divergence due to scattering when an electron beam passes through a diaphragm between a vacuum and the atmosphere is caused by accelerating the electron beam in a vacuum chamber having a differential pumping system according to the present invention and accelerating the electron beam to a sample. The convergence can be avoided by a method not using a partition. In this case, the sample is transferred from the atmospheric pressure environment to a vacuum, reduced pressure, or atmospheric pressure environment at a high speed, where it is intensively showered with an electron beam, and then returned to the atmospheric pressure environment at a high speed again to perform a cross-linking process. Is completed.

【0007】真空中で発泡する試料は本発明の真空中加
熱脱気室内で不純物気体を十分脱気して光ファイバー試
料の回りに塗布し、かつ光ファイバーが高速度で走って
いるため、電子線照射を真空下で行った場合でも再発泡
しにくい。また本発明ではこの真空脱気室が冷却可能で
あるため、試料の成形性が保てるばかりではなく、真空
中で電子線照射硬化中にも試料からの発泡が軽減される
かあるいは全く回避出来る。さらに本発明によれば、途
中真空を破る事のない同一真空ライン上で多数の種類の
試料を本試料の回りに高速度で多層コートする事が可能
である。
[0007] The sample foamed in a vacuum is sufficiently degassed in the vacuum degassing chamber of the present invention to apply the gas around the optical fiber sample, and the optical fiber runs at a high speed. Is difficult to re-foam even when it is performed under vacuum. In the present invention, since the vacuum degassing chamber can be cooled, not only the moldability of the sample can be maintained, but also foaming from the sample can be reduced or even avoided during electron beam irradiation curing in a vacuum. Further, according to the present invention, many types of samples can be multi-layer coated at a high speed around the present sample on the same vacuum line without breaking the vacuum in the middle.

【0008】[0008]

【課題を解決するための手段】電子線を加速する領域と
照射する領域は、同じチェンバー内に入れて同一のポン
プを使用して真空排気するか、又は別々のチェンバーに
入れて独立したポンプでそれぞれを真空排気し、かつ両
チェンバーの間は電子線を通過させる狭い間隙を除いて
物理的に仕切られている。後者の方法では電子線の発生
と加速を真空中で行い、それを大気圧又は減圧した雰囲
気中においた試料に照射することが出来る。この方法に
より、真空雰囲気で発泡性のある試料にも直接電子線を
照射出来る。
The region for accelerating the electron beam and the region for irradiation are placed in the same chamber and evacuated using the same pump, or placed in separate chambers and provided with independent pumps. Each of them is evacuated and physically separated from each other except for a narrow gap through which an electron beam passes. In the latter method, the electron beam is generated and accelerated in a vacuum, and the electron beam can be irradiated on a sample placed in an atmospheric pressure or a reduced pressure atmosphere. According to this method, a sample having a foaming property in a vacuum atmosphere can be directly irradiated with an electron beam.

【0009】真空中で発泡性のある試料は予め常温又は
高温雰囲気における真空中で脱気しておけば、真空中で
電子線を照射しても気泡は出来にくい。この事に加えて
真空中で加熱脱気した後に試料の温度を下げておけば、
気泡の発生は一層抑える事が出来る。この性質は有機素
材には一般的に通用する性質であり作業温度に大きく依
存する。
If a sample having a foaming property in a vacuum is previously degassed in a vacuum at a normal temperature or a high temperature atmosphere, bubbles are hardly formed even when the electron beam is irradiated in the vacuum. In addition to this, if the temperature of the sample is lowered after heating and degassing in vacuum,
The generation of bubbles can be further suppressed. This property is generally used for organic materials and greatly depends on the working temperature.

【0010】なお、有機素材は一般に電気絶縁性を有し
ており、かつ真空は最大の絶縁媒体であるため、電子線
照射にさらされている部位は帯電する。この帯電は電子
線の軌道に歪みを与える外、素材表面に沿って放電を誘
発し素材自身を機械的に破壊する場合がある。本発明で
はこの帯電を防止するために、電子線照射部に近接させ
て試料の移送軸と同軸を有する冷陰極PIG型プラズマ
発生器を配設してある。このプラズマ発生器の電位は試
料と同じ電位で照射チェンバーに接地してある。プラズ
マ発生器からは試料移送軸方向にプラズマがジェット状
に延び、電子線照射部にある試料を包み込んでいる。プ
ラズマは電気的に導電性を保つため、これに触れた試料
の表面電荷を中和してその帯電を防ぐ。
[0010] Since organic materials generally have electrical insulation properties and vacuum is the largest insulating medium, the portions exposed to electron beam irradiation are charged. This charging not only distorts the trajectory of the electron beam but also induces a discharge along the surface of the material and may mechanically destroy the material itself. In the present invention, in order to prevent this charging, a cold cathode PIG type plasma generator having the same axis as the transport axis of the sample is provided close to the electron beam irradiation unit. The potential of this plasma generator is the same as that of the sample, and is grounded to the irradiation chamber. From the plasma generator, the plasma extends in the form of a jet in the direction of the sample transfer axis, and surrounds the sample in the electron beam irradiation unit. Since the plasma is electrically conductive, the surface charge of the sample touching the plasma is neutralized to prevent the charge.

【0011】このように、円周から中心部に向けて集中
的に電子線を加速・照射する方法は被照射物の吸収線量
効率を高めることができる。しかも低真空で効率的に電
子を取り出す逆マグネトロン電子銃を搭載することによ
り薄膜照射窓を取り除くことができる。この電子線照射
装置における隔壁を取り除くことにより電子線のエネル
ギーの制限がなくなり、かつ電子線照射の方向が揃うこ
とになる。一方、電子線照射源の寿命が大幅に伸びるこ
とになる。
As described above, the method of intensively accelerating and irradiating the electron beam from the circumference toward the center can increase the absorbed dose efficiency of the irradiation object. In addition, the thin-film irradiation window can be removed by mounting a reverse magnetron electron gun that efficiently extracts electrons in a low vacuum. By removing the partition walls in this electron beam irradiation apparatus, the energy of the electron beam is not restricted, and the directions of electron beam irradiation are aligned. On the other hand, the life of the electron beam irradiation source is greatly extended.

【0012】[0012]

【発明の実施の形態】本発明の実施例として、光ファイ
バー用の樹脂を単層又は多層塗布し、電子線照射で硬化
する事例に応用した場合の装置について説明する。装置
の配置を図1〜図4に概念的に示す。図5、図6は光フ
ァイバーの処理通路にPIGイオン源を配置し、電子線
照射による帯電を抑制して電子線照射効率を上げるもの
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, an apparatus will be described in which a resin for an optical fiber is applied in a single layer or a multi-layer, and the resin is cured by irradiation with an electron beam. The arrangement of the apparatus is conceptually shown in FIGS. FIGS. 5 and 6 show an arrangement in which a PIG ion source is disposed in a processing path of an optical fiber to suppress charging due to electron beam irradiation and increase electron beam irradiation efficiency.

【0013】図1は、逆マグネトロン円筒型電子銃部2
と電子線照射部Bの間に従来装置では装備してある真空
隔壁を取り除いて差動排気システムとした照射窓がない
真空中電子線照射装置である。この装置は電子銃真空容
器4を真空ポンプP1で排気し、電子線加速及び収束部
を真空ポンプP2で排気する。差動排気室6及び差動室
7は真空ポンプP3及びP4を排気することにより電子
線照射部Bは減圧環境となり、樹脂を塗布した光ファイ
バー1はシステム上部の大気圧Cからファイバートンネ
ル9を通り減圧された電子線照射部Bで円周方向から集
中的に電子線照射を受け樹脂は硬化し下部の光ファイバ
ートンネル9を通って大気圧Cに連続して放出される。
なお、図中3は収束及び加速電極、5は加速室真空容器
である。
FIG. 1 shows an inverted magnetron cylindrical electron gun unit 2.
This is a vacuum electron beam irradiation apparatus having no irradiation window which is a differential pumping system by removing a vacuum partition provided in the conventional apparatus between the apparatus and the electron beam irradiation unit B. In this apparatus, the electron gun vacuum vessel 4 is evacuated by a vacuum pump P1, and the electron beam accelerating and converging section is evacuated by a vacuum pump P2. The differential pumping chamber 6 and the differential chamber 7 exhaust the vacuum pumps P3 and P4 so that the electron beam irradiating section B is in a reduced pressure environment, and the resin-coated optical fiber 1 passes through the fiber tunnel 9 from the atmospheric pressure C at the top of the system. The resin is intensively irradiated with the electron beam from the circumferential direction in the electron beam irradiation section B in which the pressure is reduced, and the resin is cured and continuously discharged to the atmospheric pressure C through the lower optical fiber tunnel 9.
In the figure, reference numeral 3 denotes a converging and accelerating electrode, and reference numeral 5 denotes an accelerating chamber vacuum vessel.

【0014】図2はプラズマ中和器を装備した真空中電
子線照射装置である。なお、図1と同一部品は同一符号
を付してその説明を省略する。この装置は電子銃真空容
器4とファイバートンネル9を真空ポンプP1及びP2
で真空引きし、逆マグネトロン円筒型電子銃2で創生し
た電子線は加速されて、電子線照射部の電子線照射間隙
10を通って試料の光ファイバー1を照射し、コアーを
被覆した樹脂を硬化する。プラズマ中和器8には冷陰極
PIGを使用し、電子及びイオンプラズマが電子線照射
部に噴出してファイバーのチャージアップ電荷を中和す
る。
FIG. 2 shows a vacuum electron beam irradiation apparatus equipped with a plasma neutralizer. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. This device uses an electron gun vacuum vessel 4 and a fiber tunnel 9 to connect vacuum pumps P1 and P2.
The electron beam created by the inverted magnetron cylindrical electron gun 2 is accelerated, and is irradiated on the optical fiber 1 of the sample through the electron beam irradiation gap 10 of the electron beam irradiation unit, and the resin coated on the core is removed. To cure. A cold cathode PIG is used for the plasma neutralizer 8, and electron and ion plasma are ejected to an electron beam irradiation unit to neutralize the charge-up charge of the fiber.

【0015】図3は樹脂が発泡する場合の対応を示した
図である。なお、図1および図2と同一部品は同一符号
を付してその説明を省略する。樹脂塗布容器11は過熱
及び冷却機構12を装備しており、樹脂13に含まれて
いる不純物ガスを取り除くため、樹脂の入った容器を真
空脱気する。併せてこの樹脂塗布容器を加熱すれば脱気
の効果があがる。その後、樹脂の粘度が使用に供される
までの範囲内で高くするために容器の冷却を行う。こう
すると電子線照射中においても冷却された被覆樹脂から
気泡が成長し難くなる。
FIG. 3 is a view showing a case where the resin foams. 1 and 2 are denoted by the same reference numerals and description thereof will be omitted. The resin coating container 11 is equipped with an overheating and cooling mechanism 12, and the container containing the resin is evacuated to remove impurities contained in the resin 13. In addition, if the resin coating container is heated, the effect of degassing is increased. Thereafter, the container is cooled in order to increase the viscosity of the resin within a range required for use. This makes it difficult for bubbles to grow from the cooled coating resin even during electron beam irradiation.

【0016】図4は、同様な方法で一次被覆されたケー
ブルに、さらに二次被覆する方法を示したものである。
より高次の被覆も同様に行える。図1から図2と同一部
品は同一符号を付してその説明を省略する。
FIG. 4 shows a method of further secondary coating a cable which has been primary coated in a similar manner.
Higher order coatings can be performed as well. 1 and 2 are denoted by the same reference numerals and description thereof will be omitted.

【0017】図5はケーブル帯電防止用の冷陰極PIG
放電で生成したプラズマを利用する荷電中和器である。
円筒状磁石15と円筒磁性体で磁気閉回路形成用磁性体
14(カソード)を形成し、円筒状アノード16との間
にPIG放電をさせることによりプラズマジェット17
が噴出する。
FIG. 5 shows a cold cathode PIG for preventing charging of a cable.
This is a charge neutralizer that uses plasma generated by discharge.
A magnetic body 14 (cathode) for forming a magnetic closed circuit is formed by a cylindrical magnet 15 and a cylindrical magnetic body, and a PIG discharge is caused between the magnetic body 14 and a cylindrical anode 16 to thereby form a plasma jet 17.
Squirts.

【0018】図6はカソードである円筒状磁石15の内
径側に円筒型のアノード16が配設され、プラズマジェ
ット17は円筒磁石の両側から噴出する。なお、18は
磁気シールドである。
In FIG. 6, a cylindrical anode 16 is provided on the inner diameter side of a cylindrical magnet 15 serving as a cathode, and plasma jets 17 are ejected from both sides of the cylindrical magnet. Reference numeral 18 denotes a magnetic shield.

【0019】[0019]

【発明の効果】以上のように、本発明は、光ファイバー
等のコアに樹脂を塗布したケーブルを大気圧雰囲気から
高速度で真空中か減圧中に持ち込んで、電子線照射によ
る樹脂硬化を行わせ、再度大気圧雰囲気に戻すことが可
能にする。また、真空中で発泡性のある樹脂被膜材も本
発明により未発泡の状態で硬化処理が可能である外、多
層に被膜材料を重ねる事も可能となる円周から中心部に
向けて集中的に電子線を加速・照射する方法は被照射物
の吸収線量効率を高めることができる。しかも低真空で
効率的に電子を取り出す逆マグネトロン電子銃を搭載す
ることにより薄膜照射窓を取り除くことができる等の利
点がある。このように、本発明は、光ファイバー等を電
子線照射により容易、かつ安価に硬化させる電子線照射
装置を得ることができ、特に、照射窓を不要とした電子
線照射装置が得られる。
As described above, according to the present invention, a cable in which a resin such as an optical fiber is coated with a resin is brought into a vacuum or a reduced pressure from an atmospheric pressure atmosphere at a high speed, and the resin is cured by electron beam irradiation. It is possible to return to the atmospheric pressure atmosphere again. According to the present invention, a resin coating material that is foamable in a vacuum can be cured in an unfoamed state, and the coating material can be stacked in multiple layers. The method of accelerating and irradiating the electron beam can increase the absorbed dose efficiency of the irradiation object. In addition, there is an advantage that the thin film irradiation window can be removed by mounting a reverse magnetron electron gun for efficiently extracting electrons in a low vacuum. As described above, according to the present invention, it is possible to obtain an electron beam irradiation apparatus that cures an optical fiber or the like easily and inexpensively by electron beam irradiation, and in particular, an electron beam irradiation apparatus that does not require an irradiation window.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るプラズマ中和器を装備する真空中
電子線照射装置を示す図である。
FIG. 1 is a view showing an electron beam irradiation apparatus in a vacuum equipped with a plasma neutralizer according to the present invention.

【図2】同じく減圧雰囲気電子線照射装置を示す図であ
る。
FIG. 2 is a view showing an electron beam irradiation apparatus in a reduced pressure atmosphere.

【図3】同じく樹脂脱気容器とプラズマ中和器を装備す
る真空中電子線照射装置を示す図である。
FIG. 3 is a view showing an electron beam irradiation apparatus in a vacuum equipped with a resin degassing container and a plasma neutralizer.

【図4】同じく多層被覆用電子線照射装置を示す図であ
る。
FIG. 4 is a view showing an electron beam irradiation device for multilayer coating.

【図5】同じく片噴射プラズマ中和器を示す図である。FIG. 5 is a view showing a single injection plasma neutralizer.

【図6】同じく両噴射プラズマ中和器を示す図である。FIG. 6 is a view showing a double jet plasma neutralizer.

【符号の説明】[Explanation of symbols]

A 真空 B 電子線照射部 C 大気圧 P 真空ポンプ P1 ターボ分子ポンプ P2 ロータリーポンプ P3 メカニカルブースターポンプ P4 ブロアー 1 光ファイバー 2 逆マグネトロン円筒型電子銃 3 収束及び加速電極 4 電子銃真空容器 5 加速室真空容器 6 差動排気室 7 差動排気室 8 プラズマ中和器 9 ファイバートンネル 10 電子線照射間隙 11 樹脂塗布容器 12 加熱及び冷却機構 13 樹脂 14 磁気閉回路形成用磁性体(カソード) 15 円筒状磁石(カソード電極) 16 円筒状アノード 17 プラズマジェット 18 磁気シールド A Vacuum B Electron beam irradiation part C Atmospheric pressure P Vacuum pump P1 Turbo molecular pump P2 Rotary pump P3 Mechanical booster pump P4 Blower 1 Optical fiber 2 Inverted magnetron cylindrical electron gun 3 Converging and accelerating electrode 4 Electron gun vacuum vessel 5 Acceleration chamber vacuum vessel Reference Signs List 6 differential exhaust chamber 7 differential exhaust chamber 8 plasma neutralizer 9 fiber tunnel 10 electron beam irradiation gap 11 resin coating container 12 heating and cooling mechanism 13 resin 14 magnetic material (cathode) for forming magnetic closed circuit 15 cylindrical magnet ( Cathode electrode) 16 Cylindrical anode 17 Plasma jet 18 Magnetic shield

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21K 5/10 H01J 27/04 H01J 27/04 37/08 37/08 H01B 13/14 A // H01B 13/14 C03C 25/02 F (72)発明者 衛藤 喜市 東京都大田区大森西1丁目18番15号 株式 会社太陽マテリアル内 Fターム(参考) 2H050 BA03 BA17 BA21 BD05 4G060 AA03 AC16 AD22 AD59 5C030 DD03 DD10 5C034 AA02 AA04 AA07 AA09 5G325 GA13 GB29 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G21K 5/10 H01J 27/04 H01J 27/04 37/08 37/08 H01B 13/14 A // H01B 13 / 14 C03C 25/02 F (72) Inventor Kiichi Eto 1-18-15 Omorinishi, Ota-ku, Tokyo F-term in Taiyo Materials Co., Ltd. (Reference) 2H050 BA03 BA17 BA21 BD05 4G060 AA03 AC16 AD22 AD59 5C030 DD03 DD10 5C034 AA02 AA04 AA07 AA09 5G325 GA13 GB29

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子銃部と電子線照射部を有し、当該電
子銃部は低真空でグロー放電が安定な逆マグネトロンプ
ラズマ電子銃を用いて構成され、前記電子銃部と前記電
子線照射部とは差動排気することにより隔壁を設けずに
真空又は減圧雰囲気に保持されており、前記電子線照射
部は大気圧領域に連通しており、前記電子線照射部にお
いて電子線照射を受ける試料を大気中から電子線照射部
に連続して導入し、前記隔壁を通さずに電子線照射を行
った後に再び大気圧に連続して取り出すことができるよ
うに構成したことを特徴とする電子線照射装置。
An electron gun includes an electron gun and an electron beam irradiator. The electron gun is configured by using an inverted magnetron plasma electron gun having a low vacuum and stable glow discharge. The section is maintained in a vacuum or reduced pressure atmosphere without providing a partition by differentially evacuating, and the electron beam irradiation section communicates with the atmospheric pressure region, and receives the electron beam irradiation in the electron beam irradiation section. An electron is characterized in that a sample is continuously introduced from the atmosphere into an electron beam irradiation unit, and electron beam irradiation is performed without passing through the partition walls, and then the sample can be continuously taken out to the atmospheric pressure again. Line irradiation equipment.
【請求項2】 真空状態に排気されており複数の樹脂試
料を入れた独立した試料格納容器と、それぞれの試料格
納容器の間に設けた電子線照射容器と、当該電子線照射
容器と前記試料格納容器とは隔壁を持たずに試料移送ト
ンネルで結ばれており、前記電子線照射容器と前記試料
格納容器とはこれらの容器に取り付けた真空ポンプ又は
これらの容器に取り付けられた試料取り出しダクトに取
り付けた真空ポンプで排気されることを特徴とする請求
項1記載の電子線照射装置。
2. An independent sample storage container evacuated to a vacuum state and containing a plurality of resin samples, an electron beam irradiation container provided between each sample storage container, the electron beam irradiation container and the sample The storage container is connected by a sample transfer tunnel without a partition, and the electron beam irradiation container and the sample storage container are connected to a vacuum pump attached to these containers or a sample extraction duct attached to these containers. 2. The electron beam irradiation apparatus according to claim 1, wherein the apparatus is evacuated by an attached vacuum pump.
【請求項3】 試料を移送する軸を有し、この軸と同軸
上に置かれており、この軸と並行な中心磁界を有する単
数又は複数個の冷陰極PIG放電プラズマ源を有し、当
該冷陰極PIG放電プラズマ源からつくられる軸方向射
出プラズマジェットで試料の電子線照射部に蓄積した電
荷を中和する事を特徴とする請求項1または2記載の電
子線照射装置。
3. A plasma source having one or more cold cathode PIG discharge plasma sources having an axis for transporting a sample, being coaxial with the axis and having a central magnetic field parallel to the axis. 3. The electron beam irradiation apparatus according to claim 1, wherein an electric charge accumulated in an electron beam irradiation section of the sample is neutralized by an axial ejection plasma jet generated from a cold cathode PIG discharge plasma source.
JP2000205122A 2000-07-06 2000-07-06 Electron beam irradiation apparatus Pending JP2002025493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205122A JP2002025493A (en) 2000-07-06 2000-07-06 Electron beam irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205122A JP2002025493A (en) 2000-07-06 2000-07-06 Electron beam irradiation apparatus

Publications (1)

Publication Number Publication Date
JP2002025493A true JP2002025493A (en) 2002-01-25

Family

ID=18702263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205122A Pending JP2002025493A (en) 2000-07-06 2000-07-06 Electron beam irradiation apparatus

Country Status (1)

Country Link
JP (1) JP2002025493A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249345A (en) * 2001-02-20 2002-09-06 Shin Etsu Chem Co Ltd Method for manufacturing optical fiber
JP2006351374A (en) * 2005-06-16 2006-12-28 Jeol Ltd Ion source
JP2008082919A (en) * 2006-09-28 2008-04-10 Japan Ae Power Systems Corp Electron beam irradiation device
JP2008256584A (en) * 2007-04-06 2008-10-23 Dialight Japan Co Ltd Electron beam irradiation device
JP2009053188A (en) * 2007-07-27 2009-03-12 Yazaki Corp Electron irradiation device and method for manufacturing covered conductor
JP2010236982A (en) * 2009-03-31 2010-10-21 Iwasaki Electric Co Ltd Device and method for irradiation of electron beam
CN108772258A (en) * 2018-08-13 2018-11-09 江苏亨通光纤科技有限公司 A kind of optical fiber drawing-in device
JPWO2018011946A1 (en) * 2016-07-14 2019-04-04 株式会社日立ハイテクノロジーズ Ion milling equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249345A (en) * 2001-02-20 2002-09-06 Shin Etsu Chem Co Ltd Method for manufacturing optical fiber
KR100815927B1 (en) * 2001-02-20 2008-03-21 신에쓰 가가꾸 고교 가부시끼가이샤 Method of manufacturing an optical fiber
JP2006351374A (en) * 2005-06-16 2006-12-28 Jeol Ltd Ion source
JP2008082919A (en) * 2006-09-28 2008-04-10 Japan Ae Power Systems Corp Electron beam irradiation device
JP2008256584A (en) * 2007-04-06 2008-10-23 Dialight Japan Co Ltd Electron beam irradiation device
JP2009053188A (en) * 2007-07-27 2009-03-12 Yazaki Corp Electron irradiation device and method for manufacturing covered conductor
JP2010236982A (en) * 2009-03-31 2010-10-21 Iwasaki Electric Co Ltd Device and method for irradiation of electron beam
JPWO2018011946A1 (en) * 2016-07-14 2019-04-04 株式会社日立ハイテクノロジーズ Ion milling equipment
US11257654B2 (en) 2016-07-14 2022-02-22 Hitachi High-Tech Corporation Ion milling apparatus
CN108772258A (en) * 2018-08-13 2018-11-09 江苏亨通光纤科技有限公司 A kind of optical fiber drawing-in device
CN108772258B (en) * 2018-08-13 2024-04-02 江苏亨通光纤科技有限公司 Optical fiber mold penetrating device

Similar Documents

Publication Publication Date Title
US5006218A (en) Sputtering apparatus
KR100269911B1 (en) Electron beam array for surface treatment
JPH02501965A (en) Electron cyclotron resonance plasma source
JP2002289585A (en) Neutral particle beam treatment device
JP2002025493A (en) Electron beam irradiation apparatus
US20040058088A1 (en) Processing method for forming thick film having improved adhesion to surface-modified substrate and apparatus thereof
US5180477A (en) Thin film deposition apparatus
US5216241A (en) Fast atom beam source
JP4073173B2 (en) Neutral particle beam processing equipment
FR2501509A1 (en) RADIOGRAPHING DEVICE USING THE ACCELERATOR OF PARTICLES CHARGED WITH A RADIOTHERAPY APPARATUS AND RADIOTHERAPY APPARATUS PROVIDED WITH SUCH A DEVICE
JPS6187869A (en) Sputter device
US6774381B2 (en) Electron beam system for treating filamentary workpiece, and method of fabricating optical fibers
JP2002022898A (en) Electron beam irradiator
JPH06310297A (en) Generating method and device of low energy neutral particle beam
US3573977A (en) Process for glass coating an ion accelerator grid
RU2035789C1 (en) Process of generation of beam of accelerated particles in technological vacuum chamber
JP2007317491A (en) Method and apparatus for ionizing cluster
JP2002352761A (en) Ion beam irradiation device
JPS6386863A (en) Thin film producing apparatus
JPH0221296B2 (en)
JPH0320466A (en) Production of thin film
JPH10106798A (en) High-speed atomic beam source
JPH02121233A (en) Ion source
JPS58154200A (en) X-ray exposure apparatus
JPS63213338A (en) Device for forming compound thin film